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Abstract

In this paper, we investigate the rigorous convergence of the Density Matrix Equation (or
Quantum Liouville Equation) towards the Quantum Boltzmann Equation (or Pauli Master
Equation). We start from the Density Matrix Equation posed on a cubic box of size L
with periodic boundary conditions, describing the quantum motion of a particle in the box
subject to an external potential V . The physics motivates the introduction of a damping
term acting on the off-diagonal part of the density matrix, with a characteristic damping
time α−1. Then, the convergence can be proved by letting successively L tend to infinity
and α to zero. The proof relies heavily on a lemma which allows to control some oscillatory
integrals posed in large dimensional spaces.

The present paper improves a previous announcement [CD].

Key words: Density matrix, Liouville equation, Pauli Master Equation, time-dependent
scattering theory, Fermi’s Golden Rule, oscillatory integrals in large dimensions.

AMS subject classification: 81H05, 81F20, 82A15, 82A70, 34E20, 46F10

Acknowledgements. The author would like to express his deepest gratitude to P. Degond and B.
Perthame for initiating the present project, and for so many passionating discussions on this work. He
would like to thank A. Arnold, E. Grenier, G. Métivier, and F. Nier for fruitfull discussions as well.
Part of this work was done while the author was visiting the Erwin Schrödinger Institute in Vienna
(Austria). The author would like to thank this institution for its hospitality, and he particularly thanks
P. Markowich for his invitation. This work was supported by the TMR-Network “Asymptotic Methods
in Kinetic Theory” number ERB FMBX CT97 0157 and by the Erwin Schrödinger Institute in Vienna
(Austria).
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1 Introduction

1.1 Introduction

In this paper we are interested in the quantum dynamics of an electron in a given periodic
distribution of obstacles in d dimensions of space (d ≥ 3, we will actually restrict ourselves with
the case d = 3). More exactly the electron is assumed to evolve on a Torus, and the present
dynamics is naturally described by a periodic Von-Neumann equation. In our model, the size
of the period is measured by the large scaling parameter L, and each elementary cell contains
one obstacle occupying a volume of the order O(1). We consider the asymptotic dynamics as
L → ∞. In order to obtain a non-trivial limiting dynamics, one has to rescale time as well,
and to look at the evolution of the electron on long time scales of the order T , with T → ∞,
unless the electron essentially performs a “free flight” in the limit L→∞. The present paper is
concerned with the so-called low-density regime (or: Boltzmann-Grad regime) where the ratio
T ∼ Ld is prescribed. In this scaling indeed, the obstacles occupy a proportion ∼ 1/Ld of the
total volume, so that the probability for the electron to hit an obstacle once per unit time on
this time scale is unity.

2



The issue in considering such a model is the following: it is physically expected (see e.g.
[Pa], [VH1,2,3], [KL1,2], [Ku], [Pr], [Vk], [Zw] or also [Ck], see [Fi] for recent developments)
that the present system tends to be described by a linear Boltzmann equation in the low-
density asymptotics, and precise convergence results in this direction have been actually proved
in various situations where the obstacles are randomly distributed (see e.g. [Sp1], [HLW], [La],
[EY]). In particular, the initially time-reversible model is expected to be asymptotically described
by a time-irreversible equation. Contrary to the “random” situation, the present paper deals at
variance with a model which is both deterministic and periodic, which is a very strong constraint
as well as a non-generic case. While the stochastic approach somehow ensures that the desired
convergence towards a linear Boltzmann equation holds for almost every distribution of obstacles,
the present paper wishes to investigate the same convergence in one particular configuration,
namely the periodic one.

Obviously, the periodic situation leads to specific coherence, or resonance effects, which are
somehow smoothed out in the random situation. These effects turn out to be extremely strong,
and to abnormally dominate the limiting procedure: it is actually proved in [CD1,2] that the
direct limit L → ∞, T ∼ Ld in the original periodic Von-Neumann equation does not lead to
the expected linear Boltzmann equation. The two papers [CD1,2] show in fact that the above
mentionned coherence effects can be precisely quantified making use of number theoretical con-
siderations, and the limiting dynamics is proved to remain time-reversible in this case. For this
reason, the present paper introduces some “noise” in the model, in that we let the system {
electron + potential } additionaly interact with another system, typically a bath of photons or
phonons. This leads to the adding of an additional damping term in the original Von-Neumann
equation, which modelizes at a phenomenologic level ([NM], [SSL]) the above mentionned in-
teraction. It is measured by the relaxation time 1/α > 0. It makes the modified Von-Neuman
equation (2.8) in which we pass to the limit readily time-irreversible. This damping term, which
at first sight can be viewed as an artificial trick, is actually present in most physically realistic
cases [Boy], [Lo], [NM], see also [Hu] for the necessity of considering such additional interactions.

Our main result is the following: in the low-density limit L → ∞, T ∼ Ld, followed by
the limit α → 0 where the interaction with the external system vanishes, the modified dynam-
ics of the electron is asymptotically described by a linear Boltzmann equation (Theorem 3.3).
Moreover, the cross-section involved in the limiting Boltzmann equation is given by a full power
series expansion in the potential (3.32), (3.34), and the lower order term satisfies Fermi’s Golden
Rule (3.35). Lengthy calculations which are deferred to another work [Ca2] actually prove that
this expansion coincides with the usual Born series expansion of conventional scattering theory
(3.38), (3.39) . In view of the negative results proved in [CP1,2], the two limits in L and α do
not commute. The results presented here heavily rely on the control of some oscillatory integrals
in large dimensions (Lemma 3.1).

We close this introduction with some references. The first formal derivations of the Pauli
Master Equation are due to [Pa], [KL1,2], [Ku], [VH1,2,3]. Other works in this direction are due
to [Zw], [Pr], [Ja], [Mei] and recently, to [Fi]. Later, many authors did indeed rigorously justify
this derivation [Sp1], [La], [HLW], and more recently , [EY], but all these references deal with
random potentials. The present paper is, to our knowledge, the first to present a derivation of
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the Quantum Boltzmann Equation for deterministic potentials and to follow the formal approach
based on time-dependent scattering theory as outlined in the appendix. Similar questions are
dealt with in the framework of classical mechanics in [Sp2,3] and [VbLLS]. We also mention
[Ni1,2], where the square of the scattering matrix is proved to be the right object allowing
to describe some semi-classical limits, but only finitely many fixed scatterers are considered.
Finally, we mention [Ca1], in which the size of the box is kept fixed and the limit equation is a
reversible retarded time integral equation.

A review about the convergence result presented here and the non-convergence results proved
in [CP1,2] can be found in [Ca3].

1.2 Motivation of the present work

We give here two remarks motivating the present work.
At first, we wish to underline a strong parallel between the results discussed here at the

quantum level, and other, somehow similar, results valid at the classical level, since it is a major
motivation for this paper as well as [CP1,2]. The present paper investigates at the quantum
level the convergence of the dynamics of an electron in a periodic distribution of obstacles in
the low-density limit. Adding a damping term which modelizes the interaction of the electron
with an external “reservoir” (a standard procedure in many contexts of statistical physics,
see [Sp2,3], see also [CEFM]), we prove the expected convergence towards a linear Boltzmann
equation in the appropriate limit. Though the addition of a damping term makes our model
time-irreversible while the stochastic approach proves the convergence (in expectation) of a
true time-reversible dynamics towards an irreversible dynamics, the present result is somehow
analogous, in a deterministic framework, to the convergence results established in the stochastic
framework. On the other hand, the results proved in [CP1,2] indicates that the true periodic
situation in the case of zero damping leads to specific coherence effects, measured in terms
of number theoretical arguments, which in turn prevent the convergence towards the desired
Boltzmann equation. These convergence, respectively non-convergence results at the quantum
level have the following important analogon at the classical level: it has been proved in [BBS]
that the classical dynamics of an electron in a random distribution of obstacles converges, in the
appropriate low-density limit, towards a linear Boltzmann equation. However, the work [BGW]
proves that, when the distribution is periodic, the convergence towards a Boltzmann equation
cannot hold, thus showing that the periodic situation is degenerate in the sense that it is in the
zero-measure set where the expected convergence fails. On the more, the non-convergence result
of [BGW] relies as in [CP1,2] on “coherence” effects specific to the periodic case which can be
precisely quantified thanks to number theoretical considerations. Roughly speaking, we may say
that too many trajectories never hit any obstacle in the periodic situation, which makes this
situation specific both at the classical and at the quantum level..

A second strong motivation for the present work, and more precisely for the limit in L we
consider here, is the following. This paper aims at giving a rigorous derivation of the Pauli Master
Equation (or Quantum Boltzmann Equation) starting from the Quantum Liouville Equation
(or Von-Neumann Equation). This problem has received considerable interest since the early
formal derivation of Pauli [Pa]. Our approach actually tries to mimic the elementary derivation
of Fermi’s Golden Rule based on time-dependent scattering theory which can be found in many
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textbooks e.g. [Boh], [CTDRG], [CTDL], [Mes], [SSL], and which has been recently revived in
[Co]. (We recall that Fermi’s Golden Rule gives the expression of the transition rate involved in
the Pauli Master Equation). This is where our limit in L originates. Elementary time-dependent
scattering theory [Boh] considers indeed a Hamiltonian of the form H0 + V in a finite box of
size L, where H0 is the free kinetic energy. Initially, particles are supposed concentrated on
an eigenstate state ψn of H0 associated with the energy εn ≈ n2/L2. The goal is to compute
the time asymptotics of the population |Cp(t)|2 = |(ψ(t), ψp)|2 of the initially void states of
energy εp, p 6= n, where ψ(t) denotes the wave-function of the particle at time t. It is well
known that, if the energy levels remain discrete (i.e. if the size of the box is left unchanged),
the behaviour of |Cp(t)|2 is either an oscillatory function of time if the energies are different
(εp 6= εn) or a quadratic function of time if the energies are equal (εp = εn), but can by no
means be a linear function of time. However, scattering theory aims at producing a rate of
change of the populations, i.e. a probability per unit of time. Therefore, one looks for a linear
in time behaviour of |Cp(t)|2. To remove this apparent paradox, one must therefore let the
size of the box go to infinity. Indeed, when the level spacings are set to zero, i.e. as L → ∞,
the oscillatory function of time |Cp(t)|2, where now p is a continuous variable ranging in the
wave-vector space R3, formally is, in the sense of distributions of the p variable, asymptotic as
time goes to infinity to a linear function of time multiplied by a delta function of the differences
of the energies of the initial and final states δ(εn − εp). In this sense, one recovers the usual
Fermi Golden Rule as a succession of two limits L→∞ then t→∞. Note that we recall these
standard and formal computations below in the appendix. In particular, the process of taking
the size of the box to infinity is of primary importance and not just a technicality, because one
cannot deal from the onset with an infinite medium due to the above mentionned reasons: in
an infinite box, the eigenstates of the unperturbed Hamiltonian H0 are not normalized, and
therefore unphysical, and it cannot be given any meaning to the quantity |Cp(t)|2. This point of
view thus emphasizes the contrast between the case where the spectrum is discrete, and the case
where it becomes continuous. On this particular point, we wish to quote the work [Co], where
the effect of “discretizing the spectrum” is studied from a physical point of view, [CP1,2] where
this effect is quantitatively studied in the periodic case, as well as [Ca1] for a mathematical work
showing that the large-time/small potential limit (analogous to the weak-coupling limit) cannot
give the physically expected linear Boltzmann equation when studied in a periodic box of fixed
finite size.

1.3 Presentation of the results

The present paper follows the subsequent lines:

1- (section 2)
1a- As a starting point (subsection 2.1), we write down the equation describing the dynamics

of an electron in a periodic box, and we introduce the phenomenological damping term needed
in our analysis. We also introduce the appropriate scalings and initial data under considera-
tion. We are thus led to considering a (damped) Von-Neumann equation posed on the so-called
density matrix of the electron. We recall that the diagonal part of the density matrix (in the
momentum representation ψn), denoted by ρL,α

d (t, n) (see below for the notations), precisely
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gives the populations |Cn(t)|2. Note that the damping term acts on the off-diagonal part of the
density matrix only.

1b- Then (subsection 2.2), we follow the computations in [Ca1]: the discreteness of the
energy levels and the fact that the evolution of the diagonal part only depends on the action
of the perturbed Hamiltonian on the off-diagonal part (a universal phenomenon due to the
commutator structure of the equation) allow us to write a closed equation for the populations,
which is equivalent to the original quantum Liouville equation (Theorem 2.1). This equation
has the form of a retarded time integral equation (non-Markovian dynamics),

∂

∂t
ρL,α

d (t, n) =
∑

k∈Z3

∫ t

0
σL,α(s, n, k)ρL,α

d (s, k) ds −
∫ t

0
σ̃L,α(s, n)ρL,α

d (s, n) ds , (1.1)

for some cross-sections σL,α and σ̃L,α depending on the scaling parameters L and α, whose
explicit value is computed as a power series in the potential V . We refer to the sequel for the
precise meaning of the notations.

1c- Then (subsection 2.3), we present a formal approach in the case of zero damping. It
indicates that the low-density limit L → ∞, T ∼ L3 (which, in the language of conventional
scattering theory used in subsection 1.2, provides at the same time the two limits i.e. the size of
the box to infinity and the time to infinity), turns out to formally give the desired convergence
towards a pointwise in time (Markovian) Boltzmann equation, with a cross-section satisfying the
Fermi-Golden-Rule at the lower order. However, we mention that this formal limit cannot be
rigorously justified because it involves a limit in an oscillatory series which becomes an oscillatory
integral, a situation which is not described by the classical stationary phase theorem. Moreover,
the formal result is actually wrong in one dimension as well as in large dimensions d ≥ 3, as it
is proved in [CP1,2].

2- (section 3) To rigorously obtain the true Quantum Boltzmann equation, one needs there-
fore to make use of the damping term: from a technical point of view, it provides us with a
regularizing parameter α > 0, additional to the scaling parameter L describing the low-density
process. In the language of subsection 1.2, this parameter allows to somehow decouple the limits
L→∞ and t→∞. Now we perform the various limiting procedures:

2a- (Theorem 3.1) Firstly, the convergence proof relies on establishing various apriori esti-
mates which are independent of L (but not on α).

2b- (Theorem 3.2) The limit L → ∞ is then taken first and takes the original damped
retarded time integral equation to a damped local-in-time equation of the form (see below for
the notations),

∂

∂t
ρα

d (t,n) =
∫

R3
σα(n,k)ρα

d (t,k) dk − σ̃α(n)ρα
d (t,n) , (1.2)

for some cross-sections σα and σ̃α which we explicitely compute as power series in the potential V .
In particular, we see that the dynamics of the electron becomes Markovian along the asymptotic
process, while being by no means Markovian initially, see also [EY] on this point.

2c- (Theorem 3.3) The limit α → 0 now allows to remove the damping and to obtain (see
below for the notations),

∂

∂t
ρd(t,n) =

∫
R3
σ(n,k)ρd(t,k) dk − σ̃(n)ρd(t,n) , (1.3)
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where the cross sections σ and σ̃ are given as power series of the potential V , and they satisfy
the Fermi Golden Rule at lower order in V (Theorem 3.3), i.e.,

σ(n,k) = 2πδ(n2 − k2)|V̂ (n− k)|2 +O(|V̂ |3) . (1.4)

The full series defining σ can actually be proved to be identical with the celebrated Born series
- see [Ca2] - a fact which far from obvious in view of formulae given in Theorem 3.3.

2d- (Lemma 3.1) The last limit α→ 0 relies in an absolutely essential way on the control of
the singularity and the growth with the dimension of certain oscillatory integrals with quadratic
phases in large dimension. This Lemma lies at the core of the convergence proof presented here.
It gives the estimates independent of α needed along the asymptotic process. Also, since the
cross-section involved in (1.3) appears as a power-series in the potential, this Lemma allows to
control the convergence of these power series.

3- (Section 4) The full convergence proofs of the above statements are given.

Our main results are Theorem 2.1 (getting a closed equation for the diagonal part only),
Theorem 3.1 (a priori bounds on the solution to the Von-Neumann equation), Theorem 3.2 (the
limit L → ∞, where the dynamics becomes Markovian), Theorem 3.3 (the limit α → 0, where
we recover the Quantum Boltzmann equation with the correct cross-section), as well as the key
Lemma 3.1 (control of oscillatory integrals in higher dimensions).

2 The model and its formal asymptotics

2.1 The mathematical model under consideration

Before writing down the equation in which we actually perform the asymptotic process and
introducing the damping term, we write, as a first step, the equation describing the evolution
of an electron evolving on a Torus [0, 2πL]3 under the mere influence of a potential V . As is
well known, it is actually described by the periodic Von-Neumann equation in the box [0, 2πL]3,
with periodic boundary conditions,

i∂tρ̃(t, x, y) = (−∆x + ∆y)ρ̃(t, x, y) + (V (x)− V (y))ρ̃(t, x, y) , (2.1)

where ρ̃(t, x, y) is the particle density matrix, which is the mathematical object describing the
state of the electron at time t ∈ R (see [CTDL]), depending on two space variables x and y both
belonging to [0, 2πL]3. We mention that the boundary conditions can easily be modified into
Dirichlet or Neumann boundary conditions, See section 5.

Here and throughout the paper, we make the following important assumption on the given
potential V (x),{

V (x) is real-valued and compactly supported , Supp(V (x)) ⊂]0, 2πL[3 ,
V (x) is a “smooth” function of x ∈ R3 ,

(2.2)

where the precise “smoothness” assumption on V is written in the next section (See definition 3.1
and assumption (3.5)). The compactness assumption ensures that the potential (or: obstacle)
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occupies a volume of the order O(1) in a cell of the order O(L3), which is the natural low-
density situation. Note that this assumption can somewhat be relaxed, and the results that we
present are also valid if the potential V = V L depends on L and converges to a fixed profile V∞

belonging to the same spaces as in definition 3.1 and (3.5).
Now, the various asymptotic processes are naturally performed in the Fourier space rather

than directly on (2.1). For this reason, we define, for any n and p ∈ Z3, the following Fourier
transforms,

ρ(t, n, p) := (2.3)∫
[0,2πL]6

ρ̃(t, x, y)
1

(2πL)
3
2

exp
(

+i
n · y
L

)
1

(2πL)
3
2

exp
(
−ip · x

L

)
dx dy ,

as well as the more standard,

V̂ (n) :=
∫
[0,2πL]3

V (x) exp(−in · x) dx
(

=
∫

R3
V (x) exp(−in · x) dx

)
, (2.4)

for any n ∈ R3. The last equality comes from the assumption on the support of V and V̂ (·) is
by assumption a fixed “smooth” profile. Here, bold letters n, p, ... denote continuous variables
belonging typically to R3, whereas plain letters n, p, ... denote discrete variables belonging
typically to Z3, a convention used throughout the paper. With these notations, the original
Von-Neumann equation (2.1) becomes,

∂

∂t
ρ(t, n, p) = −ip

2 − n2

L2
ρ(t, n, p) (2.5)

+
i

(2πL)3
∑

k∈Z3

{
V̂

(
k − n

L

)
ρ(t, k, p)− V̂

(
p− k

L

)
ρ(t, n, k)

}
.

Note that the definition (2.3) is the natural one since the functions, ψn(x) := (2πL)−d/2 exp(−in·
x/L) , (n ∈ Z3) are the eigenfunctions of the operator −∆x on the space of periodic functions
in the box [0, 2πL]3, with degenerate eigenvalues, En := n2/L2 (n ∈ Z3) .

Before proceeding further, we now define the diagonal and off-diagonal parts of ρ respectively
as,

ρd(t, n) := ρ(t, n, n) , ρnd(t, n, p) := ρ(t, n, p)1(n 6= p) , (2.6)

where 1(n 6= p) denotes the characteristic function of the set {n 6= p}. The diagonal part
ρd(t, n) represents the occupation number of the n-th eigenstate of the Laplacian, whereas the
non-diagonal part represents the correlations between the occupation numbers of the n-th and
p-th eigenstates.

We now come to writing the model in which we shall actually perform the asymptotic process.
This needs the introduction a phenomenological damping term on the off-diagonal elements in
the original equation (2.5). Also, this leads to rescaling the various quantities, namely time,

8



potential and absorption. More precisely, let T denote the time-scale, λ the typical amplitude
of the potential, and α the damping parameter. Our starting point reads, with these notations,

1
T

∂

∂t
ρL,α(t, n, p) = −ip

2 − n2

L2
ρL,α(t, n, p)− αρL,α(t, n, p)1(n 6= p) (2.7)

+
iλ

(2πL)3
∑

k∈Z3

{
V̂

(
k − n

L

)
ρL,α(t, k, p)− V̂

(
p− k

L

)
ρL,α(t, n, k)

}
,

(compare with (2.5)), where we now explicitely index the dependence of the density matrix upon
the scaling parameters L and α (and write ρL,α

d and ρL,α
nd as well for the diagonal and off-diagonal

parts of ρL,α respectively). Equation (2.7) also reads, upon splitting ρL,α into its diagonal and
off-diagonal parts,

T−1∂tρ
L,α
nd (t, n, p) = +i

n2 − p2

L2
ρL,α

nd (t, n, p)− αρL,α
nd (t, n, p)

+i
λ

(2πL)3
V̂

(
p− n

L

){
ρL,α

d (t, p)− ρL,α
d (t, n)

}
+i

λ

(2πL)3
∑
k 6=p

V̂

(
k − n

L

)
ρL,α

nd (t, k, p)− iλ

(2πL)3
∑
k 6=n

V̂

(
p− k

L

)
ρL,α

nd (t, n, k) ,

T−1∂tρ
L,α
d (t, n) = +

iλ

(2πL)3
∑
k 6=n

{
V̂

(
k − n

L

)
ρL,α

nd (t, k, n)− V̂

(
n− k

L

)
ρL,α

nd (t, n, k)
}
,

(2.8)

To be complete, we now precise the exact asymptotic regime and the specific initial data under
consideration. Firstly, we are interested in the following low density regime,

T = (2πL)3 , |λ| ≤ λ0 , (2.9)

where λ0 is some (small) constant independent of α and L. Note that equation (2.7) introduces
a damping scaled by α in the new time scale T , which is an extremely strong damping. Secondly,
and as it is standard in this field (see e.g. [Ku], [KL1,2], [Ck], [Zw]) we are only interested in
performing the asymptotics L → ∞, α → 0 in (2.8) for particular initial data which are sta-
tionary states of the free Von-Neuman equation iT−1∂ρ̃/∂t = (−∆x + ∆y)ρ̃. In other words, we
wish to quantify the large time influence of the potential for initial states which are equilibrium
states of the unperturbed hamiltonian −∆x. The initial data of interest in the present paper
are thus taken of the form,

ρL,α
nd (t, n, p)

∣∣
t=0

= 0 ,

ρL,α
d (t, n)

∣∣
t=0

= (2πL)−3ρ0
d

(
n

L

)
,

ρ0
d(n) ≥ 0 is a given “smooth” function of n ∈ R3 ,

(2.10)

where again the precise “smoothness” assumption needed on ρ0
d is written in the next section

(See definition 3.1 and assumption (3.5) ). The assumption (2.10) generalizes both the case
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of initial thermodynamical equilibrium where ρL,α(t, n, p)|t=0 ≈ L−3 exp(−βn2/L2) 1[n = p]
and β is the inverse temperature, and the more general case where ρL,α(t = 0) is an arbitrary
function of the energy ρL,α(t, n, p)|t=0 ∼ L−3f(n2/L2)1[n = p] for some “reasonable” function
f . Summarizing, we are interested in obtaining a linear Boltzmann equation on the (non-
commuting) limit ρd = limα→0 limL→∞ ρL,α

d , in (2.8), (2.10), (2.9).

We end the presentation of the model with two comments.
Physically, the damping term accounts for elastic interactions of the particles with an external

bath of, typically, ions, atoms, phonons, photons, etc. (see e.g. [SSL], Chap. 7.3 for applications
to light-matter interaction). Under such interactions indeed, the off-diagonal terms of the density
matrix (i.e. the correlations between the energy levels) are exponentially damped due to random
changes of phases of the particle wave-functions, while, simultaneously, the diagonal part is left
unchanged due to the elastic character of the collisions (see also [Lo], [Boy], [NM]). In the most
general case, when both elastic and inelastic interactions are present, the latter act on much
longer time scales than the former. Consequently, the decay of the off-diagonal terms of the
density matrix by elastic collisions is much quicker than that of the diagonal terms by inelastic
collisions [NM]. The damping of the off-diagonal terms bears similarities with the so-called
“Random Phase Approximation” [VH1,2,3], [Zw], [Kr], [Pr]. Also, the effect of this damping
term is similar to that of an average over random variables like in [Sp1], [La], [HLW], [EY].

Finally, for the sake of completeness, me mention the following Lemma, the proof of which
is given in section 4 below. It states that the damping term in (2.8) preserves the positivity of
the density matrix. It actually satisfies the stronger ”Lindblad” property [Li].

Lemma 2.1 Assume (2.2). Then, the solution ρL,α(t, n, p) to (2.8) with initial data
ρL,α(t, n, p)

∣∣
t=0

satisfying (2.10) is unique in C0(Rt; l2(Z6
n,p)). Besides, for all non-negative

values of time t ≥ 0, ρL,α(t, n, p) is a hermitian, positive, and trace-class operator acting on
l2(Z3). In particular, we have, for all t ≥ 0,

ρL,α
d (t, n) ≥ 0 , and , ρL,α

nd (t, n, p) =
(
ρL,α

nd (t, p, n)
)∗

. (2.11)

2.2 Elimination of the non-diagonal part

We wish to derive the Pauli master equation for the occupation number ρL,α
d (t, n) in the asymp-

totic limits L→∞, α→ 0, starting from the coupled system (2.8) on ρL,α
d and ρL,α

nd . As formally
observed in [Zw], [Pr], it is actually possible to write a closed equation on ρL,α

d before any scaling
limit. Following [Ca1], the next theorem gives the explicit form of the equation on ρL,α

d . Its
proof is deferred to section 4.

Theorem 2.1 Assume (2.2). Let ρL,α
d (t, n), ρL,α

nd (t, n, p) be the unique solution to the rescaled
system (2.8) with initial data given by (2.10). Then, for positive values of time, t ≥ 0, ρL,α

d (t, n)
satisfies the following closed equation of Boltzmann-type,

∂tρ
L,α
d (t, n) =

+∞∑
l=1

λl+1 (QL,α
l ρL,α

d )(t, n) , (2.12)

10



where the “damped collision operators” QL,α
l are given by ,

(QL,α
l ρL,α

d )(t, n) =
T

(2πL)3(l+1)
(−2<)

∑
ε1 ,··· ,εl

∑
k1 ,··· ,kl

∫
u1,··· ,ul

(−1)ε̃1+···+ε̃l ×

× exp
(
i

(n+ ε1k1)2 − (n− ε̃1k1)2

L2
u1 − αu1

)
× (2.13)

× exp
(
i

(n+ ε1k1 + ε2k2)2 − (n− ε̃1k1 − ε̃2k2)2

L2
u2 − αu2

)
×

× · · · ×

× exp
(
i

(n+ ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2

L2
ul − αul

)
×

×[iV̂ (
k1

L
)] [iV̂ (

k2

L
)] · · · [iV̂ (

kl

L
)] [iV̂ ∗(

k1 + k2 + · · · kl

L
)] ×

×ρL,α
d (t− T−1 (u1 + u2 + · · ·+ ul), n+ ε1k1 + ε2k2 + · · ·+ εlkl) .

Here and in the sequel, < denotes the real part of a complex number. Also, the sums
∑

ε1 ,··· ,εl

∑
k1 ,··· ,kl

carry over the variables (ε1, · · · , εl) ∈ {0, 1}l and (k1 , · · · , kl) ∈ (Z3)l such that,

k1 6= 0 , k1 + k2 6= 0 , · · · , k1 + k2 + · · · kl 6= 0 , (2.14)

and we have made the convention,

∀j = 1 , · · · , l ε̃j = (1− εj) = 1 or 0 . (2.15)

Finally, the integrals
∫

u1,··· ,ul

carry over the set,

0 ≤ u1 ≤ Tt , 0 ≤ u2 ≤ Tt− u1 , · · · , 0 ≤ ul ≤ Tt− u1 − · · · − ul−1 . (2.16)

Moreover, the first collision operator QL,α
1 (case l = 1 above) has the more explicit value,

λ2(QL,α
1 ρL,α

d )(t, n) = 2
λ2

(2πL)6

∫ Tt

u=0

∑
k 6=0

exp(−αu) cos (
n2 − k2

L2
u) × (2.17)

×|V̂ |2(n− k

L
) [ρL,α

d (t− T−1u, k)− ρL,α
d (t− T−1u, n)] du .

Remarks. 1- The system (2.12)-(2.13) is a linear Boltzmann-like equation with memory in
time, of the form (1.1). The typical ”gain-loss” structure of the right-hand-side of (2.12)-(2.13)
is particularly transparent on the first collision operator λ2QL,α

1 , in spite of the fact that the
(time dependent) ”scattering rate”,

2
λ2

(2πL)6
exp(−αu) cos (

n2 − k2

L2
u) |V̂ |2(n− k

L
) , (2.18)

is not positive. More generally, each term λl+1QL,α
l ρL,α

d describes how the occupation numbers
ρL,α

d (t, n) are affected by (l + 1) consecutive interactions with the potential V , so that the

11



expansion
∑

l λ
l+1QL,α

l is also a power series in V . Obviously, its structure could be illustrated
by means of a Feynman diagram.
2- We can readily observe that, for fixed t, we have the following bound on the right-hand-side
of (2.12),

‖λl+1QL,α
l ρL,α

d ‖l2n
≤

≤ T
[ 2λ
(2πL)3

]l+1 T l|t|l

l!
[
‖(2πL)−3V̂ (

k

L
)‖l1

k

]l ‖(2πL)−3V̂ (
k

L
)‖l∞

k
‖ρL,α

d (t, n)‖l2n
,

( use that
∫ t

u1=0
· · ·
∫ t−u1−···−ul−1

ul=0
1 du1 · · · dul = tl/l! )

≤
[C λ T t

L3

]l+1 1
l!
‖ρL,α(t, n, p)‖l2n,p

( for some constant C, thanks to (2.2) ) ,

≤
[C λ T t

L3

]l+1 1
l!
C
′
(t) ,

for some time dependent function C
′
(t), because ρL,α(t) ∈ C0(l2) (Lemma 2.1). Obviously, this

is enough to give a rigorous meaning to the series involved in Theorem 2.1, at least for fixed
values of the scaling parameters T and L.

2.3 A formal investigation of the infinite volume limit in the case of zero
damping

We are interested in the infinite volume limit (L → +∞) in (2.12)-(2.13) when the damping is
set to zero. On the one hand, we describe the main scaling properties of equation (2.12)-(2.13),
which lead to thinking that the direct and formal limit L→∞ in (2.12)-(2.13) with α ≡ 0 could
give the Quantum Boltzmann equation. Simultaneously, we indicate that this rough and formal
limit cannot be made rigorous.

To simplify the presentation we restrict ourselves to the leading order term namely, ∂tρ
L
d =

λ2QL
1 ρ

L
d +O(λ3) , with vanishing damping, i.e.,

∂tρ
L
d (t, n) = 2 T λ2 (2πL)−6

∫ t

u=0

∑
k 6=0

cos (
n2 − k2

L2
u) ×

×|V̂ |2(n− k

L
) [ρL

d (t− u, k)− ρL
d (t− u, n)] du +O(λ3) ,

ρL
d (t = 0, n) =

1
(2πL)3

ρ0
d(
n

L
) .

(2.19)

We first observe that formula (2.19) ressembles the following basic formula, valid for all “smooth”

functions ψ, L−N
∑

k∈ZN

ψ(k/L) →L→∞

∫
k∈RN

ψ(k) dk , but the factor (2πL)−6 in front of the

sum
∑

k is too strong, since the vector k belongs to the 3-dimensional space only. Therefore,
the low-density scaling T = (2πL)3 is natural in (2.19). With this rescaling in time we obtain

12



indeed,
∂tρ

L
d (t, n) = 2λ2 (2πL)−3

∫ (2πL)3t

u=0

∑
k 6=0

cos (
n2 − k2

L2
u) |V̂ |2(n− k

L
) ×

×[ρd(t−
u

(2πL)3
, k)− ρd(t−

u

(2πL)3
, n)] du +O(λ3) ,

ρL
d |t=0(n) = (2πL)−3ρ0

d(n/L) .

(2.20)

If we now try to perform the infinite volume limit on (2.20), three distinct phenomena take
place, at least formally:

1- The model should converge towards a model where
∑

k(· · · )(k/L, n/L) is replaced by
∫
k
(· · · )(k,n)

dk
(2π)3

as L→∞, and with the initial data in (2.20) simply replaced by ρd|t=0 = (2π)−3ρ0
d(n).

2- The time integration u ∈ [0, t] in the original model (2.12)-(2.13) has become, after rescaling
in time, u ∈ [0, (2πL)3t]. Therefore, for positive values of time t (this is where time irreversibility
appears), the limit L→ +∞ in (2.20) should give rise to an integral over the positive real line,∫ +∞

u=0
· · · .

3- The factor ρL
d (t− T−1u, n) in the original equation has become ρL

d (t− u
(2πL)3

, n) and should
converge towards ρd(t,n) in the limit L → +∞. In particular, the infinite volume limit seems
to transform an equation with memory in time into a Boltzmann equation without memory in
time.

For all these reasons, the infinite volume limit L→∞ in (2.20) formally gives the asymptotic
behaviour,

∂tρd(t,n) ∼ 2λ2
∫ +∞

0

∫
R3

cos ([n2 − k2]u) (2.21)

|V̂ |2(n− k)
[
ρd(t,k)− ρd(t,n)

] dk
(2π)3

du +O(λ3) .

In particular, the time integral
∫+∞
u=0 · · · in (2.21) has a meaning as an oscillatory integral, and

(2.21) gives (See Lemma 3.1 and the subsequent remarks),

∂tρd(t,n) ∼ 2πλ2
∫

R3
δ(n2 − k2)|V̂ |2(n− k)

[
ρd(t,k)− ρd(t,n)

] dk
(2π)3

+O(λ3) , (2.22)

which is precisely the Quantum Boltzmann equation that we are looking for.
The first two steps cannot be justified because they involve the tranformation of a discrete

series into an oscillatory integral. Indeed, the notion of oscillatory integral heavily relies on the
fact that the k, n variables are continuous. Moreover, it can be proved [CP1,2] that, at least in
dimension one as well as in large dimensions (d ≥ 3), this formal analysis is actually false, and
the limiting equation remains reversible. This is the reason of our introduction of the damping
variable α. This is also the reason why, in previous works, expectation values over random
phases were considered [Sp1], [La], [HLW], [EY].
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3 Statement of the Theorems

3.1 The rigorous convergence results

We are now able to describe the asymptotics L→ +∞, α→ 0 in Theorem 2.1. We begin with
some notations.

Definition 3.1
(i) For any D ≥ 0, we define the following spaces of test functions,

TD(RN ) := {Ψ(n) ∈ C0(RN ) s.t. 〈n〉DΨ(n) ∈ L∞(RN ) } , (3.1)

where we use the usual notation, 〈n〉 := (1 +n2)1/2. In the sequel, TD(RN ) will often be written
in short TD, without refering to the actual dimension of the underlying space RN . The space TD

is a Banach space, and its norm is given by,

‖Ψ‖TD
:= ‖〈n〉DΨ(n)‖L∞ . (3.2)

(ii) For any D ≥ 0, we define,

SD(RN ) := {Ψ(n) ∈ C0(RN ) s.t. 〈n〉a 〈∂n〉b Ψ(n) ∈ C0(RN ) , ∀ 0 ≤ a, b ≤ D } ,(3.3)

where as usual, 〈∂n〉 := (1−∆n)1/2. The space SD is a Banach space, and its norm is given by,

‖Ψ‖SD
:=

D∑
a,b=0

‖〈n〉a〈∂n〉bΨ(n)‖L∞ . (3.4)

Using these notations, we shall assume throughout the paper that the profiles ρ0
d and V̂ (the

data of the problem) satisfy,

ρ0
d(n) ∈ TD , V̂ (n) ∈ S2D , for some large (but fixed) D, say D ≥ 4 . (3.5)

Also, we pick up a coupling parameter λ satisfying, |λ| ≤ λ0, where λ0 is some small constant,
whose actual value only depends on the norms ‖ρ0

d(n)‖TD
and ‖V̂ (n)‖S2D

, but it does not de-
pend on L nor on α.

We are now in position to state the three main Theorems of the present paper.

Theorem 3.1 (A priori bounds and existence of weak limits).
Let ρL,α

d (t, n) and ρL,α
nd (t, n, p) be the unique solutions to (2.8) in C0

t (l2n) and C0
t (l2n,p) respectively.

Assume that the initial datum satisfies (2.10), and the potential satisfies (2.2), with profiles ρ0
d

and V̂ satisfying (3.5). Then the following holds.
(i) For any t ≥ 0, the following a-priori estimates hold for the diagonal part,

‖ρL,α
d (t, n)‖l1n

≤ C (preservation of trace) , (3.6)

‖ρL,α
d (t, n)‖l∞n ≤ C

L3
(maximum principle) , (3.7)

‖ρL,α
d (t, n)‖l2n

≤ C

L3/2
(interpolation) , (3.8)

14



where the constant C is of the form,

C := C(‖ρ0
d(n)‖TD

, ‖V̂ (n)‖S2D
) , (3.9)

but C is independent of t and α, a convention that we shall use throughout the paper. Also, the
non-diagonal part satisfies, for any t ≥ 0,

‖ρL,α
nd (t, n, p)‖l2n,p

≤ C

αL3
. (3.10)

(ii) Under the same circumstances, the following estimate on the derivative in time ∂tρ
L,α
nd holds,

for any t ≥ 0, ∫ t

s=0
‖∂tρ

L,α
nd (s, n, p)‖2

l2n,p
ds ≤ C

αL3
. (3.11)

(iii) Finally, the sequence ρL,α
d (t) is uniformly differentiable in time, in the sense that for any

t ≥ 0,

‖∂tρ
L,α
d (t, n)‖l2n

≤ C

αL3/2
. (3.12)

(iv) Define now the distributions ρL,α
d (t) and ρL,α

nd (t) (denoted by the same name for convenience)
acting respectively on functions φ(n) ∈ C∞c (R3) and Φ(n,p) ∈ C∞c (R3 × R3) through formulae,

〈ρL,α
d (t), φ〉 :=

∑
n

ρL,α
d (t, n)φ(

n

L
) , (3.13)

〈ρL,α
nd (t),Φ〉 :=

∑
n,p

ρL,α
nd (t, n, p)Φ(

n

L
,
p

L
) . (3.14)

Then ρL,α
d (t) and ρL,α

nd (t) extend continuously to the spaces TD(R3) and TD(R6) respectively, and,
for any t ≥ 0, the following estimates hold,∣∣〈ρL,α

d (t), φ〉
∣∣ ≤ C ‖φ(n)‖TD(R3) , (3.15)∣∣〈∂tρ

L,α
d (t), φ〉

∣∣ ≤ C

α
‖φ(n)‖TD(R3) , (3.16)∣∣〈ρL,α

nd (t),Φ〉
∣∣ ≤ C

α
‖Φ(n,p)‖TD(R6) . (3.17)

In particular, up to extracting subsequences, the distributions ρL,α
d (t) and ρL,α

nd (t) both possess
weak limits as L→∞, denoted by ρα

d (t) and ρα
nd(t), so that,

ρL,α
d (t) →L→∞ ρα

d (t) in C0(R+
t ;
[
TD(R3)

]∗ − weak∗) , (3.18)

∂tρ
L,α
d (t) →L→∞ ∂tρ

α
d (t) in

[
L1(R+

t ; TD(R3))
]∗ − weak∗ , (3.19)

ρL,α
nd (t) →L→∞ ρα

nd(t) in
[
L1(R+

t ; TD(R6))
]∗ − weak ∗ . (3.20)

Furthermore, ρα
d (t) possesses in turn a weak limit as α→ 0, say ρd(t), so that,

ρα
d (t) →α→0 ρd(t) in

[
L1(R+

t ; TD(R3))
]∗ − weak ∗ . (3.21)
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Remarks
1- The estimates (i) should be seen as scaling estimates in terms of the parameter L. They tell
us, in some sense, that for each t ≥ 0, the sequences ρL,α

d (t, n) and ρL,α
nd (t, n, p) behave in the

same way as sequences of the form,

1
L3
u(t,

n

L
) and

1
L6
v(t,

n

L
,
p

L
) , (3.22)

respectively, where u(t,n) and v(t,n,p) should be, say, smooth profiles defined on the whole
space.

This fact is naturally obvious at time 0. On the more, if one explicitely solves the Von-
Neumann equation (2.8) using Neumann-series and expressing ρL,α

nd (t) as well as ρL,α
d (t) in terms

of the initial datum, this is also formally the case at time t if we do not ask questions of
convergence. However the series built up in this way is very difficult to bound in a non-trivial
way, for we are not able to take advantadge of the many oscillations present at the discrete
level. We may indeed draw the following parallel: when the continuous limit L → ∞ has been
taken (See Theorem 3.2), we are led to manipulate series of collision operators (See (3.26) and
(3.27)) which involve iterated oscillating integrals. The oscillations then allow to make the series
converge in a nice way, thanks to Lemma 3.1 below. Now obviously this kind of argument is
completely forbidden while performing the continuous limit, where we still have to deal with
discrete sums.

The part (i) of the Theorem makes sure in this perspective that the natural scaling properties
in L of the solution to the Von-Neumann equation is actually propagated through time-evolution,
without writing down the above-mentionned Neumann series. This leads however to worse
estimates (ii) than expected, but fortunately these will be enough to take care of the continuous
limit.

Note finally that Theorem 3.1 is a-priori false for negative values of time.
2- As mentionned above, the estimate (ii) on the derivative in time ∂tρ

L,α
nd is somehow weaker

than what one would expect, in two respects: firstly, the estimate (ii) holds for averages in time,
and we do not know whether it holds true pointwise ; secondly, the scaling parameter L−3 on
the right-hand-side of (3.11) is much weaker than the L−6 one would expect for profiles of the
form (3.22). However, it is surprising that estimate (ii) hold uniformly in t.
3- This Theorem relies in an absolutely essential way on the following features of the Von-
Neumann equation under consideration: the Von-Neumann equation (2.8) has the so-called
Lindblad property (it preserves the positivity of the density matrix - see Lemma 2.1) ; the
initial data is purely diagonal (See (2.10)) ; the equation on the diagonal part involves the non-
diagonal part only on the right-hand-side. We emphasize in this respect that the l∞ bound (3.7)
is very specific (it is actually a direct consequence of the Lindblad property), and it is not at all
a general feature of the Schrödinger-like equations.

Armed with the apriori bounds of Theorem 3.1, we are now able to characterize the consecutive
asymptotics L→∞ and α→ 0, as follows.

Theorem 3.2 (Convergence as L→∞: the equation becomes Markovian)
Let ρL,α

d (t) and ρL,α
nd (t) be as in Theorem 3.1 and define their weak limits ρα

d (t) and ρα
nd(t) as
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stated in Theorem 3.1. Then the following holds,
(i) The weak limits satisfy the following system of equations,

∂tρ
α
d (t,n) = iλ

∫
R3

[
V̂ (n− k)ρα

nd(t,k,n)− V̂ (k− n)ρα
nd(t,n,k)

] dk
(2π)3

, (3.23)

ρα
nd(t,n,p) =

iλ

(2π)3

∫ +∞

u=0
e[i(n

2−p2)−α]uV̂ (p− n) [ρα
d (t,p)− ρα

d (t,n)] du (3.24)

+iλ
∫ +∞

u=0

∫
R3
e[i(n

2−p2)−α]u [V̂ (k− n)ρα
nd(t,k,p)− V̂ (p− k)ρα

nd(t,n,k)
] dk

(2π)3
du ,

with initial datum,

ρα
d (t,n)

∣∣
t=0

= ρ0
d(n) . (3.25)

The equations (3.23) and (3.24) hold between distributions belonging to
[
L1(R+

t ; TD)
]∗.

(ii) The system (3.23)-(3.24) implies that the following Boltzmann equation is satisfied,

∂tρ
α
d (t,n) =

∑
l≥1

λl+1[Qα
l ρ

α
d ](t,n) , (3.26)

with initial datum (3.25), where the collision operators Qα
l are defined as,

[Qα
l ρ

α
d ](t,n) := (2π)−3l(−2<)

∑
ε1,··· ,εl

∫
R3l

∫ +∞

u1=0

∫ +∞

u2=0
· · ·
∫ +∞

ul=0
(−1)ε̃1+···+ε̃l×

× exp
(
i[(n + ε1k1)2 − (n− ε̃1k1)2]u1 − αu1

)
×

× · · ·×
× exp

(
i[(n + ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · ε̃lkl)2]ul − αul

)
×

×[iV̂ (k1)] · · · [iV̂ (kl)]× [iV̂ ∗(k1 + · · ·+ kl)]ρα
d (t,n + ε1k1 + · · ·+ εlkl) dk1 · · · dkl .

(3.27)

Here, variables ε1, · · · , εl are as in Theorem 2.1. Also, the leading term in the series (3.26) is,

λ2[Qα
1 ρ

α
d ](t,n) = 2

∫
R3

∫ +∞

u=0
exp(−αu) cos

(
[n2 − k2]u

)
× (3.28)

×|V̂ (n− k)|2[ρα
d (t,k)− ρα

d (t,n)]
dk

(2π)3
.

(iii) The equation (3.26) makes sense weakly, when tested against test functions φ(n) ∈ S2D(R3).
More precisely, for any such φ, we have,

〈∂tρ
α
d (t), φ〉 =

∑
l≥0

λl+1〈ρα
d (t), tQα

l φ〉 , (3.29)

where tQα
l φ denotes the formal adjoint of Qα

l , defined as,

[tQα
l φ](t,n) := (2π)−3l(+2<)

∑
ε1,··· ,εl

∫
R3l

∫ +∞

u1=0

∫ +∞

u2=0
· · ·
∫ +∞

ul=0
(−1)ε1+···+εl×

× exp
(
i[(n + ε2k2 + · · ·+ εlkl)2 − (n + k1 + ε2k2 + · · ·+ εlkl)2]u1 − αu1

)
×

× exp
(
i[(n + ε3k3 + · · ·+ εlkl)2 − (n + k1 + k2 + ε3k3 + · · ·+ εlkl)2]u1 − αu1

)
×

× · · ·×
× exp

(
i[n2 − (n + k1 + · · ·+ kl)2]ul − αul

)
×

×[iV̂ (k1)] · · · [iV̂ (kl)]× [iV̂ ∗(k1 + · · ·+ kl)] φ(t,n + ε1k1 + · · ·+ εlkl) dk1 · · · dkl .

(3.30)
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Also, the following estimate holds,

λl+1
∣∣〈ρα

d (t), tQα
l φ〉

∣∣ ≤ λl+1 C C l
0 ‖V̂ (n)‖l+1

S2D
‖φ‖S2D

, (3.31)

for some universal constant C0, together with some constant C of the form (3.9). The estimate
(3.31) implies the convergence of the series (3.29), at least for λ small enough. Also, the estimate
(3.31) together with the equation (3.29) imply that ρα

d (t) is actually uniformly (in α) bounded
in the space,

C1(R+
t ;
[
S2D

]∗ − weak∗) ,

so that the weak convergence ρα
d (t) → ρd(t) also holds in C0(R+

t ;
[
S2D

]∗ − weak∗).

Theorem 3.3 (Convergence as α→ 0: obtaining the Quantum Boltzmann equation)
Let ρα

d (t) be as in Theorem 3.2 and define its weak limit ρd(t) as stated in Theorem 3.1. Then
the following holds,
(i) The following Boltzmann equation is satisfied,

∂tρd(t,n) =
∑
l≥1

λl+1[Qlρd](t) , (3.32)

with initial datum,

ρd(t,n)
∣∣
t=0

= ρ0
d(n) , (3.33)

where the collision operators Ql are defined as,

[Qlρd](t,n) := (2π)−3l(−2<)
∑

ε1,··· ,εl

∫
R3l

∫ +∞

u1=0

∫ +∞

u2=0
· · ·
∫ +∞

ul=0
(−1)ε̃1+···+ε̃l×

× exp
(
i[(n + ε1k1)2 − (n− ε̃1k1)2]u1

)
×

× · · ·×
× exp

(
i[(n + ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · ε̃lkl)2]ul

)
×

×[iV̂ (k1)] · · · [iV̂ (kl)]× [iV̂ ∗(k1 + · · ·+ kl)]ρd(t,n + ε1k1 + · · ·+ εlkl) dk1 · · · dkl .

(3.34)

Here, variables ε1, · · · , εl are as in Theorem 2.1. The equations (3.32), (3.33) and (3.34) hold
between distributions belonging to, say, L∞(R+

t ;
[
S2D

]∗ − weak∗).
(ii) Also, the leading term in the series (3.32) is,

λ2[Q1ρd](t,n) = 2πλ2
∫

R3
δ(k2 − n2)|V̂ (n− k)|2 [ρd(t,k)− ρd(t,n)]

dk
(2π)3

, (3.35)

as predicted by the Fermi Golden Rule.
(iii) The equation (3.26) makes sense weakly, when tested against test functions φ(n) ∈ S2D(R3).
More precisely, for any such φ, we have,

〈∂tρd(t), φ〉 =
∑
l≥0

λl+1〈ρd(t), tQlφ〉 , (3.36)

where tQlφ denotes the formal adjoint of Ql (See (3.30)), and where the following estimate holds,

λl+1
∣∣〈ρd(t), tQlφ〉

∣∣ ≤ λl+1 C C l
0 ‖V̂ (n)‖l+1

S2D
‖φ‖S2D

, (3.37)

for some universal constant C0, together with some constant C of the form (3.9).
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Remark
Firstly, equations (3.26) and (3.32) are indeed of the form (1.2) and (1.3) respectively. Secondly,
it can be proved that the full series in the potential which defines the cross-section in (3.32) is
nothing else than the celebrated Born series. By this, we mean that the equation (3.32) can be
put under the form,

∂tρd(t,n) = 2π
∫

R3
δ(k2 − n2)b(k,n)[ρd(t,k)− ρd(t,n)]dk , (3.38)

where the coefficient b(k,n) is given by the Born series,

b(k,n) = λ2|V̂ |2(n− k)− 2λ3=
∫

R3

V̂ (n− k)V̂ (k− k′)V̂ (k′ − n)
k′2 − n2 + i0

dk′ + . . . (3.39)

This point is not obvious from the expression (3.34). The proof will be detailed in a future work
[Ca2].

3.2 An oscillatory integral estimate

Before turning to the proofs of the above theorems, we state the key estimate which allows to
pass to the limit L → ∞ and α → 0 in (2.8). This estimate allows to control the oscillations
produced by the free Hamiltonian so as to recover the oscillatory integrals in Theorem 3.3 and
in particular the Dirac mass in energy in formula (3.35) as α → 0. Also, since our method
relies on the iteration of Duhamel’s formula and leads therefore to oscillatory integrals in large
dimensions, it allows to control the growth of the oscillatory integrals with the dimension. Both
aspects are of key importance (See remarks 2 and 3 below). This Lemma heavily relies on the
commutation structure i∂tρ̃ = (−∆x + ∆y)ρ̃+ · · · of the original Von-Neumann equation.

Lemma 3.1 (Oscillatory Integrals with quadratic phases in large dimensions)
Let ψ(n) satisfy ψ ∈ L∞(R3). Then, the collision kernel Ql(ψ)(n) as defined in Theorem 3.3

is well defined and acts continuously on the Sobolev space W 4,∞(R3). More precisely, for any
choice of the test function φ ∈W 4,∞(R3), and for any choice of ε := (ε1, · · · , εl) as in Theorem
2.1, we have,
(i) The following oscillatory integral makes sense,

〈εQl(ψ), φ〉 :=
∫ +∞

u1=0
· · ·
∫ +∞

ul=0

∫
R3(l+1)

exp
(
i [(n + ε1k1)2 − (n− ε̃1k1)2] u1

)
×

× exp
(
i [(n + ε1k1 + ε2k2)2 − (n− ε̃1k1 − ε̃2k2)2] u2

)
×

× · · · ×
× exp

(
i [(n + ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2]ul

)
×

×V̂ (k1) V̂ (k2) · · · V̂ (kl)V̂ ∗(k1 + · · ·+ kl)×
× ψ(n + ε1k1 + · · ·+ εlkl) φ(n) dn dk1 · · · dkl du1 · · · dul .

(ii) Moreover, the integral defining 〈εQl(ψ), φ〉 converges absolutely in the variables u1, · · · , ul.
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In particular,

lim
α→0+

〈εQα
l (ψ), φ〉 :=

= lim
α→0+

∫ +∞

u1=0
· · ·
∫ +∞

ul=0

∫
R3(l+1)

exp
(
i [(n + ε1k1)2 − (n− ε̃1k1)2] u1 − αu1

)
× · · · ×

× exp
(
i [(n + ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2]ul − αul

)
×

×V̂ (k1) · · · V̂ (kl)V̂ ∗(k1 + · · ·+ kl) ψ(n + ε1k1 + · · ·+ εlkl) φ(n)
= 〈εQl(ψ), φ〉 .

(iii) Finally, the following exponential bound holds, for some universal constant C0,

|〈εQl(ψ), φ〉| ≤ C l
0 ‖V̂ ‖l+1

W 8,1(R3) ‖ψ‖L∞(R3) ‖φ‖W 4,∞(R3) , (3.40)

and the same bound (with a different absolute constant) obviously holds for 〈Ql(ψ), φ〉 as well,
since Ql =

∑
ε

εQl, where the sum carries over all possible sequences ε.

Remarks
1- The method of proof given below allows to establish various estimates of the same kind than
(3.40). For instance, we may mention without proof the estimate,

|〈εQl(ψ), φ〉| ≤ C l
0 ‖V̂ ‖l+1

W 8,1(R3)∩W 8,∞(R3) ‖ψ‖Mb(R3) ‖φ‖W 4,∞(R3) , (3.41)

where Mb stands for the space of bounded measures.
2- The idea of the proof is the following: all the above quantities are of the form,∫

R3(l+1)

∫ +∞

u1,··· ,ul=0
exp[iqu1,··· ,ul

(x)]Φ(x) dx du1 · · · dul , (3.42)

where qu1,··· ,ul
(x) is a quadratic form in x, whose coefficients depend on u1, · · · , ul, and the diffi-

culty stems from the need to integrate (3.42) up to u1 = · · · = ul = ∞. By the stationnary phase
formula, we know that the quantity

∫
exp[iqu1,··· ,ul

(x)]Φ(x)dx decays like |det(qu1,··· ,ul
)|−1/2 at

infinity as a function of the u-variables, at least if the function Φ is sufficiently smooth. Hence
the control of quantities like (3.42) reduces to controlling that det(qu1,··· ,ul

) grows fast enough at
infinity, as well as to controlling the number of derivatives needed by the use of the stationnary
phase formula.
3- The bound (3.40) is important in two respects. Firstly, the left-hand-side is uniformly
bounded using a fixed (independent of l) number of derivatives in V̂ , φ, although the singu-
larity created by the oscillatory exponentials apparently grows with l. In other words, the
oscillatory integrals above do not act as iterated derivatives on φ, but rather as distributions of
fixed order. Secondly, the constant involved in (3.40) grows geometrically with l. Both points
are crucial since the case of iterated derivatives could lead to a growth of 〈εQl(ψ), φ〉 like l!
(hence to diverging series).
4- Up to some change of variables, one can see this Lemma as a definition of distributions like,

(n2 − k2
1 + i0)−1 × (n2 − k2

2 + i0)−1 × · · · × (n2 − k2
l + i0)−1 (3.43)
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in D′
(R3(l+1)). Indeed, Lemma 3.1 should be compared with the well-known formula, valid in

D′
(R), ∫ +∞

s=0
exp (isx) ds = +πδ(x) + iv.p.(1/x) = −i(x + i0)−1 .

However, the definition of distributions like (3.43) is not in general a consequence of the usual
theorems about the prolongation and composition of homogeneous distributions (See [Hö]), nor
it is a consequence of the usual theorems about the composition and products of distribution
with “well-behaved” wave-fronts. This is due to the fact that the singularity near the origin
n2 = k2

1 = · · · = k2
l = 0 and near all the axes is too severe. In particular, the definition

of such distributions a priori involves products of Dirac masses, a forbidden operation. The
above Lemma shows that this is fortunately not the case, and this relies on the fact that the
+i0 and −i0 occur at the right places due to the specific commutator structure of the original
equation (See (4.20) and the last step of the proof of this Lemma). This is formally in analogy
with the well-known fact that the distribution (x + i0)−2 is well-defined, whereas the product
(x + i0)−1(x− i0)−1 does not make sense.
5- In the particular case l = 1, we can identify the oscillatory integrals as,

<
∫ +∞

u=0

∫
R6

exp (i[n2 − k2]u)ψ(n,k) dn dk du = π

∫
R6
δ(n2 − k2) ψ(n,k) dn dk , (3.44)

where the distribution δ(n2 − k2) has the usual meaning (See [Hö]).
5- The proof below goes through when the variables n, k1, etc. in Lemma 3.1 belong to the
d-dimensional space Rd, for any dimension d ≥ 3 (See (4.25)), up to replacing ‖V̂ ‖W 8,1(R3)

by ‖V̂ ‖W 2(d+1),1(Rd), and ‖φ‖W 4,∞(R3) by ‖φ‖W d+1,∞(Rd). We mention in passing the obvious
imbedding S8(R3) ⊂W 8,1(R3).

4 Proofs

4.1 Proof of Lemma 2.1: Positivity of the density matrix

Equation (2.5) is linear. For fixed time, we can obviously bound the l2(Z6
n,p)-norm of the right-

hand-side of (2.5) by,

‖ · · · ‖l2 ≤ 2 ‖(2πL)−3V̂ (k/L)‖l1(Z3
k
) ‖ρ(t, n, p)‖l2(Z6

n,p) ,

The quantity ‖(2πL)−3V̂ (k/L)‖l1(Z3
k
) is obviously bounded for fixed L if V satisfies (2.2). Also

the l2-norm of ρ(t, n, p)
∣∣
t=0

is bounded initially. Indeed,

‖ρ(t, n, p)
∣∣
t=0

‖l2n,p
≤ ‖(2πL)−3ρ0

d(n/L)‖l2n
,

and this last quantity is bounded for fixed L since ρ0
d decays nicely (assumption (2.10)). All this

clearly proves the first part of the Lemma (existence and uniqueness in C0(l2)).
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The second part of the Lemma is proved by observing that the system (2.8) is of Linblad-
form. More precisely, let ρ̃(t, x, y) be the inverse Fourier transform of ρ(t, n, p). Then ρ̃ satisfies,

T−1∂tρ̃(t, x, y) = −i(−∆x + ∆y)ρ̃(t, x, y) (4.1)
−iλ(V (x)− V (y))ρ̃(t, x, y) + αF (ρ̃)(t, x, y) ,

where the linear operator F reads,

F (ρ̃) =
1
2

∑
n∈Z

2Lnρ̃L
∗
n − L∗nLnρ̃− ρ̃L∗nLn , (4.2)

up to defining the linear operators Ln, and their hermite-conjugates L∗n, acting on L2([0, 2πL]3),
as,

Ln(x, y) =
exp(inx/L)
(2πL)3/2

× exp(−iny/L)
(2πL)3/2

,

i.e. to each function φ(x) ∈ L2([0; 2πL]3), Ln associates,

(Lnφ)(x) :=
∫

y∈[0;2πL]3
Ln(x, y)φ(y) dy .

We clearly have Ln = L∗n. Note that we do not give any details about the problems of convergence
in the series defining F . We leave the simple limiting argument to the reader, which involves a
truncated sum and then goes to the infinite series defining F . The proof of (4.2) is obtained by
observing that (here, F denotes Fourier transform on the Torus (R/2πL)3),

F (ρ̃)(t, x, y) = −F−1[ρ(t, n, p)1(n 6= p)]
= F−1[ρ(t, n, p)1(n = p)− ρ(t, n, p)]

=
∑
n

Ln(x, y)
∫
(a,b)∈R6

Ln(b, a)ρ̃(t, a, b) da db− ρ̃(t, x, y) ,

and formula (4.2) follows.
This proves that equation (4.1) (or: (2.8)) is of Lindblad form, and in particular, the density

matrix ρ̃ remains positive (as an operator) for all non-negative values of time [Li]. This implies
the non-negativity of ρd for t ≥ 0. The hermitianity is easily seen by uniqueness.

4.2 Proof of Theorem 2.1: A closed equation on the diagonal part of the
density matrix

We follow the computations in [Ca1].
First step. Getting an abstract equation for ρL,α

d . We first rewrite the original system (2.8) on
ρL,α

nd , ρL,α
d in the following form,

∂tρ
L,α
nd (t, n, p) = +i

n2 − p2

L2
ρL,α

nd +−αρL,α
nd + (AρL,α

d )(t, n, p) + (BρL,α
nd )(t, n, p) , (4.3)

∂tρ
L,α
d (t, n, p) = (BρL,α

nd )(t, n, n) , (4.4)
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where we have introduced the following notations,
(AρL,α

d )(t, n, p) = +
iλT

(2πL)3
V̂ (

p− n

L
)[ρL,α

d (t, p)− ρL,α
d (t, n)] ,

(BρL,α
nd )(t, n, p) = +

iλT

(2πL)3
∑
k 6=p

[
V̂ (

k − n

L
)ρL,α

nd (t, k, p)− V̂ (
p− k

L
)ρL,α

nd (t, n, k)
]
.

(4.5)

Now, we first use (4.3) in order to compute ρL,α
nd as an explicit function of ρL,α

d , and then insert the
corresponding formula for ρL,α

nd into the right-hand-side of (4.4). For that purpose, we introduce
the following operator,

(SρL,α
nd )(t, n, p) =

∫ Tt

0
exp (+i

n2 − p2

L2
s− αs) ρL,α

nd (t− T−1s, n, p) ds , (4.6)

and the same formula when ρL,α
nd is replaced by any function v(t, n, p). Obviously here S

stands for “Schrödinger”, since for any function v(t, n, p), the associated function (Sv)(t, n, p) :=
w(t, n, p) is the unique solution to the equation, T−1∂tw(t, n, p) = +i

n2 − p2

L2
w(t, n, p)− αw(t, n, p) + v(t, n, p) ,

w(t = 0, n, p) = 0 .

With these notations, we easily integrate (4.3), using the fact that ρL,α
nd vanishes initially, and

obtain,

ρL,α
nd (t, n, p) = (SAρL,α

d )(t, n, p) + (SBρL,α
nd )(t, n, p) . (4.7)

Therefore, iterating this formula gives the following Neumann series for ρL,α
nd ,

ρL,α
nd (t, n, p) =

+∞∑
l=0

(
[SB]l(SAρL,α

d )
)
(t, n, p) . (4.8)

We now insert this expression into the equation (4.4), and obtain,

∂tρ
L,α
d (t, n) =

+∞∑
l=0

(
B[SB]l(SAρL,α

d )
)
(t, n, n) =

+∞∑
l=1

(
[BS]l(AρL,α

d )
)
(t, n, n) . (4.9)

This is the abstract form of Theorem 2.1. Obviously, we have used here the fact that ∂tρ
L,α
d

depends on ρL,α
nd only in (4.4) (See above).

Second step. Getting an explicit equation on ρL,α
d .

It remains now to translate (4.9) into a more explicit formula. For that purpose, we rewrite the
definition of the operator B (See (4.5)) into the following form,

(BρL,α
nd )(t, n, p) = +

iλT

(2πL)3
∑
k1

V̂ (
k1

L
)
[
ρL,α

nd (t, n+ k1, p) 1(n+ k1 6= p)

− ρL,α
nd (t, n, p− k1) 1(n 6= p− k1)

]
=

λT

(2πL)3
∑
ε1,k1

(−1)ε̃1 [iV̂ (
k1

L
)]ρL,α

nd (t, n+ ε1k1, p− ε̃1k1) 1(n+ ε1k1 6= p− ε̃1k1) . (4.10)
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Here, the same convention as in Theorem 2.1 has been used, namely,

ε1 = 0 or 1 , ε̃1 = 1− ε1 .

We iterate formula (4.10), and use (4.6), in order to compute the explicit value of each term
[BS]l(AρL,α

d )(t, n, n) in (4.9). This easily gives,

∂tρ
L,α
d (t, n) =

+∞∑
l=1

(Q
′
lρ

L,α
d )(t, n) , (4.11)

with,

(Q
′
lρ

L,α
d )(t, n) = T

[ λ

(2πL)3
](l+1) ∑

ε1 ,··· ,εl

∑
k1 ,··· ,kl

∫
u1,··· ,ul

(−1)ε̃1+···+ε̃l × (4.12)

× exp
(
i

(n+ ε1k1)2 − (n− ε̃1k1)2

L2
u1 − αu1

)
×

× exp
(
i

(n+ ε1k1 + ε2k2)2 − (n− ε̃1k1 − ε̃2k2)2

L2
u2 − αu2

)
×

× · · · × exp
(
i

(n+ ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2

L2
ul − αul

)
×

×[iV̂ (
k1

L
)] [iV̂ (

k2

L
)] · · · [iV̂ (

kl

L
)] × [iV̂ (−k1 + k2 + · · · kl

L
)] ×

×[ρL,α
d (t− T−1(u1 + u2 + · · ·+ ul), n− ε̃1k1 − ε̃2k2 − · · · − ε̃lkl)

−ρL,α
d (t− T−1(u1 + u2 + · · ·+ ul), n+ ε1k1 + ε2k2 + · · ·+ εlkl)] .

On the more, iterating also (4.6), and the characteristic function 1(n+ε1k1 6= p−ε̃1k1) appearing

in (4.10), we easily observe that the sums
∑

ε1 ,··· ,εl

∑
k1 ,··· ,kl

and integrals
∫

u1,··· ,ul

in (4.12), carry

over the sets (2.14), (2.15), (2.16) given in Theorem 2.1.

Last Step. Getting the Theorem.
As a last step, we finally transform (4.12) into the form (2.12), (2.13) given in Theorem 2.1. We
first observe that, due to the factor [ ρL,α

d (t−T−1(u1 + · · · ), n− ε̃1k1− · · · )− ρL,α
d (t−T−1(u1 +

· · · ), n+ ε1k1 + · · · ) ] in (4.12), the term Q
′
lρ

L,α
d naturally splits into two terms,

Q
′
lρ

L,α
d = Q

(1)
l ρL,α

d −Q
(2)
l ρL,α

d , (4.13)

using the obvious notation. On the other hand, due to (2.2), V is real-valued, so that,

∀ k , V̂ (−k) = V̂ ∗(k) ,

and we are able to replace in (4.12),

V̂ (−k1 + k2 + · · · kl

L
) = V̂ ∗(

k1 + k2 + · · · kl

L
) .

24



This, together with the fact that ρL,α
d is real-valued (See Lemma 2.1), yields,

(Q(1)
l ρL,α

d )(t, n) :=

:= T
[ λ

(2πL)3
](l+1) ∑

ε1 ,··· ,εl

∑
k1 ,··· ,kl

∫
u1,··· ,ul

(−1)ε̃1+ε̃2+···+ε̃l ×

× exp
(
i

(n+ ε1k1)2 − (n− ε̃1k1)2

L2
u1 − αu1

)
×

× exp
(
i

(n+ ε1k1 + ε2k2)2 − (n− ε̃1k1 − ε̃2k2)2

L2
u2 − αu2

)
×

× · · · ×

× exp
(
i

(n+ ε1k+ · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2

L2
ul − αul

)
×

×[iV̂ (
k1

L
)] [iV̂ (

k2

L
)] · · · [iV̂ (

kl

L
)] × [iV̂ ∗(

k1 + k2 + · · · kl

L
)] ×

×ρL,α
d (t− T−1(u1 + u2 + · · ·+ ul), n− ε̃1k1 − ε̃2k2 − · · · − ε̃lkl)

= ( perform the change of variables ε̃j → εj , and kj → −kj ,

for all 1 ≤ j ≤ l , and use V̂ (−k) = V̂ ∗(k) ) ,

= −
(
T
[ λ

(2πL)3
](l+1) ∑

ε1 ,··· ,εl

∑
k1 ,··· ,kl

∫
u1,··· ,ul

(−1)ε̃1+ε̃2+···+ε̃l ×

× exp
(
i

(n+ ε1k1)2 − (n− ε̃1k1)2

L2
u1 − αu1

)
×

× exp
(
i

(n+ ε1k1 + ε2k2)2 − (n− ε̃1k1 − ε̃2k2)2

L2
u2 − αu2

)
×

× · · · ×

× exp
(
i

(n+ ε1k1 + · · ·+ εlkl)2 − (n− ε̃1k1 − · · · − ε̃lkl)2

L2
ul − αul

)
×

×[iV̂ (
k1

L
)] [iV̂ (

k2

L
)] · · · [iV̂ (

kl

L
)] × [iV̂ ∗(

k1 + k2 + · · · kl

L
)] ×

×ρL,α
d (t− T−1(u1 + u2 + · · ·+ ul), n+ ε1k1 + ε2k2 + · · ·+ εlkl)

)∗
= −

(
Q

(2)
l ρL,α

d (t, n)
)∗
.

Therefore, equation (4.12) has the form,

∂tρ
L,α
d =

+∞∑
l=1

Q
′
lρ

L,α
d =

+∞∑
l=1

Q
(1)
l ρL,α

d −Q
(2)
l ρL,α

d =
+∞∑
l=1

−
(
Q

(2)
l ρL,α

d

)∗ −Q
(2)
l ρL,α

d

= −2<
+∞∑
l=1

Q
(2)
l ρL,α

d .

This is exactly the formula given in Theorem 2.1. This ends the proof.
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4.3 Proof of Lemma 3.1: Controlling oscillatory integrals

The proof is given in three steps.

First Step. Changing variables
Let us look at the first exponential in Lemma 3.1. If ε1 = 0, its argument involves the quan-
tity n2 − (n − k1)2, in which case one should change variables N = n, K1 = n − k1, and the
exponential becomes,

exp (i[N2 −K2
1]u1) . (4.14)

On the other hand, if ε1 = 1, the argument in the first exponential is (n + k1)2 − n2, and one
should change variables N = n, K1 = n + k1 and get,

exp (i[K2
1 −N2]u1) . (4.15)

In order to fix the ideas, let us consider we are in the case ε1 = 0.
We now come to the second exponential. If ε2 = 0, we change variables, K2 = n− k1 − k2, and
the first two exponentials give,

exp (i[N2 −K2
1]u1) exp (i[N2 −K2

2]u2) , (4.16)

while in the case ε2 = 1, we come up against the change of variables K2 = n + k2 and obtain,

exp (i[N2 −K2
1]u1) exp (i[K2

2 −K2
1]u2) . (4.17)

Proceeding further gives therefore the following typical product of exponentials, say,

exp (i[N2 −K2
1]u1) exp (i[K2

2 −K2
1]u2) × (4.18)

× exp (i[K2
3 −K2

1]u3) exp (i[K2
3 −K2

4]u4) · · · =
= exp (+iN2u1) exp (−iK2

1[u1 + u2 + u3]) exp (+iK2
2u2) ×

× exp (+iK2
3[u3 + u4]) exp (−iK2

4u4) · · · .

Now let us decribe this procedure in the general case.
The linear change of coordinates needed in this approach obviously depends on the values

of ε1, · · · , εl in 〈εQl(ψ), φ〉, but its Jacobian has always the value ±1 (its matrix is a triangle
with ±1 on the diagonal). Actually, the exact value of this linear change of variables is in any
case,

N = n,
K1 = n + ε1k1 if ε1 = 1 , n− ε̃1k1 else ,
K2 = n + ε1k1 + ε2k2 if ε2 = 1 , n− ε̃1k1 − ε̃2k2 else ,

· · ·
Kl = n + ε1k1 + ε2k2 + · · ·+ +εlkl if εl = 1 ,

n− ε̃1k1 − ε̃2k2 − ε̃lkl else .

(4.19)
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Also, and in any case, the change of variables (4.19) transforms the oscillatory exponentials
exp{iu1[(n + ε1k1)2 − (n + ε̃1k1)2]} · · · in the old variables into the following typical oscillating
exponential in the new variables,

exp{i[±N2(u1 + u2 + u3)±K2
1u1 ±K2

2u2 ±K3(u3 + u4 + u5) (4.20)
±K2

4u4 ±K2
5(u5 + u6) · · · ]} ,

or, in a more abstract form,

exp{i[±N2(u1 + · · ·+ ui0) +
i0−1∑
i=1

±K2
iui (4.21)

±K2
i0(ui0 + · · ·+ ui1) +

i1−1∑
i=i0+1

±K2
iui

±K2
i1(ui1 + · · ·+ ui2) + · · · ]} ,

for some indices 1 ≤ i0 ≤ i1 ≤ · · · depending on the exact value of the ε’s, and where the signs
± in (4.20)- (4.21) have some unimportant value, depending on the ε’s as well.

We have now described the effect of the change of variables (4.19) on the oscillating expo-
nentials appearing in the definition of 〈εQl(ψ), φ〉. Before ending this first step, we now mention
the effect of this change of variables on the function V̂ (k1) · · · V̂ (kl)V̂ ∗(k1 + · · · + kl)ψ(n +
ε1k1 + · · · + εlkl)φ(n) appearing in 〈εQl(ψ), φ〉. It is straightforward to see that this function
becomes, in the new variables,

V̂ (N−K1)V̂ (K1 −K2) · · · V̂ (Kl−1 −Kl)V̂ (Kl −N)ψ(N)φ(N) , (4.22)

if ε = (ε1, · · · , εl) = (0, · · · , 0) (this is the so-called “gain-term” in the full collision kernel
Ql =

∑
ε

εQl). If ε 6= (0. · · · , 0) (the “loss”-terms), we recover the typical value (say),

V̂ (N−K1) V̂ (N−K2) · · · V̂ (Kl−1 −Kl)V̂ ∗(Ka −Kl)ψ(Ka)φ(N) , (4.23)

for some value of the index a, where, as in the gain term, each of the variables N, K1, · · · , Kl

appear twice as the argument of the function V̂ , and amongst these variables, one (and only
one) of them appears also as the argument of the test function ψ.

Again, the exact values of the indices in formula (4.23) depend on the exact value of the
sequence ε, but the above described structure is present for any ε.

Second Step. Proving the Lemma when ε1 = ε2 = · · · = εl = 0 - the gain term.
We are now led to studying the convergence of the integrals 〈εQl(ψ), φ〉 where the exponentials
have the form (4.20) (or: (4.21)) above.

We begin by studying the easier case where ε1 = ε2 = · · · = εl = 0.
In this case, as we explained in the first step above, the change of variables (4.19) leads to
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studying,

〈εQl(ψ), φ〉 :=
∫ +∞

u1=0
· · ·
∫ +∞

ul=0

∫
R3(l+1)

exp
(
+ i N2[u1 + · · ·+ ul]

)
×

× exp
(
− i K2

1u1
)

exp
(
− i K2

2u2
)
· · · exp

(
− i K2

l ul

)
×

×V̂ (N−K1) V̂ (K1 −K2) · · · V̂ (Kl−1 −Kl)V̂ ∗(N−Kl)×
×ψ(N) φ(N) dN dK1 · · · dKl du1 · · · dul . (4.24)

Now we split the time integral
∫
du1 · · ·

∫
dul according to the 2l different cases: u1 ≥ or ≤ 1,

u2 ≥ or ≤ 1, · · · , ul ≥ or ≤ 1.

* On the set where u1, u2, · · · , ul are all ≤ 1, we observe that the corresponding contribution
to 〈εQl(ψ), φ〉 is,

≤ C1 ‖ψ‖L∞(R3)∫
R3(l+1)

∣∣V̂ (N−K1) V̂ (K1 −K2) · · · V̂ (Kl−1 −Kl)V̂ ∗(N−Kl)φ(N)
∣∣ dNdK1 · · · dKl ,

for some universal constant C1, and therefore it is bounded by,

≤ C1 ‖V̂ ‖l+1
L1(R3) ‖ψ‖L∞(R3) ‖φ‖L∞(R3) .

* If, say, u1 is ≥ 1, and all the other variables are ≤ 1, we use Parseval formula in the K1

variable, and rely on the well-known formula,∫
x∈R3

exp (i
λx2

2
)f(x) dx = C2

∫
ξ∈R3

λ−3/2 exp (−i ξ
2

2λ
) f̂(ξ) dξ , (4.25)

for some universal constant C2. This gives that the corresponding contribution to
〈εQl(ψ), φ〉 is, for some other universal constant C3 related to C2,

= C3

∫ +∞

u1=1

∫ 1

u2=0
· · ·
∫ 1

ul=0

∫
R3(l+1)

exp
(
+ i N2[u1 + · · ·+ ul]

)
×

×
exp

(
+ i

ξ2
1

u1

)
u

3/2
1

× exp
(
− i K2

2u2
)
· · · exp

(
− i K2

l ul

)
×

×
(
FK1→ξ1 V̂ (N−K1) · · · V̂ (Kl−1 −Kl)V̂ ∗(N−Kl)ψ(N)φ(N)

)
×dN dξ1 dK2 · · · dKl du1 · · · dul . (4.26)
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Obviously, we can bound (4.26) by,

≤ C3 ×
∫ +∞

u1=1

du1

u
3/2
1

‖ψ‖L∞(R3)

∫
R3(l+1)

∣∣FK1→ξ1 V̂ (N−K1) · · ·

· · · V̂ (Kl−1 −Kl)V̂ ∗(N−Kl)φ(N)
∣∣ dNdξ1dK2 · · · dKl

≤ C4 ‖ψ‖L∞(R3) ×
[ ∫

R3
(1 + |x|4)−1 dx

]
×
∫

R3(l+1)

∣∣(1−∆2
K1

)
[
V̂ (N−K1) ×

×V̂ (K1 −K2) · · · V̂ ∗(N−Kl)φ(N)
]∣∣ dNdK1dK2 · · · dKl

≤ C5 ‖V̂ ‖2
W 4,1(R3) ‖V̂ ‖

l−1
L1(R3) ‖ψ‖L∞(R3) ‖φ‖L∞(R3)

≤ C6 ‖V̂ ‖l+1
W 4,1(R3) ‖ψ‖L∞(R3) ‖φ‖L∞(R3) . (4.27)

Here C3, · · · , C5 are universal constants.
* If, say, u1 and u2 are ≥ 1, the other variables being ≤ 1, the same method (Fourier transform
in K1 and K2) obviously leads to bounding the corresponding contribution to 〈εQl(ψ), φ〉 by,

≤ C7 ‖ψ‖L∞(R3)

∫
R3(l+1)

∣∣(1−∆2
K1

) (1−∆2
K2

)
[
V̂ (N−K1) V̂ (K1 −K2) · · ·

· · · V̂ ∗(N−Kl)φ(N)
]∣∣ dNdK1 · · · dKl

≤ C8 ‖ψ‖L∞(R3) ‖V̂ ‖3
W 8,1(R3) ‖V̂ ‖

l−2
L1R3)‖φ‖L∞(R3) ,

hence this is bounded by,

≤ C8 ‖ψ‖L∞(R3) ‖V̂ ‖l+1
W 8,1(R3)‖φ‖L∞(R3) .

* Continuing this procedure allows to bound all the contributions to 〈εQl(ψ), φ〉, including the
worst case where all the uj ’s are ≥ 1. Indeed, in this case we Fourier transform in K1, · · · , Kl,
and obtain a bound like,

≤ C l
9 ×

∫ +∞

u1=1
· · ·
∫ +∞

ul=1
[u1 u2 · · · ul]−3/2 du1 · · · dul ‖ψ‖L∞(R3) ×

×
∫

R3(l+1)

∣∣(1−∆2
K1

) · · · (1−∆2
Kl

)
[
V̂ (N−K1) · · ·

· · · V̂ ∗(N−Kl)φ(N)
]∣∣ dNdK1 · · · dKl

≤ C l
10 ‖ψ‖L∞(R3)‖V̂ ‖l+1

W 8,1(R3) ‖φ‖L∞(R3) .

Note that we never differentiate nor use the Parseval formula in the N variable, hence we do
not need differentiability properties of the function ψ.

Now, all the constants appearing while bounding 〈εQl(ψ), φ〉 depend geometrically on l,
including the number of terms in which one is led to split Il(ψ, φ) (this number is 2l). This gives
the following bound on the gain term (i.e. in the particular case ε1 = · · · = εl = 0),

|〈εQl(ψ), φ〉| ≤ C l
11‖ψ‖L∞(R3)‖V̂ ‖W 8,1(R3)‖φ‖L∞(R3) , (4.28)

29



where C11 is some universal constant.
We emphasize the fact that this bound implies the corresponding bound in Lemma 3.1, but

it is actually much better an estimate. Indeed, the bound (4.28) says that the operator εQl (in
the case ε1 = · · · = εl = 0) sends L∞(R3) into its dual continuously, whereas Lemma 3.1 implies
a loss of four derivatives.

We finally mention that the absolute convergence in the u-variables of the integrals defining
εQl is an obvious consequence of the above computations (i.e. of the absolute convergence of∫∞
1 u−3/2du).

Last Step. The general case - the loss terms.
The method indicated above in the special case ε1 = · · · = εl = 0 works without any modifica-
tion for any value of the numbers εj . However, the bound on 〈εQl(ψ), φ〉 given by this method
in the case of the “loss”-terms differs from the one obtained in the case of the “gain”-term (See
(4.28)) in that we shall now obtain a bound with loss of derivatives.

Indeed, for any value of the ε’s we know from the first step above that it is possible to
change variables as in (4.19) so as to recover an oscillatory integral involving on the one hand
exponentials of the form (4.20) (or: (4.21)), and on the other hand the particular structure
(4.23) persists for the non-oscillatory part of the integral.

In order to fix the ideas, let us now bound the typical quantity,∫
R3(l+1)

∫ +∞

u1,··· ,ul=0
exp{i[N2u1 −K2

1(u1 + u2) (4.29)

+K2
2(u2 + u3 + · · ·+ ul)−K2

3u3 − · · · −K2
l ul]}

V̂ (N−K1)V̂ (K2 −N)V̂ (K1 −K3)V̂ (K3 −K4) · · · V̂ (Kl−1 −Kl)V̂ (Kl −K2)
ψ(K2)φ(N) dN dK1 · · · dKl du1 · · · dul .

(This quantity corresponds to ε1 = 0, ε2 = 1, ε3 = . . . = εl = 0). Following the procedure used
in the second step above, we may use the Parseval formula in the K1, K3, · · · , Kl variables (and
not in K2, which is the variable appearing as the argument of ψ).

This provides the decay of the dNdK1dK2dK3dK4 · · · dKl integral involved in (4.29) like,

(1 + u1)−3/2(1 + u1 + u2)−3/2(1 + u3)−3/2(1 + u4)−3/2 · · · (1 + ul)−3/2 , (4.30)

up to the use of eight derivatives of V̂ , and four derivatives in φ, but no derivatives of ψ is
needed to get this decay. We do not precise the exact manipulations, which are exactly the
same as in the second step. Now, the function appearing in (4.30) is integrable over [0,+∞[l.
Collecting these informations gives the bound,

≤ C l
12‖V̂ ‖l+1

W 8,1(R3) ‖ψ‖L∞(R3) ‖φ‖W 4,∞(R3) .

Now, collecting bounds over the 2l possible values of the ε’s gives therefore the theorem.

4.4 Proof of Theorem 3.1: getting apriori bounds

First Step. Proof of (iv).
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Clearly, points (i), (ii), and (iii), imply (iv). For instance, we may write indeed,

|〈ρL,α
d (t), φ〉| ≤ ‖ρL,α

d (t, n)‖l2n
‖φ(

n

L
)‖l2n

≤ C‖ 1
L3/2

φ(
n

L
)‖l2n

( here we used (3.8) )

≤ C
[ 1
L3

∑
n

〈n
L
〉−2D]1/2 ‖φ(n)‖TD

≤ C‖φ(n)‖TD
,

for some constant C as in (3.9), so that (3.8) implies (3.15). Using this argument several times
shows that (iv) is a simple consequence of (i), (ii), and (iii), so that we now concentrate on the
proof of these points.

Second Step. Proof of (i) - the diagonal part.
Since the original Von-Neumann equation (2.8) has the so-called Linblad property, it preserves
the positivity of the density-matrix as an operator for any non-negative values of time t ≥ 0.
In particular, as we already saw, the diagonal coefficients of the density-matrix, ρL,α

d (t, n) are
non-negative (as numbers) for any t ≥ 0.
Now define the following density-matrix ũ(x, y) through its Fourier coefficients,

u(n, p) := 1[n = p]
[ 1
L3
‖ρ0

d(n)‖L∞(R3) −
1
L3
ρ0

d(
n

L
)
]
, (4.31)

for any n and p in Z3, and let u(t, n, p) be the value at time t of the corresponding solution
to the Von-Neumann equation (2.8) with initial data u(n, p). It is clear that initially, u(n, p)
defines a positive density matrix ũ(x, y) (as an operator), so that the corresponding density
matrix ũ(t, x, y) (with Fourier coefficients u(t, n, p)) remains positive (as an operator) for any
time t ≥ 0. In particular, the diagonal coefficients u(t, n, n) are non-negative (as numbers) for
any t ≥ 0.
On the other hand, it is readily seen that the actual value of u(t, n, p) at time t is given through,

u(t, n, n) =
1
L3
‖ρ0

d(n)‖L∞(R3) − ρL,α
d (t, n) , (4.32)

for the diagonal part of u, and, if n 6= p,

u(t, n, p) = −ρL,α
nd (t, n, p) . (4.33)

As an obvious consequence, we now deduce from the preceding considerations that, for any
t ≥ 0, we have,

0 ≤ ρL,α
nd (t, n) ≤ 1

L3
‖ρ0

d(n)‖L∞(R3) . (4.34)

This already proves (3.7).
On the other hand, the Von-Neumann equation (2.8) clearly preserves the trace of the oper-

ator ρ̃. Indeed, in view of the positivity of the diagonal coefficients ρL,α
d (t, n), we have,

Trρ̃(t, x, y) =
∑
n

ρL,α
d (t, n, n) , (4.35)
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and it is clear from the Von-Neumann equation (2.8) that,

∂t[
∑
n

ρL,α
d (t, n, n)] = 0 . (4.36)

From (4.36) it follows that,∑
n

ρL,α
d (t, n, n) =

∑
n

1
L3
ρ0

d(
n

L
) = C , (4.37)

and (3.6) is proved. The estimate (3.8) follows by interpolation between (3.6) and (3.7).

Third Step. Proof of (i) - the non-diagonal part.
The first way to (try to) get an l2 bound on ρL,α

nd is the following. The Von-Neumann equation
(2.8) preserves the l2n,p norm of the full density matrix ρL,α(t) := ρL,α

d (t) + ρL,α
nd (t), and more

precisely we have,

∂t[‖ρL,α
d (t)‖2

l2n
+ ‖ρL,α

nd (t)‖2
l2n,p

] = −2αL3‖ρL,α
nd (t)‖2

l2n,p
≤ 0 . (4.38)

Hence we readily obtain,

‖ρL,α
nd (t)‖l2n,p

≤ ‖ρL,α(t = 0)‖l2n,p
= ‖ 1

L3
ρ0

d(
n

L
)‖l2n

=
C

L3/2
.

Unfortunately, this first attempt gives too small a decay in L on the right-hand-side, since we
shall need in the sequel a decay like L−3 (see (3.10)).
This is the reason why we work out the estimate of ρL,α

nd (t) in more detail. Using the equation
satisfied by ρL,α

nd (t), we readily write,

∂t‖ρL,α
nd (t)‖2

l2n,p
= −2αL3‖ρL,α

nd (t)‖2
l2n,p

+2L3<〈ρL,α
nd (t, n, p),

λ

L3
V̂ (

p− n

L
)[ρL,α

d (t, p)− ρL,α
d (t, n)]〉l2n,p

≤ −2αL3‖ρL,α
nd (t)‖2

l2n,p
+ 4L3‖ρL,α

nd (t)‖l2n,p
‖ λ
L3
V̂ (

p− n

L
)‖l∞n (l2p)‖ρ

L,α
d (t, n)‖l2n

≤ −2αL3‖ρL,α
nd (t)‖2

l2n,p
+ 4L3‖ρL,α

nd (t)‖l2n,p
× C

L3/2
× C

L3/2
,

where we used the bound (3.8) together with the fact that,

‖ 1
L3/2

V̂ (
n

L
)‖l2n

≤ ‖V̂ (n)‖TD
. (4.39)

Hence, we obtain,

∂t‖ρL,α
nd (t)‖2

l2n,p
≤ −2αL3‖ρL,α

nd (t)‖2
l2n,p

+ C‖ρL,α
nd (t)‖l2n,p

. (4.40)

From (4.40) together with the (crucial) fact that ρL,α
nd (t) vanishes initially we deduce,

‖ρL,α
nd (t)‖2

l2n,p
≤ C

∫ t

s=0
exp(−2αL3(t− s)) ‖ρL,α

nd (s)‖l2n,p

≤ C

∫ t

s=0
exp(−2αL3s)ds sup

0≤s≤t
‖ρL,α

nd (s)‖l2n,p
≤ C

αL3
sup

0≤s≤t
‖ρL,α

nd (s)‖l2n,p
.
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Hence,

∀t ≥ 0 , ‖ρL,α
nd (t)‖l2n,p

≤ C

αL3
,

and (3.10) is proved.

Fourth Step. Proof of (ii).
Using again the equations satisfied by ρL,α

d (t) and ρL,α
nd (t), we readily observe that all the time

derivatives ∂β
t ρ

L,α
d (t) and ∂β

t ρ
L,α
nd (t) (β ∈ N) satisfy the same Von-Neumann equation (2.8). In

particular, the following “conservation law” holds,

∂t
[
‖∂β

t ρ
L,α
nd (t)‖2

l2n,p
+ ‖∂β

t ρ
L,α
d (t)‖2

l2n

]
= −2αL3‖∂β

t ρ
L,α
nd (t)‖2

l2n,p
. (4.41)

Now (4.41) implies,

‖∂β
t ρ

L,α
nd (t)‖2

l2n,p
+ ‖∂β

t ρ
L,α
d (t)‖2

l2n
=

= ‖∂β
t ρ

L,α
nd (t = 0)‖2

l2n,p
+ ‖∂β

t ρ
L,α
d (t = 0)‖2

l2n
− 2αL3

∫ t

s=0
‖∂β

t ρ
L,α
nd (s)‖2

l2n,p
ds ≥ 0 ,

from which the following a-priori bound is derived,∫ t

s=0
‖∂β

t ρ
L,α
nd (s)‖2

l2n,p
≤ 1
αL3

×
[
‖∂β

t ρ
L,α
nd (t = 0)‖2

l2n,p
+ ‖∂β

t ρ
L,α
d (t = 0)‖2

l2n

]
. (4.42)

On the other hand, the actual value of the factor,

‖∂β
t ρ

L,α
nd (t = 0)‖2

l2n,p
+ ‖∂β

t ρ
L,α
d (t = 0)‖2

l2n
,

in (4.42) is easily computed from the explicit formulae for the particular values β = 0, 1, namely,

ρL,α
d (t = 0) =

1
L3
ρ0

d(
n

L
) , ρL,α

nd (t = 0) = 0 ,

∂tρ
L,α
d (t = 0) = 0 , ∂tρ

L,α
nd (t = 0) =

iλ

(2π)3L3
V̂ (

p− n

L
)[ρ0

d(
p

L
)− ρ0

d(
n

L
)] ,

so that the following initial estimates hold,

‖ρL,α
nd (t = 0)‖2

l2n,p
+ ‖ρL,α

d (t = 0)‖2
l2n

≤ C

L3
,

‖∂tρ
L,α
nd (t = 0)‖2

l2n,p
+ ‖∂tρ

L,α
d (t = 0)‖2

l2n
≤ C .

(4.43)

Now (4.43) together with (4.42) readily give the desired estimates,∫ t

s=0
‖ρL,α

nd (s)‖2
l2n,p

≤ C

αL6
, (4.44)∫ t

s=0
‖∂tρ

L,α
nd (s)‖2

l2n,p
≤ C

αL3
. (4.45)
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Note that the bound (4.44) obtained in this way on the non-diagonal part itself (without time-
differentiating) is slightly worse than (3.10). This is due to the fact that, when no time derivative
is involved, we were able to use much more structure in the third step, and in particular, to use
the very special form of the initial density-matrix.

Fifth Step. Proof of (iii).
The proof of (iii) is very easy. Using the equation satisfied by ρL,α

d (t), we readily estimate,

‖∂tρ
L,α
d (t)‖l2n

≤ ‖V̂ (
n

L
)‖l2n

‖ρL,α
nd (t)‖l2n,p

≤ C L3/2 1
αL3

=
C

αL3/2
,

where we made use of (3.10). The point (iii) follows.

4.5 Proof of Theorem 3.2: convergence as L →∞

First Step. Transforming the original equation into a system of integral equations.
Let Φ(n,p) and φ(n) be smooth test functions. We first transform the Von-Neumann equation
(2.8) into (equivalent) integral formulae, as follows. Firstly, the non-diagonal part satisfies (recall
that ρL,α

nd vanishes initially),

〈ρL,α
nd (t),Φ〉 = i

∫ L3t

s=0

∑
n,p,k

exp([i
n2 − p2

L2
− α]s)×

×[
λ

L3
V̂ (

k − n

L
)ρL,α

nd (t− s

L3
, k, p)− λ

L3
V̂ (

p− k

L
)ρL,α

nd (t− s

L3
, n, k)]Φ(

n

L
,
p

L
)

+i
∫ L3t

s=0

∑
n,p

exp([i
n2 − p2

L2
− α]s)×

× λ

L3
V̂ (

p− n

L
)[ρL,α

d (t− s

L3
, p)− ρL,α

d (t− s

L3
, n)]Φ(

n

L
,
p

L
) ,

and it is an easy computation to transform this relation into,

〈ρL,α
nd (t),Φ〉 = (4.46)

=
iλ

L3

∫ L3t

s=0

exp(−αs)〈ρL,α
nd (t− s

L3
),
∑

k

[
exp(i

k2 − p2

L2
s)V̂ (

n− k

L
)Φ(

k

L
,
p

L
)

− exp(i
n2 − k2

L2
s)V̂ (

k − p

L
)Φ(

n

L
,
k

L
)
]
〉

+
iλ

L3

∫ L3t

s=0

exp(−αs)〈ρL,α
d (t− s

L3
),
∑

p

[
exp(i

p2 − n2

L2
s)V̂ (

n− p

L
)Φ(

p

L
,
n

L
)

− exp(i
n2 − p2

L2
s)V̂ (

p− n

L
)Φ(

n

L
,
p

L
)
]
〉 .
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In other terms, if we introduce,

(AL(s)Φ)(n,p) :=
λ

L3

∑
k

[
exp(i[

k2

L2
− p2]s)V̂ (n− k

L
)Φ(

k

L
,p)

− exp(i[n2 − k2

L2
]s)V̂ (

k

L
− p)Φ(n,

k

L
)
]

(4.47)

(BL(s)Φ)(n) :=
λ

L3

∑
p

[
exp(i[

p2

L2
− n2]s)V̂ (n− p

L
)Φ(

p

L
,n)

− exp(i[n2 − p2

L2
]s)V̂ (

p

L
− n)Φ(n,

p

L
)
]
, (4.48)

then (4.46) reads,

〈ρL,α
nd (t),Φ〉 = i

∫ L3t

s=0
exp(−αs)〈ρL,α

nd (t− s

L3
),AL(s)Φ〉 (4.49)

+i
∫ L3t

s=0
exp(−αs)〈ρL,α

d (t− s

L3
),BL(s)Φ〉 .

We can proceed to the analogous transformation for the diagonal part as well, thus obtaining,

〈ρL,α
d (t), φ〉 = 〈 1

L3
ρ0

d(
n

L
), φ〉

+iλ
∫ t

s=0

∑
n,k

[
V̂ (

k − n

L
)ρL,α

nd (s, k, n)φ(
n

L
)− V̂ (

n− k

L
)ρL,α

nd (s, n, k)φ(
n

L
)
]

= 〈 1
L3
ρ0

d(
n

L
), φ〉+ iλ

∫ t

s=0

∑
n,k

ρL,α
nd (s, n, k)V̂ (

n− k

L
)[φ(

k

L
)− φ(

n

L
)] ,

where we used the natural convention,

〈 1
L3
ρ0

d(
n

L
), φ〉 :=

∑
n

1
L3
ρ0

d(
n

L
)φ(

n

L
) .

In other words, we have obtained,

〈ρL,α
d (t), φ〉 = 〈 1

L3
ρ0

d(
n

L
), φ〉+ i

∫ t

s=0
〈ρL,α

nd (s), Cφ〉 , (4.50)

up to defining,

(Cφ)(n,p) := λV̂ (n− p)[φ(p)− φ(n)] . (4.51)

Since now (4.50) only depends on the non-diagonal part through its average in time, we may
integrate the equation (4.49) in time. Summarizing, we have thus transformed the original
Von-Neumann equation (2.8) into the following system of equations,

〈ρL,α
d (t), φ〉 = 〈 1

L3
ρ0

d(
n

L
), φ〉+ i

∫ t

s=0
〈ρL,α

nd (s), Cφ〉 , (4.52)
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and, ∫ t

s=0
〈ρL,α

nd (s),Φ〉 = i

∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s− u

L3
),AL(u)Φ〉

+i
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s− u

L3
),BL(u)Φ〉 . (4.53)

Note that the system (4.52)-(4.53) may be solved iteratively if necessary.
We now derive the necessary a-priori bounds in order to pass to the limit L → ∞ in the

integral formulae (4.53) and (4.52).

Second Step. A priori bounds.
First of all, we have the uniform bound,∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

nd (t− s

L3
),AL(s)Φ〉

∣∣∣ ≤
≤ 1
α

sup
0≤s≤t

‖ρL,α
nd (s)‖l2n,p

sup
s≥0

‖
[
AL(s)Φ

]
(
n

L
,
p

L
)‖l2n,p

≤ C

α2
sup
s≥0

‖ 1
L3

[
AL(s)Φ

]
(
n

L
,
p

L
)‖l2n,p

, (4.54)

where we used the bound (3.10). On the more, we readily upper-bound the factor ‖ 1
L3AL(s)Φ‖l2n,p

as follows,

‖ 1
L3

[
AL(s)Φ

]
(
n

L
,
p

L
)‖l2n,p

≤ |λ|
L6
‖
∑
k

[
|V̂ |(n− k

L
)|Φ|( k

L
,
p

L
) + |V̂ |(k − p

L
)|Φ|(n

L
,
k

L
)
]
‖l2n,p

≤ C

L6
‖
∑
k

[
〈n− k

L
〉−D〈 k

L
〉−D〈 p

L
〉−D + 〈p− k

L
〉−D〈 k

L
〉−D〈n

L
〉−D]‖l2n,p

× ‖Φ(n,p)‖TD

≤ C

L6
‖〈 p
L
〉−D‖l2p

‖〈n
L
〉−D‖l1n

‖〈 k
L
〉−D‖l2

k
× ‖Φ(n,p)‖TD

≤ C‖ 1
L3/2

〈 p
L
〉−D‖l2p

‖ 1
L3
〈 k
L
〉−D‖l1

k
‖ 1
L3/2

〈 k
L
〉−D‖l2

k
‖Φ(n,p)‖TD

≤ C ‖Φ(n,p)‖TD
, (4.55)

where we used that D > 3, together with the Hölder and the Young inequalities. Putting (4.54)
and (4.55) together gives the uniform bound,∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

nd (t− s

L3
),AL(s)Φ〉

∣∣∣ ≤ C

α2
‖Φ(n,p)‖TD

, (4.56)

meaning that the operator on the left-hand-side of (4.56) is uniformly bounded (in L) on the
space of test functions Φ(n,p) ∈ TD(R6).
The same method gives similar uniform bounds on the two terms,∫ L3t

s=0
exp(−αs) 〈ρL,α

d (t− s

L3
),BL(s)Φ〉 , and ,

∫ L3t

s=0
exp(−αs) 〈ρL,α

nd (t− s

L3
), CΦ〉 ,
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as we show now. Indeed, proceeding as in (4.54), we first upper-bound,∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

d (t− s

L3
),BL(s)Φ〉

∣∣∣ ≤ C

α
sup

0≤s≤t
‖ 1
L3/2

[
BL(s)Φ

]
(
n

L
)‖l2n

,

where we made use of the a-priori bound (3.8). Again, we may write as in (4.55),

‖ 1
L3/2

[
BL(s)Φ

]
(
n

L
)‖l2n

≤ 2
L3/2

‖
∑
p

|λ|
L3
|V̂ |(n− p

L
)|Φ|( p

L
,
n

L
)‖l2n

≤ C‖ 1
L3/2

V̂ (
n

L
)‖l2n

‖ 1
L3

Φ(
p

L
,
n

L
)‖l2n,p

≤ C‖Φ(n,p)‖TD
,

where C is as usual. Hence, we get,∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

d (t− s

L3
),BL(s)Φ〉

∣∣∣ ≤ C

α
‖Φ(n,p)‖TD

. (4.57)

Finally, we end this step by proving the following upper-bound,∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

nd (t− s

L3
), Cφ〉

∣∣∣ ≤ C

α2
‖ 1
L3

[
Cφ
]
(
n

L
,
p

L
)‖l2n,p

(here we used (3.10))

≤ C

α2
‖ 1
L3
|V̂ |(n− p

L
)|φ|(n

L
)‖l2n,p

≤ C

α2
‖ 1
L3/2

V̂ (
n

L
)‖l2n

‖ 1
L3/2

φ(
n

L
)‖l2n

,

and this finally gives, ∣∣∣ ∫ L3t

s=0
exp(−αs) 〈ρL,α

nd (t− s

L3
), Cφ〉

∣∣∣ ≤ C

α2
‖φ(n)‖TD

.

We now have derived all the necessary uniform bounds. We proceed to the convergence proofs.

Third Step. Passing to the limit in (4.52)
We wish to pass to the limit L→∞ in the integral formulae (4.53) and (4.52).
We begin in this step with the treatment of the easier equation (4.52).
In view of the uniform boundedness of all the operators involved in (4.52) as operators on
TD(R3), as we proved in the second step above, it is enough to pass to the limit in (4.52) in the
special case where the test function φ actually belongs to C∞c (R3).
We turn to identifying the limit of each term in (4.52) when φ ∈ C∞c (R6). We readily have the
convergence,

〈ρL,α
d (t), φ〉 →L→∞ 〈ρα

d (t), φ〉 in C0(R+
t )

〈 1
L3
ρ0

d(
n

L
), φ〉 →L→∞ 〈ρ0

d, φ〉 :=
∫

R3
ρ0

d(n)φ(n)dn .

The last line is indeed an obvious consequence of both the Theorem on the convergence of
Riemann sums towards the correponding integrals and the fact that the test function φ has been
chosen with compact support. The first line is merely a consequence of Theorem 3.1-(iv).
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There remains to prove the convergence,∫ t

s=0
〈ρL,α

nd (s), Cφ〉 →L→∞

∫ t

s=0
〈ρα

nd(s), Cφ〉 . (4.58)

But we know from Theorem 3.1 that the sequence ρL,α
nd (s) converges in

[
L1(R+

t ; TD(R6))
]∗-weak

∗. Hence it suffices to prove that the function (Cφ)(n,p) belongs to TD(R6), knowing that φ
is C∞ with compact support and V̂ belongs to TD. This last point is obvious from the very
definition (4.51) of C, and (4.58) is thus proved.
Summarizing, we have proved that, as L→∞, the equation (4.52) transforms into,

〈ρα
d (t), φ〉 = 〈ρ0

d, φ〉+
∫ t

s=0
〈ρα

nd(s), Cφ〉 , (4.59)

for all φ(n) ∈ C∞c (R3), hence for all φ ∈ TD(R3). This ends this third step.

Fourth Step. Passing to the limit in (4.53)
We now come to the more difficult treatment of (4.53).
Again, in view of the uniform boundedness of all the operators involved in (4.53) as operators
on TD(R6), it is enough to pass to the limit in (4.53) in the special case where the test function
Φ actually belongs to C∞c (R6).
We turn to identifying the limit of each term in (4.53) when Φ ∈ C∞c (R6). In view of the weak
convergence of ρL,α

nd (t), as stated in Theorem 3.1-(iv), we readily have,∫ t

s=0
〈ρL,α

nd (s),Φ〉 →L→∞

∫ t

s=0
〈ρα

nd(s),Φ〉 .

We now claim that the following convergence results hold as L→∞,∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s− u

L3
),AL(u)Φ〉 → (4.60)

→
∫ t

s=0

∫ +∞

u=0
exp(−αu)〈ρα

nd(s),A(u)Φ〉 ,∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s− u

L3
),BL(u)Φ〉 → (4.61)

→
∫ t

s=0

∫ +∞

u=0
exp(−αu)〈ρα

d (s),B(u)Φ〉 ,

where we define,

(A(u)Φ)(n,p) := λ

∫
R3

[
exp(i[k2 − p2]u)V̂ (n− k)Φ(k,p)

− exp(i[n2 − k2]u)V̂ (k− p)Φ(n,k)
]
dk (4.62)

(B(u)Φ)(n) := λ

∫
R3

[
exp(i[p2 − n2]u)V̂ (n− p)Φ(p,n)

− exp(i[n2 − p2]u)V̂ (p− n)Φ(n,p)
]
. (4.63)
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We prove this in two distinct steps. We readily mention that the key difficulty lies in proving
that the non-local terms of the form ρL,α

d (s − u
L3 ) do converge towards ρL,α

d (s) (the equation
becomes Markovian).

Fourth Step - Part a. Proving (4.61).
The point (4.61) is easily proved. Indeed, we naturally decompose the left-hand-side of (4.61)
into, ∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s− u

L3
),BL(u)Φ〉 = (4.64)

=
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s− u

L3
)− ρL,α

d (s),BL(u)Φ〉

+
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s),BL(u)Φ− B(u)Φ〉

+
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

d (s),B(u)Φ〉

:= I + II + III .

* It is easily seen that II goes to zero. Indeed, on the one hand,∣∣∣〈ρL,α
d (s),BL(u)Φ− B(u)Φ〉

∣∣∣ ≤ C

L3/2
‖
[
BL(u)Φ− B(u)Φ

]
(
n

L
)‖l2n

( thanks to estimate (3.8))

≤ C
[ 1
L3

∑
n

∣∣∣∑
p

(
exp(i[

p2 − n2

L2
]u)

λ

L3
V̂ (

n− p

L
)Φ(

p

L
,
n

L
)

− exp(i[
n2 − p2

L2
]u)

λ

L3
V̂ (

p− n

L
)Φ(

n

L
,
p

L
)
)

−λ
( ∫

R3
exp(i[p2 − n2

L2
]u)V̂ (

n

L
− p)Φ(p,

n

L
)

− exp(i[
n2

L2
− p2]u)V̂ (p− n

L
)Φ(

n

L
,p)

)∣∣∣2]1/2 −→ 0 ,

thanks to the convergence of Riemann sums towards their integral counterpart, and in view of
the decay assumptions we made on V̂ and on the test function Φ (which actually has compact
support). On the other hand, we readily have the uniform (in u) bound, using (4.57),∣∣∣〈ρL,α

d (s),BL(u)Φ− B(u)Φ〉
∣∣∣ ≤ ‖ρL,α

d (s)‖l2n

[
‖[BL(u)Φ](

n

L
)‖l2n

+ ‖[B(u)Φ](
n

L
)‖l2n

]
≤ C

L3/2

[
‖[BL(u)Φ](

n

L
)‖l2n

+ ‖[B(u)Φ](
n

L
)‖l2n

]
≤ C ‖Φ‖TD

.

Using now the fact that exp(−αu) is integrable over the positive real axis, the Lebesgue Theorem
is enough to obtain the convergence of II towards 0.
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* The convergence of III is straightforward,

III =
∫ t

s=0
〈ρL,α

d (s),
∫ L3s

u=0
exp(−αu)B(u)Φ〉

→
∫ t

s=0
〈ρα

d (t),
∫ +∞

u=0
exp(−αu)B(u)Φ〉 ,

in view of the Lebesgue Theorem together with the uniform boundedness of B(u)Φ in TD, and
using the weak convergence of ρL,α

d as stated in Theorem 3.1-(iv).

* There remains to prove that I → 0. In order to do so, it turns out that the uniform Lipschitz
estimate (3.12) of Theorem 3.1 is enough. Indeed,

|I| ≤ C(Φ) L3/2
∫ t

s=0

∫ L3s

u=0
exp(−αu)‖ρL,α

d (s− u

L3
)− ρL,α

d (s)‖l2n

(here we used that ‖[BL(u)Φ](
n

L
)‖l2n

≤ C(Φ)L3/2 ,

for some constant depending on Φ, using (4.57) )

≤ C(Φ) L3/2
∫ t

s=0

∫ +∞

u=0
exp(−αu) u

L3

C

α L3/2

(thanks to (3.12))

≤ C × C(Φ)
α3 L3

,

hence,

I → 0 as L→∞ .

Fourth Step - Part b. Proving (4.60).
Let us now prove the more delicate point (4.60). We first decompose the left-hand-side of (4.60)
in the same way as in part a above, and write,∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s− u

L3
),AL(u)Φ〉 = (4.65)

=
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s− u

L3
)− ρL,α

nd (s),AL(u)Φ〉

+
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s),AL(u)Φ−A(u)Φ〉

+
∫ t

s=0

∫ L3s

u=0
exp(−αu)〈ρL,α

nd (s),A(u)Φ〉

:= I + II + III .

(We use the same notations an in part a above).
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* The most obvious term in (4.65) is III, which obviously converges towards,

III →
∫ t

s=0

∫ +∞

u=0
exp(−αu)〈ρα

nd(s),A(u)Φ〉 (4.66)

=
∫ t

s=0
〈ρα

nd(s),
∫ +∞

u=0
exp(−αu)A(u)Φ〉 ,

in view of the Lebesgue Theorem together with the uniform (in u) boundedness of [A(u)Φ](n,p)
in TD(R6), and using the weak convergence of ρL,α

nd as stated in Theorem 3.1-(iv).

* We now turn to estimating II. The analysis is exactly the same as in part a above. Again,
we begin by writing (use (3.10)),

∣∣ ∫ t

s=0

∫ L3t

u=0
exp(−αu)〈ρL,α

nd (s),AL(u)Φ−A(u)Φ〉
∣∣ ≤ (4.67)

≤ C

α

∫ t

s=0

∫ +∞

u=0
exp(−αu)‖ 1

L3

[
AL(u)Φ−A(u)Φ

]
(
n

L
,
p

L
)‖l2n,p

.

Now we are led to estimating 1
L3 ‖

[
AL(u)Φ−A(u)Φ

]
(n

L ,
p
L)‖l2n,p

, a term which can be obviously
decomposed as a sum of two symmetric terms, and we simply estimate one of them, as follows,

‖ 1
L3

[
AL(u)Φ−A(u)Φ

]
(
n

L
,
p

L
)‖l2n,p

≈

≈
[∑

n,p

1
L6

∣∣∣∑
k

λ

L3
exp(i[

k2 − p2

L2
]u)V̂ (

n− k

L
)Φ(

k

L
,
p

L
)

−
∫

R3
exp(i[k2 − p2

L2
]u)V̂ (

n

L
− k)Φ(k,

p

L
) dk

∣∣∣2]1/2

→ 0 ,

in view of the Theorem on convergence of Riemann sums, together with the decay assumptions
we made on V̂ and Φ.
* We now turn to the analysis of the most difficult term, namely I. We first write the obvious
bound (use (4.55)),

|I| ≤ L3
∫ t

s=0

∫ L3s

u=0
exp(−αu)‖ρL,α

nd (s− u

L3
)− ρL,α

nd (s)‖l2n,p
‖ 1
L3

[
AL(u)Φ

]
(
n

L
,
p

L
)‖l2n,p

≤ C(Φ)× L3
∫ t

s=0

∫ L3s

u=0
exp(−αu)‖ρL,α

nd (s− u

L3
)− ρL,α

nd (s)‖l2n,p
,

where C(Φ) denotes some constant depending on Φ.
We now Taylor expand to first order the difference ρL,α

nd (s− u
L3 )− ρL,α

nd (s), and use the estimate
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(ii) of Theorem 3.1. This gives the bound,

≤ L3
∫ t

s=0

∫ L3s

u=0
exp(−αu)‖ρL,α

nd (s− u

L3
)− ρL,α

nd (s)‖l2n,p

≤ L3
∫ t

s=0

∫ L3s

u=0
exp(−αu)

∫ s

v=s− u
L3

‖∂tρ
L,α
nd (v)‖l2n,p

= L3
∫ L3t

u=0

∫ t

s= u
L3

∫ s

v=s− u
L3

exp(−αu)‖∂tρ
L,α
nd (v)‖l2n,p

≤ L3
∫ L3t

u=0

∫ t

v=0

∫ v+ u
L3

s=v
exp(−αu)‖∂tρ

L,α
nd (v)‖l2n,p

≤ |t|1/2
∫ L3t

u=0
u exp(−αu)

( ∫ t

v=0
‖∂tρ

L,α
nd (v)‖2

l2n,p

)1/2

(by the Cauchy Schwartz inequality in v)

≤ C
|t|1/2

α1/2L3/2

∫ ∞

u=0
u exp(−αu)

( where we used the estimate (3.11))

≤ C
|t|1/2

α5/2L3/2
.

Note that we did not use the Cauchy-Schwartz inequality in v directly on the integral s−(u/L3) ≤
v ≤ s, but rather on the larger domain 0 ≤ v ≤ t (after interchanging the v and s integrations).
Indeed, the first approach leads to an upper-bound of the order one, for we would have lost the
L−3 factor stemming from the smallness of the interval of integration in s.
This ends part b of the Fourth Step, hence the Fourth step.

Fifth Step. Conclusion.
As a conclusion of the above four steps, we have proved that, as L→∞, the weak limits ρα

d (t)
and ρα

nd(t) of ρL,α
d (t) and ρL,α

nd (t) satisfy, for any φ(n) ∈ TD(R3) and Φ(n,p) ∈ TD(R6),

〈ρα
d (t), φ〉 = 〈ρ0

d, φ〉+ i

∫ t

s=0
〈ρα

nd(s), Cφ〉 , (4.68)

and, ∫ t

s=0
〈ρα

nd(s),Φ〉 = i

∫ t

s=0
〈ρL,α

nd (s),
∫ +∞

u=0
exp(−αu)A(u)Φ〉

+i
∫ t

s=0
〈ρL,α

d (s),
∫ +∞

u=0
exp(−αu)B(u)Φ〉 . (4.69)

The operators A(u), B(u) and C have been defined in (4.51), (4.62) and (4.63).
Coming back to the actual value of A(u), B(u) and C and transposing these operators, this
means that the following relations hold true in a weak sense,

∂tρ
α
d (t) =

iλ

(2π)3

∫
R3

[
V̂ (k− n)ρα

nd(t,k,n)− V̂ (n− k)ρα
nd(t,n,k)

]
dk , (4.70)
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and,

ρα
nd(t,n,p) = (4.71)

=
iλ

(2π)3

∫ +∞

0
e[i(n

2−p2)−α]uV̂ (p− n) [ρα
d (t,p)− ρα

d (t,n)] du

+
iλ

(2π)3

∫ +∞

0

∫
R3
e[i(p

2−n2)−α]u[V̂ (k− n)ρα
nd(t,k,p)− V̂ (p− k)ρα

nd(t,n,k)
]
dk du ,

together with the initial datum,

ρα
d (t = 0,n) = ρ0

d(n) . (4.72)

Actually we should say that (4.70) and (4.71) hold between distributions in L∞(R+
t ;
[
TD(R3)

]∗)
and L∞(R+

t ;
[
TD(R6)

]∗) respectively, where
[
TD

]∗ stands for the dual of TD. Also, (4.72) holds
in
[
TD

]∗ since ρα
d (t) is continuous, with values in

[
TD

]∗.
Now, we may transform iteratively the system (4.70)-(4.71) into a closed equation on ρα

d (t).
The formal manipulations are exactly the same as in the discrete case (See proof of Theorem
2.1), and lead to formulae (3.26), (3.27) in the statement of Theorem 3.2, which we rewrite
briefly in the form,

∂tρ
α
d (t) =

∑
l≥0

λl+1[Qα
l ρ

α
d ](t) . (4.73)

More precisely, when solving the system (4.70)-(4.71) iteratively, one comes up with a formula
of the form,

∂tρ
α
d (t) =

l0∑
l=0

λl+1[Qα
l ρ

α
d ](t) + λl0+1[Rα

l0ρ
α
nd](t) , (4.74)

where l0 is some truncation index, and we wish to let l0 → ∞ in order to get (4.73). The
term λl0+1[Rα

l0
ρα

nd](t) denotes here the remainder term, whose explicit value is easily obtained
by means of the computations in section 4.2, but we skip it here for sake of simplicity. We
simply mention in passing that the formula defining [Rα

l0
ρnd](t) is very similar in structure to

the formula defining [Qα
l0
ρ0

d](t), and in particular it involves the same “oscillatory integrals” as
treated in Lemma 3.1.

Now, in order to fully justify (4.73), we have to make sure that the remainder in (4.74)
actually goes to zero as l0 →∞. For the sake of simplicity, we shall prove here a slightly weaker
result, namely the mere convergence of the series involved in (4.73). In view of the actual value
of [Rα

l0
ρα

nd], the convergence towards zero of the remainder term is easily deduced along the same
lines.

More precisely, we prove here that the series in (4.73) converges weakly, i.e. for any smooth
enough test function φ(n), we prove that the series,∑

l≥0

λl+1〈Qα
l ρ

α
d (t), φ〉 =

∑
l≥0

λl+1〈ρα
d (t), tQα

l φ〉 , (4.75)
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converges, where tQα
l denotes the transpose of Qα

l . Since we simply know that the distribution
ρα

d (t) is well defined in
[
TD

]∗, the only way to ensure this convergence is to make sure that the
series

∑
l≥0 λ

l+1 tQα
l φ converges in TD, at least for a smooth test function φ(n).

If we do not take advantage of the oscillations present in the collision operators Qα
l (or

tQα
l , which are essentially the same operators), we are instantaneously led to a series of the size∑
l(Cλ/α)l (the denominator α stemming from the integration of the real negative exponentials),

and this leads to the constraint λ ≤ λ0α, for some small λ0. In order to avoid such a huge
restriction, we rather make use of the crucial Lemma 3.1. More precisely, an easy adaptation of
the proof given for this result (see also (3.41)) establishes the estimate,

‖λl+1 tQα
l φ‖TD

≤ λl+1 C l
0 ‖V̂ (n)‖l+1

S2D
‖φ‖S2D

. (4.76)

Hence we recover |λl+1〈Qα
l ρ

α
d (t), φ〉| ≤ C l λl+1 for some constant C depending on the various

norms of the profiles, hence the convergence of the series involved in (4.73), at least for small
values of λ. This explains the restriction |λ| ≤ λ0 we impose in (2.9), as well as in the statement
of Theorems 3.2 and 3.3.

This ends the proof of Theorem 3.2.

4.6 Proof of Theorem 3.3: convergence as α → 0

The proof is obvious in view of the arguments involved in the fifth step of the proof of The-
orem 3.2. Indeed, the bound (4.76) established in the previous paragraph indicates that the
series (4.73) actually converges uniformly with respect to α. On the more (due to the abso-
lute convergence in time of the oscillatory integrals defining Ql - see Lemma 3.1), the strong
convergence,

[tQα
l φ](n) → [tQlφ](n) in TD ,

obviously holds for any φ(n) ∈ S2D.
This ends the proof of Theorem 3.3.

5 Conclusion: possible extensions of the present results.

We have proved that the “damped” Von-Neumann equation posed on a dilated cube with the
periodic boundary conditions (2.8) converges towards the Quantum Boltzmann equation when
the dilation parameter goes to infinity and the damping parameter to zero (in this order). Since
our method heavily relies on explicit formulae, the question of its validity for other geometries
or boundary conditions is a natural question. For instance, it would be interesting to investigate
the case of a dilated domain L ·Ω with Dirichlet boundary conditions, where Ω is some reference
domain, and L is the large dilation parameter. One should expect that the same result holds
whatever the (smooth enough) shape of the initial domain Ω. This naturally leads to the question
of replacing the periodic boundary conditions on the cube by Dirichlet boundary conditions. Our
method can easily be adapted to this situation, up to a slight modification of the combinatorics
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in the formulae that we leave to the reader. However, the case of a more general domain Ω is
still open at present.

6 Appendix: The physisicts’ view of Fermi’s Golden Rule

In this section, we briefly recall the traditional derivation of Fermi’s Golden Rule as given in
physics textbooks. Our exposition closely follows that of [Boh], chapter 21, but many other
references can be used as well for instance [CTDRG], [CTDL], [Mes], [SSL].

We denote by, ψn = (2πL)−3/2 exp(in · x/L) , the normalized eigenstates of the free Hamil-
tonian H0 = −∆ on the periodic box [0, 2πL]3. Let Cp(t) = (ψ,ψp) the p-th component of the
wave-function ψ in this eigenfunction basis. Then Cp(t) evolves in time according to,

i
dCp

dt
= (2πL)−3

∑
p′

V̂

(
p− p′

L

)
Cp′ exp

(
i
|p|2 − |p′|2

L2
t

)
.

We now assume that at time t = 0, the particle lies entirely in the state n, which means that
Cp(0) = δp,n where δp,n is the Kronecker index. At first order in the potential, we can therefore
write for p 6= n,

iĊp ≈ (2πL)−3V̂

(
p− n

L

)
exp

(
i
|p|2 − |n|2

L2
t

)
,

which, after time integration, yields a population |Cp(t)|2 given by,

|Cp(t)|2 =
1

(2πL)6

∣∣∣∣V̂ (p− n

L

)∣∣∣∣2 sin2
(

(|p|2−|n|2)t
2L2

)
(
|p|2−|n|2

2L2

)2 .

Now we perform the limit L → ∞ and we consider a sequence of states such that p/L, n/L
converges to p,n ∈ R3. Then,

(2πL)3 |Cp(t)|2 ∼ |Cp(t)|2 =
1

(2πL)3
∣∣∣V̂ (p− n)

∣∣∣2 sin2
(

(|p|2−|n|2)t
2

)
(
|p|2−|n|2

2

)2 .

When t tends to infinity, we have, in the sense of distributions,

sin2
(

(|p|2−|n|2)t
2

)
(
|p|2−|n|2

2

)2 ∼ 2π t δ
(
|p|2 − |n|2

)
, (6.1)

and this yields,

|Cp(t)|2/t ∼
2π

(2πL)3
∣∣∣V̂ (p− n)

∣∣∣2 δ (|p|2 − |n|2) , as L→∞ , t→∞ , (6.2)

which is precisely Fermi’s Golden Rule. We note that the dependence of the right-hand side of
(6.2) upon L makes it an asymptotic formula rather than a limit. In conventional scattering
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theory, a collection of N randomly distributed identical potentials is considered. Then, taking
the expectation of (6.2) with respect to this random variable, the central limit theorem gives that
〈|Cp(t)|2/t〉 is proportional to N/(2πL)3 = ν where ν is the density of scatterers, an intrinsic
property of the scattering medium. Here, we shall not consider a random distribution, but
rather absorb L in the scaling.

Finally, to convert formula (6.2) into an expression for the transition rate from state n
to state p, one needs to take the limit t → 0 of (6.2), and transform |Cp(t)|2/t into a time
derivative. Of course, this step is highly questionable since the limit t → ∞ has just been
taken before. Obviously, there are two time scales involved, the short one over which elementary
scattering events occur (and for which the limit t→∞ is taken), and the long one over which the
populations change macroscopically as the result of the cummulative effects of the elementary
scattering events.

Now, this formal computation shows how essential it is to pass from a discrete set of states p
to a continuous one p. Indeed, formula (6.1) would have no meaning if the variable p ranged over
the discrete set Z3. On the other hand, it would not have been possible to start the computation
from unnormalized states exp(in ·x) on the whole space R3, since the populations |Cp(t)|2 would
then be meaningless. A basic motivation for this work is to give a mathematically rigorous
justification of the formal computation presented above.
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