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Abstract: This talk presents a review of results obtained in [BCKP], [CPR], and more recently in
[C]. References [BCKP] and [CPR] are joints works with J.D. Benamou, T. Katsaounis, B. Perthame,
respectively B. Perthame and O. Runborg.
The first two papers [BCKP] and [CPR] describe the propagation of the energy along the high-frequency
Helmholtz equation with source term, using a Wigner function approach. Upon conveniently “aver-
aging out” the high-frequency oscillations, we characterize how the energy radiated from the source is
propagated along the rays of geometric optics.
The last and more recent work [C] analyses the radiation condition at infinity for these equations, a
question that was left open in [BCKP] and [CPR]. In some sense we prove that the energy is only
propagated along the outgoing rays of geometric optics: the ingoing rays carry no energy. To obtain
this result, we need to compute in an accurate way the amplitude and the phase of the high-frequency
oscillations (no “averaging” is performed). We also need appropriate assumptions on the refraction index.
We refer to [WZ] for similar and independent results.

1 Introduction

The aim of this talk is twofolds.
First (see [BCKP] and [CPR]), we wish to describe the asymptotic propagation of energy as
ε→ 0 (ε > 0), in the following prototype high-frequency Helmholtz equation

iεαεu
ε(x) +

ε2

2
∆xu

ε(x) + n2(x)uε(x) =
1
εd/2

S
(x
ε

)
. (1)

Here, the unknown is uε(x) ∈ C, the space variable is x ∈ Rd for some d ≥ 3, and αε > 0 is
a small absorption parameter that goes to zero with ε (one may think αε ∼ εN for some large
integer N). Also, n2(x) is the refraction index, and S is a given source term. We further discuss
the meaning of equation (1) below. Our aim is to prove that the Wigner measure associated
with the sequence uε, which characterizes some “average value” of the oscillations of uε, tends
to satisfy a transport equation with source term. The latter describes how the energy radiated
from the source is propagated along the rays of geometric optics. Our analysis allows more
general right-hand-sides than in (1), see section 3.
Second (see [C]), we introduce the (L2-) rescaled function wε(x) = εd/2uε(εx) , which measures
the behaviour of uε at the microscopic scale (scale ε). It satisfies

iε αεw
ε(x) +

1
2
∆xw

ε(x) + n2(εx)wε(x) = S (x) . (2)

Our aim is to prove that wε converges to the outgoing solution to the Helmholtz equation, with
coefficients frozen at the origin, i.e. lim

ε→0
wε = wout, where wout is defined as the solution to

i0+wout(x) +
1
2
∆xw

out(x) + n2(0)wout(x) = S (x) . (3)



This result trivially holds when n(x) does not depend on x, but is difficult to establish otherwise.
It asserts that the energy in (2) is radiated in the outgoing direction, uniformly in ε. Note that
the convergence limwε = wout is actually needed to fully justify the analysis skteched in the
first point above. Proving limwε = wout leads us to compute in an accurate way the amplitude
and the phase of the oscillations of wε (no averaging is performed this time). We show that
the convergence limwε = wout holds true under certain geometric assumptions on the refraction
index n2(x). We also show that the above convergence fails for certain geometries.

Before going further, let us first explain the meaning of equations (1) and (2).

As is well-known, the Helmholtz equation is a degenerate version of the wave equation, corre-
sponding to time harmonic solutions of the latter (i.e. solutions of the form exp(iωt)× function
of space only). From this point of view, both equations (1) and (2) modelize, in a time harmonic
setting, the propagation of waves emmitted through the source term ε−d/2S(x/ε) (resp. S(x)),
in a medium of variable index of refraction n2(x). The source is concentrated close to the origin,
and creates the signal uε(x) (resp. wε(x)) in the whole space Rd. In both equations, the small
absorption parameter αε > 0 corresponds to a small damping term in the underlying wave equa-
tion: think e.g. of the damped wave equation n2(εx)∂2

ttw̃
ε(t, x)−1/2 ∆xw̃

ε(t, x)+εαε∂tw̃
ε(t, x) =

− exp(−it)S(x), where w̃ε(t, x) is searched under the form exp(−it)wε(x), and similarly for the
function uε. The absorption αε makes the Helmholtz equation elliptic, in that the solutions uε

and wε are uniquely defined through (1) and (2) by an obvious energy estimate.
Throughout this paper, the given index of refraction n2(x) is assumed smooth, uniformly posi-
tive, and it goes to a constant at infinity1:

∀x ∈ Rd , 0 < n2
0 ≤ n2(x) ≤ n2

1 <∞ , and n2(x) ∈ C∞(Rd) ,

n2(x) = n2
∞ +O

(
〈x〉−ρ

)
as x→∞ , (4)

for some, possibly small, exponant ρ > 0 (here, we used the notation 〈x〉 := (1 + x2)1/2). In
the language of Schrödinger operators, this means that the potential n2

∞−n2(x) is a long range
perturbation of a constant. Also, the given function S(x) entering (2) is assumed smooth and
fastly decaying at infinity (say S ∈ S(Rd) - see the footnote).

Next, let us explain the difficulties in each of the two analysis sketched above.

In equation (1), the small parameter ε measures the wavelength of the oscillations of uε: as x
varies by a quantity of order ε, the function uε typically varies by a value of order one. This fact
is encoded in the rescaling of the Helmholtz operator ε2/2 ∆x + n2(x). On the other hand, it is
readily seen that the source term ε−d/2S(x/ε) has the same wavelength ε as uε: the source
is concentrated, at the scale ε, close to the origin. Hence the difficulty lies in describing the
resonant interaction between the oscillations induced by the source ε−d/2S(x/ε), and those
induced by the high-frequency Helmholtz operator ε2/2 ∆x + n2(x).

In equation (2) on the other hand, the rescaled function wε describes the microscopic behaviour
of uε close to the origin (i.e. close to the source), after zooming in by the factor ε. Hence wε

gives refined informations on uε close to the origin2. Now, the outgoing solution wout is given
1Here and below, the smoothness assumption on n, as well as the smoothness and decay hypotheses on S, may

be considerably relaxed. We refer to the articles [BCKP], [CPR], and [C] for the precise assumptions that are
really needed for the analysis.

2Note however that it “forgets” the behaviour of uε outside a ball of radius� ε centered at 0, so that describing
the asymptotic behaviour of uε, or that of wε, is not quite the same.
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by

wout = i

∫ +∞

0
exp

(
it

(
1
2
∆x + n2(0)

))
S dt

(
=
(1

2
∆x + n2(0) + i0+

)−1
S

)
. (5)

(Recall indeed, for y ∈ R, the formula (y + i0+)−1 = i
∫ +∞
0 exp(ity) dt, and replace y = 1

2∆x +
n2(0)). To explain the meaning of (5), let ψ(t, x) be the solution to the Schrödinger equation
i∂tψ = −1/2 ∆xψ−n2(0)ψ, with initial datum ψ(0, x) = S(x). The function ψ(t, x) is the value
at time t that is obtained when propagating the source S along the flow of the Schrödinger oper-
ator −1/2 ∆x−n2(0). From this point of view, formula (5) asserts wout(t, x) = i

∫ +∞
0 ψ(t, x) dt,

i.e. wout is the integral along positive times up to infinity of the conveniently propagated
value of the source S. This is actually why wout is called “outgoing”: the ingoing solution would
correspond to “+i0” replaced by “−i0” in (3), or to “+∞” replaced by “−∞” in (5). A second,
alternative, way to define wout, is to take the unique solution to (∆x/2 + n2(0))wout = S that
satisfies the Sommerfeld radiation condition at infinity. When d = 3, it takes the form

x√
2|x|

· ∇xw
out(x) + in(0)wout(x) = O

(
1
|x|2

)
as |x| → ∞ . (6)

In other words wout should behave roughly like exp(i2−1/2n(0)|x|)/|x| at infinity in x. As a
conclusion on these two ways of defining wout, it is fairly clear on formulae (5) or (6), that the
“i0+” in (3) induces strong non-local effects. This is the very reason why the statement (3) is
far from obvious: when ε→ 0, there is a conflict between the “+iεαε” going to zero in (2), that
brings back information from infinity, and the n(εx) that goes to n(0) for bounded values
of x only. The first point apparently leads to thinking that wε should satisfy the Sommerfeld
radiation condition at infinity with the variable refraction index n2(εx) →|x|→∞ n∞, i.e. wε

should behave like exp(i2−1/2n∞|x|)/|x| at infinity in x, while the second point leads to thinking
that wε naturally goes to a solution of the Helmholtz equation with constant refraction index
n2(0), i.e. wε should behave like exp(i2−1/2n(0)|x|)/|x|, two contradictory statements.

2 The rays of geometric optics, and the dispersive properties of
the high-frequency Helmholtz operator

Before going to the specific analysis we have sketched before, we first give a short idea of the
kind of bounds we have at hand on uε, resp. wε.
When the refraction index is constant, it is a well known fact that uε as well as wε are uniformly
bounded in the weighted L2 space L2(〈x〉−(1+δ) dx), for any δ > 0, uniformly in ε. The critical
case δ = 0 is excluded. The need for a weighted measure 〈x〉−(1+δ) corresponds to the natural
decay at infinity of solutions to the Helmholtz equation.
When the refraction index actually varies with x, the situation becomes more delicate. To obtain
uniform estimates on uε or wε, one typically needs dispersive properties of the operator
ε2∆x/2 + n2(x), or, alternatively, dispersive properties of the rays naturally attached to the
operator ε2∆x/2+n2(x). These are defined as the trajectories of the Hamilitonian ξ2/2−n2(x),
i.e. the solutions to the following system of ODE’s

∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ) , X(0, x, ξ) = x ,

∂

∂t
Ξ(t, x, ξ) =

(
∇xn

2
)
(X(t, x, ξ)) , Ξ(0, x, ξ) = ξ , (7)
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A standard assumption in this context is the non-trapping condition at the zero energy:
it states that any ray (X(t, x, ξ),Ξ(t, x, ξ)) shot from a point x, with frequency vector ξ, having
zero energy initially, goes to infinity as time increases, i.e.

lim
t→±∞

|X(t, x, ξ)| = +∞, ∀(x, ξ) such that ξ2/2− n2(x) = 0. (8)

Since the propagation of energy in the Helmholtz equation is essentially governed by such rays,
this condition means, in essence, that the energy does not accumulate too much in bounded
regions of space: it eventually escapes to infinity. In the case of a constant index of refraction,
this condition is trivially satisfied, since rays are simply straight lines, going to infinity with
constant speed.
Under the mere non-trapping condition, one has, in general, nothing better than

‖uε‖L2(〈x〉−(1+δ)dx) ≤ Cε−1, (9)

for some C independent of ε, and similarly for wε. The reader may refer to the work by Agmon,
Hörmander, [Ag], [AH], and, more recently, to Wang [Wa], Burq [Bu], for instance.
Recently, optimal estimates were established by B. Perthame and L. Vega in [PV1], [PV2] (where
the weighted L2 space are replaced by more precise homogeneous Besov-like spaces introduced
in [AH]). Introducing a reinforced version of the non-trapping condition, they established an
estimate that implies

‖uε‖L2(〈x〉−(1+δ)dx) ≤ C, (10)

and similarly for wε. We refer to [WZ] for similar uniform bounds.
We do not give more details on these questions, since the works [BCKP], [CPR], and [C] that we
review here, anyhow establish the specific necessary bounds in a self-contained fashion. Let us
simply retain from these considerations that throughout this paper, the non-trapping condition
is assumed to hold (at least).

3 Asymptotic behaviour of uε: a Wigner function approach –
[BCKP], [CPR]

In [BCKP]3, we compute the limit in ε of the so-called Wigner transform4 of uε(x), denoted by
fε(x, ξ). It is defined as

fε(x, ξ) :=
∫
Rd

exp(−iy · ξ)uε
(
x+ ε

y

2

)
uε
(
x− ε

y

2

)
dy. (11)

Beyond this very definition, let us simply stress two facts. First it is well-known [LP] that
f(x, ξ) = lim fε(x, ξ) exists and is a non-negative measure, provided uε is reasonably bounded
in L2

loc (which is the case here). Second, the asymptotic measure f(x, ξ), which now depends on
a space variable x and a frequency variable ξ ∈ Rd, measures the energy carried by uε in the
neighbourhood of the point x in space, close to the frequency ξ ∈ Rd. Typically,

∫
f(x, ξ)dξ

measures the asymptotic behaviour of |uε(x)|2, and
∫
ξ2f(x, ξ)dξ measures the asymptotic be-

haviour of |ε∇xu
ε(x)|2. To give an example, if uε(x) = a(x) exp(iφ(x)/ε) for some phase function

3The results in this paragraph hold under the condition lim wε = wout, see (3). This condition trivially holds
in the case n(x) = cst. We refer to the next paragraph for assumptions ensuring lim wε = wout in the nonconstant
coefficients case. Note also that the results in this paragraph are non-trivial even in the constant coefficients case.

4We use here a slightly different scaling than the one used in [BCKP]: uε should be replaced by ε1/2uε to fit
the scaling of [BCKP]. This a harmless fact.
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φ, the limiting measure f is f(x, ξ) = |a(x)|2 δ(ξ −∇xφ(x)). Hence f captures in an ’averaged’
way the ’amplitude’ and the ’phase’ of the oscillatory function uε.

As mentionned in the introduction, the difficulty in studying the high-frequency limit ε → 0
in (1), lies in the description of the resonant interaction between the oscillations induced by
the high-frequency Helmholtz operator ε2/2 ∆x + n2(x), that enhance frequencies such that
ξ2/2 = n2(x) (the other frequencies are anyhow not propagated through the medium), and those
of the source S(x/ε), that enhance concentration towards x = 0. The work [BCKP] completes
this description, in that we prove the limiting measure f = lim fε satisfies the stationnary
transport equation with source term

0+f(x, ξ) + ξ · ∇xf(x, ξ) +∇xn
2(x) · ∇ξf(x, ξ) = Q(x, ξ) . (12)

On the more, the limiting source term Q in (12) has the value

Q(x, ξ) = δ
(
ξ2/2− n2(0)

)
δ(x) |Ŝ(ξ)|2. (13)

Let us explain the meaning of (12) and (13). Clearly, the characteristics of the transport equa-
tion (12) are exactly the rays of geometric optics defined in (7). Hence equations (12) and (13)
tell us that asymptotically, the source S shoots rays from the origin (this is the factor δ(x)),
with frequencies ξ that resonate with the high-frequency Helmholtz operator (this is the factor
δ
(
ξ2/2− n2(0)

)
), up to a modulation term |Ŝ(ξ)|2. On the more, the energy is exactly propa-

gated along the rays (X(t, x, ξ), Ξ(t, x, ξ)). Finally, the term 0+f in (12) specifies a radiation
condition at infinity for f . This condition is the trace, as ε → 0 of the absorption coefficient
αε > 0 in (1). It gives f as the outgoing solution

f(x, ξ) =
∫ +∞

0
Q (X(t, x, ξ),Ξ(t, x, ξ)) dt . (14)

The reader is invited to compare formula (14) with (5), or to (17) below. Also, the reader should
note that the non-trapping condition at the zero energy clearly plays an essential role in making
the integral in (14) converge: without non-trapping, the trajectory (X(t, x, ξ),Ξ(t, x, ξ)) might
spend an infinitely long time in a compact set, thus making the above integral diverge. Finally,
let us stress that obtaining the radiation condition for f as the limiting effect of the absorption
coefficient αε in (1), is actually one of the main difficulties in [BCKP].

Later, the analysis of [BCKP] was extended in [CPR] to more general oscillating/concentrating
source terms. The paper [CPR] studies indeed the high-frequency analysis ε→ 0 in

iεαεu
ε(x) +

ε2

2
∆xu

ε(x) + n2(x)uε(x) =
1
εq

∫
Γ
S

(
x− y

ε

)
A(y) exp

(
i
φ(x)
ε

)
dσ(y) . (15)

(See also [CRu] for extensions - see [Fo] for the difficult case where n2 has discontinuities). In
(15), the function S again plays the role of a concentration profile like in (1), but the concentra-
tion occurs this time around a smooth submanifold Γ ⊂ Rd of dimension p instead of a point. On
the more, the source term here includes additional oscillations through the (smooth) amplitude
A and phase φ. One may think of an antenna that is close to a p dimensional surface, sending
high-frequency waves in the whole space. In these notations dσ denotes the induced euclidean
surface measure on the manifold Γ, and the rescaling exponant q depends on the dimension of Γ
together with geometric considerations, see [CPR]. Again, the important phenomenon lies in the
resonant interaction between the high-frequency oscillations of the source, and the propagative
modes of the medium dictated by the operator ε2/2 ∆x + n2(x). A statement similar to, but
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geometrically richer than, equation (12) is proved in [CPR]. In this case, the asymptotic source
term Q has the value,

Q(x, ξ) =
∫

Γ
δ(x− y) δ(ξ2/2− n2(y)) δ(ξt −∇φ(y)) |A(y)|2 |Ŝ(ξ)|2 dσ(y).

This time, the energy is radiated from the surface Γ (this is the factor δ(x−y)), with frequencies
ξ that both correspond to propagative modes of the medium (this is the δ(ξ2/2− n2(y))), and
resonate with the oscillation exp(iφ/ε) (this is the δ(ξt −∇φ(y))). Here, the subscript t on the
vector ξ refers to the part of the vector ξ that is tangent, at the point y ∈ Γ, to the surface Γ.
Again, the squared terms involving A and S are simply modulations in amplitude.

To end up this paragraph, let us mention that the analysis performed in [BCKP] relies at some
point on the asymptotic behaviour of the scaled wave function wε(x) = εd/2uε(εx). Similarly,
in [CPR] one needs to rescale uε around any point y ∈ Γ, setting wε

y(x) := εd/2uε(y + εx) for
any such y. Actually, the analysis performed in theses papers partially relies on the conjecture
that wε, solution to (2), indeed goes to the outgoing solution wout defined before. This explains
why we now describe the mechanism that governs the asymptotics of wε.

4 Asymptotic behaviour of wε: a wave-packet approach – [C]

The main theorem we want to discuss is the following
Theorem [C]
Let wε satisfy (2), with the source term S belonging to the Schwartz class5 S(Rd), and n satis-
fying (4). More precisely, n is assumed to satisfy

∀α ∈ Nd, ∃Cα > 0,
∣∣∣∂α

x

(
n2(x)− n2

∞
) ∣∣∣ ≤ Cα 〈x〉−ρ−|α| . (16)

Suppose that n satisfies the nontrapping condition at zero energy. Suppose finally that n sat-
isfies the geometric assumption (H) below. Then, we do have the convergence in the sense of
distributions6

wε → wout .

If the geometric assumption (H) is not fulfilled, the above convergence fails.

Idea of proof

First step: reformulating of the problem, and giving the main ideas.
Before giving the geometric assumption (H), we give a picture that helps understanding the
behaviour of wε, and gives an idea of the proof. Our main strategy is to transform the original
question into a time-dependent problem. In the spirit of formula (5) (see also (14)), we
write wε as the integral over the whole time interval [0,+∞[ of some propagated function.

Let us come o quantitative statements. We take a smooth test function φ, and evaluate the
duality product 〈wε, φ〉 :=

∫
Rd w

ε(x)φ(x) dx. Recalling the link wε(x) = εd/2uε(εx), we recover
〈wε, φ〉 = 〈uε, φε〉, where we introduce the notation fε(x) = ε−d/2f (x/ε) , for any function f .
There remains to observe

uε =
i

ε

∫ +∞

0
e−αεt exp

(
i
t

ε

(
ε2

2
∆x + n2(x)

))
Sε dt =:

i

ε

∫ +∞

0
e−αεt Uε(t)Sε , (17)

5This assumption may be considerably relaxed, see [C]
6Again, this convergence may be considerably strengthened, see [C]
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where we defined the semi-classical propagator

Uε(t) := exp
(
i
t

ε

(
ε2

2
∆x + n2(x)

))
(18)

associated with the semi-classical Schrödinger equation iε∂tψ = −ε2/2 ∆xψ−n2(x)ψ. We arrive
in this way at the final formula

〈wε, φ〉 =
i

ε

∫ +∞

0
e−αεt 〈Uε(t)Sε, φε〉 dt . (19)

We now want to pass to the limit in this very integral. More precisely, we aim at proving that
this term is asymptotic to

〈wout, φ〉 =
i

ε

∫ +∞

0

〈
exp

(
i
t

ε

(
ε2

2
∆x + n2(0)

))
Sε, φε

〉
dt . (20)

This is done upon distinguihsing various time scales in the integral, as we explain later. Before
going to the details, we first give a (rough) interpretation of the above integrals (19) and (20).

In essence, the reader may think of Sε as a gaussian centered at x = 0, with typical spreading
of size ε. The gaussian Sε is “shot” initially with some non-zero speed ξ satisfying ξ2/2 = n2(0)
(this is the zero energy condition). Similarly, the term Uε(t)Sε in (19) may be thought of as a
gaussian centered at the point X(t, x, ξ), having speed Ξ(t, x, ξ). For bounded values of time t,
it has a typical spreading of size ε, that has however the tendency to grow as time increases. The
factor φε in (19) may be thought of as a gaussian centered at x = 0 as well. Finally, the scalar
product 〈Uε(t)Sε, φε〉 may be thought of as the scalar product of the two above mentionned
gaussians. This is the picture when computing wε through (19). In the case of wout, the picture
is the same, except that the trajectory (X(t),Ξ(t)) has to be replaced by the straight line with
constant speed (x+ tξ, ξ).
The next drawing illustrates our purpose.

with non−zero speed

T1

ε−κ

ϕε

spreading
increases with time

"gaussian" Uε (t) S ε

trajectory in the constant
coefficients case

T0 εtime 

point X(t) of the trajectory
at time 

typical spreading 

initial wave packet, shot from x=0

time

support of the test functiontime 

|ξ| =n(0)

ε
t

time θ

With this picture in mind, the general idea is the following:
• For small times, the “gaussian” Uε(t)Sε has a support that meets that of φε, so that the scalar
product 〈Uε(t)Sε, φε〉 is non-zero. On the more, the trajectory X(t) is very close to the straight
line (x+ tξ, ξ) corresponding to the integral (20) that gives wout. Hence small times should have
a dominant contribution to the integral in (19).
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• For very large times, the trajectory X(t) escapes to infinity, thanks to the non-trapping
condition. Hence the “support” of Uε(t)Sε ceases to meet that of φε, and the contribution of
very large times to (19) should be small. The difficulty, however, lies in controlling the growth
of the spreading of the “gaussian” Uε(t)Sε as time increases (too large an increase might bring
back energy into the support of φε).
• For moderate times, the trajectory X(t) might self-intersect, thus giving rise to a non-zero
contribution to the integral in (19). On the other hand, the claimed convergence limwε = wout

asserts that such self-intersections should not contribute to the integral (19) asymptotically. One
needs thus an assumption that imposes, in essence, that such self-intersection should be “rare”.

This motivates the introduction of the following geometric condition.
(H) geometric assumption

We suppose that the set{
(ξ, η, t) ∈ R2d+1 such that η2/2 = n2(0) , X(t, 0, ξ) = 0 , Ξ(t, 0, ξ) = η

}
is a smooth submanifold in R2d+1, with a dimension k < d− 1.

We refer to [C] for the precise statements. Let us simply mention that this assumption is
generically satisfied.

Second step: passing to the limit in the time integral (19)
We now detail the limiting procedure skteched above. We choose two (large) cutoff parameters
in time, denoted by T0 and T1 , and we analyze the contributions to the time integral (19) that
are due to the three regions 0 ≤ t ≤ T0 ε , T0 ε ≤ t ≤ T1 , and t ≥ T1 . We also choose
a (small) exponent κ > 0, and we occasionally treat separately the contributions of very large
times t ≥ ε−κ . Associated with these truncations, we take once and for all a smooth cutoff
function χ defined on R, such that χ(z) ≡ 1 when |z| ≤ 1, χ(z) ≡ 0 when |z| ≥ 2, χ(z) ≥ 0 for
any z. To be complete, there remains to finally choose a (small) cutoff parameter in energy δ > 0.
Accordingly we distinguish in the L2 scalar product 〈Uε(t)Sε, φε〉 between energies close to (or
far from) the zero energy, which is critical for our problem. In other words, we set the self-adjoint
operator Hε := −ε2/2 ∆x−n2(x), together with its associated truncation χδ (Hε) := χ (Hε/δ) .
This object is perfectly well defined using standard functional calculus for self-adjoint operators.
All these parameters allow to decompose the right-hand-side of (19) into small, moderate, and
large times, as well as zero and non-zero energies. We now study each of the subsequent terms.

• The contribution of small times is

1
ε

∫ 2T0 ε

0
χ

(
t

T0 ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt .

This term gives the dominant contribution in (19), provided the cutoff parameter T0 is taken
large enough. This (easy) analysis essentially boils down to manipulations on the time dependent
Schrödinger operator i∂t + ∆x/2 + n2(εx), for finite times t of the order t ∼ T0 at most.

• The contribution of moderate and large times, away from the zero energy, is

1
ε

∫ +∞

T0 ε
(1− χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t) (1− χδ) (Hε)Sε, φε

〉
dt .

This term has a vanishing contribution, provided T0 is large enough. This easy result relies on
a non-stationnary phase argument in time, recalling that Uε(t) = exp(−itHε/ε) and the energy
Hε is larger than δ > 0.
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• The contribution of very large times, close to the zero energy is

1
ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt .

This term has a vanishing contribution as ε → 0. To prove so, we use results proved by X.P.
Wang [Wa]: these essentially assert that for any s ≥ 0, the operator 〈x〉−s Uε(t)χδ(Hε) 〈x〉−s

has the natural size 〈t〉−s as time goes to infinity, provided the critical zero energy is non-
trapping. In the above mentionned picture, this means very roughly that the semiclassical
operator Uε(t)χδ(Hε) sends rays initially close to the origin, at a distance of the order t from the
origin, and at most an energy of the order t−s is brought back into bounded regions of space.

Hence the corresponding contribution in (19) has size ∼ ε−1

∫ ∞

ε−κ

t−s ∼ εsκ−2 → 0, provided s

is large and κ is small enough.

The most difficult terms are the last two that we describe now.

• The contribution of large times, close to the zero energy is

1
ε

∫ ε−κ

T1

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt .

The treatment of this term is similar in spirit to, though much harder than, the analysis per-
formed in the previous term: using only information on the localization properties of Uε(t)
χδ (Hε) Sε and φε, we prove that this term has a vanishing contribution, provided T1 is large
enough. To do so, we use ideas of Bouzouina and Robert [BR], to establish a version of the
Egorov theorem that holds true for polynomially large times in ε. In other words, this step re-
quires quite a precise control of the spreading of Uε(t)Sε, since here the trajectory X(t) is not far
enough from the origin to allow for a rough estimate of the spreading (contrary to the preceding
term). The conclusion of this step for any time T1 ≤ t ≤ ε−κ, the term 〈Uε(t)χδ (Hε)Sε, φε〉 is
equal to zero (this is the expected orthogonality of the supports of Uε(t)χδ (Hε)Sε resp. φε),
plus a remainder term due to the increase of the spreading. For any integer N , the latter has

size ε−1

∫ ε−κ

T1

εN tN
2
dt (note the polynomial increase in time), which is a vanishing contribution,

provided N is large, and κ is small.

• The contribution of moderate times close to the zero energy is

1
ε

∫ T1

T0 ε
(1− χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt .

This is the most difficult term: contrary to all preceding terms, it cannot be analyzed using only
geometric informations on the support of the relevant functions. On this time scale the supports
of Uε(t)χδ (Hε)Sε resp. φε may intersect (see the above drawing). This might create a dangerous
accumulation of energy at the intersection point (i.e. at the origin). For that reason, we need a
precise evaluation of the semi-classical propagator Uε(t), for times up to the order t ∼ T1 . This
is done using the elegant wave-packet approach of M. Combescure and D. Robert [CRo] (see
also [Ro]): projecting Sε over the standard gaussian wave packets, we can compute Uε(t)Sε in a
quite explicit fashion, with the help of classical quantities like, typically, the linearized flow of
the Hamiltonian ξ2/2 − n2(x). This gives us an integral representation with a complex valued
phase function. Then, one needs to insert a last (small) cutoff parameter in time, denoted θ > 0.
For small times, using the above mentioned representation formula, we first prove that the term

1
ε

∫ θ

T0 ε
(1− χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt ,
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vanishes asymptotically, provided θ is small, and T0 is large enough. To do so, we use that
for small enough θ, the propagator Uε(t) acting on Sε resembles the free Schrödinger operator
exp

(
it[∆x/2 + n2(0)]

)
. Then, for later times, we prove that the remaining contribution

1
ε

∫ T1

θ
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt ,

is small. This uses stationary phase formulae in the spirit of [CRR], and this is where the
geometric assumption (H) enters.
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