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Abstract

We consider a quantum particle moving in a harmonic exterior potential and linearly
coupled to a heat bath of quantum oscillators. Caldeira and Leggett [6] have derived the
Fokker-Planck equation with friction for the Wigner distribution of the particle in the
large temperature limit, however their (nonrigorous) derivation was not free of criticism,
especially since the limiting equation is not of Lindblad form. In this paper we recover
the correct form of their result in a rigorous way. We also point out that the source of the
diffusion is physically restrictive under this scaling. We investigate the model at a fixed
temperature and in the large time limit, where the origin of the diffusion is a cumulative
effect of many resonant collisions. We obtain a heat equation with a friction term for the
radial process in phase space and we prove the Einstein relation in this case.

Keywords: Fokker-Planck equation, Wigner distribution, scaling limit, coupled harmonic oscil-
lators.
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1 Introduction

In [6], Caldeira and Leggett introduced a Hamiltonian for a quantum system of a test-particle
coupled to an abstract reservoir. The Schrödinger equation for the evolution of the quantum
state can be equivalently written as a kinetic (phase-space) equation for the associated Wigner
distribution of the test particle-reservoir system. The goal of [6] was to derive (formally) a
Fokker-Planck equation for the Wigner distribution of the test-particle by considering various
asymptotic regimes which we explain below and by ”tracing out” the reservoir coordinates.
The Fokker-Planck equation represents an irreversible collisional evolution with a diffusive
term, while the Schrödinger equation is reversible. Hence this derivation was expected to
shed some light on the origin of diffusion in the evolution of a small system coupled to an
infinite reservoir. Caldeira and Leggett used a Feynman path integral approach which has no
rigorous mathematical justification (despite its great successes in formal computations). More
importantly, several other steps in their derivation admittedly lack mathematical precision.

Starting from this observation, the aim of the present paper is twofold. In Sections 4 and
5 we present a mathematically rigorous derivation of the frictionless Fokker-Planck equation
from the model introduced in [6]. In Sections 6 and 7 we show how to recover another type
of Fokker-Planck equation from the Caldeira-Leggett Hamiltonian, using a different diffusion
mechanism, scalings and limiting procedures.

In both models we focus on determining the precise assumptions which lead to the given
equations. We do not attempt to describe the variety of physical models for which the Caldeira-
Leggett Hamiltonian is used as a phenomenological description. In particular we do not inves-
tigate to what extent the required assumptions are realistic in actual applications. However,
we keep in mind one possible physical realization of the Caldeira-Leggett dynamics, namely the
motion of an electron in a nearest neighbor harmonic crystal (Section 2).

We point out that [6] heavily relies on the use of ideas from Feynman, Hibbs, and Vernon [23],
[24]. In particular Feynman and Vernon [24] considered a system of the form { test “particle”
(A) + reservoir (R) }. The Hamiltonian is HA +HR +HI , where HA is the free Hamiltonian
for the test-particle, HR is the free Hamiltonian for the reservoir, and HI is the interaction
Hamiltonian. They integrated out the reservoir variables, i.e. they computed the time evolution
of the wave function of the test-particle itself, given by TrR{exp(it~−1(HA +HR +HI))}, where
TrR is the partial trace on the Hilbert space of the reservoir and ~ = h/2π where h is the
Planck constant. Feynman path integral formalism was used which is particularly powerful
when HR is quadratic and the interaction is linear in the reservoir variables. In this case the
partial trace TrR leads to explicit Gaussian integrals in the reservoir variables, but in general it
is not Gaussian in the test-particle variables. However, if the total Hamiltonian is quadratic, in
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particular the coupling is linear in the test-particle variables, then the full evolution is given by
a Gaussian integral, which, in principle, is explicit. The difficulty stems from the large (infinite)
number of variables.

In this context [6] introduces the following Hamiltonian,

HCL = HA +HR +HI (1.1)

=

(
− ~2

2M
∆x + V (x)

)
+

NΩ∑
j=1

(
−~2

2
∆Rj

+
1

2
ω2

j |Rj|2
)

+
1√
N

(
NΩ∑
j=1

CjRj

)
· x .

The first term of (1.1) represents the Hamiltonian of the test-particle with mass M where
x ∈ IRd denotes the test-particle position in dimension d. The abstract reservoir here is a set
of finitely many (say NΩ, which is assumed to be integer) independent oscillators written in
normal variables Rj ∈ IRd, having frequencies ωj ∈ [0,Ω] and masses m = 1. Here Ω is the
maximum frequency of the oscillators and N is the number of oscillators per unit frequency.
The typical case is the uniform frequency distribution: ωj = j

N
on [0,Ω]. The coupling is

linear in x and the Rj’s, with coupling coefficients given by the Cj’s. The normalization factor
N−1/2 simply stems from the central limit theorem, since, roughly speaking, the variables Rj’s
become independent random variables with vanishing expectation in the thermodynamic limit

N →∞. The operator H acts on the Hilbert space L2
x(IR

d)⊗
(⊗NΩ

j=1 L
2
Rj

(IRd)
)
. The authors

of [6] consider only d = 1 for simplicity, as we shall do as well, but the method extends to any
dimension.

Caldeira-Leggett assume that the reservoir is initially in thermal equilibrium at inverse
temperature β, i.e. the initial density matrix of the system A+R is given by,

ρ0 = ρ0
A ⊗ exp (−βHR) , (1.2)

where ρ0
A is the initial state of the test-particle. Finally, they choose the coupling coefficients,

Cj := λωj (1.3)

with some λ > 0.
Remarks. (i.) Instead of uniformly spaced oscillator frequencies ωj = j

N
, it is sufficient

to assume that the frequency distribution %N(ω)dω = 1
N

∑NΩ
j=1 δ(ω − ωj)dω tends, in the ther-

modynamic limit (N → ∞), to a uniform distribution %(ω)dω on [0,Ω] with density, say, c,
i.e.

lim
N→∞

1

N

NΩ∑
j=1

h(ωj) = lim
N→∞

∫ ∞

0

h(ω)%(ω)dω = c

∫ Ω

0

h(ω)dω, ∀h ∈ C[0,Ω] (1.4)

with %(ω) being c times the characteristic function of [0,Ω]. Without loss of generality c = 1
can be assumed because changing c to 1 is equivalent to changing λ→

√
cλ.
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(ii.) In fact, the physically relevant quantity is the spectral density of the bath, i.e. the
measure

J(ω)dω =
C2(ω)

ω
%(ω)dω =

1

N

NΩ∑
j=1

C2
j

ωj

δ(ω − ωj) (1.5)

(see (3.23) in [6], apart from constants), which in the case of [6] converges to the measure
λ2ω · 1(ω ≤ Ω)dω in the limit N → ∞ (here 1(·) is the characteristic function). The original
model can be considered for any spectral density, but our analysis shows that the assumption
J(ω) ∼ ω is needed for the Caldeira-Leggett derivation. However, in Section 6 we present a
model where this assumption is not needed to derive a modified Fokker-Planck equation. For a
different model in Section 7 we show that the diffusion mechanism is robust; derivation of the
Laplacian term in the Fokker-Planck equation does not require uniform frequency distribution.
However, in that model the friction term would be time-delayed if % is not uniform.

(iii.) We consider a bath of finitely many oscillators, but we will take the thermodynamic
limit N →∞ before any other limit. It is possible to construct the time evolution of the limiting
Hamiltonian directly (see [5] Brattelli-Robinson) but we prefer to keep the presentation on the
most elementary level. For the same reason, we avoid the second quantized formalism. For
the phenomena discussed here, there is no need to define a Hamiltonian with infinitely many
degrees of freedom and the corresponding Hilbert space; the N → ∞ limit can be taken after
the heat bath variables are integrated out as we keep all estimates uniform in N .

(iv.) We chose N to denote the number of oscillators per unit frequency instead of the total
number of oscillators. Since N → ∞ limit will be taken first, mathematically it is equivalent
to letting the total number of oscillators go to infinity. However, in case of the only physical
model discussed here (in Section 2), this choice of N will have a physical meaning: it will be
the the size of the harmonic crystal measured on the lengthscale of the confining potential.

(v.) The total potential in (1.1) may be negative, in particular HCL may be unbounded
from below as N →∞. In several related models a term

x2

2
· 1

N

NΩ∑
j=1

C2
j

ω2
j

is added to the Hamiltonian (1.1) to ”complete the square” of the potential in the interaction
term and in the bath oscillators. With our choice of Cj this term is λ2Ωx2

2
. Similarly to equation

(3.1) in [6], here we prefer not to add this term explicitly to the Hamiltonian, rather we will see
that the effective potential acting on the test-particle will be Veff (x) = V (x) − λ2Ωx2

2
, where

the quantity λ2Ω is called the frequency shift. This approach is analogous to the procedure
followed in Section 3 of [6], see especially equation (3.39). The model becomes translation
invariant for Veff = 0.

Now the main steps of [6] are the following:
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• First, using that HI +HR is quadratic and relying on Feynman path integrals, Caldeira
and Leggett explicitly compute the evolution of the test-particle after tracing out the reser-
voir variables. The evolution equation of the test-particle involves a diffusive forcing term
and a memory term (friction), the latter being non-local in time (see (3.2) below, as well as
(4.14)). These terms translate the effect of the evolution of the reservoir on the test-particle.
It is very standard in this context that integrating out the reservoir variables gives rise to a
non-Markovian evolution for the test-particle, despite that the evolution of the full system is
Markovian.

• Second, they perform the thermodynamical limit where the number of oscillators (per unit
frequency) in (1.1) becomes infinite (N →∞).

• Third, they consider the semiclassical limit ~ → 0, they perform the limit Ω → ∞, i.e.
the frequency range becomes infinite (removing ultraviolet cutoff), and they let the inverse
temperature β go to zero.

These last two limits allow them to eliminate all the non-Markovian effects. Caldeira and
Leggett state the Fokker Planck equation

∂tw + v · ∇xw −∇xVeff (x) · ∇vw = γ∇v(vw) + σ∆vw (1.6)

for the particle’s Wigner distribution w = w(t, x, v), which can be interpreted as a phase space
(quasi)density, as a result of their asymptotic procedures. The friction coefficient γ is given as
γ = σβ/M , which is the well-known Einstein’s relation between friction, diffusivity and inverse
temperature.

This type of equation is also known under the name of “Quantum Brownian motion”,
or “Quantum Langevin equation”, and received a large interest in the context of interaction
between light and matter (see, e.g. [12]).

We mention that the idea of formally deriving Fokker-Planck-like equations from a reservoir
of oscillators with linear coupling has been exploited by many authors, e.g. [7], [15, 16], [13],
[30], [47] (see also [17] for comments on this equation and the relationship with questions of
decoherence). These authors use similar scalings as [6]. In particular, in [15, 16], [47], [30],
corrections to (1.6) are derived when the temperature is large but finite, and these equations
involve both a diffusive term in velocity and friction terms in space and velocity. Mathematically
rigorous work on these types of models is slightly less abundant. A rigorous operator-algebraic
approach is given in [14], and a path-integral approach is found in [10]. A similar model has also
been used in the program of Jakšić and Pillet to study thermal relaxation with spectral methods
(see [31] and references therein). Recently an analogous system with an extra white-noise is
studied in [25]. Under different scalings Arai derives ballistic behaviour for the test-particle
[2]. In a different context and with different scaling assumptions than [6] and others, but still
with the assumption of linear coupling, we also mention [12]. The key assumption in all these
papers is that the test-particle is linearly coupled to the infinite bath of harmonic oscillators,
which gives rise to Gaussian computations, and many quantities of interest become explicitly
computable. This certainly explains at least part of the interest that these kinds of models
have received.

6



The paper by Caldeira and Leggett raises several questions which have to be addressed.
The most serious is that the limiting equation (1.6) is not of Lindblad form (see [1], [16], [38]),
which is a generic condition for quantum systems to preserve the complete positivity of the
density operator along the evolution. Recall that the true quantum evolution preserves this
property. This shortcoming is closely related to the fact, that the equation itself contains β (as
the ratio of γ and σ), while β → 0 limit was actually used along its derivation. This is not just
a mathematical inconsistency. Either the friction term should be negligible compared to the
diffusion term in (1.6) if β → 0 limit is really taken; or there should be an extra term in the
equation if β is thought of as a small but nonzero number. In the latter case this extra term
should restore the Lindblad form of the equation, and it is not clear why this term could be
considered negligible compared to the friction.

The confusion probably comes from the unspecified order of limits, which is the second
important question and the paper [6] is admittedly vague about it (see comments after (3.33)
in [6]). In fact, in several cases [6] uses ”asymptotic regimes” without taking rigorous limits.
The Caldeira-Leggett system relaxes to equilibrium under very mild conditions [5] without any
further limits (apart fromN →∞). However, the precise equation which governs this relaxation
depends on the physical parameters of the system. In particular, only in some limiting regimes
it is true that the limiting equation is a differential equation (i.e. time-delayed memory terms
vanish). Furthermore, to obtain a Fokker-Planck type equation, especially a Laplacian term
(∆v), requires further restrictions which are implicitly assumed in various steps of the Caldeira-
Leggett derivation. We will demonstrate in particular, that the ∆v term in (1.6) is due to the
special choice of the coupling constants Ck ∼ ωk (or, equivalently, to J(ω) ∼ ω) and to the
fact that the cutoff frequency Ω goes to infinity. In physical systems finite Ω is more realistic,
but then the resulting equation contains a modified (cutoff) Laplacian, and the system will
not be described by a diffusive equation for short times. Although apparently Caldeira-Leggett
are not interested in short times (see their remark below (3.35) in [6]) they do not formulate
this concept rigorously. The scaling limit, we introduce in Sections 6 and 7 will be the precise
mathematical tool for this.

Finally, from mathematical point of view, it is desirable to eliminate the nonrigorous steps
in the original derivation; especially since the order of limits actually does influence the form
of the limiting equation. In addition, the systematic use of the Feynman path integral should
be avoided in a rigorous proof, since it is a mathematically undefined.

We should emphasize that we do not intend to give a full list of equations arising from
various regimes of the parameters; and we do not plan to discuss which actual physical systems
fall into these regimes. Our purpose is merely to determine the precise conditions and limits
which lead exactly to a Fokker-Planck equation for the Wigner function (especially with ∆v

term). These conditions turn out to be quite restrictive, which does not contradict to the fact
that the Caldeira-Leggett approach has been used quite extensively and successively in models
with phenomenological friction and diffusion mechanisms. There are many different equations
which behave similarly to the Fokker-Planck equation, especially if only certain space and
time regimes are considered. In fact, we also present two limiting regimes, different from
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the one implicitly used in [6], which lead to modified Fokker-Planck equations and which use
less restrictive assumptions. Their diffusion mechanism does not require uniform frequency
distribution (see Remark 1. after Theorem 6.1 and Remark 3. after Theorem 7.1). Moreover,
the model in Section 7 does not require high temperature.

The present paper has five parts:

a) In Section 2 we present a concrete physical model which, in certain approximation, leads
to the Caldeira-Leggett Hamiltonian (1.1). This section is for illustration and is independent
of the rest of the paper.

b) In Section 3 we explain that the origin of the diffusive ∆v term from the original Caldeira-
Leggett model is the Ω →∞ limit. Then we explain how to modify the model to obtain diffusion
via a more realistic mechanism using scaling limit. We also explain how these derivations are
related to other derivations of the Fokker-Planck equation via the Boltzmann equation.

c) In Section 5, we present a rigorous mathematical convergence result for the model intro-
duced in [6]. Our approach is very elementary and physically transparent.

d) In Section 6, we show that one can also recover a diffusive non-kinetic behaviour (fric-
tionless heat equation) from the Caldeira-Leggett Hamiltonian using scaling limit and without
assuming infinite frequency range and uniform frequency distribution.

e) In Section 7, under a different scaling limit, we derive a Fokker-Planck equation with
friction but without convective terms. The temperature is finite. Einstein relation is valid in
a modified form which takes into account the ground state quantum fluctuations of the heat
bath. The diffusion mechanism is independent of the uniformity of the frequency distribution,
but the friction term becomes local in time only in this case.

Our main results are Theorem 5.1, 6.1 and 7.1.

Remark. The equation derived in Section 5 is of Lindblad form (see [1]). Since there
is no rescaling in the variables, one can reconstruct the quantum (restricted) density matrix
from the evolved Wigner distribution, hence the equation must preserve the positivity of the
corresponding density matrix. The Wigner distribution itself is typically not positive. On
the other hand, the heat equations in Sections 6 and 7 are positivity preserving equations in
pointwise sense. After rescaling the space-velocity variables (Section 6), the weak limit of the
Wigner distribution is a nonnegative phase space density, hence the equation must preserve
this property. The time dependent quantum states (density matrices) cannot be reconstructed,
but the heat equation determines their rescaled weak limits at any time.

2 Electron in a harmonic ionic lattice

One of the physical situations described by the Caldeira-Leggett Hamiltonian is a single local-
ized electron interacting with phonons. For simplicity, we consider only the one dimensional
situation.

The electron with mass M is subject to a confining potential V (x) and its Hamiltonian is
HA = − ~2

2M
∆x + V (x). We consider units, where ~ = M = 1.
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The phonons are generated by a periodic chain of ions, sitting at the the points of Λ = { j
Ω

:
j = 0, 1, 2, . . . NΩ} ⊂ TN where the points 0 and N are identified. Here TN is the 1 dimensional
torus of length N . Let Λ∗ = { j

N
: j = 0, 1, 2, . . . NΩ} ⊂ TΩ be the dual lattice. Assuming

nearest neighbor harmonic coupling, the Hamiltonian of the lattice vibrations is exactly HR in
(1.1) written in normal variables, Rj, which are the Fourier transforms of the ion displacements
(see e.g. [43]). After linearization in the phonon variables the interaction of an electron with
the crystal lattice is,

HI =
∑
k∈Λ∗

Ck ·Rk exp(ik · x) , (2.1)

where Ck is the k-th Fourier component of the electron-photon interaction, which comes from
a two-body interaction between the electron and the ions.

The essential point in (2.1) is that this interaction is non-linear in x. One can reach linear
coupling by assuming that the quantity k · x in (2.1) remains small during the full evolution
of the system, and linearize the exponential accordingly. This means that the wavelength (=
O(|wavevector|−1) = O(|k|−1)) of the crystal oscillation should be bigger than the displacement
of the particle (x) during its full evolution. Furthermore, in the original Caldeira-Leggett
model (as well as in Section 5.3) the ultraviolet cutoff was removed (Ω →∞) in order to obtain
diffusion (see Section 3.1). Therefore, we are led to assume big frequencies together with big
wavelengths, whereas there product, the sound speed, is a bounded physical constant.

On the level of the Hamiltonian, notice that if Ck were frequency independent (equivalently,
J(ω) ∼ ω−1) then

∑
k∈Λ∗ Rk, to which the particle coordinate is coupled (1.1), is just the

displacement of the ion at the origin as the normal modes are the Fourier transforms of the
displacement vectors. In other words, the test-particle is assumed to remain in the vicinity of
the origin, and it is assumed to interact with only one single ion of the crystal lattice for all its
dynamics (see e.g. [14]). On the other hand, if we wish to derive a diffusive equation for the
electron, then for large values of time it is expected to move away from the origin. Even if the
diffusion appears only in the velocity (see (1.5)), the large velocity implies large fluctuation in
the configuration variable as well.

Coupling depending linearly on the frequency, Cj ∼ ωj, considered in [6], corresponds to
J(ω) ∼ ω. Theoretically, it can be obtained from a three dimensional phonon model with
radial coupling. In this case Rj is the sum of all modes Rk with the same frequency ωj, where
k runs through the dual of the three dimensional lattice Λ. However, we should remark that
the Ohmic law J(ω) ∼ ω breaks down for large frequencies in real systems.

In summary, the linear model effectively involves an implicit mean-field assumption by
requiring that the test-particle is coupled to the same mode for all its evolution, which seems
incompatible with the finite sound speed of the metals along with the removed UV cutoff. This
leaves a serious doubt on the applicability of the linear coupling assumption for diffusion models
for electron propagation in an ionic lattice (see also [2] for a brief criticism of this assumption).
For electrons coupled to photons (Section 4 in [6]) this assumption is more realistic and indeed
it is widely used in electromagnetic radiation theory (dipole approximation, see [12]).

However, this model is more realistic if Ω → ∞ is not required, and this is the case for
the model discussed in Section 7. In this model the electron is subject to a confining potential
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V (x) = x2

2
and is performing a fast harmonic oscillation. Moreover, it is subject to a weak

coupling to the phonons, which slowly modifies the phase space support of the fast oscillation.
It is this slow motion which is described by a Fokker-Planck type equation with friction, after
an appropriate time rescaling. Here the electron remains confined in the vicinity of a single ion,
hence the linear approximation is more reasonable. Since only the modes near the resonant
frequencies are used effectively, the exact form of the spectral bath density J(ω) is irrelevant
for the diffusive mechanism.

3 Source of diffusion in various kinetic models

In order to explain the origin of diffusion (∆v) in [6], we have to analyze the effects of the
limits introduced there. To avoid Feynman path integrals, we present the basic idea of [6] in
the mathematical language we will use in our proofs.

We take the Hamiltonian as in [6] (see (1.1)) with M = 1 and specify the choice V (x) = 1
2
x2

(harmonic oscillator), in the spirit of [13], [2], [30], [47], [12]. We use the fact that, for Gaussian
Hamiltonians, the evolution equation for the Wigner transform of the density matrix is a first
order linear partial differential equation ([48], [39], [27]), which can be solved by the method of
characteristics (see also [47] for a similar observation).

In the quadratic case, we can scale ~ out of the equation (1.1). Let

H :=
1

2

(
−∆x + x2

)
+

1

2

NΩ∑
j=1

(
−∆Rj

+ ω2
jR

2
j

)
+

1√
N

( NΩ∑
j=1

CjRj

)
· x, (3.1)

then exp (−it~−1HCL) and exp (−itH) are unitarily equivalent under the rescaling of variables
x→ x~−1/2, Rj → Rj~−1/2, or in other words, we choose units where ~ = 1, M = 1.

If V (x) is not quadratic, then it gives rise to a genuine pseudodifferential operator in the
Wigner equation and ~ cannot be scaled out. In the semiclassical limit (~ → 0) this term
converges to the differential operator ∇xV · ∇vw in (1.6). This fact is well-known for general
semiclassical Wigner equations [39], [40], [28], [41]. We will not prove Theorem 5.1 for a general
potential because our main goal is to find the origin of diffusivity which is independent of the
confining potential. We restrict ourselves to the most convenient quadratic case.

We also present two different scaling limits starting from (3.1) which allows one to follow
the dynamics up to long times. However, we believe that not just our result on the original
Caldeira-Leggett model (in Section 5) can be extended to include general potential, but also
the resonance effect in Sections 6 and 7. Due to the lack of explicit solutions, this requires
extra analysis which we leave to further works.

3.1 Diffusion in the original model

After integrating out the reservoir variables in the equations for the characteristics, it eventually
reduces to the following ODE for the particle’s position variable X(t) (see (4.14) for the exact
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result),

X
′′
(t) +X(t) = f(t) + λ2

∫ t

0

S(t− s)X(s) ds . (3.2)

Here λ is as in (1.3), S is an explicit function corresponding to the memory effects, and the
forcing term f is,

f(t) = − λ√
N

NΩ∑
j=1

ωj

[
Rj cosωjt+ Pj

sinωjt

ωj

]
, (3.3)

where Rj, Pj are the initial position and momentum variables of the oscillators. Let R∗
j :=√

2βωjRj and P ∗
j :=

√
2βPj be their rescaled versions. In the high temperature limit these

become standard Gaussian variables since the classical Gibbs distribution is given by,∏
j

e−β(P 2
j +ω2

j R2
j ) =

∏
j

e−
1
2
[(P ∗j )2+(R∗j )2] ,

and at high temperature the quantum Gibbs distribution converges to the classical one (for the
precise formulas, see (4.15)-(4.17)). Hence the choice (1.3) for Cj gives that,

f(t) = − λ√
2β

NΩ∑
j=1

[ R∗
j√
N

cos(ωjt) +
P ∗

j√
N

sin(ωjt)
]
, (3.4)

and as β → 0, R∗
j , P

∗
j approach to standard Gaussians.

After integration by parts in the memory term in (3.2) we obtain (see (4.36))

X ′′(t) +X(t) = f(t) + λ2ΩX(t)− (M ?X ′)(t)− xM(t) (3.5)

where M is an approximate Dirac delta function M(t) ∼ λ2δ0(t) in the limit Ω → ∞. Here
? stands for convolution. The term λ2Ω is the frequency shift of the test-particle oscillator.
The friction term M ?X ′ has a main Markovian part λ2X ′ and a non-Markovian part which is
negligible as Ω →∞.

The effect of the limits introduced in [6] are as follows
• The high temperature limit (β → 0) plays two roles. First, it makes the rescaled ini-

tial data R∗
j , P

∗
j standard Gaussians. Second, it forces the full friction term to be negligible

compared to the forcing term.
• In the thermodynamic limit (N →∞) the sum in (3.4) becomes the sum of the real and

imaginary parts of the truncated complex white noise,

dW (Ω)(t) :=

∫ Ω

0

eiωtg(dω) ,

where g(dω)’s are independent centered Gaussian random variables with variance E
[
g(dω)2

]
=

dω (for precise definition see Section 4.4).

11



• Removing the ultraviolet cutoff (Ω →∞) gives the (complex) white noise,

dW (t) =

∫ ∞

0

eiωtg(dω) (3.6)

for the forcing term. To prevent instability (λ2Ω > 1), we have to take the simultaneous limit
λ→ 0, Ω →∞ which may lead to a nonzero constant phase shift λ2Ω.

Our main concern is to identify the origin of the ∆v (diffusion) term, which will come from
the forcing term. Hence this term should not vanish in the limit, which indicates that β → 0
and λ→ 0 limits must be related:

λ = λ0β
1/2 (3.7)

with some fixed λ0.

In summary, the solutionX(t) to (3.2) converges to the solution of a pure harmonic oscillator
with a white noise forcing, i.e. θX(t) + σX ′(t) ∼ (η ? dW )(t), where η(s) = θ sin s + σ cos s
is the harmonic oscillator trajectory (with initial condition η(0) = σ, η′(0) = θ). In particular
the mean square displacement (both in space and velocity)

E
∣∣∣θX(t) + σX ′(t)

∣∣∣2 ∼ E
∣∣∣(η ? dW (Ω)

)
(t)
∣∣∣2 =

∫ Ω

0

∣∣∣ ∫ t

0

η(t− s)e−iωsds
∣∣∣2dω (3.8)

behaves quadratically in t for small t for every finite Ω, hence it is not diffusive for short times.
The diffusive behavior (linear mean square displacement) is regained only after the Ω → ∞
limit or after long times.

We emphasize that, from this point of view, the v-Laplacian in the CL model immediately
stems from the particular asymptotic distribution of the frequencies (uniform from zero to
infinity) in the forcing term. In other terms this model demonstrates diffusion in a setup
where a plain diffusive forcing mechanism was essentially put in by hand. Diffusion appears
already in very short time scales as a result of high frequency oscillators. This means that
there is a shorter, unexplored time scale on which most of the oscillators live, hence the initial
Hamiltonian with the Caldeira-Leggett limits should not be considered microscopic, rather
mesoscopic. This problem is especially transparent if the heat bath is provided by phonons
(crystal lattice vibrations) which have an physical ultraviolet cutoff (lattice spacing). In other
words, for systems with UV cutoff and without time rescaling, ∆v is not the correct diffusion
operator.

In contrast to this diffusive mechanism, the source of the diffusion in more realistic models
dealing with a moving test-particle interacting with many degrees of freedom is the scaling limit,
especially time rescaling. This means that in these models the full frequency spectrum of the
diffusion is collected over a long time from the cumulative effects of interactions with bounded
frequency, and the diffusive behaviour is visible only on a much larger time (and sometimes
space) scale than that of the microscopic interaction (collision) mechanism. This makes a key
difference between the present model and other works dealing, for instance, with collisional
models as scaling limits of microscopic dynamics, i.e. macroscopic long time behaviour of
Schrödinger equations (see e.g. [45], [46], [35], [29], [19], [20], [21], [22], [41], [42], [8], [9], [33]
or also [4]).

We remedy this drawback of the CL scaling in Sections 6 and 7, as we indicate now.
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3.2 Diffusion from resonances in the scaling limit

In Section 6, we show that one can also recover a diffusive non-kinetic behaviour from the
Caldeira-Leggett Hamiltonian under a more realistic space-time scaling limit. Namely, for a
fixed cutoff in frequency Ω, and after the high-temperature limit, we consider the resulting
dynamics for the test-particle for large time t ∼ α−2 and large space and velocity variables x,
v ∼ α−1. Here α→ 0 is a scaling parameter and we define X = αx, V = αv, T = α2t to be the
macroscopic (or rescaled) position, velocity and time variables. We prove that the phase space
density is subject to a heat equation both in the (rescaled) velocity and position variables. In
particular, the energy of the test-particle increases up to α−2 due to the resonances with bath
particles of high energy (but bounded frequency). Recall that the temperature of the heat bath
is β−1 →∞, hence bath particles can have large energy even with bounded frequency.

In this case the diffusion indeed comes from the cumulative effect of bounded frequency
interactions via a change of scale. This is in fact a high energy diffusion in phase space; the
test-particle is heated up. The forcing frequency distribution can be quite arbitrary, the only
condition is that it has to carry energy at the resonant frequency. The diffusion comes from
a pure resonance effect, and this seems to be a more universal physical feature in this context
(see [12]). However, the high temperature limit is still essential in this derivation.

In Section 7, we keep the temperature fixed and we rescale only time, t = Tδ−1 (where
δ → 0 plays to role of α2 above), space and velocity remain unscaled. The reason is that the
bath temperature is finite, hence the typical energy (”temperature”) of the test-particle remains
finite as well. Since the particle Hamiltonian is confining (energy level sets are compact in phase
space), the particle remains effectively localized. As a result we get a small scale diffusion in
phase space with friction, after integrating out the fast circular motion. Again the diffusion
comes from resonance and is developed over a long time period, and the contributing bath
frequencies are bounded.

One of the important feature of these models is that the derivation is quite insensitive to
the actual form of the spectral density J(ω) (1.5); the only relevant quantity is its value at the
resonant frequency.

3.3 Comparison of the three models

The main goal of our investigation is to derive diffusion, i.e. ∆v term in the limiting equation.
The time dependence of the mean square displacement of the characteristics (3.8) is quadratic
for small time (unless Ω → ∞) and is linear for large time. To see diffusion on all times
considered, there are two alternatives: either we take Ω →∞ or we rescale time.

I.) If Ω → ∞, then the coupling λ must go to zero to keep the frequency shift λ2Ω finite.
Up to a positive time t, the total effect of the friction term is of order λ2t, while the diffusive
(forcing) term is roughly of order λ2t/β for larger times, see (5.14), however for short times it
is only quadratic in t. Hence for finite times λ2t→ 0, the friction term vanishes. Moreover, the
diffusive term vanishes as well, unless β → 0 is chosen such that λ2 ∼ β, i.e. the weak coupling
and high temperature limits must be related. The frequency shift is λ2Ω and its actual size
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depends on the simultaneous limits λ→ 0, Ω →∞. If λ→ 0 is taken first, then Ω →∞, then
the frequency shift vanishes. If λ2Ω is kept at a positive constant along the limits, then we see a
frequency shift. These two cases are described in Theorem 5.1, where frictionless Fokker-Planck
equations are derived on the microscopic time scale.

II.) If we consider long times, i.e. t = α−2T , α → 0 and T is fixed, then the size of the
diffusive term is roughly λ2α−2T/β for all T . To compensate for the blowup α−2, we can either
rescale space and velocity (x = α−1X, v = α−1V ) or we set λ2 ∼ α2.

II/a. If we rescale space and velocity as well, then the friction term has a size λ2T and the
diffusion term is of order λ2T/β (in the new variables). One would like to keep λ and β fixed
to see both friction and diffusion. But since the phase shift, λ2Ω, has to be kept finite, it forces
keeping Ω finite as well. This is the most realistic physical situation. However, the friction has
a non-Markovian part, whose size is λ2T if Ω is fixed (and it goes to zero only if Ω → ∞).
Hence the limiting equation must have a term which is nonlocal in time. This is the extra term
which is missing in (1.6), but its inclusion would lead to an integro-differential equation and
not to Fokker-Planck.

To derive a differential equation, the non-Markovian friction part has to be killed. With
finite Ω it is possible only if λ → 0, and then the full friction is eliminated. In order not
to eliminate the diffusive term as well, β ∼ λ2 is necessary. This again leads to the high
temperature limit, but now Ω is fixed and the diffusion comes from long-time cumulative
resonance effects. The fast oscillator motion on the microscopic time scale has to be integrated
out; either in time or by a radial averaging. This is the model in Section 6.

II/b. If we set λ2 ∼ α2 and keep β finite, then we see a finite diffusion on a microscopic
space and velocity scale. The friction term λ2t remains positive and the ratio of the friction
to the diffusion is β, which gives Einstein relation. Hence Ω could be kept fixed to see the
diffusion mechanism.

However, the non-Markovian part of the memory does not vanish unless Ω → ∞. The
qualitative analysis of Section 7 shows that Ω can grow very slowly (like | logα|7), i.e. the
non-Markovian part of the friction is weak for large times and moderately large Ω. This was
probably the heuristic idea of Caldeira and Leggett to neglect this term. However, this effect
shows up only after time rescaling; for finite microscopic times t this term is not negligible.

Hence we let Ω →∞, and assume that λ2Ω converges to a fixed number (possibly zero). This
number gives the frequency shift. Again, we see that the size of the frequency shift delicately
depends on the simultaneous limiting procedure. This is the model of Section 7 (where δ := α2

is introduced for brevity).

We point out that in models II/a and II/b the origin of the diffusion is the time rescaling.
Since the forcing frequencies are kept finite, there is no diffusion on the microscopic scale; it
becomes visible only after the large time rescaling. Hence the physically questionnable limits,
β → 0, Ω →∞ have nothing to do with the emergence of the diffusion in these models.

However, at least one of these limits is necessary to arrive at a differential equation instead
of an integro-differential equation with time delayed memory term. In model II/a. (Section 6)
we used β → 0 and kept Ω fixed, while in II/b. (Section 7) we let Ω →∞ and kept β finite.
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We always consider nonnegative times t ≥ 0. However, most of our computations are valid
for any time, except those which are directly responsible for the emergence of the diffusion
(Laplacian, or linear mean square displacement). We shall point out these steps. If time were
evolved backward, t < 0, then the same argument would yield an opposite sign of the Laplacian
(so that along the evolution it is regularizing) in the final limiting equations. This is the usual
phenomenon of irreversibility of the parabolic equations.

3.4 Derivation of Fokker-Planck equation via Boltzmann equation

In the Caldeira-Leggett type models we assumed that the test-particle is localized and is subject
to a harmonic heat bath with linear interaction. This usually describes particles trapped in a
cavity.

For transport phenomena it is more natural to consider a free test-particle subject to a
collision mechanism. In these models the collisions are provided by impurities (Lorenz gas) or
by a system of many noninteracting particles (Rayleigh gas or phonon models) and one focuses
only on the dynamics of the test-particle. The goal is to derive an equation for the reduced
phase space distribution from the Hamiltonian dynamics with many degrees of freedom. A
scaling limit is necessary to eliminate the details of the single collisions and to keep only their
cumulative long-time effects. The effect of a single collision is weakened. One can introduce
a weak coupling parameter λ → 0; one can consider a gas at low density % → 0 or, in the
Rayleigh gas case, one can let the mass ratio of the gas particle and test-particle m/M go to
zero. In all cases the time is rescaled as t = Tδ−1. The first scale on which collision effects are
visible is δ ∼ λ2 (weak coupling or van-Hove limit) or δ ∼ % (low density or Grad limit) and
δ ∼ m/M (heavy test-particle limit).

In classical mechanics, the limiting equation is the linear Landau equation (or: diffusion
on the energy surface) for the van-Hove limit [34]; the linear Boltzmann equation for the low
density case ([26], [44], [3]); and the Fokker-Planck equation for the heavy test-particle case
([18]). The Fokker-Planck equation can be obtained in a two step limit as well: first one obtains
a linear Boltzmann equation via a low density limit, then a Fokker-Planck equation from a mass
rescaling (for an excellent review see [45]).

In quantum mechanics the limiting equation is the linear Boltzmann equation both in the
case of the Lorenz gas (see [19] for the low density case and [20] for the weak coupling case) and
in the case of the weakly coupled phonons [21]. In the model of [21] a more realistic nonlinear
phonon coupling is considered.

In all cases when the first nontrivial limiting equation is Boltzmann, one needs an extra
limiting procedure to derive a diffusive equation. For example if the momentum change in the
collisions is small (e.g. the mass ratio m/M is small), then a Taylor expansion in the Boltzmann
collision operator gives the Fokker-Planck equation in the first nontrivial order (see [37], for
rigorous proof [32]). The smallness of the collisions has to be compensated by an extra time
rescaling. However, the two step time rescaling cannot be considered as a fully satisfactory
derivation since in the first (Boltzmann) limit correlations are neglected which could become
relevant on a longer time scale. The proper (but much harder) procedure is to follow the
Hamiltonian dynamics up to the desired (larger) time scale.
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We remark that a considerably more difficult collision mechanism is when all particles
interact, they are identical, and we are interested in the evolution of the one particle marginal
distribution (or density matrix). In this case, the limiting equation is expected to be a nonlinear
Boltzmann equation and in classical mechanics it was proven by Lanford [36]. In quantum
mechanics the correlation structure is complicated and even the first nontrivial (Boltzmann)
time scale is not understood rigorously.

Finally, we compare our model II/b to these free kinetic models with collisions. The closest
related model is a free electron subject to a weakly coupled phonon interaction considered in
[21], where a (linear) Boltzmann equation was derived. In both models the time scale is the van
Hove scale t ∼ λ−2, where λ is the coupling constant. In case of the realistic (nonlinear) electron-
phonon coupling in [21], each phonon mode contributes equally to the collision mechanism. In
the model II/b the source of the diffusion is resonance which originates merely in the test-
particle confinement, however for the rigorous proof we need to use the special form of the
linear coupling and test-particle Hamiltonian. Phonons with frequencies away from the base
frequency of the test-particle Hamiltonian do not contribute, while phonons near the resonance
frequency have a strong long time effect. In particular, it is easy to see that the Duhamel
expansion used in [21] diverges for the model II/b, which is also an indication that there is no
Boltzmann equation behind the Fokker-Planck equation derived in Section 7.

4 Preliminary results

4.1 The Wigner formalism

The density matrix,

ρN,ε := ρN,ε(t, x, y, R,Q) , (4.1)

which is the solution of,

i∂tρ
N,ε = [H, ρN,ε] , (4.2)

represents the state of the system ”particle + reservoir” at time t with the reservoir variables
R = (R1, . . . , RNΩ), Q = (Q1, . . . , QNΩ). We index the density matrix by N and the superscript
ε = (β,Ω, λ) stands for all the other scaling parameters; recall that β is the inverse temperature,
Ω is the frequency range and λ is the coupling strength in the Hamiltonian (3.1).

We take the initial data (independent of ε for simplicity),

ρ0
A ⊗ e−βHR , (4.3)

with ρ0
A := ρN,ε

A (t = 0). Here HR := 1
2

∑NΩ
k=1

(
−∆Rk

+ ω2
kR

2
k

)
is the reservoir Hamiltonian and

ρN,ε
A (t, x, y) is the density matrix at time t of the test-particle. It is defined by

ρN,ε
A (t, x, y) :=

∫
IRNΩ

ρN,ε(t, x, y, R,R) dR , (4.4)
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with the obvious notation dR = dR1 . . . dRNΩ. As usual, we do not distinguish between opera-
tors and their kernels in the notation. Following [6], we have to compute,

TrR

(
e−itH(ρ0

A ⊗ e−βHR)eitH
)
, (4.5)

where TrR is the partial trace over the reservoir variables. We observe that the Hamiltonian
(3.1) is quadratic, so that equation (4.2) can actually be transformed into a first order transport
partial differential equation by using the Wigner transform. Indeed, let us define the Wigner
transform wN,ε(t) of ρN,ε(t) by,

wN,ε(t, x, v, R, P ) := (4.6)

:=

∫
IRNΩ+1

ρN,ε
(
t, x+

y

2
, x− y

2
, R +

Q

2
, R− Q

2

)
× exp

(
− i[yv +

NΩ∑
k=1

QkPk]
)
dy dQ .

Also, let us define the Wigner transform of ρN,ε
A by,

wN,ε
A (t, x, v) :=

∫
IR

ρN,ε
A

(
t, x+

y

2
, x− y

2

)
exp(−iyv) dy . (4.7)

We have the well-known property,

wN,ε
A (t, x, v) :=

∫
IR2NΩ

wN,ε(t, x, v, R, P ) dR dP , (4.8)

and the initial datum for wN,ε is easily computed from (4.3) and the Mehler kernel,

wN,ε(t = 0, x, v, R, P ) = w0(x, v)W
N,ε
0 (R,P ) (4.9)

with

WN,ε
0 (R,P ) : =

NΩ∏
k=1

[
4π
(cosh(βωk)− 1

cosh(βωk) + 1

)1/2

× exp
(
− {ωk(cosh(βωk)− 1)

sinh(βωk)
R2

k}
)

exp
(
− { sinh(βωk)

ωk(cosh(βωk) + 1)
P 2

k }
) ]

.

Here, w0(x, v) is the initial datum for the test-particle, i.e. it is the Wigner transform of
ρ0

A(x, y). Here and in the sequel, we shall assume the following regularity for w0,

ŵ0(ξ, η) :=

∫
IR2

w0(x, v) exp(−i[xξ + vη]) dx dv ∈ L1(Rξ × Rη) . (4.10)

It is well known that, if ρN,ε satisfies the Von-Neumann equation (4.2) with Hamiltonian
given by (3.1), then its Wigner transform (4.6) satisfies the following partial differential equa-
tion,

∂tw
N,ε + v ∂xw

N,ε − x ∂vw
N,ε +

NΩ∑
k=1

(
Pk ∂Rk

wN,ε − ω2
kRk ∂Pk

wN,ε
)

(4.11)

− λ√
N

( NΩ∑
k=1

ωkRk

)
∂vw

N,ε − λ√
N

( NΩ∑
k=1

ωkx ∂Pk
wN,ε

)
= 0 .
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As a conclusion we can now rephrase our original problem in the Wigner formalism: fol-
lowing [6], we want to derive a diffusive behaviour for wN,ε

A (t), the trace of wN,ε(t), in the
thermodynamic limit (N →∞) and in certain limiting regimes of ε. Here, wN,ε satisfies (4.11)
with initial datum (4.9).

4.2 Solution by characteristics

Equation (4.11) can easily be solved by the method of characteristics. In fact, for all values of
time t, and for all smooth, compactly supported test functions φ(x, v), we have,∫

IR2

wN,ε
A (t, x, v)φ(x, v) dx dv =

∫
IR2NΩ+2

w(t = 0, x, v, R, P ) φ(X(t), V (t)) dx dv dR dP (4.12)

=

∫
IR2NΩ+6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X(t)θ+V (t)σ)WN,ε
0 (R,P ) dx dv dR dP dξ dη dθ dσ,

where we have introduced the (forward) characteristics,

X ′(t) = V (t) , V ′(t) = −X(t)− λ√
N

NΩ∑
k=1

ωkRk(t) (4.13)

R′
k(t) = Pk(t) , P ′

k(t) = −ω2
kRk(t)−

λ√
N
ωkX(t) ,

with initial data X(0) = x, V (0) = v, Rk(0) = Rk and Pk(0) = Pk. Here we used that the
flow (4.13) preserves the Lebesgue measure over R2(NΩ+1). For simplicity, we did not index the
characteristics by N , ε, but X(t), V (t) in (4.12) depend on N, ε. However, sometimes we will
use XN(t) for special emphasis.

Integrating with respect to Rk(t) in (4.13) and inserting the result in the equation for X(t)
gives,

X ′′(t) +X(t) = − λ√
N

NΩ∑
k=1

ωk

[
Rk cosωkt+ Pk

sinωkt

ωk

]
(4.14)

+
λ2

N

NΩ∑
k=1

∫ t

0

ωk sinωk(t− s)X(s)ds .

The right-hand-side of (4.14) is of the form ’forcing term + memory term’.
In view of (4.9) and (4.12), the partial trace over the oscillators is an integral with respect

to a Gaussian distribution in Rk, Pk with (unnormalized) density,

exp
[
− ωk(cosh βωk − 1)

sinh βωk

R2
k −

sinh βωk

ωk(cosh βωk + 1)
P 2

k

]
. (4.15)
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Changing variables such that,

rk =

√
2ωk(cosh βωk − 1)

sinh βωk

Rk , pk =

√
2 sinh βωk

ωk(cosh βωk + 1)
Pk , (4.16)

we obtain (after normalization) the standard Gauss measure,

dµN =
NΩ∏
k=1

1

2π
e−

1
2
(r2

k+p2
k)drkdpk , (4.17)

i.e. rk, pk are independent standard Gaussian variables. The integration with respect to this
probability measure will be denoted by EN .

Using these new variables and integration by parts with respect to s, the equation (4.14)
for XN(t) = X(t) becomes,

X ′′
N(t) +XN(t) = fN(t) + λ2ΩXN(t)− (MN ? X ′

N)(t)− xMN(t) , (4.18)

with,

fN(t) := − λ√
N

NΩ∑
k=1

Aβ(ω)
[
rk cosωkt+ pk sinωkt

]
, (4.19)

and,

MN(t) :=
λ2

N

NΩ∑
k=1

cosωkt . (4.20)

Here we defined,

A(ω) = Aβ(ω) :=

√
ω(cosh βω + 1)

2 sinh βω
. (4.21)

We see that the memory term is split into three parts. The term λ2ΩXN induces a frequency
shift of the test-particle oscillator, MN ? X ′

N is the friction term and the last inhomogeneous
term will be irrelevant. We define

a2 = a2
ε := 1− λ2Ω

(recall that ε stands for the triple (β,Ω, λ)), and we always assume that aε is uniformly separated
from zero, i.e. c0 ≤ aε ≤ 1 with some constant c0 > 0. We can rewrite (4.18) as

X ′′
N(t) + a2XN(t) = fN(t)− (MN ? X ′

N)(t)− xMN(t) . (4.22)
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4.3 The thermodynamic limit

We now perform the limit N →∞. A possible way is to solve (4.14) (iteratively), and compute
the limit in the corresponding formulae (see (4.42) later). This rigorously gives the thermody-
namic limit but we present an alternative approach which is more illuminating to explain the
asymptotic diffusion that we shall recover in Section 5.3. We first need an a priori bound.

Lemma 4.1 Let XN(t) solve (4.22) with initial conditions X(0) = x, X ′(0) = v, and let

FN(t) := sup
s≤t

EN |XN(t)|+ sup
s≤t

EN |X ′
N(t)| . (4.23)

Then there is a constant C > 0 such that

FN(t) ≤ CeKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
. (4.24)

uniformly in N , where

K = K(λ,Ω) := Cλ2
(
1 +

1

|Ω− a|

)
. (4.25)

and a2 = 1− λ2Ω ∈ (0, 1].

Proof. From the fundamental solution of (4.22), one has

XN(t) = x cos at+ va−1 sin at (4.26)

+

∫ t

0

a−1 sin a(t− s)
[
fN(s)− (MN ? X ′

N)(s)− xMN(s)
]
ds ,

X ′
N(t) = −xa sin at+ v cos at

+

∫ t

0

cos a(t− s)
[
fN(s)− (MN ? X ′

N)(s)− xMN(s)
]
ds .

First step. To estimate the memory term in (4.26), we write,∫ t

0

sin[a(t− s)](MN ? X ′
N)(s)ds =

(
sin(a · ) ? MN ? X ′

N

)
(t) (4.27)

=

∫ t

0

(∫ s

0

sin[a(s− u)]MN(u)du
)
X ′

N(t− s)ds ,

An easy calculation shows that the inner integral is bounded by∣∣∣ ∫ s

0

sin[a(s− u)]MN(u)du
∣∣∣ =

∣∣∣(MN ? sin(a · )
)
(s)
∣∣∣ ≤ kλ2

(
1 +

1

|a− Ω|

)
, (4.28)

with a universal constant k uniformly in N . Indeed, notice that,

lim
N→∞

MN(s) = λ2 sin Ωs

s
=: M(s) , (4.29)
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uniformly for s ∈ [0, t]. Moreover
∫ s

0
sin[a(s − u)]M(u)du can be estimated by splitting the

integration into two regimes u ≤ 1 and u ≥ 1 (or u ≤ s regime only if s ≤ 1) and both regimes
can be estimated by elementary integration by parts to obtain (4.28).

Hence the expected value of the integral of the memory terms in (4.26) is estimated by,

EN

∣∣∣∣ ∫ t

0

a−1 sin a(t− s)
[
− (MN ? X ′

N)(s)− xMN(s)
]
ds

∣∣∣∣ (4.30)

≤ a−1kλ2
(
1 +

1

|a− Ω|

)[
|x|+

∫ t

0

FN(s) ds
]
,

and similarly for the cosine term in (4.26).

Second step. For the forcing term one computes,

EN

∣∣∣ ∫ t

0

sin[a(t− s)]fN(s)ds
∣∣∣ ≤ t sup

s≤t

(
EN |fN(s)|2

)1/2

. (4.31)

We have,

EN |fN(s)|2 =
λ2

N

NΩ∑
k=1

A2
β(ω) ≤ k̂λ2Ω

(
β−1 + Ω

)
, (4.32)

where k̂ is again some positive constant, independent of N . Indeed, this sum is an approximat-
ing Riemann sum for the integral,

λ2

∫ Ω

0

A2
β(ω)dω = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω ,

which satisfies the estimate (4.32). Hence we obtain,

EN

[
|XN(t)|+ |X ′

N(t)|
]
≤ |x|+ |v|+ kλ2

(
1 +

1

|a− Ω|

)[
|x|+

∫ t

0

FN(s) ds
]

(4.33)

+t
[
k̂λ2Ω

(
β−1 + Ω

)]1/2

.

By a standard Gronwall-type argument we conclude (4.24).

4.4 Digression on stochastic integrals

Stochastic integration is integration with respect to a random measure. Once the measure is
specified, the integrals are defined as limits of integrals of stepfunctions. We do not develop
this notion here, just indicate how it is related to the present problem.

Definition 4.1 The ensemble of random variables g(A), A running over the Borel sets of IR, is
called standard Gaussian random measure if g(A) is a centered real Gaussian random variable
for all A and Eg(A)g(B) = |A ∩B| where | · | is the Lebesgue measure.
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In the thermodynamic limit N →∞, the forcing term (4.19) converges in an L2(dµN) sense
towards the stochastic integral,

f(t) := −λ
∫ Ω

0

Aβ(ω)
[
r(dω) cosωt+ p(dω) sinωt

]
, (4.34)

where r(dω), p(dω) are independent standard Gaussian random measures. The expectation with
respect to their joint measure is denoted by E. Clearly fN(t) is a Riemann sum approximation

of f(t) by choosing rk := N1/2r
([

k−1
N
, k

N

])
and pk := N1/2p

([
k−1
N
, k

N

])
, since their distribution

is dµN (see (4.17)). In particular we can realize all fN ’s and f on a common probability
space. Note that f(t) is formally a white noise (see (3.6)) when the ’hyperbolic factor’ Aβ(ω)
is replaced by one and Ω = ∞.

Lemma 4.2 For 1 < Ω <∞ there exist a random function X(t) such that,

lim
N→∞

(
sup
s≤t

E|XN(s)−X(s)|+ sup
s≤t

E|X ′
N(s)−X ′(s)|

)
= 0 , (4.35)

and X(t) almost surely satisfies the equation,

X ′′(t) + a2X(t) = f(t)− (M ?X ′)(t)− xM(t) , (4.36)

with initial conditions X(0) = x, X ′(0) = v. Moreover,

F (t) := sup
s≤t

E|X(s)|+ sup
s≤t

E|X ′(s)| ,

satisfies the same estimate as FN(t) (see (4.24)),

F (t) ≤ CeKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
. (4.37)

Proof. Let us define X(t) by the integral equation,

X(t) = x cos at+ va−1 sin at (4.38)

+

∫ t

0

a−1 sin[a(t− s)]
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds ,

Since, ∫ t

0

E|f(s)|2ds = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω <∞ ,

X(t) is well defined almost surely and satisfies (4.36). Moreover, the uniformity of (4.24) in N ,
and (4.35) shows that F (t) satisfies (4.37). So we are left with proving (4.35).

Let ZN(s) := XN(s)−X(s), then it satisfies (from (4.26) and (4.38)),

ZN(t) =

∫ t

0

a−1 sin[a(t− s)]
[
fN(s)− f(s)− (M ? Z ′

N)(s)

−(MN −M) ? X ′
N(s)− x(MN −M)(s)

]
ds ,

22



and a similar formula holds Z ′
N(t). Clearly ZN(0) = Z ′

N(0) = 0. Hence, similarly to (4.33),

E
(
|ZN(s)|+ |Z ′

N(s)|
)

≤ K

∫ t

0

F̃N(s)ds

+a−1t sup
s≤t

({
|x|+ t sup

u≤t
E|X ′

N(u)|
}
|MN(s)−M(s)|+ E|fN(s)− f(s)|

)
,

with F̃N(t) = sups≤t E|ZN(s)|+ sups≤t E|Z ′
N(s)|. We use again a Gronwall argument to obtain

(4.35), based upon the control of supu≤t E|X ′
N(u)| from Lemma 4.1 and the facts that |MN(s)−

M(s)| → 0 (see (4.29)) and E|fN(s)− f(s)| → 0 uniformly for s ≤ t as N →∞.
In order to check E|fN(s)− f(s)| → 0, we observe that,

rk = N1/2r
([k − 1

N
,
k

N

])
= N1/2

∫
1
(
ω ∈ [

k − 1

N
,
k

N
]
)
r(dω) ,

to obtain,

E|f(s)− fN(s)|2 = λ2

∫ Ω

0

[
Aβ(ω)−

NΩ∑
k=1

Aβ(ωk) · 1
(
ω ∈ [

k − 1

N
,
k

N
]
)]2

dω , (4.39)

which goes to zero as N →∞, uniformly in s ≤ t. For uniformly spaced frequencies, ωk = k
N

,
(4.39) is straightforward. For frequencies satisfying only the uniform density condition (1.4)
with c = 1, first one has to verify that

lim
N→∞

1

N
#
{
k : |ωk −

k

N
| ≥ η

}
= 0

for any η > 0, and then using the continuity of the function Aβ(ω) to conclude the result.

Let us remark that for the present paper there is no need to use stochastic integrals. A
reader who is unfamiliar with this concept, can keep the finite sums

∑NΩ
k=1 instead of

∫ Ω

0
dω,

fN(t) instead of f(t), and keep on thinking of E as expectation EN with respect to the finite
dimensional measure dµN . We shall compute various expectations involving f(t). The results

are given as an ordinary
∫ Ω

0
(. . .)dω integral. However, one can keep the finite dimensional

approximations fN(t), and perform the expectations with respect to dµN . In this case the
expectations involve a finite sum over the frequencies, like

∑NΩ
k=1(. . .). It is sufficient to take the

N →∞ limit only in this sum, which is a Riemann sum for the integral
∫ Ω

0
(. . .)dω using (1.4)

with c = 1. However, for notational simplicity we will use the continuous formalism. Note that
the thermodynamic limit N →∞ is always taken before any other limits.

The conclusion of Section 4 is the,

Lemma 4.3 Assume (1.4) with c = 1 and assume (4.10). Let wN,ε
A (t) be defined as (4.8), while

wN,ε(t) is the solution of (4.11) with initial datum (4.9). Then, in the thermodynamic limit,
we have for all φ(x, v) ∈ C∞

c (R2) locally uniformly for t ∈ R,

lim
N→∞

∫
IR2

wN,ε
A (t, x, v)φ(x, v)dx dv =

∫
IR2

wε
A(t, x, v)φ(x, v)dx dv , (4.40)
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where wε
A is defined by,∫

IR2

wε
A(t, x, v)φ(x, v)dxdv = (4.41)

= E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X(t)θ+X′(t)σ)dξ dη dx dv dθ dσ ,

and X satisfies (4.36) .

For the proof one only has to observe that the dominated convergence theorem applies and
use Lemma 4.2 and (4.12) (recalling that X is actually XN in that formula).

Remark. As an alternative proof which avoids any reference to probabilistic concepts, we
can easily compute the right-hand-side of (4.12) directly by performing a finite dimensional
Gaussian integration with respect to dµN (again, X(t) is actually XN(t) in (4.12)). In this case

all the integrals
∫ NΩ

0
(. . .)dω are finite sums and the N → ∞ limit is taken only after having

performed the dµN integration. We easily find that the right-hand-side of (4.12) is equal to,∫
IR2

ŵ0

(
A(t)θ + A′(t)σ , B(t)θ +B′(t)σ

)
φ̂(θ, σ) (4.42)

× exp
[
−
∫ Ω

0

[Aω(t)θ + A′ω(t)σ]2

2λω

dω −
∫ Ω

0

[Bω(t)θ +B′
ω(t)σ]2

2µω

dω
]
dθ dσ ,

where λω = [2ω(cosh(βω)− 1)]/[sinh(βω)], µω = [2 sinh(βω)]/[ω(cosh(βω) + 1)], and,

Ψ(t) = λ2

∫ Ω

0

∫ t

0

ω sin(ω[t− s]) sin(s) ds dω ,

A(t) = cos(t) + (Ψ ? A)(t) ,

B(t) = sin(t) + (Ψ ? B)(t) ,

Aω(t) = −
∫ t

0

λω cos(ωs) sin(t− s) ds+ (Ψ ? Aω)(t) ,

Bω(t) = −
∫ t

0

λ sin(ωs) sin(t− s) ds+ (Ψ ? Bω)(t) .

5 The Fokker-Planck equation from the original Caldeira-

Leggett model

5.1 Evolution without friction

In the spirit of [6], we would like to exhibit a scaling where the solution of (4.36) is close to

the solution X̃(t) of the equation without friction term below. The scaling parameters are
ε = (β,Ω, λ). The frictionless equation (compare with (4.36)) is,

X̃ ′′(t) + a2X̃(t) = f(t) , with, X(0) = x , X ′(0) = v , (5.1)
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recalling that a2 = a2
ε = 1− λ2Ω ∈ (0, 1].

We need a continuity result ensuring that X(t) and X̃(t) are close. If Y (t) = X(t)− X̃(t),
then,

Y ′′(t) + a2Y (t) = −(M ?X ′)(t)− xM(t) , (5.2)

with initial conditions Y (0) = Y ′(0) = 0. Given the bound (4.37) on X(t) and (4.28) it is
trivial to see that,

E
(
|Y (t)|+ |Y ′(t)|

)
≤ KteKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
, (5.3)

where K = Cλ2(1 + 1
|Ω−a|) (see (4.25)). So in particular the solution of (4.36) tends to the

solution of (5.1) in a very strong norm if the right-hand-side of (5.3) goes to zero. This happens
for example for such limiting regimes of ε = (β,Ω, λ) that λ → 0 and Ω → ∞ in such a way
that a2 = 1− λ2Ω ∈ (0, 1] and λ2β−1/2 → 0.

Hence, as soon as one can ensure a small right-hand-side in (5.3), we can replace X by X̃
in (4.40)-(4.41) by the Lebesgue theorem, since the x, v, θ, σ integrations range over a bounded
domain (φ is compactly supported) and we assumed ŵ0(ξ, η) ∈ L1 (see (4.10)). This proves

Lemma 5.1 Let w̃ε
A be defined as,∫

IR2

w̃ε
A(t, x, v)φ(x, v)dxdv = E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X̃(t)θ+X̃′(t)σ)dξ dη dx dv dθ dσ , (5.4)

analogously to (4.41). Then,

lim
ε

∫
IR2

w̃ε
A(t, x, v)φ(x, v)dxdv = lim

ε

∫
IR2

wε
A(t, x, v)φ(x, v)dxdv , (5.5)

for any limit of the parameters ε = (β,Ω, λ) for which the right hand side of (5.3) goes to zero.

5.2 Computing the dynamics of the test-particle when the memory
vanishes

In this section we compute wε(t, x, v) when X is actually replaced by X̃, the solution of (5.1),
in (4.41). We have,

X̃(t) = x cos at+ va−1 sin at+

∫ t

0

a−1 sin a(t− s)f(s)ds , (5.6)

X̃ ′(t) = −xa sin at+ v cos at+

∫ t

0

cos[a(t− s)]f(s)ds .
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Hence∫
IR2

w̃ε
A(t, x, v)φ(x, v)dx dv = E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X̃(t)θ+X̃′(t)σ) dξ dη dx dv dθ dσ

= E

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−i

∫ t
0 ηθ,σ(t−s)f(s)ds dθ dσ , (5.7)

with,

ηθ,σ(t) := θa−1 sin at+ σ cos at , ξθ,σ(t) := θ cos at− σa sin at , (5.8)

which are, by the way, harmonic oscillator trajectories,

d

dt
ηθ,σ(t) = ξθ,σ(t) ,

d

dt
ξθ,σ(t) = −a2ηθ,σ(t) . (5.9)

After performing the expectation in (5.7), we arrive at

Lemma 5.2 With the notations above, we have for any t ≥ 0,∫
IR2

w̃ε
A(t, x, v)φ(x, v) dx dv =

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ , (5.10)

with

Q(t) := Q(t; θ, σ; β, a) = λ2

∫ Ω

0

A2
β(ω)H(t, ω)dω , (5.11)

H(t, ω) := H(t, ω; θ, σ; a) =
∣∣∣ ∫ t

0

ηθ,σ(s)e−iωsds
∣∣∣2 . (5.12)

The functions ξθ,σ, ηθ,σ are defined by (5.8). The function H(t, ω) satisfies the following estimate

H(t, ω) ≤ 2γ2

{∣∣∣eit(a−ω) − 1

a− ω

∣∣∣2 +
4

(a+ ω)2

}
(5.13)

with γ2 := θ2 + a2σ2. Assuming Ω > 1 we also have

Q(t) = Iλ2tγ2 cosh βa+ 1

2a sinh βa
+ λ2γ2B(t) (5.14)

with I := π
2

and with a function B satisfying B(0) = 0 and

|B(t)| ≤ C[1 + β−1][1 + (log t)+][1 + log Ω] (5.15)

with a universal constant C. Also, we have the estimate:

Q(t) = E
(
f ? ηθ,σ

)2

(t) = E
(
θX̃(t) + σX̃ ′(t)

)2

+O
[
(|x|+ |v|)(|θ|+ |σ|)

]
. (5.16)
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Remark 1. Notice that Q(t) grows quadratically in t for small t (since H does so). This means
that the test-particle as described by the Wigner distribution wε

A has a ballistic behaviour when

the memory effects disappear (quadratic growth of the mean squared displacement EX̃2(t)). In
the rest of this paper we show that, under several specific scaling limits, one can indeed replace
wε

A with w̃ε
A (see Lemma 5.1) and recover a linear growth for Q(t), i.e. a diffusive behaviour

for the test-particle. In particular, this is where the time asymmetric condition t ≥ 0 is used.
Remark 2. Suppose that the frequency distribution %(ω) (see (1.4)) is not uniform (hence

J(ω) is not linear). By the same calculation, we still obtain (5.10) except that Q(t) is given by

λ2
∫ Ω

0
A2

β(ω)H(t, ω)%(ω)dω. Assuming that %(ω) is bounded and it is differentiable around the
resonant frequency ω = a, we obtain the analogue of (5.14),

Q(t) = Iλ2tγ2%(a)
cosh βa+ 1

2a sinh βa
+ λ2γ2B(t) ,

and the estimates (5.13), (5.15) remain valid. The proof is identical. This remark will be used
in Sections 6 and 7.

Proof. We only have to show the estimates (5.13) and (5.15). These are straightforward
calculations. We use the following notation,

aσ + iθ = γeiφ . (5.17)

(i.e. θ = γ sinφ, aσ = γ cosφ and γ2 = θ2 + a2σ2). Hence, from (5.8),

ηθ,σ(t) =
γ

2a

(
ei(φ−at) + e−i(φ−at)

)
, (5.18)

and

H(t, ω) =
γ2

4a2

∣∣∣e2iφ e
−it(a+ω) − 1

a+ ω
− eit(a−ω) − 1

a− ω

∣∣∣2 , (5.19)

which proves (5.13).
To prove (5.14)-(5.15), for any Ω > 1 we obtain, by extracting the worst singularity

Q(t) = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
H(t, ω)dω (5.20)

= λ2 γ
2

4a2
B̃(t) + λ2 γ

2

4a2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω

∣∣∣eit(a−ω) − 1

a− ω

∣∣∣2dω ,
with,

B̃(t) :=

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω

{∣∣∣e−it(a+ω) − 1

a+ ω

∣∣∣2 − 2Re
(
e2iφ e

−it(a+ω) − 1

a+ ω

eit(a−ω) − 1

a− ω

)}
dω ,(5.21)
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and B̃(0) = 0. With the substitution ω′ = t(a− ω) in (5.21), one easily computes

|B̃(t)| ≤ C[1 + β−1][1 + (log t)+][1 + log Ω] . (5.22)

The second integral in (5.20) is proportional to t for large t since Ω > 1. Obviously it
becomes uniformly bounded if Ω < a ≤ 1 (a trivial behaviour), and this is the very reason why
we assumed Ω > 1 in this section. Then the main contribution comes from ω ∼ a, and by the
same change of variables as above, the result is,

Q(t) = λ2γ2B(t) + Iλ2tγ2 cosh aβ + 1

2a sinh aβ
(5.23)

with I := π
2
, and B̃(t) is replaced by some B(t) which also satisfies (5.22) and B(0) = 0.

5.3 The Caldeira-Leggett limits: obtaining the Fokker-Planck equa-
tion

In this section we rigorously perform the scaling limit introduced in [6]. We prove the following,

Theorem 5.1 Let wε
A be the Wigner distribution of the test-particle after the thermodynamic

limit, as given by Lemma 4.3. We recall that ε stands for (β,Ω, λ). Let λ = λ0β
1/2 with some

fixed λ0.
a) [Nonzero frequency shift.] Assume that a2 = 1 − λ2Ω = 1 − λ2

0βΩ ∈ (0, 1] is fixed.
Then for any t ≥ 0 the following weak limit exists

W (t, x, v) = lim
Ω→∞,β→0

βΩ=(1−a2)λ−2
0

wε
A(t, x, v) . (5.24)

The limit holds in the topology of C0([0,∞)t;D′
x,v). Moreover, W satisfies the Fokker-Planck

equation,

∂tW + v∂xW − a2x∂vW − λ2
0π

2
∆vW = 0 , (5.25)

with initial datum W (t = 0) = w0 satisfying (4.10)
b) [No frequency shift.] For any t ≥ 0 the following weak limit exists,

W (t, x, v) = lim
Ω→∞

lim
β→0

wε
A(t, x, v) . (5.26)

[the order of limits cannot be interchanged], and W satisfies the Fokker-Planck equation,

∂tW + v∂xW − x∂vW − λ2
0π

2
∆vW = 0 , (5.27)

with initial datum W (t = 0) = w0 satisfying (4.10)
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Proof. For the proof of part a) first notice that Lemma 5.1 applies since the right hand

side of (5.3) goes to zero under the prescribed limits. Hence X can be replaced by X̃ and we
can therefore rely on Lemma 5.2 above. On the other hand, since we assumed λ = λ0β

1/2, we
readily observe,

lim∗ Q(t)= λ2
0 lim∗

∫ Ω

0

βA2
β(ω)H(t, ω)dω = λ2

0

∫ ∞

0

∣∣∣ ∫ t

0

η2
θ,σ(s)e−iωsds

∣∣∣2dω , (5.28)

where lim∗ stands for the simultaneous limit β → 0, Ω →∞ such that a2 = 1−λ2
0βΩ ∈ (0, 1] is

fixed. Here we used that βAβ(ω)2 → 1 in our limit if ω ≤ Ω1/2 and that H(t, ω) ∈ L1(dω), see
(5.13). The contribution ω ≥ Ω1/2 to the integral vanishes in the limit by the estimate (5.13)
and the trivial bound z cosh z+1

sinh z
≤ 2(1 + z). Hence from the unitarity of the Fourier transform∫ ∞

0

∣∣∣ ∫ t

0

g(s)e−iωsds
∣∣∣2dω = π

∫ t

0

|g(s)|2ds , (5.29)

which is valid for any real function g, we obtain

lim∗ Q(t) = λ2
0π

∫ t

0

η2
θ,σ(s)ds . (5.30)

Here t ≥ 0 is used, and this step is the origin of irreversibility. The end of the calculation is
trivial. From Lemma 5.2 together with (5.30) we have,

lim∗
∫

IR2

wε
A(t, x, v)φ(x, v) dx dv =

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
(5.31)

×φ̂(θ, σ)e−Iλ2
0

∫ t
0 η2

θ,σ(s)ds dθ dσ ,

where η and ξ are defined in (5.8) and I = π
2
. We can define,

W (t, x, v) := lim∗ wε
A(t, x, v) , (5.32)

as a weak limit given by (5.31). Then differentiating (5.31) gives (using (5.8)),∫
IR2

∂tW (t, x, v)φ(x, v)dx dv =

∫
IR2

∂tŴ (t, θ, σ)φ̂(θ, σ)dθ dσ (5.33)

=

∫
IR2

[
− a2ηθ,σ(t)∂ξ + ξθ,σ(t)∂η − Iλ2

0η
2
θ,σ(t)

]
ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−Iλ2

0

∫ t
0 η2

θ,σ(s)dsdθ dσ .

Letting t = 0, we have,

∂t

∣∣∣
t=0
Ŵ (t, θ, σ) =

[
− a2σ∂θ + θ∂σ − Iλ2

0σ
2
]
Ŵ (t, θ, σ)

∣∣∣
t=0

, (5.34)

which is exactly the Fokker-Planck equation (5.27) after Fourier transforming,

∂t

∣∣∣
t=0
W (t, x, v) =

[
a2x∂v − v∂x + Iλ2

0∆v

]
W (t, x, v)

∣∣∣
t=0

. (5.35)
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Considering t = 0 is not a restriction, since the proof works for any L1 initial condition.

The proof of part b) is completely analogous. We again notice that under the prescribed
limits the right hand side of (5.3) goes to zero, hence Lemma 5.1 applies. Here ηθ,σ and ξθ,σ

depend on the limiting parameters, since a2 = 1− λ2Ω = 1− λ2
0βΩ. But limβ→0 a = 1, hence

lim
β→0

ηθ,σ(s) = θ sin s+ σ cos s , lim
β→0

ξθ,σ(s) = θ cos s− σ sin s (5.36)

uniformly for s ∈ [0, t]. Therefore

lim
Ω→∞

lim
β→0

Q(t) = λ2
0 lim

Ω→∞

∫ Ω

0

∣∣∣ ∫ t

0

[θ sin s+ σ cos s]e−iωsds
∣∣∣2dω (5.37)

= λ2
0

∫ ∞

0

∣∣∣ ∫ t

0

[θ sin s+ σ cos s]e−iωsds
∣∣∣2dω

= πλ2
0

∫ t

0

[θ sin s+ σ cos s]2ds .

Again, the last step is robust in a sense that it does not use the particular form of the function
[θ sin s+ σ cos s], instead it uses (5.29). But it is rigid in a sense that Ω = ∞ is essential to get
diffusive (linear) behaviour for the mean square displacement (5.16).

To conclude, we follow the calculation (5.31)-(5.35). In addition to the limit (5.37), we have
to replace ξθ,σ(s), ηθ,σ(s) by their limiting values (5.36) in the argument of ŵ0 to arrive at the
analogue of (5.31). Dominated convergence theorem applies if we assume, additionally, that ŵ0

is continuous and bounded. However ŵ0 ∈ L1, hence it can be approximated by such functions

in L1-norm. Using that the flow (θ, σ) 7→
(
ξθ,σ(s), ηθ,σ(s)

)
is measure preserving and that φ̂ is

bounded, one can easily see that the approximation error can be made arbitrarily small.
The rest of the calculation is identical to the proof of part a) and we obtain (5.27).

6 Scaling limit at high temperature: the frictionless heat

equation

We propose a different way to get diffusion from the Hamiltonian (3.1). As we mentioned,
obtaining diffusion for the test-particle means that we have to extract linear dependence in
time for Q(t). In this section, linear growth is obtained from time rescaling and from the
special form of linear combinations of sin s and cos s in Lemma 5.2. It relies on a resonance
effect which comes from a singularity near ω ∼ a. The system X̃ ′′(t) + a2X̃(t) (see (5.1)) picks
up those modes from the forcing term f(t) in (4.34) for which the frequency ω is close to its
eigenfrequency. So, in this section we assume Ω > 1 but finite, contrary to the previous section.

This effect is more robust (see the remark after (5.37)) in the sense that one could leave the
hyperbolic functions βA2

β in (5.28) without ensuring a limit where it goes to 1. In other terms,
we do not need the high temperature limit β → 0 to obtain diffusion, unlike in Section 5.3,
where this limit made the dω measure uniform and we recovered a white noise forcing term.
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Nevertheless, Lemma 5.2 needs the right-hand-side of (5.3) to go to zero in order to be
applicable (one needs the friction to vanish), and this cannot be achieved keeping β fixed
(Section 3.3), hence we again set λ = λ0β

1/2, β → 0.

6.1 Large space/time convergence of the Wigner distribution

Let α be a small parameter. We describe the behaviour of the test-particle, as given by its
Wigner distribution wε

A on time scales of order 1/α2. We consider the diffusive scaling, i.e. the
space coordinate scales as 1/α. Since the test-particle is a fast harmonic oscillator, and energies
are transferred back and forth between space and velocity, we also have to consider velocities
of order 1/α. Hence we introduce the following scaling,

t = Tα−2, x = Xα−1, v = V α−1 , (6.1)

where the capital letters are unscaled quantities (macroscopic variables). The rescaled reduced
Wigner transform is defined as,

W ε,α
T (X,V ) := wε

A(Tα−2, Xα−1, V α−1) , (6.2)

where wε
A is defined in Lemma 4.3 (after the thermodynamic limit). Its Fourier transform is,

Ŵ ε,α
T (Θ,Σ) = α2ŵε

A(Tα−2,Θα,Σα) , (6.3)

where we use Θ = θα−1 and Σ = σα−1 rescaled dual variables. The initial condition is,

W ε,α
T=0(X,V ) = W0(X,V ) , Ŵ ε,α

T=0(Θ,Σ) = Ŵ0(Θ,Σ) , (6.4)

and we assume that,

Ŵ0(Θ,Σ) ∈ L1(RΘ × RΣ) . (6.5)

The macroscopic testfunction Φ(X,V ) is a smooth function with compact support, the
microscopic testfunction is defined as,

φ(x, v) = Φ(xα, vα) = Φ(X,V ) , (6.6)

and in Fourier variables, φ̂(θ, σ) = α−2Φ̂(θα−1, σα−1) = α−2Φ̂(Θ,Σ).
We are now in position to state the theorem of this section,

Theorem 6.1 Define the large time/space scale Wigner distribution W ε,α
T (X,V ) as in (6.2).

Assume (6.5) for the initial data. Assume that λ = λ0β
1/2 with a fixed λ0 > 0 and fix the

frequency cutoff Ω > 1. Hence the limits of the parameters ε = (β,Ω, λ) are reduced to β → 0.
Then:

a) The following high-temperature limit exists in the weak sense for any T ≥ 0:

Wα
T (X,V ) := lim

β→0
W ε,α

T (X,V ) . (6.7)
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b) Define the following time average of Wα over one cycle of the harmonic oscillator (5.8),

W#,α
T (X,V ) :=

1

2πα2

∫ T+2πα2

T

W α
S (X,V )dS . (6.8)

Then the weak limit,

W+
T (X,V ) := lim

α→0
W#,α

T (X,V ) , (6.9)

exists for each T ≥ 0 and it satisfies the heat equation in phase space,

∂TW
+
T =

πλ2
0

4
(∆X + ∆V )W+

T , (6.10)

with initial condition W+
T=0(X,V ) given by

Ŵ+
0 (X,V ) =

1

2π

∫ 2π

0

Ŵ0

(
X sin s+ V cos s, X cos s− V sin s

)
ds . (6.11)

c) Define the radial average,

W ∗,α
T (X,V ) :=

1

2π

∫ 2π

0

Wα
T (R cos s, R sin s)ds (6.12)

with R :=
√
X2 + V 2, and clearly W ∗,α

T depends on R only. Again, the weak limit,

W †
T (X,V ) := lim

α→0
W ∗,α

T (X,V ) , (6.13)

exists and the radially symmetric function W †
T satisfies the heat equation (6.10) with initial

condition,

W †
T=0(X,V ) :=

1

2π

∫ 2π

0

W0(R cos s, R sin s)ds .

Remark 1. The same theorem is true if the frequency distribution function %(ω) is not
uniform (see (1.4)), but it is only bounded and with bounded derivative. In particular the sharp
cutoff is not necessary. The right hand side of the equation (6.10) is multiplied by the resonant
spectral density %(1). The proof relies on two modifications of the % ≡ 1 proof given below.

First, the memory kernel M(t) (see (4.20) and (4.29)) is modified to λ2
∫ Ω

0
cos(ωt)%(ω)dω, and

it still satisfies an estimate similar to (4.28) which leads to Lemma 5.1, hence the memory can
be eliminated. Second, Remark 2. after Lemma 5.2 gives the large time behavior of Q(t) in
the general case. The details are left to the reader.

Remark 2. Here we identified the equation in a weak sense in the space and velocity
variables, but in a strong sense in the time variable and some averaging ((6.8) or (6.12)) was
needed to ensure the existence of the limit. If we want to consider the limit in a weak sense in
time as well, then there is no need for averaging. Based upon part b), one can easily prove that
W+

T (X,V ) can also be identified as the weak limit in space, velocity and time, i.e. we have the
following
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Corollary 6.1 Under the above conditions the weak limit

W+
T (X,V ) := lim

α→0
lim
β→0

W ε,α
T (X,V )

exists in the topology of D′( [0,∞)T × IRX × IRV ), it coincides with (6.9) and satisfies (6.10).

Proof of Theorem 6.1. Using the rescaling and the definition of wε
A (4.41), we have,

〈W ε,α
T ,Φ〉 =

∫
IR2

W ε,α
T (X,V )Φ(X,V )dX dV = α2

∫
IR2

wε
A(Tα−2, x, v)φ(x, v)dx dv

= α2 E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(θX(t)+σX′(t))dξ dη dx dv dθ dσ (6.14)

= E

∫
IR6

Ŵ0(ξα
−1, ηα−1)Φ̂(Θ,Σ)ei(xξ+vη)e−iα(ΘX(t)+ΣX′(t))dξ dη dx dv dΘ dΣ ,

where t = Tα−2.

First Step: the limit β → 0.

Due to the choice λ = λ0β
1/2, we can replace X(t) by X̃(t) in the β → 0 limit. For, the

right hand side of (5.3) goes to zero as β → 0, hence Lemma 5.1 applies. Hence,

lim
β→0

〈W ε,α
T ,Φ〉 =

= lim
β→0

E

∫
IR6

Ŵ0(ξα
−1, ηα−1)Φ̂(Θ,Σ)ei(xξ+vη)e−iα(ΘX̃(t)+ΣX̃′(t))dξ dη dx dv dΘ dΣ

= lim
β→0

E

∫
IR2

Ŵ0

(
ξΘ,Σ(Tα−2), ηΘ,Σ(Tα−2)

)
Φ̂(Θ,Σ)e−

1
2
Q(Tα−2) dΘ dΣ , (6.15)

where in the second step we also used Lemma 5.2 and the fact that α−1ξαΘ,αΣ = ξΘ,Σ and
α−1ηαΘ,αΣ = ηΘ,Σ (see (5.8)).

Recall that both Q(t) and the trajectories ξΘ,Σ, ηΘ,Σ depend on β, since a2 = 1 − λ2Ω =
1 − λ2

0βΩ appears in their definition (see (5.8)). Similarly to the argument at the end of the

proof of part b) of Theorem 5.1, using that Ŵ0 ∈ L1(dΘ dΣ), Φ̂ ∈ L∞ ∩ C0, Q ≥ 0, we see
that the limit can be taken inside the integral and the trajectories ξΘ,Σ, ηΘ,Σ can be replaced
by their limiting values (as a→ 1)

η∗Θ,Σ(s) := θ sin t+ σ cos t ξ∗Θ,Σ(s) := θ cos t− σ sin t . (6.16)

We also use (see (5.14)) that

lim
β→0

Q(t) = Iλ2
0tγ

2 + λ2
0γ

2B0(t) . (6.17)

with B0(t) satisfying B0(0) = 0 and

|B0(t)| ≤ C[1 + (log t)+][1 + log Ω] (6.18)
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(see (5.15)). We also recall that γ2 = θ2 + σ2 = α2(Θ2 + Σ2) =: α2Γ2. Hence,

lim
β→0

〈W ε,α
T ,Φ〉 =

∫
IR2

Ŵ0

(
ξ∗Θ,Σ(Tα−2), η∗Θ,Σ(Tα−2)

)
× (6.19)

×Φ̂(Θ,Σ) exp
{
− 1

2

[
Iλ2

0Tα
−2 + λ2

0B0(Tα
−2)
]
α2(Θ2 + Σ2)

}
dΘ dΣ .

This relation defines the Fourier transform,

Ŵ α
T (Θ,Σ) := lim

β→0
Ŵ ε,α

T (Θ,Σ) , (6.20)

as a weak limit, and its inverse Fourier transform,

Wα
T (X,V ) := lim

β→0
W ε,α

T (X,V ) .

We can compute its time derivative in Fourier space,

〈∂T Ŵ
α
T , Φ̂〉 =

∫
α−2

[
− η∗Θ,Σ(Tα−2)∂ξ + ξ∗Θ,Σ(Tα−2)∂η − (6.21)

−α
2

2

[
Iλ2

0 + λ2
0B

′
0(Tα

−2)
]
(Θ2 + Σ2)

]
Ŵ0

(
ξ∗Θ,Σ(Tα−2), η∗Θ,Σ(Tα−2)

)
×Φ̂(Θ,Σ) exp

{
− 1

2

[
Iλ2

0Tα
−2 + λ2

0B0(Tα
−2)
]
α2(Θ2 + Σ2)

}
dΘ dΣ .

As usual, we can let T = 0 to obtain,

∂T

∣∣∣
T=0

Ŵα
T (Θ,Σ) = α−2

[
− Σ∂Θ + Θ∂Σ −

α2

2

[
Iλ2

0 + λ2
0B

′
0(0)

]
(Θ2 + Σ2)

]
Ŵ0(Θ,Σ) . (6.22)

Second Step: the macroscopic limit α→ 0.

Now the difficulty in (6.22) is that the convective term is too big compared to the last
diffusive term since the motion takes place on two different time scales. There is the fast
(microscopic) time scale of the harmonic oscillator described by α−2[−Σ∂Θ +Θ∂Σ]. Then there
is a slow, macroscopic diffusive scale. We present two ways to average out the fast motion.

Part b) of Theorem 6.1: Averaging over a cycle.

Here we define W#,α according to (6.8). Now for any T fixed the formula,

lim
α→0

〈Ŵ#,α
T , Φ̂〉 = lim

α→0

∫
Ŵ#,α

T (Θ,Σ)Φ̂(Θ,Σ)dΘdΣ (6.23)

= lim
α→0

∫ [
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
e−I1λ2

0S(Θ2+Σ2)dS

]
Φ̂(Θ,Σ)dΘdΣ ,

defines a function,

Ŵ+
T (Θ,Σ) := lim

α→0
Ŵ#,α

T (Θ,Σ) , (6.24)

34



weakly, as we show below. Here I1 := I
2

= π
4

for brevity. Note that in (6.23) we neglected
the term involving B0 in the exponential (see (6.19)) since the estimate (6.18) readily implies
α2B0(Tα

−2) → 0. The exponential factor in (6.19) converges to that in (6.23) uniformly for

all S ≤ T . Using Φ̂ ∈ L1, we can apply the dominated convergence theorem along with
approximating Ŵ0 by bounded functions, similarly to the argument at the end of the proof of
Theorem 5.1.

We have to show that the limit on the right-hand-side of (6.23) exists,

〈Ŵ#,α
T , Φ̂〉 =

∫
IR2

[
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
e−I1λ2

0T (Θ2+Σ2)dS

+
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
(6.25)

×
[
e−I1λ2

0S(Θ2+Σ2) − e−I1λ2
0T (Θ2+Σ2)

]
dS

]
Φ̂(Θ,Σ)dΘdΣ .

The first term in (6.25) is independent of α, as it is just the integral of Ŵ0(ξ
∗(s), η∗(s)) over

one full cycle of the harmonic oscillator (6.16),

1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
dS =

1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds . (6.26)

The second term in (6.25) vanishes in the limit α→ 0 since,∣∣∣e−I1λ2
0S(Θ2+Σ2) − e−I1λ2

0T (Θ2+Σ2)
∣∣∣ ≤ 2πI1λ0α

2(Θ2 + Σ2)e−I1λ2
0T (Θ2+Σ2) (6.27)

(use that |S − T | ≤ 2πα2), which kills the factor α−2 in (6.25) and then the length of the
integration interval goes to zero. Dominated convergence theorem again has to be applied after
an approximation. This shows that the limit in (6.24) makes sense and,

〈W+
T ,Φ〉 = 〈Ŵ+

T , Φ̂〉

=

∫
IR2

[ 1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds
]
e−I1λ2

0T (Θ2+Σ2)Φ̂(Θ,Σ)dΘdΣ .(6.28)

The time derivative is,

〈∂TW
+
T ,Φ〉 =

= −I1λ2
0

∫
IR2

(Θ2 + Σ2)
[ 1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds
]
e−I1λ2

0T (Θ2+Σ2)Φ̂(Θ,Σ)dΘdΣ

= −I1λ2
0

〈
Ŵ+

T , (Θ
2 + Σ2)Φ̂

〉
= −I1λ2

0

〈
W+

T ,−(∆X + ∆V )Φ
〉
, (6.29)

which completes the proof of (6.10). The initial condition (6.11) is easily obtained from (6.28)
by setting T = 0 and taking inverse Fourier transform.
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Part c) of Theorem 6.1: Radial average

The other possibility to eliminate the fast modes is to use the radial function W ∗,α
T defined

in (6.12). Now the formula,

lim
α→0

〈Ŵ ∗,α
T , Φ̂〉 = lim

α→0

∫
Ŵ ∗,α

T (Θ,Σ)Φ̂(Θ,Σ) dΘ dΣ (6.30)

= lim
α→0

∫ [
1

2π

∫ 2π

0

Ŵ0

(
ξ∗Γ cos s,Γ sin s(Tα

−2), η∗Γ cos s,Γ sin s(Tα
−2)
)
ds

]
e−I1λ2

0T (Θ2+Σ2)Φ̂(Θ,Σ) dΘ dΣ ,

(with Γ :=
√

Θ2 + Σ2) defines a radial function,

Ŵ †
T (Θ,Σ) := lim

α→0
Ŵ ∗,α

T (Θ,Σ) , (6.31)

(depending only on Θ2 + Σ2) as a weak limit, as we show below. Note that in (6.30) we again
neglected the term involving B0 in the exponential for the same reason as in (6.23).

We have to show that the limit on the right-hand-side of (6.30) exists. But,

ξ∗Γ cos s,Γ sin s(Tα
−2) = Γ cos(s+ Tα−2) , η∗Γ cos s,Γ sin s(Tα

−2) = Γ sin(s+ Tα−2) ,

hence,
1

2π

∫ 2π

0

Ŵ0

(
ξ∗Γ cos s,Γ sin s(Tα

−2), η∗Γ cos s,Γ sin s(Tα
−2)
)
ds

=
1

2π

∫ 2π

0

Ŵ0(Γ cos s,Γ sin s)ds =: Ŵ †
0 (Θ,Σ) ,

independently of α, which is the ”radialized” initial condition in Fourier space.
So it is clear that the limit on the right-hand-side of (6.30) exists,

lim
α→0

〈Ŵ ∗,α
T , Φ̂〉 =

∫
Ŵ †

0 (Θ,Σ)e−I1λ2
0T (Θ2+Σ2)Φ̂(Θ,Σ) dΘ dΣ =: 〈Ŵ †

T , Φ̂〉 ,

and clearly W †
T also satisfies the heat equation (6.10). This ends the proof of Theorem 6.1.

7 Heat equation with friction at finite temperature

Here we choose a scaling where the Markovian part of the friction term does not vanish, i.e.
we can keep β fixed and still get finite diffusion. Again we look at large time t = Tδ−1 but now
we do not scale the space variable. To eliminate the fast mode, we again integrate the angle.
The result is a radial Fokker-Planck equation with friction. While the test-particle performs
many cycles, it slowly diffuses out, and this diffusion is slowed down by a friction. The diffusion
comes from resonance.
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In this scaling limit the solution of (4.36) is close to the solution X̃(t) of an equation without
a time delayed (non-Markovian) friction term, but a Markovian friction term will be present.
Let us choose,

λ := λ0δ
1/2 , (7.1)

with some λ0 < 1 fixed. We compare the solution of (4.36) to that of

X̃ ′′(t) + Iλ2X̃ ′(t) + a2X̃(t) = f(t) ; X̃(0) = x , X̃ ′(0) = v , (7.2)

with a2 := 1− λ2Ω = 1− λ2
0δ
−1Ω, and,

I =

∫ ∞

0

sin Ωs

s
ds =

π

2
. (7.3)

We choose the scaling such that a ∈ (0, 1], hence we always assume that Ω ≤ δ−1, but to exploit

resonance, we also assume Ω > 2. The new term λ2IX̃ ′(t) for the approximate characteristic is
due to the fact that M(t) ∼ λ2Iδ0(t) as Ω → 0, where δ0 denotes the Dirac delta measure. This
term is the main part of the full friction (M ? X ′) in (4.36). Notice that it is small compared

with the pure harmonic oscillator terms, X̃ ′′+a2X̃, but it is not negligible, since we will consider
long times t ∼ λ−2.

7.1 A priori bounds and continuity results

As in Section 5.1 we need a priori estimates for X, i.e. for,

F (t) := sup
s≤t

E|X(s)|+ sup
s≤t

E|X ′(s)| ,

and estimates on the difference between X̃(t) and X(t). The estimate (4.37) in Lemma 4.2
(which originates in (4.24) in Lemma 4.1), however, is not precise enough for large times. The
following estimate is a more precise version of Lemma 4.2.

Lemma 7.1 Let t = Tδ−1, λ = λ0δ
1/2 with fixed λ0 < 0 and T ≥ 0 and we assume that

2 ≤ | log δ|7 ≤ Ω ≤ δ−1 We also fix β > 0, hence the limit of scaling parameters ε = (β,Ω, λ) is
reduced to δ → 0, Ω →∞ with the side condition that Ω ∈ [| log δ|7, δ−1].

Let X be the solution to (4.36), then,

F (Tδ−1) ≤ C(β, λ0, T )
(
1 + |x|+ |v|

)
, (7.4)

where C is monotone increasing in T . Moreover, if X̃ is the solution to (7.2), then the difference

Y (t) =: X(t)− X̃(t) satisfies,

lim
δ→0

(
sup

s≤Tδ−1

E|Y (s)|+ sup
s≤Tδ−1

E|Y ′(s)|
)

= 0 . (7.5)
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In particular,

lim
δ→0

∫
IR2

w̃ε
A(s, x, v)φ(x, v)dxdv = lim

δ→0

∫
IR2

wε
A(s, x, v)φ(x, v)dxdv , (7.6)

uniformly for all s ≤ Tδ−1, where w̃ε
A(t, x, v) is the Wigner transform corresponding to X̃,

defined exactly as (5.4), but X̃(t) now being the solution to (7.2).

Proof. We follow essentially the proof of Lemma 4.1. The characteristics (4.36) fulfill

X(t) = x cos at+ va−1 sin at+

∫ t

0

a−1 sin a(t− s)
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds ,(7.7)

X ′(t) = −xa sin at+ v cos at+

∫ t

0

cos a(t− s)
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds .

Similarly to the proof of (4.30) one obtains

E
∣∣∣ ∫ t

0

a−1 sin a(t− s)
[
(M ?X ′)(s) + xM(s)

]
ds
∣∣∣ ≤ K

[ ∫ t

0

F (s)ds+ |x|
]
, (7.8)

recalling the value of K (4.25), and the cosine term in X ′(t) is similar.

Now we estimate the random forcing term. First we use

E
∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣ ≤ (E

∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣2)1/2

, (7.9)

then notice that a−1 sin a(t− s) = ηθ,σ(t− s) with θ = 1, σ = 0 (see (5.8)). Hence (cf. (5.12))

E
∣∣∣ ∫ t

0

f(s)a−1 sin a(t− s) ds
∣∣∣2 ≤ λ2

∫ Ω

0

A2
β(ω)H(t, ω; 1, 0; a) (7.10)

which is just Q(t) = Q(t; 1, 0; β, a), see (5.11). Hence from (5.14), (5.15) we get

E
∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣2 ≤ C2

1(β, λ0, T ) (7.11)

using the relations among the parameters; t = Tδ−1, λ = λ0δ
1/2 and Ω ≤ δ−1. Similar estimate

is valid for the cosine term.
The estimates (7.8), (7.9) and (7.11) lead to the a priori bound,

F (t) ≤ |x|+ |v|+K
[ ∫ t

0

F (s)ds+ |x|
]

+ C1(β, λ0, T ) , (7.12)

and by the standard Gronwall argument we obtain,

F (t) ≤ C2(β, λ0, T )
(
1 + |x|+ |v|

)
. (7.13)
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By monotonicity of C2 in T , we get the a priori bound (7.4) on X(t) and X ′(t).

From the equation (4.36) we also get a similar bound for X ′′(t). We estimate

E|X ′′(t)| ≤ a2E|X(t)|+
(
E|f(t)|2

)1/2

+ |x||M(t)|+
∫ t

0

|M(s)| E|X ′(t− s)|ds .

For the forcing term we use

E|f(t)|2 = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω ≤ C3(β)λ2Ω2

(see (4.32)) and that

|M(s)| = λ2
∣∣∣sin Ωs

s

∣∣∣ ≤ 2Ωλ2

1 + Ωs
. (7.14)

These estimates, along with t = Tδ−1, λ = λ0δ
1/2 and Ω ≤ δ−1, give that

sup
s≤Tδ−1

E|X ′′(s)| ≤ C4(β, λ0, T )
(
|x|+ |v|+ Ω1/2

)
, (7.15)

using the a priori bounds (4.37), and C4 is monotone in T .

For the continuity result, notice that Y (t) := X(t)− X̃(t) satisfies the equation,

Y ′′(t) + Iλ2Y ′(t) + a2Y (t) = Iλ2X ′(t)− (M ?X ′)(t)− xM(t) , (7.16)

with initial conditions Y (0) = Y ′(0) = 0. Using (7.3) we obtain,∣∣∣Iλ2X ′(s)− (M ?X ′)(s)
∣∣∣ ≤ λ2

∣∣∣ ∫ s

0

sin Ωu

u

(
X ′(s)−X ′(s− u)

)
du
∣∣∣ (7.17)

+ λ2 |X ′(s)|
∣∣∣ ∫ ∞

s

sin Ωu

u
du
∣∣∣ .

The second term is estimated by (const)λ2|X ′(s)| with a universal constant if s ≤ 1 and by
(const)λ2(Ωs)−1|X ′(s)| ≤ (const)λ2Ω−1|X ′(s)| if s ≥ 1.

In the first term we split the integration domain. For u ≥ Ω−2/3 we use integration by parts,
(4.37) and (7.15)

λ2 E
∣∣∣ ∫ s

Ω−2/3

d

du

(cos Ωu

Ω

)
u−1
(
X ′(s)−X ′(s−u)

)
du
∣∣∣ ≤ C5(β, λ0, T )δ| log δ|Ω−1/3

(
1+ |x|+ |v|

)
for all s ≤ Tδ−1. For the domain 0 ≤ u ≤ Ω−2/3, we use Taylor expansion: |X ′(s)−X ′(s−u)| ≤
|u| supσ≤s |X ′′(σ)| and the bound (7.15). We obtain finally, using (4.37),

E
∣∣∣Iλ2X ′(s)− (M ?X ′)(s)

∣∣∣ ≤ C6(β, λ0, T, x, v)δ| log δ|Ω−1/6 , (7.18)
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if 1 ≤ s ≤ Tδ−1 and

E
∣∣∣Iλ2X ′(s)− (M ?X ′)(s)

∣∣∣ ≤ πλ2
0δF (t) ≤ C7(β, λ0, x, v)δ

(
1 + | log δ|Ω−1/6

)
, (7.19)

if s < 1.
We now introduce the two fundamental solutions ϕ and ψ of Y ′′ + Iλ2Y ′ + a2Y = 0 with

ϕ(0) = 0, ϕ′(0) = 1 and ψ(0) = 1, ψ′(0) = 0. They are explicitly given as,

ϕ(t) = b−1e−Iλ2t/2 sin bt , ψ(t) = e−Iλ2t/2 cos bt+
Iλ2

2
ϕ(t) , (7.20)

with b := (a2 − I2λ4/4)1/2. Note that they are bounded functions for small enough δ. Hence,
by (7.14), (7.18) and (7.19),

E |Y (t)| = E
∣∣∣ ∫ t

0

ϕ(t− s)
(
Iλ2X ′(s)− (M ?X ′)(s)− xM(s)

)
ds
∣∣∣ (7.21)

≤
(
C8(β, λ0, T, x, v)| log δ|Ω−1/6 + C7(β, λ0, x, v)δ + 2λ2|x|

[
1 + (log Ωt)+

])
‖φ‖∞

≤ C9(β, λ0, T, x, v)Ω
−1/6| log δ| .

The constants C8 and C9 can be chosen monotone in T , so the same estimate is valid for
sups≤Tδ−1 E |Y (s)|. The argument for Y ′ is similar, which proves (7.5).

7.2 Transport equation before scaling limits

Armed with (7.6), it is enough to compute w̃ε
A(t, x, v). The calculation is the same as in Section

5.2 except for the different fundamental solutions ϕ and ψ given in (7.20). We redefine,

ηθ,σ := θϕ(t) + σϕ′(t) , (7.22)

ξθ,σ := θψ(t) + σψ′(t) ,

and in complete analogy to Lemma 5.2 we state the,

Lemma 7.2 We have for t ≥ 0,∫
IR2

w̃ε
A(t, x, v)φ(x, v) dx dv =

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ , (7.23)

with

Q(t) := λ2

∫ Ω

0

A2
β(ω)H(t, ω)dω , (7.24)

and H is given again as H(t, ω) =
∣∣∣ ∫ t

0
ηθ,σ(s)e−isωds

∣∣∣2, but with the new ηθ,σ defined in (7.22).

We also have exactly the same estimate as (5.16), but with the redefined quantities.
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7.3 Obtaining diffusion from scaling limit

In this section, and with similar arguments as in Section 6, we again obtain linear dependence
in time of Q(t) for large t. Indeed, we first write,

ϕ(t) =
1

2ib

(
etu − etū

)
, with, u := −Iλ

2

2
+ ib . (7.25)

With these notations, we have,

ηθ,σ(t) =
1

2ib

(
θ
(
etu − etū

)
+ σ
(
uetu − ūetū

))
, (7.26)

hence,

H(t, ω) =
1

4b2

∣∣∣∣(θ + σu)
et(u−iω) − 1

u− iω
− (θ + σū)

et(ū−iω) − 1

ū− iω

∣∣∣∣2 . (7.27)

We now take the scaling t = Tδ−1 for a fixed T and δ → 0. The terms with denominator
ū − iω = −Iλ2/2 − i(

√
a2 − I2λ4/4 + ω) have no singularity (they are bounded) so the first

term of H is the main term. Extracting the main term, we can write (cf. (5.20)),

H(t, ω) = (θ2 + a2σ2)

[
1

4a2

∣∣∣et(u−iω) − 1

u− iω

∣∣∣2 + U(t, ω)

]
.

Using u = ai+O(δ), 0 < a2 ≤ 1, b2 = a2 +O(δ2) we obtain for small enough δ that,∫ ∞

0

|U(Tδ−1, ω)|dω ≤ C10(a, β, λ0, T )| log δ| .

With some elementary calculations this implies,

Q(Tδ−1) = λ2(θ2 + a2σ2)

[
1

4a2

∫ Ω

0

A2
β(ω)

∣∣∣∣eTδ−1(u−iω) − 1

u− iω

∣∣∣∣2dω +B1(Tδ
−1)

]
(7.28)

= λ2(θ2 + a2σ2)

[
A2

β(a)

4a2

∫ a−
√

δ

a+
√

δ

∣∣∣∣eTδ−1(u−iω) − 1

u− iω

∣∣∣∣2dω +B3(Tδ
−1)

]
,

where the functions Bj (j = 1, 2, 3) satisfy |Bj(Tδ
−1)| ≤ C11(a, β, λ0, T )δ−1/2. We used that

the function ω 7→ A2
β(ω) is bounded with a bounded derivative around ω ∼ a, and that the

function z 7→ (etz − 1)/z is uniformly bounded by t in the vicinity of the imaginary axis.
Since the derivative of z 7→ |(etz − 1)/z|2 is bounded by t2, one can replace u by ai in the

last integral at the expense of an error 2
√
δ|u− ia|t2 = O(δ−1/2). Finally one can evaluate,∫ a−

√
δ

a+
√

δ

∣∣∣∣eTδ−1(a−ω)i − 1

a− ω

∣∣∣∣2dω = 2πTδ−1 +O(δ−1/2)
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At this step T ≥ 0 is used. In summary, we obtained,

Q(Tδ−1) = (θ2 + a2σ2)
(
λ2

0T
π(cosh(βa) + 1)

4a sinh βa
+B4(Tδ

−1)
)
. (7.29)

The error satisfies |B4(Tδ
−1)| ≤ C12(β, λ0, T )δ1/2, hence,

lim
δ→0

Q(Tδ−1) = cβλ
2
0γ

2T , (7.30)

with γ := θ2 + ǎ2σ2 and

cβ :=
π(cosh(βǎ) + 1)

4ǎ sinh βǎ
, (7.31)

assuming that

ǎ := lim
δ→0,Ω→∞

a = lim
δ→0,Ω→∞

(1− λ0Ωδ
−1) (7.32)

exists, and ǎ ∈ (0, 1].

Since we will keep β fixed and choose λ = λ0δ
1/2 with a fixed λ0, δ and Ω are left as a

scaling parameters from the triple ε = (β,Ω, λ). Like in Section 6 (cf.(6.2)) we introduce,

W ε
T (x, v) := wε

A(Tδ−1, x, v) , (7.33)

and notice that only the time is rescaled. We will assume that Ω → ∞ along with δ → 0 in
such a way that the limit (7.32) exists and Ω ∈ [| log δ|7, δ−1]. Clearly either Ω ∼ δ−1, in which
case ǎ < 1, or Ω � δ−1, when ǎ = 1. In the latter case, however, we need Ω ≥ | log δ|7.

7.4 Derivation of the limiting equation

We need the notion of ”radial” function with respect to the elliptical phase space trajectories
of the oscillator Y ′′ + ǎ2Y . As usual, the dual variables to the phase space coordinates (x, v)
are (θ, σ). With ǎ > 0 fixed, let

γ = γ(θ, σ) :=
√
θ2 + ǎ2σ2 , r = r(x, v) :=

√
x2 + ǎ−2v2 ,

which will be considered either variables or functions, depending on the context. If a func-
tion u(x, v) depends only on x2 + ǎ−2v2, then it can be written as u(x, v) = u∗(r) with
some function u∗ defined on IR+. Then the two dimensional Fourier transform û(θ, σ) =∫

exp [− i(θx+ σv)]u(x, v)dxdv is a function of θ2 + ǎ2σ2 only, hence it can be written as
û(θ, σ) = ũ∗(γ). Here ũ∗ can be thought of as the ”elliptical-radial” Fourier transform of u∗,
but in order to avoid confusion, we will always perform Fourier transforms on IR2, i.e. between
u(x, v) ↔ û(θ, σ), even if these functions are ”radial”.

For any function u(x, v) we can form the ”radial” average of its Fourier transform û(θ, σ)
by defining

û#(θ, σ) :=
1

2π

∫ 2π

0

û(γ cos s, ǎ−1γ sin s)ds

(
=

1

2πγ

∫
θ̃2+ǎ2σ̃2=γ2

û(θ̃, σ̃)dθ̃dσ̃

)
,
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which is a function of γ, hence it can be written as

û#(θ, σ) = ũ#,∗(γ) .

In this notation # refers to ”radial” averaging, and ∗ indicates that we consider the radial part
of the function. Tilde indicates that it comes from the two dimensional Fourier transform û of
the original function u.

Theorem 7.1 Define the large time scale Wigner function W ε
T (x, v) as in (7.33). Assume that

λ = λ0δ
1/2, λ0 < 1 and fix β > 0, ǎ ∈ (0, 1]. The initial condition W ε

0 (x, v) = w0(x, v) satisfies

ŵ0(θ, σ) ∈ L1(IRθ × IRσ). Consider the ”radial” average of Ŵ ε
T ,

W̃#,ε
T (γ) :=

1

2π

∫ 2π

0

Ŵ ε
T (γ cos s, ǎ−1γ sin s)ds . (7.34)

Then for any T ≥ 0 the limit,

Ŵ+
T (θ, σ) := lim

δ→0,Ω→∞
1−λ2

0Ωδ→ǎ

Ω≥| log δ|7

W̃#,ε
T (θ, σ) , (7.35)

exists in a weak sense and it is a function of γ = (θ2 + ǎ2σ2)1/2 only. Hence, its inverse
Fourier transform W+

T (x, v) is a function of r = (x2 + ǎ−2v2)1/2 only and it can be written as
W+,∗

T (r) := W+
T (x, v). This function satisfies the ”radial” Fokker-Planck equation,

∂TW
+,∗
T =

πλ2
0

4
∂r(rW

+,∗
T ) +

cβλ
2
0

2
∆rW

+,∗
T , (7.36)

(cβ is given in (7.31)) with initial condition W+,∗
0 (r) := W+

T=0(x, v) whose Fourier transform

Ŵ+
0 (θ, σ) is given by,

Ŵ+
0 (θ, σ) := ŵ#

0 (θ, σ) =
1

2π

∫ 2π

0

ŵ0(γ cos s, ǎ−1γ sin s)ds . (7.37)

Remark 1. The weak limit lim∗∗Ŵ ε
T (θ, σ) (without averaging over the angular variables)

does not exist (here lim∗∗ stands for the same limit as in (7.35)). However, time averaging
can again replace angular averaging (see Remark and Corollary 6.1), i.e. our method easily
proves that lim∗∗W ε

T (x, v) exists in a weak sense in all variables (x, v, T ), i.e. in the topology
of D′( IRx × IRv × [0,∞)T ), and it satisfies (7.36) weakly in space, velocity and time.

Remark 2. Since the diffusion coefficient 1
2
λ2

0cβ in (7.36) behaves as β−1 for small β (high
temperature), we see that Einstein’s relation is satisfied at high temperatures. At small tem-
peratures the diffusion does not disappear (limβ→∞ cβ > 0), which is due to the ground state
quantum fluctuations of the heat bath.

Remark 3. Similarly to Remark 1. after Theorem 6.1, one can investigate how this theorem is
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modified if % is not uniform (in particular if the cutoff is not sharp). The diffusive mechanism
is not affected by this generalization, thanks to Remark 2. after Lemma 5.2, the only change
is an extra %(ǎ) factor in the second term on the right hand side of (7.36). But the modified

memory kernel, M(s) = λ2
∫ Ω

0
cos(ωs)%(ω)dω, does not converge to the delta function δ0(t)

as Ω → ∞, hence the nonuniform frequency distribution makes the memory term nonlocal in
time. The details are left to the reader.

Proof. The proof is similar to the proof of Theorem 6.1, hence we skip certain steps. Let
φ(x, v) ∈ C∞

0 (IR× IR). Similarly to (6.14) we obtain from (4.41),

〈W ε
T , φ〉 =

∫
ŵε

A(Tδ−1, θ, σ)φ̂(θ, σ)dθ dσ (7.38)

= E

∫
ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(θX(t)+σX′(t))dξ dη dx dv dθ dσ .

Thanks to (7.6), in the limit δ → 0 we can replace X by X̃ and to take the limiting value (7.30)
of Q in the formulae (we again have to approximate ŵ0 by bounded functions first). We obtain
(cf. (6.15)),

lim∗∗〈W ε
T , φ〉 = lim∗∗E

∫
ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(θX̃(Tδ−1)+σX̃′(Tδ−1))dξ dη dx dv dθ dσ

= lim∗∗
∫
ŵ0

(
ξθ,σ(Tδ−1), ηθ,σ(Tδ−1)

)
φ̂(θ, σ)e−

1
2
Q(Tδ−1)dθ dσ (7.39)

where lim∗∗ stands for the limit in (7.35). Recall that the functions ξθ,σ and ηθ,σ now depend
on the limiting parameters, since ϕ and ψ do, and they are oscillating, which again prevents
the existence of the weak limit in the last line of (7.39) without averaging.

Time averaging is analogous to part b) of Theorem 6.1, and it gives the weak limit in space,
velocity and time. We skip the details of the proof of the statement of Remark 1.

Performing a radial avegaring (with respect to the limiting ellipses given by the level curves
of r = r(x, v) or γ = γ(θ, η)) is the same as using ”radial” testfunctions φ which depend only

on r; i.e. φ̂(θ, σ) depends only on γ hence it can be written as φ̂(θ, σ) = φ̃∗(γ). In this case

〈Ŵ#,ε
T , φ̂〉 = 〈Ŵ ε

T , φ̂〉 .

From the explicit formulas (7.20), (7.22) it is straightforward to check that

lim∗∗ sup
s≤Tδ−1

∣∣∣∣([ξθ,σ(s)]2 + ǎ2[ηθ,σ(s)]2
)
− e−Iλ2

0sδ
(
[ξ̌θ,σ(s)]2 + ǎ2[η̌θ,σ(s)]2

)∣∣∣∣ = 0 , (7.40)

where ξ̌ and η̌ are the solutions to Y ′′ + ǎ2Y = 0, i.e.

ξ̌θ,σ(s) := θ cos(ǎs)− σǎ sin(ǎs) , η̌θ,σ(s) := θǎ−1 sin(ǎs) + σ cos(ǎs) .
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Since the flow (θ, σ) 7→
(
ξθ,σ(s), ηθ,σ(s)

)
is measure preserving, one can change variables∫

IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ (7.41)

=

∫
IR2

ŵ0(θ, σ)φ̂
(
ξ∗θ,σ(t), η∗θ,σ(t)

)
e−

1
2
Q∗(t) dθ dσ ,

where η∗(t) := η(−t), ξ∗(t) := ξ(−t) are the backward trajectories. In this way we pushed the

trajectories into the argument of φ̂, where only their ξ2 + ǎ2η2 combination matters, and we
can apply (7.40) to replace ξ, η by ξ̌, η̌, finally we can change variables backwards, now along
these new trajectories.

Hence together with (7.30) and with c′β := cβ/2 for simplicity, we have

lim∗∗〈Ŵ#,ε
T , φ̂〉 = lim∗∗〈Ŵ ε

T , φ̂〉

= lim∗∗
∫

IR2

ŵ0

(
e−Iλ2

0T/2ξ̌θ,σ(Tδ−1) , e−Iλ2
0T/2η̌θ,σ(Tδ−1)

)
φ̃∗(γ)e−c′βλ2

0Tγ2

dθ dσ ,

if we can show that this latter limit exists. But the right hand side above is in fact independent
of the limiting parameters δ,Ω, since we can first integrate on ellipses θ2 + ǎ2σ2 = (const),
similarly to the same calculation in the proof of part c), Theorem 6.1. Hence,∫

IR2

ŵ0

(
e−Iλ2

0T/2ξ̌θ,σ(Tδ−1) , e−Iλ2
0T/2η̌θ,σ(Tδ−1)

)
φ̃∗(γ)e−c′βλ2

0Tγ2

dθ dσ (7.42)

=

∫
IR2

W̃+,∗
0

(
γe−Iλ2

0T/2
)
φ̃∗(γ)e−c′βλ2

0Tγ2

dθ dσ ,

where we recall the definition of W̃+
0 (7.37), which depends only on γ2 = θ2 + ǎ2σ2, and we let

W̃+,∗
0 (γ) := W̃+

0 (θ, σ). Therefore, the relation,

lim∗∗〈Ŵ#,ε
T , φ̂〉 =

∫
IR2

W̃+,∗
0

(
γe−Iλ2

0T/2
)
φ̃∗(γ)e−c′βλ2

0Tγ2

dθ dσ

defines the weak limit,
Ŵ+

T (θ, σ) := lim∗∗Ŵ#,ε
T (θ, σ)

and it is a function depending only on θ2 + ǎ2σ2, i.e. it can be written as W̃+,∗
T (γ) := Ŵ+

T (θ, σ).

Also, we readily obtain the equation satisfied by W̃+,∗
T (γ) by computing,〈

∂T

∣∣∣
T=0

Ŵ+
T , φ̂

〉
= ∂T

∣∣∣
T=0

∫
IR2

W̃+,∗
0

(
γe−Iλ2

0T/2
)
φ̃∗(γ)e−c′βλ2

0Tγ2

dθ dσ (7.43)

=

∫
IR2

[
− Iλ2

0

2
γ∂γ − c′βλ

2
0γ

2
]
W̃+,∗

0 (γ)φ̃∗(γ)dθ dσ ,

from which (7.36) follows, recalling that I = π
2

and the value of c′β = cβ/2 from (7.31).
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[21] L. Erdős, H.T. Yau, Linear Boltzmann equation for electron transport in a weakly coupled
phonon field, In preparation

[22] R. Esposito, M. Pulvirenti, A. Teta, The Boltzmann Equation for a one-dimensional Quan-
tum Lorentz gas, Preprint (1998).

[23] R.P. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill,
New York (1965).

[24] R.P. Feynman, F.L. Vernon, The theory of a general quantum system interacting with a
linear dissipative system, Ann. Phys., Vol. 24, p. 118-173 (1963).

[25] W. Fischer, H. Leschke and P. Müller, On the averaged quantum dynamics by white-noise
Hamiltonian with and without dissipation, Ann. Physik, Vol. 7, p. 59-100 (1998).

[26] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota inteerna
n. 358, Univ. di Roma (1970).

[27] P. Gérard, P.A. Markowich, N. Mauser, F. Poupaud. Homogenization limits and Wigner
transforms, Comm. Pure Appl. Math., Vol. L, p. 323 - 379 (1997).

[28] Z. Haba, Classical limit of quantum dissipative systems, Lett. Math. Phys., Vol 44, p.
121-130 (1998).

47



[29] T.G. Ho, L.J. Landau, A.J. Wilkins, On the weak coupling limit for a Fermi gas in a
random potential, Rev. Math. Phys., Vol. 5, N. 2, p. 209-298 (1993).

[30] F. Haake, R. Reibold, Strong-Damping and low-temperature anomalies for the harmonic
oscillator, Phys. Rev. A, Vol. 32, N. 4, p. 2462-2475 (1985).
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