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Abstract

In this review paper we describe the problem of deriving a Boltz-
mann equation for a system of N interacting quantum particles, under
the appropriate scaling limits. We mainly follow the approach devel-
opped by the authors in previous works. From a rigorous viewpoint,
only partial results are available, even for short times, so that the
complete problem is still open.

1 Introduction

A large quantum system of N identical interacting particles can often be
described in terms of a Boltzmann equation. This is an asymptotic model:
the equation given from first principles is the N body Schrödinger equation.
As such, the Boltzmann description only holds in suitable regimes, namely
when the number of particles is large, and when the interaction potential
between pairs of particles has a small effect. Concerning this last point, two
quite different settings are relevant. In the so-called weak-coupling limit, the
interaction potential itself is small, while the gas is dense: the typical distance
between particles is of order one. In the low-density regime at variance, the
elementary interaction potential is of order one, while the gas is rarefied: the
typical distance between particles is large, hence the effect of the pairwise
interactions is small.
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†IRMAR Université de Rennes 1, Campus de Beaulieu 35042 Rennes-Cedex France
‡Dipartimento di Matematica pura ed applicata, Università di L’Aquila, Coppito, 67100
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A precise definition of the scalings, and the form of the limiting kinetic
equations, has been discussed by H. Spohn in [Sp2]. In the present text,
we follow this reference to introduce the problem. We start from the N
body Schrödinger equation, and we scale it along either the weak-coupling,
or the low-density regime. Next, we follow the kinetic approach introduced
by the authors in [BCEP1]: we transform the scaled N -particles Schrödinger
equation into a hierarchy of kinetic equations. This step uses the Wigner
transform and the BBGKY hierarchy. Then we try to show how, under
these scaling limits, the one-particle Wigner function of the system is indeed
expected to obey a Boltzmann equation with a suitable cross-section. This
step heavily uses stationary phase considerations, in possibly large dimen-
sions. The derivation we present here closely follows the works [BCEP1],
[BCEP2], and [BCEP3].

We wish to stress that our arguments are partially formal: a complete,
rigorous derivation of the quantum Boltzmann equation is still far from being
achieved, even for short times.

To put the present text into perspective, we remind that a rigorous deriva-
tion of the classical Boltzmann equation in the low-density regime has been
obtained in 1975 by Lanford for short times (see [L]). This result was later
extended to all times in Reference [IP] (see also [CIP] for additional com-
ments), for special situations yet. At the quantum level, the transition from
the Schrödinger picture to the kinetic description is delicate in many ways.
Most importantly, it brings a time reversible system to an irreversible one,
a difficulty that is already present at the classical level. This fact is largely
argued in the context of classical systems. We refer e.g. to [CIP] on that
point.

We also remark that, in contrast with the quantum case, classical sys-
tems in the weak-coupling limit are described by a kinetic equation which is
diffusive in velocity, namely by the Landau-Fokker-Planck equation (see for
instance [Sp1] and [Ba]). Thus the domain of applicability of the Boltzmann
equation is typically larger for quantum systems than for classical ones: in
the former case, kinetic descriptions are relevant both for dilute gases (low
density), and for dense, weakly interacting systems (weak coupling), while in
the latter, only dilute gases are pertinent.

The present review text treats separately the weak coupling regime, and
the low-density regime. This is a natural distinction. Another separation is in
order yet. Indeed, since we deal with quantum systems, it is necessary to dis-
cuss the statistic independence of the particles under consideration. Namely,
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particles that follow the Maxwell-Boltzmann statistics1 have a Wigner trans-
form that may be taken as a tensor product. This gives a simple picture of
the “molecular chaos” assumption, that lies at the core of the Boltzmann de-
scription of interacting particles. Bosonic particles on the other hand follow
the Bose-Einstein statistics, while fermionic particles follow the Fermi-Dirac
statistics. In these two cases, the molecular chaos assumption takes a more
subtle form, which we discuss in section 4. This fact has a fairly important
consequence. Namely, the Boltzmann equation that is appropriate in the
Maxwell-Boltzmann situation is quadratic in the unknown, while it becomes
cubic in the Fermi-Dirac or Bose-Einstein picture.

2 Setting of the problem

In this section, we give some quantitative statements describing the asymp-
totics from the scaled N -body Schrödinger equation to the Boltzmann equa-
tion. Our presentation distinguishes between the weak-coupling and low-
density regimes, together with the Maxwell-Boltzmann versus Fermi-Dirac
or Bose-Einstein statistics. Elements of proof are given in the next sections.

• The weak coupling limit in the Maxwell-Boltzmann statistics

We considerN identical quantum particles in R3. We assume that the mass of
the particles, as well as ~, are normalized to unity. The interaction between
particles is described by a two-body potential φ, and the total potential
energy is taken as

U(x1 . . . xN) =
∑
i<j

φ(xi − xj). (2.1) 1.1

The associated Schrödinger equation reads

i∂tΨ(XN , t) = −1

2
∆NΨ(XN , t) + U(XN)Ψ(XN , t), (2.2) 1.2

where ∆N =
∑N

i=1 ∆i, ∆i is the Laplacian with respect to the xi variables,
and XN is a shorthand notation for x1 . . . xN .

Due to the fact that the particles are identical, the wave function Ψ is
assumed to be symmetric in the exchange of particle, a property that is pre-
served along the time evolution induced by (2.2). This symmetry assumption
will actually hold in the Fermi-Dirac or Bose-Einstein situation as well. As

1or particles obeying no statistics at all. Throughout this text, the reader may safely
replace “Maxwell Boltzmann statistics” by “no statistics at all” if needed.
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a consequence, we readily mention that all objects Ψε
N , WN , and fN

j to be
introduced later, are all symmetric as well.

Next, we rescale the equation (2.2) according to the hyperbolic space-time
scaling

x→ εx , t→ εt, (2.3) 1.3

which corresponds to looking at (2.2) over large times of the order 1/ε, hence
large distances of the order 1/ε (particles move with a “velocity” of order
one). Simultaneously we also rescale the potential by

φ→
√
εφ. (2.4) 1.z

The resulting equation reads, in these new units,

iε∂tΨ
ε(XN , t) = −ε

2

2
∆NΨε(XN , t) + Uε(XN) Ψε(XN , t), (2.5) 1.4

where: Uε(x1 . . . xN) =
√
ε
∑
i<j

φ

(
xi − xj

ε

)
. (2.6) 1.5

Naturally, the wave function Ψε(XN , t) at time t is fully determined by Eq.
(2.5) together with the initial datum Ψε(XN , 0). The latter depends on the
very statistics obeyed by the particles, and its value is specified later on (see
(2.18)). We want to analyze the limit ε → 0 in the above equations, while
keeping

N = ε−3. (2.7) 1.7

Both scalings (2.4) and (2.7) specify a weak coupling regime. Here, the
gas of particles is dense (one particle per unit volume in the rescaled units),
but the coupling between neighbouring particles is weak, of order

√
ε. The

cumulated effect of all the interactions is of the size

O(time scale)×O(density of obstacles)×O([coupling]2)

= O(1/ε)×O(1)×O([
√
ε]2) = O(1). (2.8) ff

Note that the quadratic dependence upon the coupling constant in (2.8) is a
standard fact in quantum mechanics. It is related with the so-called Fermi
Golden Rule (see (2.22) below). Equivalently, it is a consequence of the
Hamiltonian structure of the Schrödinger equation.
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Following [BCEP1], and in order to tackle the asymptotics ε→ 0 in (2.5)-
(2.6), we now adopt a kinetic approach. We introduce the Wigner transform
of Ψε, defined as (see [W], or the more recent reference [LP] for a general
introduction to Wigner transforms)

WN(XN , VN) =(
1

2π

)3N ∫
dYN eiYN ·VN Ψ

ε
(
XN +

ε

2
YN

)
Ψε
(
XN − ε

2
YN

)
. (2.9) 1.8

As it is standard, WN satisfies a transport-like equation, namely

(∂t + VN · ∇N)WN(XN , VN) =
1√
ε

(
T ε

NW
N
)
(XN , VN). (2.10) 1.9

Here, ∂t+VN ·∇N = ∂t+
∑N

i=1 vi ·∇xi
is the usual free stream operator. Also,

the operator T ε
N on the right-hand-side of (2.10) plays the role of a collision

operator. It may be split into

(T ε
NW

N
)
(XN , VN) =

∑
0<k<`≤N

(T ε
k,`W

N
)
(XN , VN), (2.11) 1.10

where each T ε
k,` describes the “collision” of particle k with particle `, through

(T ε
k,`W

N
)
(XN , VN) =

1

i

(
1

2π

)3N ∫
dYN dV

′
N eiYN ·(VN−V ′

N ) (2.12) 1.11[
φ

(
xk − x`

ε
− yk − y`

2

)
− φ

(
xk − x`

ε
+
yk − y`

2

)]
WN(XN , V

′
N).

Thus the total operator T ε
N in (2.11) takes into account all possible “colli-

sions” inside the N particles system. Equivalently, we may write2 for T ε
k,`

(T ε
k,`W

N
)
(XN , VN) = −i

∑
σ=±1

σ

∫
dh

(2π)3
φ̂(h) ei h

ε
(xk−x`)

WN

(
x1, . . . , xk, . . . , x`, . . . , xN , v1, . . . , vk − σ

h

2
, . . . , v` + σ

h

2
, . . . , vN

)
.

(2.13) 1.12

Note that in (2.13), “collisions” may take place between distant particles
(xk 6= x`). However, such distant collisions are penalized by the highly

2Here and below, f̂(k) =
∫

e−ik·xf(x) dx denotes the Fourier transform of f .
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oscillatory factor exp(ih(xk − x`)/ε). These oscillations turn out to play a
crucial role throughout the analysis, and they explain why collisions tend to
happen when xk = x` in the limit ε→ 0 (see e.g. the commputation of I1,1,2

in section 3 below).

In order to transform (2.9) into a hierarchy of kinetic equations, we next
introduce the partial traces of the Wigner transform WN , denoted by fN

j .
They are defined through the following formula, valid for j = 1. . . . , N − 1:

fN
j (Xj, Vj) =

∫
dxj+1 . . .

∫
dxN

∫
dvj+1 . . .

∫
dvN

WN(Xj, xj+1 . . . xN ;Vj, vj+1 . . . vN) (2.14) 1.13

Obviously, we set fN
N = WN . The function fN

j is the kinetic object that
describes the state of the j particles subsystem at time t.

Proceeding then as in the derivation of the BBGKY hierarchy for classical
systems (see e.g.[CIP]), we readily transform the equation (2.10) satisfied by
WN into a hierarchy of equations for fN

j (1 ≤ j ≤ N), namely(
∂t +

j∑
k=1

vk · ∇k

)
fN

j (Xj, Vj) =
1√
ε
T ε

j f
N
j +

N − j√
ε
Cε

j+1f
N
j+1, (2.15) 1.14

with fN
N+1 ≡ 0 by convention. Eq. (2.10) is naturally recovered from (2.15)

upon choosing j = N in the latter equation. Here the new collision operator
Cε

j+1 may be split into

Cε
j+1 =

j∑
k=1

Cε
k,j+1, (2.16) 1.15

and each Cε
k,j+1 satisfies

Cε
k,j+1f

N
j+1(Xj;Vj) = −i

∑
σ=±1

σ

∫
dh

(2π)3
dxj+1 dvj+1 φ̂(h) ei h

ε
(xk−xj+1)

fN
j+1

(
x1, x2, . . . , xj+1, v1, . . . , vk − σ

h

2
, . . . , vj+1 + σ

h

2

)
. (2.17) 1.16

The operator Cε
k,j+1 describes the “collision” of particle k, belonging to the

j-particle subsystem, with a particle outside the subsystem, conventionally
denoted by the number j + 1 (this numbering uses the fact that all particles
are identical). The total operator Cε

j+1 takes into account all such collisions.
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As usual (see e.g. [CIP]), equation Eq. (2.15) shows that the dynamics
of the j-particle subsystem is governed by three effects: the free-stream op-
erator, the collisions “inside” the subsystem (the T term), and the collisions
with particles “outside” the subsystem (the C term).

To finish the specification of the problem, we finally need to select an
initial value {f 0

j }N
j=1 for the solution {fN

j (t)}N
j=1. The key point is that we

assume {f 0
j }N

j=1 is completely factorized: for all j = 1, . . . , N , we suppose

f 0
j = f⊗j

0 , (2.18) 1.17

where f0 is a one-particle Wigner function, and f 0 is assumed to be a proba-
bility distribution. This is the point where the statistics enters. Assumption
(2.18) is relevant for particles satisfying the Maxwell-Boltzmann statistics,
but it totally excludes fermionic or bosonic behaviour. To be complete, we
should also raise here a technical point. Strictly speaking, a quantum state
whose Wigner transform is a general positive f0, is not a wave function: it is
rather a density matrix. As a consequence, and in view of the kind of initial
data (2.18) we have in mind, the evolution equation we should start with
is not the Schrödinger equation (2.5), but rather the associated Heisenberg
equation for the density matrix. This is a harmless modification: in both
cases the corresponding Wigner equation is anyhow Eq. (2.10) or, equiva-
lently, Eq. (2.15).

In the limit ε → 0, we expect that the j-particle distribution function
fN

j (t), that solves the hierarchy (2.15) with initial data (2.18), tends to be
factorized for all times: fN

j (t) ∼ f(t)⊗j (molecular chaos). On top of that,
the function f(t) (t ∈ [0, t0) for some possibly small t0), which is the limit of
the one-particle distribution function fN

1 (t), is expected to be the solution of
the following Boltzmann equation

(∂t + v · ∇x)f(t, x, v) = Qw(f, f)(t, x, v), (2.19) 1.18

Qw(f, f)(t, x, v) =∫
R3×S2

dv1 dω Bw(ω, v − v1) [f(t, x, v′)f(t, x, v′1)− f(t, x, v)f(t, x, v1)] . (2.20) 1.19

Here, the index “w” refers to “weak-coupling”. Also, v′ and v′1 denote the
outgoing velocities after a collision with impact parameter ω ∈ S2 and in-
coming velocities v and v1. Explicitely:

v′ = v − [v − v1] · ω ω, v′1 = v1 + [v − v1] · ω ω. (2.21) omeg
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Last, in Eq. (2.20), the factor Bw(ω, v−v1) is the cross-section. It depends on
the microscopic interaction potential φ. In the weak-coupling limit, collisions
take place at a small energy, and at a distance of order ε. For this reason, the
cross section Bw is computed at low energy, and via the quantum rules. In
other words, it agrees with the Born approximation of quantum scattering,
namely

Bw(ω, v) =
1

8π2
|ω · v| |φ̂(ω (ω · v))|2. (2.22) 1.20

Note that the cross-section Bw is the only quantum factor in the purely classi-
cal equations (2.19)-(2.20). It retains the quantum features of the elementary
“collisions”.

• The weak coupling limit in the Bose-Einstein or Fermi-Dirac statistics

From a physical viewpoint, it certainly is more realistic to consider par-
ticles obeying the Fermi-Dirac or Bose-Einstein statistics, than considering
the Maxwell-Boltzmann situation.

In this case, the starting point still is the scaled Schrödinger equation
(2.5)-(2.6), or the equivalent hierarchy (2.15). The only new point is that
we cannot take a totally decorrelated initial datum as in (2.18). Indeed, the
Fermi-Dirac or Bose-Einstein statistics yield correlations even at time zero.
In this perspective, the most uncorrelated states one can introduce, and that
do not violate the Fermi-Dirac or Bose-Einstein statistics, are the so-called
quasi-free states. They are described in section 4 below.

As a consequence, the following steps are needed in order to pass to
the limit in the hierarchy (2.15), and to identify the limiting Boltzmann
equation. First, one should characterize the quasi-free states in term of their
Wigner transform. Then, one should replace the initial condition (2.18)
by the appropriate “quasi-free” initial data. Last, one should perform the
asymptotic procedure on the resulting formulae.

It is expected that the one-particle distribution function fN
1 (t) converges

to the solution of the following cubic Boltzmann equation:

(∂t + v · ∇x) f(t, x, v) = Qw,θ(f, f, f)(t, x, v), (2.23) cb

Qw,θ(f, f, f)(t, x, v) =

∫
R3×S2

dv1 dω Bw,θ(ω, v − v1)[
f(t, x, v′)f(t, x, v′1)(1 + 8π3θf(t, x, v) f(t, x, v1))

−f(t, x, v)f(t, x, v1)(1 + 8π3θf(t, x, v′)f(t, x, v′1))
]
. (2.24) 1.21

Here θ = +1 or θ = −1, depending on whether the Bose-Einstein or the
Fermi-Dirac statistics is considered, respectively. The index “w,θ” refers to
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“weak coupling, with the bosonic or fermionic statistics”. Finally, Bw,θ is the
symmetrized or antisymmetrized cross-section derived from Bw (see (2.22))
in the natural way (see [BCEP2]).

As we see, the modification of the statistics transforms the quadratic
Boltzmann equation (2.19)-(2.20) of the Maxwell-Boltzmann case, into a cu-
bic form of the equation (fourth order terms cancel). Also, the statistics
affects the form of the cross-section and Bw has to be (anti)symmetrized into
Bw,θ.

Note that the collision operator (2.24) has been introduced by Uehling and
Uhlenbeck in 1933 on the basis of purely phenomenological considerations
[UU].

• The low-density limit

There remains to consider the low-density limit. This regime is also called
Boltzmann-Grad limit in the context of classical systems. Here, the starting
point still is the unscaled Schrödinger equation (2.1)-(2.2). Contrary to the
weak-coupling regime, we now scale it according to

t→ εt, x→ εx, φ→ φ, N = ε−2. (2.25) lde

In other words, the density of obstacles is ε, which is a rarefaction regime,
but the potential is unscaled and keeps an O(1) amplitude. In this case, the
cumulated effect of the interactions has size

O(time scale)×O(density of obstacles)×O([coupling]2) =

O(1/ε)×O(ε)×O(1) = O(1).

Another very important point is the following. Due to the fact that the den-
sity is vanishing, the particles are too rare to make the statistical correlations
effective. As a consequence, we expect that the Maxwell-Boltzmann, Bose-
Einstein, and Fermi-Dirac situations, all give rise to the same Boltzmann
equation along the low-density limit.

As a matter of fact, the expected Boltzmann equation still is a quadratic
Boltzmann equation in that case, namely

(∂t + v · ∇x)f(t, x, v) = Q`(f, f)(t, x, v), (2.26) ldb

Q`(f, f)(t, x, v) =∫
R3×S2

dv1 dω B`(ω, v − v1) [f(t, x, v′)f(t, x, v′1)− f(t, x, v)f(t, x, v1)] . (2.27) ldbb

Here, the index “`” refers to “low-density”. Also, v′, v′1, and ω are as in
(2.21). Last, the factor B`(ω, v − v1) is the cross-section. In the low-density
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limit, collisions take place at a large energy (contrary to the weak-coupling
situation), and at a distance of order ε. For this reason, the cross section B`

is computed at large energy, and via the quantum rules. In other words, it
agrees with the full Born series expansion of quantum scattering, namely

B`(ω, v) =
1

8π2
|ω · v| |φ̂(ω (ω · v))|2 +

∑
n≥3

B
(n)
` (ω, v), (2.28) bbs

where each B
(n)
` (ω, v) is an explicitely known function, which is n-linear in φ

(see [RS]). Note in passing that the convergence of the Born series expansion
(2.28) is well-known for potentials satisfying a smallness assumption.

As is seen on these formulae, the only difference between the low-density
and the weak-coupling regimes (at least for Maxwell-Boltzmann particles)
lies in the very value of the cross-section. The two cross-sections Bw and B`

are actually related through

B`(ω, v) = Bw(ω, v) +O([φ]3),

i.e. Bw and B` coincide up to third order in the potential. This very well
reflects the fact that the weak-coupling regime involves only low-energy phe-
nomena, while the low-density regime affects low to large energies.

In the next sections we briefly discuss the very few rigorous results con-
cerning the above problems.

3 The weak-coupling limit for the Maxwell-

Boltzmann statistics
s3

To analyze the asymptotic behaviour of the hierarchy (2.15), we adopt the
same strategy as the one introduced by Lanford in [L] to treat the Boltzmann-
Grad limit for classical systems. In other words, we study the asymptotic be-
havior of the solution fN

j (t), when expressed in terms of the series expansion
obtained upon iterating the Duhamel formula. We write down on the other
hand the hierarchy satisfied by the successive tensor products fj(t) := f(t)⊗j,
where f(t) satisfies the Boltzmann equation (2.19)-(2.20) - this hierarchy is
usually called “Boltzman hierarchy”. We explicitely solve the Boltzmann hi-
erarchy as a complete series expansion obtained upon iterating the Duhamel
formula. We prove that the series expansion that expresses fN

j (t) converges,
in a sense which is precised below, towards the analogous series expansion
for fj(t) = f⊗j(t).
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Let us come to the details. It is first easily proved, using computations
similar to those performed below for fN

j , that the solution to the Boltzmann
hierarchy3 associated with (2.19)-(2.20) is given by the following series ex-
pansion

fj(t,Xj, Vj) ≡ f⊗j(t,Xj, Vj) =∑
n≥0

j+1∑
`2=1

· · ·
j+n∑
`n=1

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn S(t− t1)C`1,j+1

S(t1 − t2)C`2,j+2 · · ·S(tn−1 − tn)C`n,j+n S(tn) f
⊗(j+n)
0 . (3.1) fbol

Here, the operator S(t) is the free flow, defined as

(S(t)fj)(Xj, Vj) := fj(Xj − Vjt, Vj). (3.2) 2.3

Also, the classical collision operator C`,k+1, describing in an analogous fashion
than the quantum object Cε

`,k+1 a classical collision between particle k + 1
and particle `, is deduced from formula (2.20) and has the value

(C`,k+1fk+1) (t,Xk, Vk) :=

∫
R3×S2

dvk+1 dω Bw(ω, v` − vk+1)[
fk+1

(
Xk, x`, v1, . . . , v`−1, v

′
`, v`+1, . . . , vk, v

′
k+1

)
− fk+1 (Xk, x`, v1, . . . , v`−1, v`, v`+1, . . . , , vk, vk+1)

]
, (3.3) cclass

where Bw has been defined in (2.22), and v′` = v` − [v` − vk+1] · ω ω, v′k+1 =
vk+1 + [v` − vk+1] · ω ω, as in (2.21). This gives a complete series expansion
expressing fj(t) in terms of the initial datum f0.

In the similar spirit, we may write, for 1 ≤ j ≤ N ,

fN
j (t) =

N−j∑
n=0

(N − j) . . . (N − j − n)

(
√
ε)n

∫ t

0

dt1 . . .

∫ tn−1

0

dtn S
ε
int(t− t1)C

ε
j+1

Sε
int(t1 − t2)C

ε
j+2 . . . S

ε
int(tn−1 − tn)Cε

j+nS
ε
int(tn)f

⊗(j+n)
0 . (3.4) 2.1

Here Sε
int(t)fj is the j-particle interacting flow, namely the solution to the

initial value problem:(∂t + Vj · ∇j)S
ε
int(t)fj =

1√
ε
T ε

j S
ε
int(t)fj,

Sε
int(0)fj = fj.

(3.5) 2.2

3We do not write down the Boltzmann hierarchy here for sake of simplicity, and simply
refer to [CIP] or [BCEP1] for details.
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Then, we again expand Sε
int(t) as a perturbation of the free flow S(t). We

find

Sε
int(t)fj = S(t)fj +

∑
m≥0

1

(
√
ε)m

∫ t

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τm−1

0

dτm

S(t− τ1) T
ε
j S(τ1 − τ2) T

ε
j . . . S(τm−1 − τm) T ε

j S(τm)fj. (3.6) 2.4

Inserting (3.6) into (3.4), we obtain an explicit perturbative expansion that
relates the value of fN

j (t) at time t, in terms of the initial datum f0. This
expression involves a series that contains a huge number of terms. It is
similar to, though much more complicated than, equation (3.1). However,
we expect that many of these terms are negligible in the limit. On top of
that, we also expect that the other, non-vanishing contributions eventually
converge towards the series expansion (3.1) (in some topology).

To give a flavour of the computations performed in [BCEP1] along these
lines, let us now analyze some terms of the explicit expansion that expresses
fN

j (t), and compare them with the analogous terms for fj(t).

We begin with those terms of degree less than two in the potential.
The relevant terms are the following five:

I0 := S(t)f 0
j , (3.7) 2.5

I1 :=
N − j√

ε

∫ t

0

dt1 S(t− t1)C
ε
j+1S(t1)f

0
j+1, (3.8) 2.6

I2 :=
1√
ε

∫ t

0

dτ1 S(t− τ1)T
ε
j S(τ1)f

0
j , (3.9) 2.7

I3 :=
N − j

ε

∫ t

0

dτ1

∫ τ1

0

dt1 S(t− τ1)T
ε
j S(τ1 − t1)C

ε
j+1S(t1)f

0
j+1, (3.10) 2.8

I4 =

j∑
r=1

∑
1≤s<`≤j+1

Ir,`,s
4 , (3.11) 2.9

Ir,`,s
4 :=

N − j

ε

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)C
ε
r,j+1S(t1 − τ1)T

ε
`,sS(τ1)f

0
j+1. (3.12) 2.10

It is possible to show (see [BCEP1]) that the terms Ii, i = 1, 2, 3 are
negligible in the limit ε → 0. This phenomenon is mainly governed by
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oscillations, whose effect is to decrease the effective size, in ε, of the various
terms (non-stationary phase). Somewhat more surprinsingly, an important
role is also played by cancellations between terms whose effective size is a
truly diverging power of ε. We do not give the details here.

For similar reasons, it is also possible to show (see [BCEP1]) that all the
contributions to I4, but that given by r = ` and s = j + 1, are equally
vanishing. In other words, only the collision/recollision event “particle ` hits
particle j + 1 through Cε

`,j+1, then recollides it through T ε
`,j+1”, happens to

give a non-zero contribution in this picture.
So, the only O(1) term is I`,`,j+1

4 , the collision-recollision event.
We compute this term for ` = j = 1:

I1,1,2
4 = −N − 1

ε

∑
σ,σ′=±1

σσ′
∫ t

0

dt1

∫ t1

0

dτ1

∫
dx2 dv2

dh

(2π)3

dk

(2π)3

φ̂(h) φ̂(k) ei h
ε
·
(

x1−x2−v1(t−t1)
)
ei k

ε
·
(

x1−x2−v1(t−t1)−(v1−v2−σh)(t1−τ1)
)

f 0
2

(
x1 − v1t+ σ

h

2
t1 + σ′

k

2
τ1, x2 − v2t1 − σ

h

2
t1 − σ′

k

2
τ1;

v1 − σ
h

2
− σ′

k

2
, v2 + σ

h

2
+ σ′

k

2

)
. (3.13) 2.11

This term is apparently of size ε−4. In order to perform its analysis, we need
to take advantage of the fast oscillations. Rearranging terms, they read

exp

(
i
h+ k

ε
·
[
x1 − x2 − v1(t− t1)

])
exp

(
−ik
ε
·
[
v1 − v2 − σh

]
(t1 − τ1)

)
.

Hence, as seen by direct inspection (at least at an informal level), the oscil-
lations induce two different phenomena. The first oscillatory exponential en-
forces the variable k to have the value −h, while the relative position of parti-
cles 1 and 2 at the time t1 of the collision, which is precisely x1−v1(t−t1)−x2,
tends to vanish asymptotically (recall that particle 1 is “created” at time t
and has position x1 − v1(t − t1) at time t1, while particle 2 is “created” at
time t1, and has position x2 at that time). This is all due to the fact that∫

exp(iy ·x)ψ(x, y)dxdy = ψ(0, 0) whenever ψ is smooth enough. Second, the
difficult oscillatory term is the remaining exp(−ik(v1 − v2 − σh)(t1 − τ1)/ε).
The previous argument now needs to be refined, since the space and velocity
variables k, v1, etc. entering this oscillation also are involved in the previ-
ously analyzed oscillatory term. The point is that this second exponential
actually induces oscillations in the independent time variable t1− τ1: for that
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reason, the time variable τ1 needs to be rescaled so that τ1 becomes t1. In
other words, the collision occuring at time t1 and the recollision occuring at
time τ1 eventually tend to happen simultaneously.

Technically, all these considerations lead us to the following change of
variables, which is both physically and mathematically relevant:

t1 − τ1 = εs1, ξ = (h+ k)/ε, (3.14) 2.12

i.e. τ1 = t1 − εs1 and h = −k + εξ. This gives in (3.13) the equivalent value

I1,1,2
4 = −(N − 1) ε3

∑
σ,σ′=±1

σσ′
∫ t

0

dt1

∫
dv2

dk

(2π)3

∫ t1/ε

0

ds1

∫
dx2

dξ

(2π)3

φ̂(−k + εξ) φ̂(k) eiξ·
(

x1−x2−v1(t−t1)
)
e−is1k·(v1−v2−σ(−k+εξ))

f 0
2

(
x1 − v1t+ σ

−k + εξ

2
t1 + σ′

k

2
[t1 − εs1],

x2 − v2t1 − σ
−k + εξ

2
t1 − σ′

k

2
[t1 − εs1];

v1 − σ
−k + εξ

2
− σ′

k

2
, v2 + σ

−k + εξ

2
+ σ′

k

2

)
, (3.15) 2.13

and the reader should keep in mind that the weak-coupling regime implies
(N − j)ε3 ∼ 1 in (3.15). In the limit ε → 0, the above formula gives the
asymptotic value

I1,1,2
4 ∼

ε→0
−
∑

σ,σ′=±1

σσ′
∫ t

0

dt1

∫
dv2

dk

(2π)3

|φ̂(k)|2
(∫ +∞

0

e−is1k·(v1−v2+σk) ds1

)
f 0

2

(
x1 − v1t− (σ − σ′)

k

2
t1, x1 − v1(t− t1)− v2t1 + (σ − σ′)

k

2
t1;

v1 + (σ − σ′)
k

2
, v2 − (σ − σ′)

k

2

)
. (3.16) 2.14

In other words, the asymptotic process ε → 0 tends to produce in (3.15)
a Dirac mass at ξ = 0 and x2 = x1 − v1(t − t1) on the one hand, and an
oscillatory integral

∫ +∞
0

ds1 · · · on the other hand, which translates the fact
that τ1 = t1 − εs1, i.e. that the collision and recollision event happen at the
same time. As we shall see, this oscillatory integral also allows to recover
conservation of kinetic energy along the collisions.
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In [BCEP1], we completely, and rigorously, justify formula (3.16). In
particular the emergence of the oscillatory integral

∫ +∞
0

ds1 · · · , can be fully
explained. The main ingredient is that the oscillatory factor exp(is1 · · · ) in

(3.15) has size s
−3/2
1 as s1 becomes large, uniformly in ε.

Next, we turn to identifying the limiting value obtained in (3.16). To do
so, we observe the equality (in the distributional sense)

Re

∫ ∞

0

e−is1k·(v1−v2+σk) ds1 = πδ(k · (v1 − v2 + σk)). (3.17) 2.15

Using formula (3.17) we realize that the contribution σ = −σ′ in (3.16) gives
rise to the gain term∫ t

0

dt1

∫
R3×S2

dv2 dω Bw(ω, v1 − v2)

f 0
2 (x1 − v1(t− t1)− v′1t1, x2 − v2(t− t1)− v′2t1; v

′
1, v

′
2), (3.18) 2.16

where Bw has been defined in (2.22), and v′1 = v1 − [v1 − v2] · ω ω, v′2 =
v2 + [v1 − v2] · ω ω as in (2.21). In this picture, the variable k measures the
momentum transferred during the collision, and the Dirac mass δ(· · · ) in
(3.17) expresses nothing else than the conservation of the energy during the
collision. The momentum conservation is automatically satisfied. Similarly,
the term σ = σ′ in (3.16) yields the loss term∫ t

0

dt1

∫
R3×S2

dv2 dω Bw(ω, v1 − v2)f
0
2 (x1 − v1t, x1 − v1(t− t1)− v2t1; v1, v2).

(3.19) 2.17

We finally remark that the imaginary part of the time integral in the left
hand side of (3.17) does not give any contribution. This uses a cancellation
effect.

We have now proved

lim
ε→0

I1,1,2 =

∫ t

0

dt1S(t− t1)C1,2 S(t1) f
⊗2
0 , (3.20)

in accordance with (3.1).

Let us draw a preliminary conclusion. Up to now, we have studied those
terms entering the full perturbative series expansion of fN

j (t), that are of
degree less than two in the potential. Two important facts come out of this

15



analysis. First, only collision-recollision terms have a non-vanishing contri-
bution, i.e. terms of the form

ε−4

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)C
ε
α,βS(t1 − τ1)T

ε
α,βS(τ1)f

0
j+1, (3.21) crc

for any possible values of the particles names α and β. These terms corre-
spond to particles α, β “colliding” (through the T term) at time τ1, then
immediately “recolliding” (through the C term) at time t1 (in (3.21) we have
replaced the true prefactor (N − j)/ε by ε−4 for simplicity). All other terms
involving S(t−t1)Cε

α,βS(t1−τ1)T ε
α′,β′ with (α, β) 6= (α′, β′) do vanish. Second,

we can also explicitely compute the limiting value of (3.21): it agrees with
the gain term and loss term of the physically expected Boltzmann equation.
Hence, in a sense, our quantum system agrees with the Boltzmann evolution
up to the second order in the potential.

Naturally, this result is far from being conclusive: there are examples,
like e.g. the pathologies of the Broadwell model quoted in [CIP], for which
the agreement fails at the fourth order only.

Now, [BCEP1] proves more than agreement up to second order. We
indeed consider the subseries (of the full series expansion expressing fN

j (t))
formed by all the collision-recollision terms. In other words, we sum up all
terms of the form (3.21) and consider the subseries of fN

j (t) given by

∑
n≥1

∑
α1,...,αn,β1,...,βn

ε−4n

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)C
ε
α1,β1

S(t1 − τ1)T
ε
α1,β1

· · ·
∫ τn−1

0

dtn

∫ tn

0

dτn S(τn−1 − tn)Cε
αn,βn

S(tn − τn)T ε
αn,βn

S(τn)f 0
j+n+1. (3.22) crcb

Here the sum runs over all possible choices of the particles number α’s and
β’s. We establish in [BCEP1] that the subseries (3.22) is indeed convergent
for short times, uniformly in ε. Moreover, we prove that it approaches the
corresponding complete series expansion obtained by solving iteratively the
Boltzmann equation (2.19)-(2.20), with cross-section given by (2.22), namely
the expansion given by (3.1). Technically, our analysis proves that each term
S(ti−1 − ti)C

ε
αi,βi

S(ti − τi)T
ε
αi,βi

in (3.22) goes to the corresponding S(ti−1 −
ti)Cαi,βi

in (3.1) as ε → 0. Besides, each variable τi in (3.22) eventually

needs to be rescaled as τi = ti − εsi, and all integrals
∫ ti

0
dτi eventually

become
∫ +∞

0
dsi, giving rise to oscillatory integrals of the form (3.17) that

allow to recover the natural conservation of kinetic energy along each classical
collision.
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This is a much stronger convergence result towards the Boltzmann equa-
tion than mere “convergence up to second order in the potential”. Techni-
cally, it is proved using a summation argument that we obtain through the
stationary phase in large dimensions with a uniform control with respect to
the dimension.

However, this does not completely finishes the proof yet: the true series
expansion of fN

j (t) contains many more terms than those we retain in (3.22).
Unfortunately, a rigorous proof of the term-by term convergence for the full
series expansion giving f j

N(t) is still missing. Even more difficult seems to
find a uniform bound on this series. Thus a mathematical justification of
the quantum Boltzmann equation is a still an open, challenging and difficult
problem.

4 The Bose-Einstein and Fermi-Dirac statis-

tics
s4

The weak-coupling limit is more difficult to analyze when considering the case
of Bosons and Fermions. Indeed, the statistics then modifies the structure
of the states, and a complete factorization of the initial datum as in (2.18)
is not compatible with Bose-Einstein or Fermi-Dirac statistics.

Systems of independent particles obeying the Bose-Einstein or Fermi-
Dirac statistics are usually called quasi-free. Their reduced density matrices
satisfy the following property (the integer j denotes the number of particles):

ρj(x1 . . . xj; y1 . . . yj) =
∑
π∈Pj

θs(π)

j∏
i=1

ρ(xi; yπ(i)). (4.1) 3.1

Here ρ(x, y) is the kernel of a one-particle density matrix, Pj is the group of
the permutations of j elements, and, to each permutation π, we associate its
signature s(π) which is 1 if π is even, and −1 if π is odd. As usual, θ = 1 in
the bosonic case, while θ = −1 in the fermionic case. Condition (4.1) implies
that the Wigner function of a quasi-free state is given by the following sum
over all permutations

fj(x1, v1, . . . , xj, vj) =
∑
π∈Pj

θs(π) fπ
j (x1, v1, . . . , xj, vj) (4.2) 3.2
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where each fπ
j has the value

fπ
j (x1, v1, . . . , xj, vj) =

∫
dy1 . . . dyjdw1 . . . dwj e

i(y1·v1+···+yj ·vj)

j∏
k=1

e−
i
ε
wk·(xk−xπ(k)) e−

i
2
wk·(yk+yπ(k)) f

(
xk + xπ(k)

2
+ ε

yk − yπ(k)

4
, wk

)
, (4.3) 3.3

and f is a given one-particle Wigner function. Note in passing that the
Maxwell-Boltzmann case treated in the previous section corresponds, in this
picture, to only retaining the contribution due the permutation π = Identity
in (4.3).

Plugging in the hierarchy (2.15) an initial datum satisfying (4.3), we can
follow the same procedure as we did in section 3 for the Maxwell-Boltzmann
statistics: we write the full perturbative series expansion expressing fN

j (t)
in terms of the initial datum (see (3.4) and (3.6)), and try to analyze its
asymptotic behaviour.

As in the previous section, we first restrict our attention to those terms
of degree less than two in the potential.

The analysis up to second order is performed in [BCEP2]. We actually re-
cover here Eq. (2.24) with the suitable Bw,θ. The number of terms to control
is much larger than in section 3, due to the sum over all permutations that
enters the definition (4.2) of the initial state. Also, the asymptotics is much
more delicate. In particular, we stress the fact that the initial datum (4.2)-
(4.3) brings its own highly oscillatory factors in the process, contrary to the
Maxwell-Boltzmann case where the initial datum is uniformly smooth, and
where the oscillatory factors simply come from the collision operators T ε

k,`

and Cε
k,j+1. These new oscillatory factors naturally play a crucial role. In-

deed, as we saw in the previous section, oscillations dominate the asymptotic
process, and they are the building blocks that allow to recover the relevant
Boltzmann equation in the limit. This is the very reason why a cubic Boltz-
mann equation is obtained in the Fermi-Dirac or Bose-Einstein case, while
the equation simply is quadratic in the Maxwell-Boltzmann situation.

Technically, we analyze in [BCEP2] the repeated application of the colli-
sion-recollision operators Cε

j+1, T
ε
j+1, as we did in the previous section, when

they act on initial states of the form (4.3). The analysis is similar in spirit to
the one we used to study I0, . . ., I4 in the previous section. Our approach
yields various terms: two of them are bilinear in the initial condition f0, and
twelve are trilinear in f0. Some of these terms vanish in the limit due to a non-
stationary phase argument. Others give rise to truly diverging contributions
(negative powers of ε). However, when grouping the terms in the appropriate
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way, those terms are seen to cancel each other. Last, some terms give the
collision operator (2.24). The computation is heavy and hence we address
the reader to [BCEP2] for the details.

This ends the analysis of terms up to second order in the potential.

Obviously, and as in the Maxwell-Boltzmann case, we could extend the
result in [BCEP2] and try to resum the dominant terms, as we did in the
previous section when extending the analysis of (3.21) to that of (3.22). This
would lead to analyzing a true subseries of the complete series expansion
expressing fN

j (t). We do not see any conceptual difficulty. However, this
resummation procedure has not been explicitely done in [BCEP2].

To end this paragraph, we mention that a similar analysis, using com-
mutator expansions in the framework of the second quantization formalism,
has been performed in [HL] (following [H]) in the case of the van Hove limit
for lattice systems (that is the same as the weak-coupling limit, yet without
rescaling the distances). For more recent formal results in this direction, but
in the context of the weak-coupling limit, we also wish to quote [ESY].

5 The low density limit

Up to here, we only have investigated the weak-coupling regime. In this sec-
tion, we tackle the low-density regime, a technically more difficult situation.

Before coming to the details, we first recall that in the low-density regime,
the statistics is expected to play no role in the asymptotics, due to the fact
that the gas is rarefied. For that reason, we limit ourselves to completely
factorized initial states, corresponding to a Maxwell-Boltzmann statistics, as
in (2.18).

In the low-density case, the number of particles N diverges moderately,
namely as ε−2 (in three dimensions of space), while the potential φ is not
scaled at all. As a result, when keeping the kinetic approach already de-
scribed in section 3, the low-density regime gives rise to exactly the same
collision operators Ce

k,j+1 and T ε
k,j+1 than in the weak coupling regime (they

are given in (2.17), and (2.13), respectively), and the underlying hierarchy
is also similar to (2.15), with a different normalization in ε yet: the new
point is that the prefactor 1/

√
ε that we have in the weak-coupling regime in

front of T ε
j , is now replaced by 1/ε (a stronger prefactor), and the prefactor

(N − j)/
√
ε ∼ ε−7/2 in front of Cε

j+1 is now replaced by (N − j)/ε ∼ ε−3 (a
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weaker prefactor). Quantitatively, the hierarchy is, in the low-density case:(
∂t +

j∑
k=1

vk · ∇k

)
fN

j (Xj, Vj) =
1

ε
T ε

j f
N
j +

(N − j)

ε
Cε

j+1f
N
j+1. (5.1) 4.14

Starting from (5.1), we may now solve (5.2) iteratively, as we did in section
3. This gives rise to a huge series expansion. Similarly to what has been
done in section 3, we only analyze the subseries of the true series expansion
of fN

j (t), that is obtained upon retaining the dominant terms only (see (3.22)
in the weak-coupling case).

Now, due to the fact that the potential is stronger, the selection of domi-
nant terms is somewhat different than in the weak-coupling situation. Actu-
ally, collision-recollision terms (one C operator followed by one T - see (3.21))
do not dominate the asymptotics, contrary to the weak-coupling case: one
has to consider all terms obtained through a creation-recollision sequence
with 1 operator C followed by n operators T , for any value of n. Namely,
the dominant terms are all the∫ t

0

dt1

∫ t1

0

dτ1 · · ·
∫ τn−1

0

dτn S(t− t1)C
ε
α,βS(t1 − τ1)T

ε
α,βS(τ1 − τ2)T

ε
α,β

· · · S(τn−1 − τn)T ε
α,βS(τn)f 0

j+1, (5.2) 4.1

for any values of the particles number α and β (compare with (3.21), for
which n = 1). Such terms certainly behave in a different way for the weak-
coupling and the low-density regimes. Indeed the coefficient in front of such
sequences are:

ε−( 7
2
+n

2
) in the weak-coupling regime, (5.3)

ε−(3+n) in the low-density regime. (5.4)

Besides, as we have seen in the computations of section 3, each C operator
gives a gain of ε3 due to oscillations, and each T operator gives a gain of ε
due to the associated time integration (see the change of variable (3.14)). As
a result, the term involved in (5.2) has the effective size

ε+(n
2
− 1

2
) in the weak-coupling regime, (5.5)

O(1) in the low-density regime. (5.6)

In conclusion, for the weak-coupling regime, only the term for n = 1 is O(1),
all the others being negligible - in agreement with what we assert in section
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3. On the contrary, for the low-density regime, all the terms of the type (5.2)
are O(1) and, therefore, they have to be resummed.

Our contribution in [BCEP3] is the following. First, we analyze each
term of the form (5.2), for each value of n. Using stationary phase methods
in large dimensions and carefully analyzing the phase factors involved, we
are able to pass to the limit in these terms. We refer to [C1] for a similar
analysis in the context of the linear Boltzmann equation. Second, we resum
these terms with respect to n. Using the very specific algebraic structure of
the underlying series, and using a previous identity proved in [C2], we show
the typical relation

lim
ε→0

(∑
n≥1

ε−3+n

∫ t

0

dt1

∫ t1

0

dτ1 · · ·
∫ τn−1

0

dτn

S(t− t1)C
ε
1,2S(t1 − τ1)T

ε
1,2 · · · S(τn−1 − τn)T ε

1,2S(τn)f 0
2

)
=

∫
dv1dωB`(ω, v − v1) [f0(t, x, v

′) f0(t, x, v
′
1)− f0(t, x, v) f0(t, x, v1)] ,

(5.7) bs

where B` is the full Born series expansion of quantum scattering (see (2.28)).
The difficulty actually lies in identifying the coefficient B` at this step. Last,
we resum all term of the form (5.2). We refer to (3.22) for the analogous
approach in the weak-coupling regime. We do not write the corresponding
formulae. We simply mention that the corresponding series is proved to
converge for small times, uniformly in ε, towards the perturbative series
expansion of the solution to the Boltzmann equation (2.26)-(2.27)-(2.28).
We refer to [BCEP3] for the details. Note that our results need a smallness
assumption on the potential, as does the Born series expansion of quantum
scattering.

As in section 3, this analysis only yields a partial result, stating that a
subseries of the true series expansion of fN

j (t) converges to the appropriate
Boltzmann equation: neither are we able to bound the true series, nor are
we able to pass to the limit term-by-term.
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