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Abstract

We consider the quantum dynamics of an electron in a periodic box of
large size L, for long time scales T, in d dimensions of space, d > 3. One
obstacle occupying a volume 1 is present in the box. The coupling constant
between the electron and the obstacle is A\. The model is described by a
scaled periodic Von Neumann equation with a potential, a time-reversible
equation. We investigate the asymptotic dynamics in the typical low-density
regime T ~ L%, . — co. The coupling constant has to be rescaled and small,
namely A ~ L™%2 — 0. More general regimes are in fact considered. Our
analysis is easily adapted in the case of Dirichlet boundary conditions.

Loosely speaking, the dynamics of an electron moving in a field of obsta-
cles and in the low-density regime is, “in general”, asymptotically described
by a time-irreversible Boltzmann equation. Large finite boxes are often used
in the physical literature to formally justify this statement. However, the
above asymptotics has only been proved true for “randomly” distributed
obstacle, say. On the more, the physical derivations relying on taking large
finite boxes are mathematically as well as physically questionable.

Starting from these observations, we investigate here in a quantitative
way the case of an electron moving on a large periodic (or Dirichlet) box,
with a given deterministic obstacle. We prove here that both periodicity and
the fact that the obstacle is determinic, create strong phase coherence effects
which dominate the asymptotic process. This implies that, (a) the limiting
dynamics is not the Boltzmann equation, (b) it is time-reversible, (c) it is
the same for any time scale T such that, roughly, T'/L* — oo, and (d) the
unusual rescaling of A is needed as well. However, the convergence proved
here only holds as a term-by-term convergence of certain series.

Our result relies on the analysis of certain Riemann sums with arithmetic
constraints, and number theoretic considerations relating the asymptotic dis-
tribution of integer vectors on spheres of large radius happen to play a key
role in this paper.
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1 Introduction

In this paper we are interested in the quantum dynamics of an electron in a
periodic distribution of obstacles in d dimensions of space (d > 3). To be precise,
the electron is assumed to evolve on a periodic box (a torus), so that our analysis
relies on Fourier series rather than on Bloch waves. Note however that our analysis
is easily adapted in the case of Dirichlet boundary conditions. We do not give the
easy details on this point.

The size of the period is measured by the large scaling parameter L, and
each elementary cell contains one obstacle occupying a volume of the order O(1).
Also the coupling constant measuring the strength of the interaction between the
electron and the obstacle is denoted by A. We consider the asymptotic dynamics
as L — oo. In order to obtain a non-trivial limiting dynamics, one has to rescale
time as well, and to look at the evolution of the electron on long time scales
of the order T, with T — oo. The present paper is essentially concerned with
the regime T/L? — oco: we need a time scale which is long enough to “see” the
finite size of the box. Also, our analysis is naturally restricted to the unusual case
of a small coupling A\ ~ L?/T — 0. We refer to (2.6) and (2.7) for the precise
regime. For dimensions d > 3, the time scales under consideration here include the
standard low-density scaling (or Boltzmann-Grad scaling), where the ratio 7' ~ L%
is prescribed. The latter scaling is important since in this case the obstacles occupy
a proportion ~ 1/L% of the total volume, so that the probability for the electron
to hit an obstacle once per unit time on this time scale is unity.

The present system is a particular case of the more general problem of de-
scribing the large time dynamics of an electron in a field of obstacles. Such a
system is described by a scaled, linear von Neumann equation. In the general case,
i.e. when the distribution of obstacles is arbitrary enough, and if the coupling with
the obstacles is sufficiently small, it is physically expected (see e.g. [VHI], [VH2],
[VH3], [KL1], [KL2], [Ku], [Pr], [VK], [Zw] or also [Cal], see [Fi] for recent develop-
ments) that the system actually tends to be described by a Boltzmann equation
in the limit. One usually identifies two main regimes: in the low density regime,
the electron hits an obstacle once per unit time in the macroscopic time scale and
each interaction is of the order unity ; in the weak coupling regime, the electron
hits an obstacle 1/e times per unit time in the macroscopic time scale and each
interaction is of the order ¢, for some small € — 0. Such situations are routinely
considered in the modeling of semi-conductor devices, and the use of the Boltz-
mann equation in place of the underlying long time Schrodinger or von Neumann
equation is standard, see for example [MRS]. The motivation of the present work
is based on two observations.

First, many physical derivations of the Boltzmann equation starting from the
von Neumann equation are based on the use of large finite boxes. In particular, our
approach tries to mimic the elementary derivation of Fermi’s Golden Rule based on
time-dependent scattering theory which can be found in many textbooks e.g. [Boh],
[CTDRG], [CTDL], [Mes], [SSL], and which has been recently revived in [Co]. This
is where our limit in L originates. We recall that Fermi’s Golden Rule gives the
expression of the transition rate involved in the limiting Boltzmann equation for



the electron. Elementary time-dependent scattering theory [Boh] considers indeed
a Hamiltonian of the form Hy + V in a finite box of size L, where Hj is the free
kinetic energy. Initially, particles are supposed concentrated on an eigenstate 1,
of Hy associated with the energy e, ~ n?/L?. The goal is to compute the time
asymptotics of the population |C,(t)|? = [(¥(¢),4,)]? of the initially void states
of energy ¢,, p # n, where 1 (t) denotes the wave-function of the particle at time
t. It is well known that, if the energy levels remain discrete (i.e. if the size of the
box is left unchanged), the behaviour of |Cy(¢)|? is either an oscillatory function
of time if the energies are different (¢, # €,) or a quadratic function of time
if the energies are equal (¢, = &,), but can by no means be a linear function
of time. However, scattering theory aims at producing a rate of change of the
populations, i.e. a probability per unit of time. Therefore, one looks for a linear in
time behaviour of |C,(t)|?. To remove this apparent paradox, one must therefore
let the size of the box go to infinity. Indeed, when the level spacings are set to
zero, i.e. as L — oo, the oscillatory function of time |Cp(t)|?, where now p is a
continuous variable ranging in the wave-vector space R?3, formally is, in the sense
of distributions in the p variable, asymptotic as time goes to infinity to a linear
function of time multiplied by a delta function of the differences of the energies of
the initial and final states d(en — €p). In this sense, one recovers the usual Fermi
Golden Rule as a succession of two limits L. — oo then ¢ — oo. In particular,
the process of taking the size of the box to infinity is of primary importance and
not just a technicality, because one cannot deal from the onset with an infinite
medium: in an infinite box, the eigenstates of the unperturbed Hamiltonian H,
are not normalized, and therefore unphysical, and it cannot be given any meaning
to the quantity |C,(¢)|%. Needless to say, the procedure of taking at the same time
the above two limits is mathematically questionable, and the physical relevance of
this approach is also discussed and questioned in detail in [Co]. Similar difficulties
are encountered in other formal derivations (see e.g. [Cal]), where the dynamics of
an electron in a large finite box is considered, and the underlying low-density or
weak coupling limit, together with the limit of an infinitely large box, are formally
taken simultaneously, a doubtful procedure.

Secondly, many rigorous mathematical works establish precise convergence
results of the von Neumann equation towards a Boltzmann equation in various
situations where the obstacles are, say, randomly distributed (see e.g. [Sp], [HLW],
[Lal, [EY]). In particular, the initially time-reversible model is proved to be asymp-
totically described by a time-irreversible equation, but the convergence holds in
expectation value (roughly). Hence the result typically fails for some “zero-measure
set” of configurations of the obstacles. This is due to the fact that the limiting
equation is time-irreversible. However, these works do not give any quantitative
information about the specific configurations of obstacles where the convergence
actually fails.

Starting from these two observations, the present paper deals at variance
with a model which is deterministic. On the more, the problem is set in a given,
periodic (or Dirichlet) box at once. This is a very strong constraint as well as a
non-generic case. Our goal is to test at a quantitative level what happens in this



very particular configuration. We wish to exhibit an effective setting where the
formal convergence towards a Boltzmann equation actually fails. Note that the
deterministic and periodic situation has been previously studied in [Ca2] (see also
[CD]), but a small damping parameter o > 0 is introduced in this paper, which
models the interaction of the electron with external light ([NM], [SSL]), and tech-
nically, it acts as a regularizing parameter In [Ca2], the low-density asymptotics
followed by the limit o — 0 gives the desired convergence towards a Boltzmann
equation. In this picture, the present paper performs the two limits in the reversed
order (limit in o and then low density limit) and our results show that the two
limits do not commute.

Roughly summarizing, the results presented here are twofold. On the one
hand, we show in this paper that the present model is not described by a Boltzmann
equation in the limit, and the actual limiting dynamics is proved to be time-
reversible (Theorem 1). On the more, the limiting dynamics is the same for any
time scale T' such that, roughly, 7/L? — oo, and not only in the low-density
case where T'~ L% is prescribed. However, we emphasize that we only prove here
the convergence towards the limiting dynamics in the sense of a term-by-term
convergence of certain series. On the other hand, the non-convergence result in
Theorem 1 turns out to be related to the presence of phase coherence effects,
quantified in Theorem 2, and which are specific to the case of an electron in a box
with periodic or Dirichlet boundary conditions. Number theoretic considerations
happen to have great importance in describing the limiting dynamics. In particular,
Theorem 1 relies on the explicit computation of the limit of certain Riemann sums
with quadratic constraints of the type, LIEI;O # Z 10) (%, %) 1[n? = p?],

(n,p)€z4

where ¢ is any smooth and decaying function (Theorem 2). This second result is of
independent interest and relies on a precise number theoretical analysis performed
in [CP]. Note that when the dimension d = 3, the above mentionned convergence
relies on a conjecture of number theoretical nature (see assumption (A)). Note
also that the emergence of number theoretical considerations in the context of
the periodic Schrodinger equation is fairly natural and actually standard, see e.g.
[Bol], [Bo2].

We end this introduction with one important comment. The present paper
exhibits one particular, deterministic geometry, where the natural infinite volume
and low-density limits do not lead to any Boltzmann equation, contrary to what is
expected in more general geometries or distributions of obstacles. We may stress
however that the present non convergence result is somehow not surprising, at
least at an intuitive level, due to the specificity of the periodic case. In particular,
we wish to mention that a similar (though not strictly equivalent) situation holds
in the context of classical mechanics : the dynamics of a classical particle in a
stochastic distribution of obstacles is known to be asymptotically described by a
linear Boltzmann equation in the appropriate low-density limit [BBS]; however,
when the obstacles are periodically distributed, such a result is known to be false
[BGW]. The non-convergence result proved in [BGW] relies on number theoretical



considerations specific to the periodic context as well.

A review about the non-convergence result presented here and the conver-
gence result proved in [Ca2], can be found in [Cad].

2 Presentation of the results

2.1 The mathematical model under consideration

Mathematically speaking, the situation presented in the introduction is described
by the following von Neumann equation on the torus (R/ 27TLZ)d,

% %ﬁ(t, X,y) = —Axp+ Ayp+ ANV (x) = V(¥))7 - (2.1)

In this equation the unknown is the so-called density-matrix of the electron,
p(t,x,y), which is the mathematical object describing the state of the electron
at time t € R (see [CTDL]). It depends on a time variable ¢ and two space vari-
ables x and y both belonging to the torus of period L, (R/27rLZ)d. The interaction
with the obstacle is taken into account through the potential AV (x) € R, where
V(x) is the potential created by the obstacle in the elementary cell of size L, and
A € R is a coupling constant which scales the strength of the interaction. Through-
out this paper the potential is assumed to be fixed (independently of L), smooth,
and compactly supported in the open elementary cell ]0,27L[?. Note that time
scales of the order T are indeed considered in (2.1), due to the prefactor 1/T in
front of the time derivative 9/0t.

Now the asymptotic process T — oo together with L — oo in (2.1) is per-
formed in the Fourier space rather than directly on (2.1). For this reason, we need
to define, for any n and p € Z?, the following Fourier transforms,

p(t,n,p) = (2.2)

t,X,y)—— ex (—z ) ———exp | +i—— | dx dy,
/[O,QWL]M g y) (27rL)% P L (277L)% P ( L ) Y

as well as the more standard,

V(n):= /[0’27@](1 V(x) exp(—in - x) dx (— /Rd V(x) exp(—in - x) dx) , (2.3)

for any n € R?. The last equality comes from the assumption on the support of V,
and V() is by assumption a fixed profile belonging to the Schwartz-class S(R9).
Here, bold letters n, p, ... denote continuous variables belonging typically to R¢,
whereas plain letters n, p, ... denote discrete variables belonging typically to Z9,
a convention used throughout the paper. With these notations, the original von



Neumann equation (2.1) becomes,

i 0 n? —p?
)\ = n—k: ~ I{j—p
+Ldk§d{‘/< 7 )p(t,k,p)—V< 7 )p(t,n,k)}-

Note that the transformation (2.2) is the natural one since the functions v, (x) :=
(2w L)~%? exp(—in - x/L), when n € Z%, are the eigenfunctions of the operator
—A, on the space of periodic functions in the box [0,27L]¢, with degenerate
eigenvalues, E,, :=n?/L? (n € Z9) . Note in particular that the limiting procedure
L — oo performed in the present paper makes the spectrum of the Laplacian —Ay
continuous.

Now, as it is standard in this field (see e.g. [Ku], [KL1], [KL2], [Cal], [Zw])
we are only interested in performing the asymptotics L — oo, T — oo in (2.8)
for particular initial data which are stationary states of the free von Neumann
equation iT19p/0t = (—Ax + Ay)p. In other words, we wish to quantify the
large time influence of the potential for initial states which are equilibrium states
of the unperturbed hamiltonian —Ay. The initial data of interest in the present
paper are thus taken of the form,

p(t,n,p)‘tzo = %po (%) 1[n=p], (2.5)

where p%(n) > 0 (n € RY) is assumed to be some given profile belonging to the
Schwartz-class S(R?), and 1[n = p] denotes the indicator function of the set {n =
p}. It is easily seen that the assumption (2.5) generalizes both the case of initial
thermodynamical equilibrium where p(t,n,p)|i=o0 ~ L~ exp(—8n2/L?) 1[n = p),
and (3 is the inverse temperature, and the more general case where p(t = 0) is
an arbitrary function of the energy p(t,n,p)|i=o ~ L~%f(n?/L?)1[n = p| for some
“reasonable” function f.

There remains to quantify the exact regime under which L and T go to infinity
in the present study. As mentionned before, one natural asymptotics in the present
context is dictated by the low-density-regime where T ~ L% and the coupling
constant A is of the order O(1). It turns out that the present periodic situation
dictates a slightly different and in some sense more general scaling. Indeed, let us
rename the scaling parameters A and T, and define the new scaling variables,

T=TL %, A=)T. (2.6)

With this renaming, the low-density scaling reads 7 ~ L%72, A ~ 7. Now, the
asymptotics treated in this paper reads,

T—>oo,L—>oo,A:O(1),WithL6

(d)]og L %
and §(d) =0 whend > 5,
0(d) > 0 may be arbitrarily small when d =3, ord=14.

(2.7)



It describes a long time and small coupling regime, and (2.7) turns out to be the
natural scaling in the present periodic situation.

We now wish to give some important comments and justifications for the
scaling (2.7). Firstly, the condition 7/(L%® log L) — oo includes the important
low-density-limit 7 ~ L% 2 for dimensions d > 3 as a particular case, and the
reader may safely restrict his attention to the mere low-density regime throughout
this paper. The very condition 7 /(L%(® log L) — oo stems from technical reasons,
and the logarithmic factor originates both from the periodicity and from the fact
that Z]Ile 1/4 ~ log L as it will be clear later. We refer, for instance, to Section
3 on this point. Essentially, the conditions on 7 mean that we are on a long
enough time scale so as to “see” the geometry of the box. Recall indeed that
the typical spacing between energy levels in the present case precisely is 1/L2.
Secondly, the small coupling condition A = O(1) is much more restrictive than
the condition A ~ 7 imposed in the standard low-density scaling. However, this
condition turns out to be again the natural one in the present periodic situation, see
e.g. Theorem 1. Hence one readily observes on (2.7) two specificities of the periodic
situation in comparison with the case of an electron in a “generic” distribution
of obstacles: firstly, the time scale for which a satisfactory limiting dynamics is
obtained can be either smaller or arbitrarily larger than the usual low-density
time-scale (cases 7 ~ L for some small ¢ > 0, and 7 ~ L~ for some large N
respectively), and the limiting dynamics turns out to be the same in any case as we
shall see (Theorem 1). This readily contrasts with the “generic” situation where
fairly different limiting dynamics are expected depending on the time-scales under
consideration. Secondly, the periodic situation imposes to rescale the strength of
the potential with the time-scale as A ~ 1, in contrast with the low-density scaling
where the correct values are A ~ 7 when T ~ L% 2. The rough mathematical
reason for this second phenomenon is the following. On the time scale given in
(2.7), and in particular on the low-density time-scale, the von Neumann equation
reads i0;p = T[n? — p?]p + ---. For this reason, the resonances occuring when
n? = p? are emphasized as soon as 7 — oo (e.g. due to the Riemann-Lebesgue
Lemma, see Lemma 1 below). It turns out that the contribution of these resonances
in the sum (1/L972) ¥, ;4 ... in (2.8) below is O(1). This explains the need for a
rescaling. In the random situation, we rather have id;p(¢,n,p) = 7 [n? —p?|p+- - -
where n and p are now continuous variables (roughly speaking), and much more
subtle oscillation phenomena dominate (e.g. the non-stationnary phase Lemma),
hence the fairly different behaviour in this case.

As a conclusion of this presentation, we may summarize from (2.6) and (2.4)
that the present paper treats the asymptotics (2.7) on the equation,

%p(t,n,p) = —iT[n* — p°]p(t,n,p) (2.8)

for initial data of the form (2.5). Note that for notational convenience, the de-
pendence of the solution p to (2.8) upon the parameters 7, L and A is not made



explicit, a convention kept throughout this paper. We thus write p instead of p7 L4

and allow ourselves to write lim7_ ., p and so on.

2.2 Comparison with other works: “badly sampled” oscilla-
tory sums

Let us introduce now the distribution f(t,n) := Y . p(t,n,n) é(n — %) as a
distribution on R?, where p satisfies (2.8). We mentionned in the introduction
that, at least in the general case of an electron in an arbitrary distribution of
obstacles, the underlying von Neumann equation is physically expected to converge
towards a Boltzmann equation in the low-density limit. In the specific case under
consideration here, the above rough statement means (should it hold true) that
the distribution f(¢,n) should converge in the low-density regime towards some
f°°(t,n) satisfying the so-called Quantum Boltzmann equation,

0 (tm) =27 [ 3"~ 1) [o(m,10) F2(010) — ol m) < (tm) di, - (29)
Rd

for some function o(n, k) representing the transition rate between the impulse n

and the impulse k. Here, o is given by a series in A (the so-called Born-series),

whose first term is,

o(n, k) = X2|V(n—Kk)]>+0(\?), (2.10)

and this last equation is called the Fermi Golden Rule (See [RS]). From a math-
ematical point of view, results of this type have actually been proved true in
[Sp], [HLW], [La], [EY], when the potential AV is chosen to be stochastic, i.e.
AV = AV (z,w), w belonging to some probability space, and the convergence holds
in expectation with respect to w (to be more precise, the weak coupling limit leads
to (2.9) with a cross-section given by the first term of the expansion (2.10), whereas
the low-density regime leads to (2.9) with the full Born-series expansion (2.10)).
In the deterministic situation where the potential is given at once, we wish to
quote the work of F. Nier [Nil], [Ni2] for the derivation of the scattering rate o
mentionned above. All these mathematical works deal with an electron evolving
in the whole space at once (and not in a finite box). Let us also mention [Cal] for
a non-convergence result when the period L is fixed of the order O(1). Finally, we
wish to quote that the equation (2.8) modified by a damping parameter o > 0 is
considered in [Ca2] (see also [CD]),

2 2

0 tm,p) = " p(t, ) — iewp(t, m,p) [ # ) (211)

T8t+)\z{‘7<n—k) Cs(k-p
i 7 ) (kD) V( T )p(tvn,k)},

kezd

(compare with (2.4)), and the initial datum is assumed of the form (2.5) as well.
In [Ca2], the low-density limit is performed first and the asymptotics @ — 0 is
taken in a second step: the resulting limiting dynamics is then proved to be (2.9)



with the correct cross-section o, see [Ca2] and [Ca3]. Note that the damping term
in (2.11), which is intended to model at a phenomenological level the coupling
of the electron with external light ([NM], [SSL]), readily makes the modified von
Neumann equation (2.11) time-irreversible, contrary to (2.4) or equivalently (2.8).

In this picture, and contrary to these two approaches where some “noise” is
introduced in the true Schrodinger equation, the present paper deals at variance
with the direct limit T — oo and L — oo in (2.4) (or equivalently 7 — oo, L — oo
in (2.8)), in a regime which includes the low-density regime 7 ~ L%~2. We prove
in Theorem 1 that we do not recover (2.9) in the limit.

From a purely mathematical point of view, we now wish to illustrate the
reason for the qualitatively very different results obtained here on the one hand,
and in [Ca2], or [Sp], [HLW], [Lal, [EY] on the other hand. After some easy manip-
ulations, it is seen that the analysis of both (2.11) and (2.4) leads to considering
sums of the form,

1 L% n? — p2 n p
F(L,a) = — / exp <z 5 — as> ds ¢ =, =), (2.12)
72 (n’ggzw 0 2 (%)

for some smooth test function ¢. In this language, the analysis performed in
[Ca2] leads to the limit lim,_,¢limz o ... whereas the present work deals with
limy o0 limg—g ... (and the first limit & — 0 is trivial in the latter case). It is
clear on (2.12) that a competition occurs between the discreteness of the sum
Zn,p which should approximate an integral over R??, and the convergence of

L
the oscillatory term / exp(i(n? — p*)s/L?)ds towards the oscillatory integral
0

+oo
/ exp(i[n2 — p2]s) ds, an object which only has a meaning as a distribution in
0

the continuous variables n and p in R%. In particular, the convergence of Riemann
sums towards their integral counterpart is not guaranteed when dealing with dis-
tributions, and in this case the sampling may destroy the convergence towards the
desired oscillatory integral. The result in [Ca2] relies on the following limit,

+o0o
lim lim F(L,a) = / / exp(i[n? — p?]s)é(n, p) ds dn dp , (2.13)
r2¢ Jo

a—0 L—oo

as formally expected. However, the key of the present paper lies in proving (The-
orem 2) the existence of an explicitely computable measure du supported on the
set n? = p?, such that,

. . 1
i lim s F(L,0) = / _6(n.p) du(n,p) (2.14)

This result (2.14) proves that the sampling of size 1/L in n and p in (2.12) is
somehow too crude to converge towards the natural limit (2.13). Both limits (2.13)
and (2.14) answer a question posed in a physical context in [Co]. The fact that the



limits (2.13) and (2.14) differ is the very reason for the diverging results established
in [Ca2] on the one hand, and here on the other hand. In the stochastic case, the
phase n? — p? appearing in (2.12) is somehow randomized, so that again a result
of the kind (2.13) may be used.

Technically speaking, we wish to add that the exact value of the measure
dp depends on the asymptotic behaviour of the cardinality of the set {n € Z,
st. n? = A} when A — oo (A € N), as well as on the asymptotic repartition of
the unitary vectors n/|n| when n? = A and A — oo. The latter asymptotics is
studied independently in [CP], and it turns out that the analysis encounters deep
difficulties in dimensions d = 3 and 4, while it remains much easier in dimensions
d>5.

2.3 Statement of the main Theorems

We now quote the statement of the main results of the present paper. In order to
do so, we need to formulate an important assumption,

(A) There exists a do(d) €]0, 1] such that for any 0 < § < Jo(d),
for any [ > 1, I € N, the following limit exists,

1-48
— lm A*i‘: #{nezd st. n?=B}\
Td = T AT =, Bé-1 '

In a less essential way, we may further assume the following bound,

(A’) There exists a constant C(d), depending on d, so that,

Y4 < C(d)' .

The assumptions (A) and (A’) are easily proved true for dimensions d > 5, and
do(d) = 1 in this case, see Lemma 4. In dimension d = 4, we are able to prove that
the quantity involved in (A) is bounded independently of A for any § < dp(4) = 1,
hence the existence of a limit up to extracting a subsequence in A, see Lemma 5.
However, the bound on 7; 4 which we are able to prove is of the form (CD)" in this
case. In dimension d = 3, we are not able to prove (A), which is thus a conjecture
in this case (except in the special case [ = 1 where the estimate is easy). Needless
to say, the bound (A’) is also out of reach when d = 3. However, we have tested
that the sequence in A involved in (A) converges numerically in a satisfactory way
for various values of [ when d = 3. Also, when d = 3 or d = 4, it seems numericaly
plausible that the behaviour stated in (A?’) is realised. Note that the independence
of ;4 upon 6 is natural since once the limit exists for some 6 > 0, it also exists
for any &’ < §, and the limit is the same.

Our main statement is now the following,

10



Theorem 1 Let p(t,n,p) be the solution to (2.8) with initial datum given by (2.5).

Assume that both V(n) and p°(n) are smooth profiles in S(R?) with d > 3. Define
the distribution,

prtn,p)i= Y exp(iTtn® —p*plt,n,p)on— T)s(p— 7). (2.15)
(n,p)€z2?

Take a smooth test function ®(n,p) € C°(R??) and consider the duality product,

,p1(t;n,p)®(n,p) dndp . (2.16)

(or(t),2) = [

R2

Then,

(i) the sequence (pr(t), ®) admits the power expansion,

pr(),®) = > (=N (+HA Q) =S (A S (~1)'Qu(t)

leN seN I+1l'=s
1 eN

(2.17)

where the last sum Y, ;,_ -+ is finite for any s > 0, and the terms Q1 (t) depend
upon T and L, but they are independent of A. Their explicit value is given in (4.7)
below. The above series converges for any A € R, given any fized value of T and
L.

(ii) If we further assume (A), the power series in (2.17) converges term-by-term
towards the following limiting power series,

(pr(), @) = (pP°(), @) := > (—id) (+iM)" Q% (1), (2.18)
é’EeNN
as L and T go to infinity in the regime (2.7). The value of the quantity Q7% (1) is
given below in (5.1). The series in (2.18) converges for any A € R under assump-
tion (A?).

(iii) Formulae (5.1) and (2.18) define, for any value of time t, a distribution
(actually: a measure) p°(t,n, p), which can be seen as the weak-limit of pr(t,n,p).
This distribution is invariant under the transformation,

t— —t, i —i. (2.19)
In particular, the dependence of p3°(t) upon time t is reversible.

Remark 1 Note that the above Theorem has several restrictions. (a) Firstly, it
is restricted to the assumptions (A) respectively (A”), which is a restriction only
for the dimension d = 3, respectively d = 3 and 4. (b) Secondly, the convergence
of the distribution p; which we are able to prove here only holds as a term by
term convergence of the power expansion (2.17). Though the limiting power series
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turns out to define an analytic function of A as well (at least under assumption
(A?)), we are not able to prove satisfactory uniform estimates with respect to L
and 7 (see however (5.15) below). (c) The last restriction lies in the fact that
our result only holds when the electron evolves in a dilated cube whose lengths
in the different directions of space are rationaly dependent, a highly non-generic
situation. Indeed, the generic case of a cube with rationaly independent lengths
cannot be treated by the present analysis, due to both the appearance of small
denominator problems in this case, see Remark 6 below, and to the fact that the
statement analogous to Theorem 2 is false in this case. Note however that such a
restriction is natural, since we aim at exhibiting a non-convergence result towards
a Boltzmann equation, a result which is itself non-generic. O

Remark 2 As one sees on the formulation of Theorem 1, the method of proof
proposed in the present paper is based on the explicit computation of the value at
time t of the solution p(t) to (2.8), in terms of the initial datum p°. We obtain a
series expansion (2.17), and we pass to the limit on the explicit formulae. This is
a standard procedure in the context of the convergence towards “Boltzmann-like”
equations, see [CIP], [BGC], [Sp], [EY]. In our particular case, it turns out that the
limiting dynamics, i.e. the limiting value p3°(t), is still given by a series expansion
stating the value of p*>°, and no simple equation relates the value of p*°. This
could be compared with a similar fact in the classical context, see [BGW], where
the authors simply prove the non-convergence towards the natural Boltzmann
equation but the actual limiting dynamics is not expressed. We do believe that
a deep difficulty prevents one to pass to the limit “directly” in the particular
equation (2.8) instead of its power series solution as we do here. In particular, it
seems plausible that there is no constant 7, such that v, 4 = 74, and this makes the
limiting dynamics for p* itself already difficult to translate into a simple equation
(See (2.18) and (5.1)). Another motivation for such a credo lies in the fact that
the “Riemann sums with quadratic constraints”, as they naturally arise in the
proof of Theorem 1 by explicit computation, cannot be treated without number
theoretical arguments, and in particular the correct rescaling of these sums (see
(2.20)) is dictated by the number theoretical asymptotics (2.24), an information
which seems difficult to exploit when arguing “directly” on the equation (2.8). O

Remark 3 The distribution p;(¢,n, p) is called the density matrix in the interac-
tion picture. We wish to mention that a Theorem similar to Theorem 1 holds for the
diagonal part of the density matrix, namely f(t,n) := > 4 p(t,n,n)é(n — %) .

O

The above Theorem, and in particular the need for (A) to hold true, turn
out to be a consequence of the following,

Theorem 2 Let ¢(ko, ki, ..., ky) be a smooth test function in S(RWV+DD) with
a dimension d > 3. Assume (A) holds true. Consider finally the following “Rie-
mann sum with quadratic constraint”,

1 k k

(Ko, kN )ELIN+D
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Then, as L — oo, I,(¢) converges, and its explicit limit is,

“+o0
lim I5(¢) = 2YNi1d / / PIN+1)(d—2)+1 (2.21)
L—oo 0=0 J(sd-1)N+1
¢(9k0, le, PN ,QkN) df dO’(ko) ‘e dO’(kN) .

Here, do denotes the Euclidean measure of the sphere S%=1, normalized with
do(S41) = 1.

Remark 4 As we shall see, Theorem 2 is a consequence of the following Theorem,
proved in [CP] (See [Lab] for previous results): for any domain  C S%!, mea-
surable with respect to the euclidian surface measure do, and for any dimension
d > 5, the following asymptotics holds,

#{n € Z% such that n? = A and n/|n| € Q}
#{n € Z4 such that n? = A}

~ oo do(9). (2.22)

In fact, formula (2.22) still holds true in average for the dimensions d = 4 and
d = 3 as well, in the sense that,
1 A+h d 2
Z #{n € Z% such that n®* = B and n/|n| € Q} N
1+h —~

L do(9), (22
#{n € Z? such that n? = B} A o(Q), (2.23)

up to choosing h = A° for any small € > 0 when d = 4, and h = A4t when
d=3. m]

Remark 5 Before turning to the proofs of all these results, we wish to justify now
the exact scaling needed in (2.20), and recall some important facts from number
theory. These will be of constant use below.

Without the constraint k = --- = k%, the correct normalization of the
Riemann sum is given by the prefactor 1/LV+14 instead of 1/L4N(4=2) The
quadratic constraint modifies the prefactor because the number of (N + 1)-tuples
of modulus ~ L satisfying the constraint, is of the order L*tN(@=2) rather than
LIN+1d_ Thig point is easily seen since, roughly speaking, the cardinality #{n €
74 such that n? = A} is of the order A%~1. We make this point more precise
below.

It is well known (see [Gr], [Va]) that,

(3/2)¢

T (d2) S) Azt (2.24)

#{n cZ? suchthat n®>= A} ~4 .

(when d > 3), and G(A) is the so-called singular series, defined as,

S(A) = zq: (S(Cga)y exp (—21'77‘24) , (2.25)
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where we use the notation,

! am?

S(g,a) := Z exp <2i7r> ) (2.26)
m=1 q

By a standard estimate on Gauss’ sums (see [Gr]), we have |S(q,a)| < Cq'/?, for
some constant C' > 0, so that the series over ¢ in (2.25) defining G(A) has a gen-
eral term which is upper-bounded by 1/ q%_l, and the series absolutely converges
in dimensions d > 5. The convergence of this series in much more delicate in di-
mension d = 4 and even more delicate when d = 3, which explains the separate
treatement of these two dimensions in this paper.

Now G(A) is roughly speaking a quantity of the order 1, a statement that
assumption (A) translates in a more quantitative way. In particular, we wish to
mention that, as is well-known ([Gr]), in dimensions d > 5, there are positive
constants ¢o(d) and ¢1(d) such that for any A € N,

0 < co(d) < S(A) <ei(d) < 00 (2.27)

In dimensions d = 4 and d = 3, this estimate becomes wrong as such, and one can
only prove (see [Gr]),

0<S(A) < ea(e,d) A7, (2.28)

for some constant cy(e,d) depending on € > 0 and d = 3 or 4 (this estimate is not
optimal yet, see [Gr] for refined estimates). Hence G(A) can be arbitrarily small
(it may vanish) or as large as A° in dimensions 3 and 4. We refer to [Gr] and [Va]
for these results.

Summarizing, we end this remark by stating the following bound,

#{n €72 suchthat n®= A} < C(e,d)AT 11 (2.29)

for some constant C(e, d) depending on € > 0 and d > 3, and one can choose e =0
when d > 5. This is an obvious consequence of the above estimates. We shall make
repeated use of this estimate below. O

2.4 Organisation of the paper, notations

The paper is organised as follows:

1- In Section 3, we present a simple computation which is a model for all the
computations appearing in the present paper. We explain on this computation the
main features of our analysis, and the proof of Theorem 1 simply uses in a general
setting the ideas of Section 3.

2- In Section 4, we explicitely compute the solution p(¢,n,p) to (2.8), for any
finite value of the scaling parameters L and 7.

3- The explicit formula obtained in Section 4 involves a factor called H;
(see (4.1)) which is some integral over the variables t1, ---, ¢; of an oscillatory
function of the form exp(i7 [wit1 + - -+ + witi]), and the w;’s are integers. By the
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Riemann-Lebesgue Lemma, it is clear that this kind of factor goes to zero at least
like 1/7 when one of the w;’s is non-zero. It is a key argument in the present paper
that we can prove a much more refined estimate stating (very roughly) that H,
goes like 1/7" when r terms amongst the w;’s are nonzero (see (5.9) for the exact
estimate), so that we can relate the size of H; and the number of non-zero w;’s.
The corresponding precise analysis is performed in Subsection 5.2.

4- Armed with the bounds of Subsection 5.2, we prove in Subsection 5.3.2
that the “non-resonant” terms in the explicit formula for p(¢,n,p) (corresponding
roughly to the case n? # p? in (2.8)) go to zero like (L€ log L) /7 in the regime (2.7),
for any € > 0. This is based upon a very careful analysis of the “number of non-
zero w;’s” in factors involving the function H;, and the key difficulty lies in keeping
precise track of the homogeneity of our formulae in the scaling parameters L and
7. Then we compute in Subsection 5.3.3 the limit of the remaining “resonant”
terms (corresponding roughly to the case n? = p? in (2.8)), by making use of the
convergence of sums of the form (2.20). This ends the proof of Theorem 1.

5- In Section 6, we prove Theorem 2 upon the basis of the results (2.22) and
(2.23) proved in [CP]. This uses assumption (A).

6- In Section 7, we prove the assumptions (A) and (A’) in the cases d > 5,
as well as a weaker form of (A) and (A’) when d = 4.

Notations
The following notational conventions are used.

(i) In the sequel, C(a,b,...) denotes any positive constant depending upon
the parameters a, b, .... In most cases, the important point for us is to check
that C' does not depend upon the scaling parameters L and 7. However, these
various constants may depend upon the dimension d, the profiles p° and V without
explicitely emphasizing the dependence upon these three parameters.

(ii) In the sequel, the letters m, n, p, k, k1, k2, ..., 4, j1, Jj2, - .., always
denote integers in Z?, and they are possibly indexed by integers in N. The symbol
Znypij___ always denotes the sum extended to all integers n, p, k, j, etc... in Z%.

(iii) For any integer m, the symbol [1,m] denotes the set [1,m] N Z.

(iv) An inequality of the form --- < C(e)A'~¢ always means that for any
small enough e > 0, there exists a constant C(g) such that the inequality is satis-
fied. In particular, we may sometimes replace 22 by z° in a chain of inequalities
without further comment.

(v) For any n € RY, we use the notations,

m):=(1+n*)"? and n?:=n?+-..+n?. (2.30)

(vi) Throughout the paper, do denotes the Euclidean surface measure over
the sphere S, normalized by do(S?1) = 1.

(vii) We shall make repeated use of the following easy relations: for any
smooth and sufficiently decaying function ¢ defined over RY, and for any L > 1,
we have,

w 2()

kezN

<C) | LLN S (ﬁ) . /RN o(k)dk . (2.31)

kezZN
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3 A model computation

Before turning to the asymptotic analysis of (2.8) in the regime (2.7), we first
present a model computation containing the main features of the present analysis.

As it will be clear below, the study of (2.8) typically requires to characterize
the asymptotic behaviour of the model term,

St gk 5 o(3:8) [ oottt e, o

(n,p)€Z2? -

for some smooth and compactly supported test function ¢(n,p), say (see also
(2.12), (2.13) and (2.14)). The important point to notice is that this sum, though
formally similar to a Riemann sum, 4s not normalized like a usual Riemann sum.
However, we prove below that this term converges as 7 and L go to infinity in the
regime (2.7). The idea is that the normalization by L~(2?72) is correct over the
resonant set n? = p? in view of Theorem 2. Outside the resonant set, i.e. when
n? # p?, the sum is apparently incorrectly normalized, but the factor 7 [n? —p?] in
the phase turns out to both restore the correct normalization upon computing the
integral of the complex exponential in (3.1), and to give the desired concentration
on the set n? = p? as T — oo. These three features are the key arguments allowing
us to prove Theorem 1 in Section 5. In particular, a key step in the present model
computation lies in explicitely computing the integral f(f exp(i7[n? — p?]s)ds to
restore the correct normalization of the sum (3.1), and we wish to mention that
this step “simply” has to be replaced by the bound (5.9) in the general case as
treated in Section 5.

Now, we come to the study of St 7. It is first natural to split Sg 7(¢) into a
non-resonant contribution, for which n? # p? in (3.1), and a resonant contribution,
for which n? = p?, as follows,

P 1 1
LT = Ta+(d—2) Z et 7,d+(d—2) Z
(n,p) €234 (n,p) €224
n“ # p2 n? = p2

= 5P (0)+ SPp(@) .

)

First step: study of the non resonant term
We first prove the bound,

Lflog L

ISP @) < 0 ==,

for some constant C(¢) depending on & > 0, where ¢ = 0 is allowed when d > 5,
and we recall,

1 nopy [ .
51(117,)]-((;5) = [d+(d-2) Z ¢ (f’ f) /70 exp(iT[n® — p*)s) ds .
n?#p? 5=
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The analogous bound in the general case is (5.13) below.
Decomposing the sum ), , 4p2 Into a sum over the different values of the

difference n? — p? := w € Z*, we readily obtain,
1 1 n py [* .
|522T(¢)| S Tar@=2) >y ‘Gf? (Za f) Oexp(szs) ds ‘ :
WEL* n2—p2=w s=

hence, by explicit computation of the integral in s,
(1) _c 1 ‘ (ﬁ B)‘
15270 < Fpma % ] Z A2
w * n<—p*=w

Now, we first use the fact that ¢ has compact support, so that the above sum is
actually restricted to bounded values of n?/L? and p?/L? hence, say, |w| < L? and
n? < L? up to a multiplicative constant. This gives,

(1) ¢
|SL,T(¢)| S TLd+(d,2)
1
X Z m #{(n,p) € Z* s. t. n> < L%, p* =n? —w}. (3.2)

1<|w]<L?
Secondly, we make use of the fundamental result (see (2.29)),
#{peZist.p? =n®—w} < Ce)n? — cu|%_1+E , (3.3)
in any dimension d > 3. Hence, in view of |w| < L? and n? < L?, we obtain,

#{pecZist.p? =n* —w} < C(e)L= |

so that,
(1) C(e) 1 4 deas Lflog L
|SL,T(¢)|§W Z mXL X L ESC(E)THO,

1<|w|< L2

and (3.2) is proved. Note that the factor log L in (3.2) is directly related to the
logarithmic divergence of the harmonic series.

Remark 6 We heavily used that the difference n? — p? belongs to Z, hence no
small denominator problems occur here. This is the reason why the analysis in
this paper cannot be applied in the case where the initial Schrédinger equation is
posed on a cube with rationally independent sides: in this case indeed, the relation
w = n? — p? is replaced by w = Z‘Zzl Xi(n? — p?) for some rationaly independent
A:’s in R, and one cannot use the implication w # 0 = |w| > 1 anymore. Anyhow,
the numbering (3.3) has to be adapted in the rationally independent case. 0

Second step: study of the resonant term
It is defined as,

S(LQ,)T(cb):m > o(1.2). (3.4)

n2=p?
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We are thus led to studying “Riemann sums with quadratic constraint” as in (3.4)
above, and Theorem 2 together with (3.2) thus give in the regime (2.7),

: o @)
L,ITHEOO Sr7(9) = L,lflrlloo Scr(@)

“+oo
::2n@¢i]f ”/“ 0292416 (g, Op)dfdo(n)do(p) . (3.5)
6=0 JS2(d—-1)

The analysis of (3.1) is complete.

4 Proof of Theorem 1, part (i): explicit solution
to the von Neumann equation (2.8)

In this section, we explicitely compute the solution to (2.8). In order to do so, we
first need the following,

Definition 1
(i) For any (w1, ... ,w;) € R!, we define the following quantity,

t t—s1 t—s1—...—81-1
Hy(wi,-.. ,wp) ::/ / / exp(iT jwisy + -+ +wisy]). (4.1)
51:0 52:0 SZZO

Ezplicit formulae for Hy are gien in (5.5) and (5.9) below.
(ii) For any values of (ko, k1, ... k) € ZUTDe we define,

ko ki kir ki s (ko—Fk1\ (k1 — ke s (ko1 — Ky

Remark 7 We readily state some easy bounds on H; and V. Firstly, the following
bound on H; is trivial,

\Hy(wr,... )] < - (4.3)

Secondly, due to the assumption V € S(R?), it follows that for any M > 0, there
exists a constant C'(M) such that,

V(n)] < C(M){n)~ ™. (4.4)

In particular we may upper-bound V) as,

ko k1 k ko — ki ki1 —Fki
v (e )| s conrdr iy By )
for any M > 0. We mention that the following weaker bound is also of interest,
ko k1 ki ke =R R Ry
—, ..., = || < C(M){——— o (——— . 4.
v (i ) s con BB (1.6
O
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With these notations, we are in position to state the,

Proposition 1 Part (i) of Theorem 2 holds true up to defining the quantities,

1 .
Qur(t) = Ty Z exp (iTt[n* — p?)) (4.7
m,n,p,k1,... ,K1—1,51,--- 01/ _1
xHj(m* —n? m? —k3,... ,om* —k? )

2 2 2
voe s e —m7)

n ki ki_1 m (P 7 Ju—1 myY o/m n p
L e B L m Mg (2 L
><Vl(L’L’ L ’L)Vl (L’L’ L 1)f (L) (L’L)’

when 1 > 1 and " > 1. This definition has to be extended when | =0, 1 > 1 by,

XHl’(p2 - mzvj% -—m

1 .
Qor(t) = TR Z exp (iTt[n* — p]) (4.8)
n7p7j1:~-~7jl’
XHl’(p2 - n27j% - n27 te 5jl2’—1 - n2)

o (B ) ()0

and similarly when 1 > 1,1 = 0. Also, when | =1' =0, we have to define,
1 o (M n n
D= LS a () :
Qolt) =13 30 (3)e (37 (4.9)

Remark 8 For fixed values of the scaling parameters 7 and L, the series in A,
D len, pen(—iA) (+iA)" Qi (t), involved in (2.17) is easily seen to converge for
any A € R. Indeed, when [ > 1 and I’ > 1 say, we may upper bound Q, /() as,

t <cq>l+"|t‘l+l, !
‘Ql,l’( )‘ <C(®) W < A @—2)
n—=ki _ ki — ko _ ki_1—m, _
Z <T1> (d+1)<¥> (d+1>...<1T> o+

m,n,p,k1,... . ki—1,J1,-- 011 _1
P =i\ —(d+1) JL = J2\—(a+1)  pJV=1 =T (1), —(d+1)
C(q)’t)l—&-l/LQ(l—&-l')

nn ’

where we used successively (4.3), (4.5) for M = d + 1, |p°(n)| < C(n)~(@+1),
|®(n,p)| < C(P), and (2.31) with N =d(l +1' +1).

Clearly, the bound (4.10) implies that for fixed values of L and 7, the series
in (2.17) behaves like C(L,T,t,®)*|A|7 (1) =1(I’1)~!, hence the convergence.
We mention in passing that another estimate on Q; () is available, see (5.15),
which is uniform in 7 and L, but it grows with [ and I’ O

< (4.10)

Proof of Proposition 1 The proof is given in several steps.
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First step: factorizing the solution to (2.8)
Let us define the auxiliary function,

g(t,n,p) := exp (iTt[n2 - p2]) p(t,n,p), (4.11)

where p is the solution to (2.8). One easily checks from (2.8) and (4.11) that
g(t,n,p) satisfies,

Og(t,n,p) = —i% Z {exp (iTt[n* — k) 1% (n;k) g(t, k,p)
kezd
— exp (iTt[k;2 —pQ]) v (k;p) g(t, n, k)} , (4.12)

with initial data given by (2.5) as well. Now it is a standard procedure to observe
that the solution g(t,n,p) can be factorized under the form,

g(t,n,p) = Z wm(t’n)wm(tvp)* ) (413)

mezd

where the wave functions ,,(t,n) satisfy,

A . ~n—=k
Ot (t,m) = T Zexp(z'ft[n2 — DV ( 7 Vm (t, k) (4.14)
k
with initial data given by,
1 m
P (t,1)]i=0 = 77 P(7)n=m]. (4.15)

The proof of (4.13) is very simple: from (4.14), it is obvious that the right-hand-side
of (4.13) satisfies (2.8), with initial data given by (2.5) thanks to (4.15). We con-
clude using the fact that the solution to (2.8) for a given initial data is unique. The
problem of computing the solution p(¢,n,p) to the von Neumann equation (2.8)
with initial data (2.5) is thus reduced to computing the wave functions v, (t,n)
(m € Z4) defined above, solutions to the simpler Schrédinger equation (4.14).

Second step: solving (4.14)

Integrating the equation (4.14) in time and taking the initial data (4.15) into
account, we readily obtain,

(i) = Li ()10 = m] (4.16)

t
45_2 /_0 exp(iTs[n® = K*))V (*— B (5. ) ds
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Hence, solving (4.16) iteratively, we obtain,

m
Yrn(t,m) = pO(fmn:m]
+ 3=y / / /
>1 —H(d 2 kg Vs1=0 s2=0
exp(iT s1[n? — k3] exp(szz[kf —k2]) ... exp(iTsi[k? | — m?])
n ki ki_1 m o/m
Vl(LaLa7 L’L) p(L)
Now, we change variables, u; =t—s1, us =t—8$1—82, ... , uy=t—81—---—s;,

in the above equation. This gives,

Ym(t,n) = 4/p°(7)1n = m] (4.17)
1 . 2 2 n k‘l kl—l m
+Z 'LA m Z eXp(’LTt[n —m ])Vl (L’L) ,T,f
>1 ki
2 2,2 2 2 2 m
XHl(m —n-,m 7kla"'7m 7kl—1) po(f)
and the notations (4.1), (4.2) are used.
Last step: conclusion
Combining (4.17) and the factorization (4.13) proves Proposition 1. O

5 Proof of Theorem 1, parts (ii) and (iii): Limit-
ing behaviour of the solution to (2.8)

5.1 Preliminaries : precise formulation of Theorem 1 and
scheme of the proof

In this section we prove the following,

Proposition 2 Parts (ii) and (iii) of Theorem 1 hold true, where for eachl and
v, Q7% (t) admits the following value,

l+l’

Qv (t) =2Vt 41,a 77 / / Vi(Oko, 0ky, ... ,0k;_1,0m)
’ i 9 §(d—1)(1+1/+1)
<V (0o, 631, ... ,0jr—1,0m)p (Hm) (0ko, Bjo) (5.1)

x Q=D+ 4005 (m)do (k) . . . do (ki1 )do (o) - . . do(jir—1) -

This definition is easily extended to the cases | = 0 or I’ = 0. The claimed in-
variance of p®(t) under the transformation (2.19) is easily seen on the explicit
formulae (5.1) and (2.18). The convergence of the series (2.18) under assumption
(A’) is a consequence of the easy estimate (5.2) below.
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Remark 9 Let R be the typical size of the support of ®, and assume (A’) holds
true. Then we have the easy estimate,

’

C(t)”l

(d=2)(I+1+1)+2
NG R , (5.2)

Q7% ()] <
where we used that |V;| < CL. O

Clearly, Theorem 1 is completely proved once Proposition 2 is proved. On
the more, in view of part (i) of Theorem 1, we only have to study the asymptotic
behaviour of each term Q;/ (t) (see (4.7)) as 7 and L go to infinity, in order to
prove Proposition 2.

Now, the method of proof of Proposition 2 is the following. It follows exactly
the same lines as the model computation of section 3. The proof occupies the whole
remainder part of the present Section (Subsections 5.2 to 5.3.3).

Firstly, we observe that the explicit formula (4.7) involves the factors H;(m?—
n?, ... ,m*—k? )Hy(m?—p? ... ,m*—j7 ). On the other hand, the definition
of the function Hj(w1, ... ,w;) clearly indicates that H; “concentrates” on the set
w; = ... =w; = 0 as 7T goes to infinity. Our first step is thus to give precise
bounds on H; which give the desired quantitative version of this fact (subsection
5.2, estimate (5.9)).

As a consequence, the sum (4.7) is expected to concentrate on the “resonant”
set, defined as,

{(m,n,p,k1,...  ki—1,J1,-.. ,jr—1) € Z4HU+D) - gych that (5.3)

n2:p2:m2:kf:-~-=kl271 :j12:"':j12'71}~
If the “non-resonant” set is defined as the complementary set to the resonant
set, our second step is to prove that the asymptotic contribution of the “non-
resonant” set (see the term QY (t) in (5.12)) converges indeed to zero (subsection
5.3.2, estimate (5.13)) This is the most difficult task while proving proposition 2.
The problem thus reduces to compute the asymptotic contribution of the set
m? =n® = p® = --- in the sum (4.7) (see the term QjF(¢) in (5.11)). In other
terms, we have to deal with a Riemann sum with constraint as it is considered in
Theorem 2. Our third and last step thus consists in using Theorem 2 to conclude
(subsection 5.3.3). The proof of Theorem 2 itself is deferred to the next section.

5.2 Part I of the proof: Explicit formulae and bounds for H,

In this section, we first explicitely compute H; as defined in (4.1). Then we indicate
how to upper-bound the quantity H;. The bounds obtained in this section will
standly be used in the asymptotic analysis of the terms Q;; (¢) performed in
Subsections 5.3.2 and 5.3.3.

5.2.1 An explicit formula for H,

We begin with the easy,
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Lemma 1 Defining Hj(w1,... ,w;) as in (4.1). Also, define conventionally,
Wi41 = 0 5 (54)

and consider H; as a function of the (I + 1)-tuple (w1, ... ,w;,wi+1), a convention
standly used in the sequel. Then, when w; # wy, Vj # k, we have the following
explicit formula,

+
Hilwr, . Z - exp(iTtwy) . (5.5)
k=1 H [iT(wg — wj)]

i #

B

Proof of Lemma 1
We write,

t t—uy—-—uj—2
H = / .. / exp(iT[urwy + -+ + u—1wi—1])
uq 0 ul_1:0

t—up—-—uj—1
X / exp(iTwwy)

t t—up—-—uj—2
/ . exp(iT|urwr + -+ + u—1wi—1])
u1=0 u;—1=0
" exp(iT(t —ug — - —w—1)wi—1) — 1
iTUJl

1 .
= Ton [exp(iTtw))H—1(w1 —wiy ... ywi—1 —wp) — Hi—1 (w1, ... ywi—1)] -

This gives a relation between H; and H;_1, and formula (5.5) follows by induction.
O

5.2.2 Bounds on H;

Using (5.5), we want to derive bounds on H; when the w’s vary in Z. In view of
(5.5), the bound necessarily depends on the number of different w;’s in the (14 1)-
tuple (w1,...,w;, w41 := 0). If r is the latter number, with 1 < r <14 1, one
readily hopes for a bound of the kind |H;| < C/7"!. Indeed in the extreme case
where r = [ + 1 (this is a “completely non-resonant case”), H; should decay like
7' as T — oo, and in the opposite case where r = 1 (all the phases are equal
to zero, this a “completely resonant case”), H; is constant with 7. This hope is
made quantitative below, and the precise bound (5.10) is the final result of this
subsection.

In order to simplify the presentation, we will adopt the convention (5.4). We
also need to introduce some notations.

Considering H; as a function of the (I + 1)-tuple (w1,...,w;,wi+1) (with
wiy1 = 0), we see from formula (5.5) that all the two-by-two differences wy, — w;
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(k,7=1,...,(l4+1)) are involved in the denominators. On the other hand, H; is
clearly a smooth function of the w;’s. This is easily seen from the very definition of
H;. Hence for a given (I + 1)-tuple (w1,... ,w;,w;+1), it is natural to group equal
w;’s, as follows: using the symmetry of H; in (wq,...,w;), we can always assume
(up to re-indexing the w;’s) that there exist integer numbers,

r>1,a1>1,...,a.>1, (5.6)
such that a;+---+a,.=1+1,

and the following holds,

Ql ISWl =W = = W,y
QQ ::wa1+1 :wa1+2 pr—y ...:wa1+a2
(5.7)
Q1 7= Way 4 ta, o+l = Wayfotar_o+2 = = Way+fa,_y
Q1= Way4otap_ 141 =" = Waytota, = 0.
This serves as a definition for the quantities €2y, ..., €2, naturally associated with
any given (I 4+ 1)-tuple (w1,...,w;,wi+1). Using these notations, we implicitely
assume that different 2;’s have different values i.e.,
QGAQ L Vit (5.8)

Obviously the number r represents the number of different w;’s in H; as mentionned
above. With these notations, we easily prove the,

Lemma 2 Under the notations and conventions (5.4), (5.6), (5.7), and (5.8), the
following bound holds on the quantity Hy,

Ct,]) «— 1
|Hy(wr, ... ,w)| < T(H) > — . (5.9)

s=1 H |Qs _ Qs’|

s =1

sl #£ s

Proof of Lemma 2
Using the convention (5.7), we write,

|Hl\(w1,... ,wl) = |Hl‘(Ql, ,Ql,... ,Qrfl,... ,Qr,l,O,... ,0)
——

a1 terms ar—1 terms a, terms
= H|(Q1, . Qe Qe 1,0, 0,20, QL Q)
——
a;—1 terms a,—1—1 terms a, terms
where we used the symmetry of H; in (wi,...,w;). Now, using the well-known

fact,

t t—s1——Sp—1 n
/ / ldsl...dsn:—',
s1=0 Sn=0 n:
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with the valuen = (a1 — 1)+ (a2 — 1)+ -+ (ap—1 — 1)+ (a, — 1) =14+ 1—7, we
obtain,

|I{l((,<)17 . e ,wl)|
|t| (a1 —=1)+(a2—=1)++(ar—1—1)+(ar—1)
<
“(ag -1+ (a2—1)+ -+ (ar—1 — 1)+ (ar — D)]!
t—81—"—Sp_2
X sup ‘ / / exp(iT [s10 + -+ 5,-19,_1])
teR 51—0 $r—1=0
|t|l+1 r 1

IN

(l+1fr"]'rlz G (5.10)

H IQS_QS"
s’ =1
s’ # s

and the last line comes from the use of the explicit formula (5.5). The Lemma is
proved. O

5.3 Part II of the proof: Asymptotic behaviour of Q; (%)

5.3.1 The splitting of 9, (t)

According to the splitting of 73+ +D) into a “resonant” set (5.3) and its comple-
mentary set, we define the resonant part of Q; ;/(¢) as,

res 1 tl+l/ n ]{31 k_l m
Ql l’( ) LA+(+)(d—2) - i VZ(Z7fa"' 7T? f) (511)

(P J1 Ju-1 m 0(@) (ﬁ B)
XVZ (Lva"‘v T »L>P L q) LvL )

where the symbol >~ ... means the sum over the “resonant” set (5.3). The term
19 (t) is exactly the contribution of the resonant set (5.3) to Qi (t). Also, we

may define the non-resonant term QY (t) as,

1

xHy(m* —n?,... ,m* =k} VHy(p> —m?,... 55, —m?)
n k1 kit m ... p 71 Jr—1 m, o,m._ N p
L, —, = =, =, ... — —)O(—, =
XVl(L L ) L 7L)I(LaLa ) L ’L)p(L) (LvL)

where the sum ) ... is extended to the non-resonant set defined as the comple-
mentary set to the resonant set (5.3).

5.3.2 The convergence of the non-resonant term Q' (t) towards zero

In this section, we prove the following,
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Theorem 3 The non-resonant term is estimated by,

Lflog L

==, (5.13)

‘Q?j’ (t)‘ S C(@, t: la l/7 (I))
for some constant C(e,t,1,1", ®) depending in particular on e > 0. The value e =0

is allowed in dimensions d > 5. Hence, as L and T go to infinity in the regime
(2.7) we have,

() —0. (5.14)

Remark 10 Under the assumption (A?), the only uniform estimate we are able
to prove on Q' (¢) is actually of the form,

4y L7log L
—F -

For dimensions d > 5, the presence of factorial terms on the right-hand-side of
(5.15) is the very reason for the fact that we are only able, in this paper, to prove the
term-by-term convergence of the series, (p(t), ) = Z“,(—iA)l (+iM)" Qi (t)
and not the stronger convergence of the full series. The above estimate may be
useful in dimension 3. Since we are not able to prove (A’) in this case yet, we
do not give the proof of the precise estimate (5.15) and simply prove the weaker
bound (5.13) for the sake of simplicity. O

’Q?j/ (t)‘ < e, t, )+ (111 (5.15)

Proof of Theorem 3
The proof of (5.13) is decomposed into several steps.

First step: The splitting of Qp(t)
In view of the bound (5.9) obtained on H; above, we need to split further the

sum over the integers (m,n,p,k1,... ,ki—1,71,--- ,jir—1) which defines the term
Q7' (t). Namely for a given value of (m, n, p, k1, ... ), we may introduce the vectors,
(Wiye e ywphwipr) = (Mm% =n?m? — k2, ... om* =k ,,0), (5.16)

together with,

2

(Why oo wlswyyg) o= (m? = p®,m? —j1,...,m* — ji_1,0). (5.17)

From its definition we know that Q},(t) is defined as a sum over the integers m,
n, p, k1, ..., such that,

(Wise e w1, Wi wigg) #(0,...,0) . (5.18)

Now, following the discussion made in bounding H; above, we split the sum over
(m,n,p,k1,...) as follows.

For a given value of (m,n,p, k1,...), let r be the number of different compo-
nents in the vector,

(Wiy .. Wi, wig)
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and 7’ be the number of different components in the vector,
(Whseee W wpgq) -
From the definition of the non-resonant term Q;'}, (t), we readily have,
1<r<i+1, 1< <U+1, 2<r+r <I+U'+2. (5.19)

Now, up to renaming the variables, we may assume, using the symmetry of H;
upon its arguments, that we can find integers,

a;>1,...,a,>1, suchthat, a1+ ---4+a, =1+1, (5.20)
and,
by >1,...,bs>1, suchthat, by +---+bs =1 +1, (5.21)

and the following relations are satisfied,

Ql =W =W = = Wy
Q2 = Wa, 41 = Way42 = * = Way+as
(5.22)
Qr_1 1= Waytast-tar_atl = Wartastta,_ot2 = = Way+agt-tar_;
Q= Way 4 tar1+1 =" = Waytota, =0,
and,
! . ! I _ !
Q) = w =wy = =wp
! . / _ / _ _ /
Q2 = Whi41 T Wh42 = T Wy g,
: (5.23)
/ = ! P / = e e e !
1 = Wbyttt = Whibbototb 42 = Yy byt +b,s
! . / — — / —
Q. =Wy g, 1= = Wy g, = 0

This serves as a definition for the integers (1, ... ,Q,) together with (Q,... ,Q.),
which are conventionnaly assumed all different (i.e. ; # €, Vi # j, and Q] # Q,
Vi # ).

In this perspective, the non-resonant term Q?j/ (t) can be decomposed as a
sum over all possible values of r, v/, a := (a1,...,a.), b:= (b1,...,by) such that
(5.19), (5.20), (5.21) are fulfilled, of a sum of all the contributions stemming from
integers (m,n,p, ki,...) satisfying (5.16), (5.17), together with (5.22) and (5.23).

We thus define, for any such values of r, ', a = (a1, ... ,a.), b= (b1,... ,by), the
quantity,
nr 1 .
Q' a, b(t) == TN ED Zexp (iTt[n* — p*]) (5.24)
XHl(m2 —-n-, am2 klfl)Hl’(pz _m27 yJIr—1 m2)
n ki ki—1 m P Ju—1 My o M, NP
— =, ——, )=, = — —)®(—, =
XVZ(L’L’ ) LvL)V(LaLa ', ’L)p(L) (LvL)a



where the symbol > ... denotes the sum over all possible integers
(m,n,p,k1,... ,ki—1,71,--.,jr—1) such that the above mentionned constraints are
satisfied. Under these notations, we have the following splitting of Q} g,( ),

Ql l’( ) - Z Q?i’ [’I“, rlagv b} (t) ’ (5'25>
TG, Gy ,b1,. b
where the sum is extended over all possible values of (r,7';a1,... ,ar,b1,... ,b)

such that (5.19), (5.20) and (5.21) are satisfied.

Second step: a bound on Qpy[r, ', a,b](t)

According to the splitting (5.25) we now take some given value of the parameters
r,r' (a1, ... ,a.), (b1,... ,by) asin (5.19), (5.20), (5.21), and we turn to bounding
the contribution Qj'y, [r, 7', a, b](t). We actually prove that it is bounded like,

Lflog L
T b

Q5% [, a, b (1)] < Cle, t,1,1', @) (5.26)
for some constant C(e,t,1,!',®) as in (5.13). Clearly, proving (5.26) is enough to
establish (5.13).

In order to establish (5.26), we bound separately in (5.24) the factors Hy(...),
Hy/(...) on the one hand, and V;(...), V;i(...)p%(...)®(...) on the other hand.

Firstly, on the set defining O}, [r, 7, a,b|(t), and with the convention (5.16),
(5.17), we can use the upper bound on H; obtained in (5.9), and thus write in
(5.24),

C(t,1) < 1
|Hl(m2—n2,...,m2—k?,1)|gTH)Z _ , (5.27)

a=1 H |Qa’ _ Qa‘

o =1

o/;éoz

together with,

. C(t,l) u 1
‘Hl'<p2 _m2,"' 7][2’71 _mQ)‘ < Tr'-1 Z ! : (528>

H |2 —

‘H~II

Recall that all the two-by-two differences |2, — Q| and |Qg — Qp/| are conven-
tionally non-vanishing (hence they are > 1).

Secondly, we may use the bound (4.6) to bound the factors involving V;. Also,
we may use the decay assumption on p® under the form |p°(n)| < C(n%)~M for
some large value M to be chosen later, together with |®(---)| < C(®). Hence we
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may bound in (5.24),

n Mays (P my oMyg P
Vl(L77L)Vl’(L7aL)p(L)¢(L7L)
n?—k2 _ ki, —m? _
SO, @) ()M ()™
2 -2 2 2 2
A Vs Jici—M" g, M7
x( 12 ) -~-<T> <ﬁ> .

Using the constraints (5.22) and (5.23) allows to rewrite this upper-bound in terms
of the variables Q; (i =1,...,r), Q; (i =1,...,7'), and m, giving,

m m n p

n Myx P my o np
VT i e
QI_Q2 —-M QT—Q_Qr—l —-M Qr—l —-M
Q/ —Q/ _ Q{,‘/, —Qw,l _ Q{,,/f _ m2 _
X<%> 1\/1“.< 2L2 > M< L21> N[<ﬁ> M
r—1 0. r'—1 Q m2
<c@) \TI™| [TH ™ (™ (5.29)
i=1 =1

Combining (5.27), (5.28) and (5.29) together gives in (5.24),

ar C(t,1,l,®) 1
‘Ql)l/[’m rl7ga b](t)’ S TT‘H”/*Q Ld+(l+l’)(d72) (53())

w7 Yo
r—1 0 r'—1 o m
’ [H<L5> M] 1L ™) () o
=1 i=1

up to defining,

#m,Q,Q’ = #{(ma k(h cee 7kl717j07 e 7jl’71)

s. t. (5.16), (5.17), (5.22), (5.23) hold }, (5.31)
and the sum in (5.30) is now extended over all possible values of m € Z%, Qs
and "’s in Z such that the differences [Q2q — Qq| and [Q} — Q7| do not vanish,
a convention we keep throughout the remainder part of the present proof. This
bound is analogous to the bound (3.2) of the model computation in section 3.

Thirdly, and analogously to the procedure of section 3, we may use the bound
(2.29) to estimate the cardinality #,, 0,0 above as (compare with (3.3)),
H#Hm.,0
< C(E)(m2 _ Ql)(%fl%»s)al ) (m2 _ Qr_l)(%flJrs)ar_l(m2)(%71+s)(arfl)

(m2 _ Q/l)(%fhks)bl o (m2 _ Q;/fl)(%ild%)br'—l(mQ)(%71+E)(b"’71) )
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Normalizing the right-hand-side by the correct power of L for future convenience,
and separating the dependence upon the various variables gives,

d_ .
#moa < C(e,1,) [L2] BT rerthi )

r—1 r’—1
Qi (4 11V QO a_ .
|J I<f;>(2 1+e€) ;| | | <ﬁ>(2 1+¢e)b;
=1 i=1

2
<m >(%71+e)(a1+-~~+ar+b1+---+brf72)
L? ’

and, using (5.20), (5.21) to observe that a; + - +ap +by + -+ by —2=1+1,
together with a; <1 and b; <1’ for all i, we get,

#maw < O, 1) L2 (5.32)
r—1 r'—1
4\ (d-14e)t Q (§—1+e)l m? (4—1+e)(14+1")
Llj[1<L2> 2 1'1;[1<ﬁ> 2 <ﬁ> 2 :

Fourthly, there remains to insert estimate (5.32) on the cardinality #,, o o’
in (5.30). This gives,

Clet, U, ®) LF
T2 d

T

1 1
D S )y [[>— |
RS | VRN § QTR

’

‘§2ﬁ?[r7r’72,éﬂ(t)‘fz (5.33)

% a msl
r—1 r—1
x H<&>7M+l H<%>*M+ll <m72>7M+l+l'
L2 L2 L2 '
i=1 i=1

There only remains now to estimate the reference sum on the right-hand-side of
(5.33). From now on, we assume that the exponent M is chosen so large that
M—-1>2 M—-U'>2and M —-1—-1'>d+2.

Third step: estimating (5.33) for small values of the denominators |y — Qul,
2 -

The right-hand-side of (5.33) is estimated upon separating, for each pair (o, a’)
and (3, 3), the cases |y — Qu| < L? and |Q, — Qo] > L? , and similarly for
€25 — Q7 |. This gives rise to 2+ Jifferent cases. The present step is devoted to
the study of the case where all the above mentionned differences are < L2. The
next step studies the opposite extreme case where all these differences are > L2.
All the other intermediate cases are easily treated upon combining accordingly the
different techniques we propose here.
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In the present case, the key lies in first majorizing all the decaying factors
(Q;/L2) =M+ and (Q/L2)~M+" by one, secondly using that Z 7 1< ClogL,

for v = |Qy — Qu|, and thirdly using that L4 (m?/L*)~ M+ < ) see
(2.31). Indeed,

C(e,t,1,I, @) L*

Tr+r/—2 ﬁ
Z - ﬁ 1|20 — Qo] < L7 <m y ML
Qo — Q4 L2
m, Q. Qe a=1 o' =1
Q9 ol #a

r’ r’ 1[|Q/ﬁ_Q/ﬂ’| §L2] r—1 Q. r'—1 0% ,
X <4>7M+l <7z>fJVI+l
o e ey | [ 1
B # 8

Cle,t, 1,1, &) L7 1|20 — Q| < 2]
< - Tt =2 Z Zl H Q0 — Qu
Q1 a =1
o % a

r’ r’ Q' OL | < L2 1 2 ,
¥ 3 I M ]
yeee 82 =1 = m

" ;é

’
/-1

IN

Centt o, -
e log L] flog ]

Lflog L =2
T .

=C(e,t,1,I',®) < (5.34)
As a conclusion, (5.34) establishes that the contribution to Q}'}[r,7’,a,b](t) due
to s and ©’’s such that the corresponding two-by-two differences are all < L?

satisfies indeed the estimate (5.13) of Theorem 3 in the regime (2.7) (indeed we
know that r + 7’ > 2, from (5.19)).

Fourth step: estimating (5.33) for large values of the denominators |Qa — Qur|,

€5 — |

As explained in the previous step, we now turn to estimating the contribution to
1l ', a,b](t) due to Qs and Q"’s such that the corresponding two-by-two differ-

ences are all > L2. Now the idea lies in first majorizing all the factors 1/|Qq — Q|

by 1/L? and the same for the primed variables, and secondly majorizing the re-
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maining sum over m, ’s, and Q'’s as a simple Riemann sum, using (2.31). Indeed,

Cle,t,1,l, ®) LF

Tr+r'=2  [d
I r
Z H 100 = Q| > L7] <m72>—M+l+l/
— 2
m, Q1,2 a=1 o =1 |QO/ Qa‘ L
Qf o o % a

r r 1HQIB 79,,6"| > LQ] r—1 Q. " r’—1 QO ,
et i\ — M+l —M+1
6:1 8 =1 =1 1=1
B #8
Cle,t,1,l, ®) e
— Tr+r' =2 Ld+2(r71)+2(r/71)
r—1 r’—1
Qi _pg Qv m? —M+141
X Z H<ﬁ> H <ﬁ> <ﬁ>
m, Sy, 2 i=1 i=1
Q’l ,91./71
Cle,t,1,1, ®)L°
< S (5.35)

As a conclusion, (5.35) establishes that the contribution to Q' [r,7’,a,b](t) due
to s and ©’’s such that the corresponding two-by-two differences are all > L?
satisfies indeed the estimate (5.13) of Theorem 3 (it satisfies actually a stronger
estimate).

Last step: conclusion

The third and fourth steps of the present proof are enough to prove that the
full term Q}}[r,7’,a,b](t) satisfies indeed (5.13). This is done upon combining
the techniques used in these steps to treat the general contribution when some
differences |Q, — Qu/| are < L? and some are > L? (and the same for primed
variables). Hence the non-resonant term Q}', (¢) itself satisfies (5.13) and Theorem
3 is proved. O

5.3.3 The limit of 9, (¢)
From the above subsection we have the equivalence,
Quu(t) ~ Q7 (t),

as L and 7 go to infinity in the regime (2.7) under consideration. It remains
to compute the actual limit of the resonant term Q% (t), where, as we already
observed (see (5.11)),

res /1y 1 aa n ki ki1 m
LU (t) - LAd+(@d—2)(1+) o l Z> fa A f
res
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(P g1 Jv—1 m 0(@) (ﬁ B)
le (LaL,"'a I3 ’L)p L @ L’L )

and the symbol > ... denotes a sum over the resonant set (5.3) as before.
Now, it is an easy consequence of the Theorem 2 (Riemann sums with quadratic
constraints) that this term actually converges towards Q7 (t) as defined in Propo-
sition 2, equation (5.1). This concludes the proof of Proposition 2, hence the proof
of Theorem 1 upon using Theorem 2.

6 Proof of Theorem 2: Riemann sums with qua-
dratic constraints

In this section we prove Theorem 2 using assumption (A).

Before proving Theorem 2, we first state the following Lemma, which is a
consequence of the asymptotic formulae (2.22) and (2.23) proved in [CP]. Theorem
2 turns out to be an easy consequence of the present Lemma.

Lemma 3 Let ¢ be as in Theorem 2, with a dimension d > 3, and assume (A)
holds true. Consider the sum,

1 AtA'? 1
Jas9) = T 2 pemd (6.1)

k’o kN 2 _ .2
X > ¢(\/§,...,\/§>1[k0_ =K% =1B].

(ko,... kN )EZN+1)d

Assume finally that 0 < 6 < do(d) and moreover § < 3/4 in dimension d = 3.
Then, the following asymptotic holds true,

Tas() = 4o V410 / ko, .. kn)do(ky) ... do(ky) .  (6.2)
S(N+1)(d—1)

Remark 11 Here and throughout this Section we will use the following two no-
tations. At first, for any A € N, we associate the cardinality,

#Hp=#{necZ? st. n®=A}. (6.3)

Also, for a given A € N and a given solid angle Q C S%!, we introduce the
cardinality,

Haq=#{nez st n2=A and % Q). (6.4)

O

Remark 12 Note that Lemma 3 gives a “localized” version of Theorem 2 in that
it considers limits of the type In(¢) as in Theorem 2 when the common value
k3 = --- = k% = B fluctuates of an amount O(A'~%) around the fized value A,
whereas this value B can take any value between 0 and L? in Theorem 2. O
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Proof of Lemma 3
The proof is given in several steps.

First step: preliminary observations

At first we observe from the well-known asymptotics (2.24) that assumption (A)
readily transforms into,

1 A4AT? I'(d/2) !
W BEA 6(B)l —A—o0 V,d <F(3/2>d) . (65)

In particular, the right-hand-side of (6.5) is bounded, i.e.,

1 A+A°
11 A=S Y. &) =ow, (6.6)
B=A

for some constant C(I). Note that the assumption (A’) even asserts C(I) = C'.
The second observation lies in the fact that it is enough to prove the Lemma
when ¢ is of the form,

(JS(ko,... ,kN)Zl(k’o EQo)...l(kN EQN) s (67)
for some solid angles Q¢ C S* 1, ..., Qn C S? 1. Indeed, we have the following
obvious bound,

1 A4+AYO 1 Mo
|Ja,s] < “QSHLOOW BZ;‘ ) (#B)
<C 1 5y N+1
< Clolls T 3 SE)

< C(N)|9llz= ,

where the second line comes from using the asymptotics (2.24), and the last line
comes from assumption (A) under the form (6.5). On the more, it is clear from
(6.2) that the sum J4 s(¢) only involves the dependence of ¢ upon the angular
variables ko /|ko|, ..., kn/|kn|- Now, since linear combinations of functions of the
form (6.7) is dense in the set of smooth functions ¢ defined over S{=DWV+1) our
claim (6.7) is proved.

The third and last observation is the following. As a consequence of (2.22)

and (2.23), we have for any Q C S9! and any 0 < § < 1 (§ < 3/4 in dimension
d=3),
A+A?
1 #B.0
—5 Z S s A do(Q) . (6.8)
1+ A Py #B
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Now we claim that (6.8) implies the following asymptotics, valid for any power
P e N¥,

1 A+AT0 4po\" -
1rAl—S BE_:A (#B) —Amoo (do(2))" . (6.9)

Let us indeed prove (6.9) from (6.8). By an easy induction on P, (6.9) is proved
once the following limit is established,

1 A+ALS P
11 A 24 {Tg —da(Q)} <7§1‘?) — Ao 0, (6.10)
B=

for any P € N*. Now (6.10) is proved by Abel summation,

1 AtA T #B,0 #B,0 F
1+ A=3 2 [ #5 dU(Q)} < #5 )

B=A

ApAl—d

_ 1 Z #co\ #B.0 P_ #B+1,Q>P
- BZ:A 1+ A= 024<#c> do() (#B> (#BH
1 A+Al? #5.0
+W Cz::A <#B )—do’(Q)
#A+A1-m>P _ <#A+A1-5+M2>P
x l( s ST . (6.11)

On the one hand, for any B between A and A+ A'~9, it is clear that,

1 i #o.0 —do(Q)| — 0
1+ A0 = |\ #c Amee T

Indeed, this is clear when B — A = o(A'~%) by mere boundedness of the summand,
and this is a consequence of (2.22) and (2.23) when B — A > C A'~% for some
constant C. On the other hand, we may bound,

#B,0
#B

trivially. These two observations are enough to prove that the right-hand-side of
(6.11) goes to zero, hence (6.9) is proved.

<1,

Second step: proving the Lemma when (6.7) holds
In this case we write,

1 A 1
JA,6(¢)=W Z W#B,chn#B,QN
B=A
N+1 A+ATS
» (P(3/2)d) - 1 & #pos #pow S
TTAT(d/2) T #5 ’
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where (2.24) has been used. Now, we claim that the following difference vanishes
asymptotically,

1 A+§4:1_5 #B,Qo #B,QN o dO’(Q ) dO’(Q ) G(B)N+1
71 m A0 2 #B A #B 0)--- N
— A—oo 0. (6.12)

Assuming (6.12) holds true for the moment, we deduce,

Ja,6(9)
A+A—?

r(3/2)4\" " 1 )
~ Ao (F(d/Q)) do(Q) ... do(Qy) x T A BZ::A S(B)N*

~A—oco YN+1,d dU(Qo) e dU(QN) R

thanks to assumption (A) under the form (6.5). Hence the Lemma is proved when
¢ is of the form (6.7), and formula (6.2) thus holds for any ¢ by density.
There remains to prove (6.12). To do so it is enough to prove,

A+ATS
1 #B.9, ) #B.9 #B.9
S D do(Q D BN GBIV < n 0.
1 +A1—(§ BEA [( #B ( 0) #B #B ( ) A
The above convergence is an easy consequence of the subsequent majorisations,
A4A?
1 #B.9, ) #B.9 #B.0 ]
_— —2 —do (2 =L 2N S (B)N T
L4 A= B; K B ) s £y | o0
1 A+At—S T N+2 m
S ( ’D—da(Qo))
= -5
1+ A4 oy #B
1 1
1-5 NF2 1-s Ntz
1 A% (#B,Q1>N+2 1 A% (#B,QN>N+2
L+ A0 foa \ B S reA soa \ B
s .
I B (N+1)(N+2)
1+ Al BZ:A S®)
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where the first inequality comes from using Holder’s inequality, and the sec-
ond comes from the bounds (6.6) and (6.9), together with the obvious bound
#B.o,/#p < 1 for any i. This ends the proof of (6.12). O

Proof of Theorem 2
Upon the use of Lemma 3 above, the proof of Theorem 2 now reduces essentially
to the use of certain Riemann sums in the variable A of Lemma 3.

First Step
First of all, we have the obvious a priori bound,
LN N (L kg, Lk, L k)[R = KT = ... = k3]
Eos... kN
k
< ko)l LNED=IN " [ ez st K2 =kF)] ()M

ko

_N(d—2)— _oy, ko, _
< C(N)|[(ko)M || oo L™NE=D7EY " o [V 2)<f> M
ko

< C(N)|[(ko)M || Loe L™ Z<%>—M+N(d—2)

ko
< C(N, M)||(ko)™¢| = ,

for some constant C(N, M), and for any M > N(d — 2) + 1. Indeed, the third
line uses the asymptotics (2.24), and the last line uses (2.31). By an easy density
argument, it is thus enough to prove the Theorem in the case where ¢ is of the
form,

ko K, Ky
ko,...  ky) = 1[|ko| < 1|—eQ|l|—ecQ]...1|— €
¢(ko, ... ,kn) = 1[ko| < R] Lkol € 0} {|k1| € 1} {|kN| € N]
x1[ki =---=k%], (6.13)
for some R > 0, and some solid angles Qy C S, ..., Qn c S L.

Second Step
Let ¢ be of the form (6.13). In this case, the “Riemann sum” I, (¢) takes the form,

RL?
1
IL(QJ)) = IN({d—2)+d Z #AQ0 - HAON (6-14)
A

=0

and we wish to pass to the limit L — oo in (6.14). In order to do so, we choose a
small increment,

h=L"1%, (6.15)
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and we mention that there is a good deal of latitude in this choice of h. We de-
compose the sum over A defining I7,(¢) into small “slices” of size hL? accordingly,

1 (R%/h)—1 (t+1)hL*—-1

[L(®) = Txa=a Z Y #an--Haow - (6.16)

A=thL?

Note that we assume here for convenience that all bounds appearing in the above
sums are integer numbers.
. (t+1)hL*—1 .
Now, we wish to apply Lemma 3 to each sum ), " /75~ --- in (6.16). To
this aim, we first need to put the “small” values of A apart, as follows: let n > 0

be an arbitrary small cutoff parameter, we write,

1 (n/h) (t+1)hL?

I(¢) = mz Z HA Q- FA0n

t=0 A=thL?
(R?*/h)—1 (t+1)hL?

LN(d ) Z Z #4090 Faon

t=(n/h) A—=thL?
= I1(¢) + 17 (9). (6.17)
This is the desired splitting of I1,(¢). We now study I} (¢) and I7(¢) separately.

+

Third step: study of I+ (o)
The term I} (¢) is easily upper-bounded,

1 (n+h)L?
1I1(8)] = IN@—2)7d Z #AQ0 - HAQN
A=0
1 (n+h)L?
N+1
< Tnaoma 2 #a)
A=0
(n+h)L?
C(N) N+1 4(N+1)(2-1
< IN(d—2)+d Z SN ANFDESD
—0
(n+h)L?
< C(N Z S AN+ (1 + ) NFDED
< C(N)(n+h)<N“)(T1)“, (6.18)

where the third line uses (2.24), and the last line uses assumption (A) under the
form (6.6).

Fourth step: limiting behaviour of I%(¢)
To be able to apply Lemma 3, we first rewrite I7(¢) under the form,

R?/h)—1 t+1)hL> 4
h( é:) 1 ( z): #a0, - HAaon <A>(N+1)( Y
- N+1 AN+ (- \ L2
t=(n/h) A=thL?
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Firstly, assumption (A) together with the obvious estimate # 4.0 < #4 valid for
any () allow to establish the equivalence,

(R*/h)=1 ) | rORLt 4

2 -~ (N+1)(4-1) AQo -+ - TTAQN

I3(¢) ~ h (th) T Dl oy | - 619
t=(n/h) A=thL?

(Note that this equivalence depends on 1 > 0). We are now able to apply Lemma
3 in (6.19) since hL? = L3/* > (thL?)Y/* = O(L'/?) for any t € [(n/h), (R?/h)].
We thus write,
(R%/h)—1
B(d) ~posoh Y () NTIETD (4 4do(Qo) . do(Q)) -
t=(n/h)
Treating the sum in ¢ as a Riemann sum now gives,

R2

0=n

17 (9) NLW< 0<N+1>(‘51>de)> (YN +1.4do () . .. do(Qn))

=V

where again the equivalence depends on n > 0.

R
2( / 9<N+1><d2>+1d9> (YN41.4do(Q) ... do(Qy)) ,  (6.20)
0

Last step: conclusion

The estimate (6.18) together with the equivalence (6.20) are now enough to con-
clude that for a general smooth and decaying ¢, the “Riemann sum” I (¢) goes
to,

27N+17d/ 9<N+1><d*2>+1/ POk, ... ,0kn)do (ko). ..do(ky)do ,
0=0 S(d—1)(N+1)

as L. — oco. Theorem 2 is now proved. O

7 Proof of the assumption (A) in dimensions 4, 5,
and more

7.1 The cased>5

In this section we prove the following,

Lemma 4 Let d > 5. Then, for any ! > 0, and for any 0 < § < 1, the limit v 4
in (A) exists. Besides, we have the explicit value,

Yid = (%)l qz Zl l{al—s—...—kalel

q1 q1
1, hqp ai,...,a
q; € N* | Vi a; € [1,q;], Vi
ged(a;, q;) =1, Vi
d
S S
x < (@ra) (ql"”)> : (7.21)
q1 qi



where the notation (2.26) is used. Finally, we have the bound,
Ya < C(d) . (7.22)
Remark 13 As already mentionned in the introduction, a standard estimate on

Gauss’ sums (see [Gr]) gives that |S(g,a)| < Cq'/?. Hence we have the obvious
bound,

) 1[0“—1—...4-6”64 (S(qhal)ms(ql’al))d

q1 qi q1 q

ay, ..., a]
a; € [1,q;], Vi
ged(ag, q) =1, Vi

_d
<C'q...q)" 2",

implying both the convergence of the series in g1, - -+, ¢; in (7.21) when d > 5 and
the bound (7.22). O

Proof of Lemma 4
We already noticed (see (6.5)) the relation,

rE/2)h Al

so that the mere limit on the right-hand-side of (7.23) has to be computed.
Now, we recall the value of the singular series (see (2.25)),

q d
S = Z Z (S’(qq,a)) exp (—2i7ra;4> .
LT

We are thus in position to compute,

1 A+A1_6
l
a2 8w
B=A
d
— Z Z (S(qlva’l) S(ql7al))
q1 q
q1,---54] at, ... ,ap
q; € N* | Vi a; € [1,q;], Vi
ged(a;, q;) =1, Vi
1 A4Ar—S a u
. 1 l
X ———= exp| —-2ir |—+---+—| B
L4 At=0 2 p( [ql+ +qz} )
B=A
S(q1, a1) S<qz,al>)d
— A
~ X > (M z
q1,---,4] aj, ... ,ap
q; €EN* |, Vi a; € [1,q;], Vi
ged(ag, q;) =1, Vi
q1 qi
and the Lemma is proved. O
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7.2 The case d =14

In this section we prove the following,

Lemma 5 Let d = 4. Then, for any | > 0, and any 0 < § < 1, there exists a
constant C(6) such that,

1 A4+AYO
s 2 Sl o (7.24)
B=A

In particular, for any given 0 < § < 1, there exists a subsequence in A such that
the right-hand-side of (7.24) converges as A — oo, for any l > 0, so assumption
(A) is satisfied with §o(4) = 1 up to subsequences in A.

Proof of Lemma 5
The proof is given in several steps.

At first, let us adopt the following notations for convenience: for any function
f(B) depending on the integer parameter B, we define the following average,

1 A+AtTS
<f(B)>A76 = W Z f(B) : (7-25)
B=A
Also, we define the function,
e(x) := exp(2imx) . (7.26)

We thus have from its definition (see (2.25)),

d
6m=% <S(qq“)) e(—%), (7.27)

qg>1 a € [1,4q]
ged(a,q) =1

and S(g,a) is defined in (2.26).

First step: decomposing S into a partial sum and a remainder term
Let @ € N* be a given truncation parameter. We decompose the series defining
S into the contribution of ¢’s satisfying ¢ < Q and a remainder term, as follows,

sw - x5 x ()

1<¢<Q  aelal
ged(a,q) =1

S(q,a d aB
£y () et
QZQ gc((Li(Ea ﬂl) (ﬂ 1 q q

= Gg(B)+ Rg(B). (7.28)

This serves as a definition for the terms &g (B) and Rg(B).
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We wish to bound uniformly in A the average (&(B)") 4 5 for any integer I.
According to the above decomposition, the proof is obtained below by proving on
the one hand that,

(GA(B)Yas < (CEOD", (7.29)
for any [, and that,
(Ra(B)) 45 < C(e) (log A A1 — 4 .0, (7.30)

for any [, where the truncation level @ is chosen equal to A in (7.29) and (7.30).
Lemma 5 is obviously proved once (7.29) and (7.30) are established.

Second step: estimating Ra
Following [CP], we first claim that the following bound holds,

RA(B) < C(e)7(B) A~'*e (7.31)

where as usual 7(B) denotes the number of divisors of B.
Assuming (7.31) for the moment, we first prove that this estimate implies
(7.30). Indeed, it is well-known (see [Te]) that 7(B) satisfies,

7(B) < ClogB .
This together with (7.31) gives,
(RY(B))as < Cllog A A= -, 0. (7.32)
We now turn to the proof of (7.31). It relies on the simple observation (See

[Ay], or also [CP]),

S(q,a) = (Z) NORYE (7.33)

where (a) is the so-called Jacobi-Legendre symbol of a and ¢, and A, is a sequence
q

in ¢, whose explicit value can be obtained (see [CP]). The important point to notice
is,

(“) =41, and|)\] < C . (7.34)
q
Therefore, when d = 4, we obtain the following simplified value of the singular
series 6,
)\4
S(B)=> (B, (7.35)

q2

42



where ¢,(B) is the so-called Ramanujan sum, defined as,

c(B) = f: e(—an). (7.36)

a=1
ged(a,q) =1

We turn to estimating & or more precisely the associated remainder term
R 4 under the form (7.35). This relies on estimating c,. It is well-known (see [Te])
that ¢,(B) actually admits the following value,

cq(B) = Ao (gcjé’3)> : (7.37)
v (gcd(% B)>

where ©(q) is the so-called Euler totient function, and p is the Mobius function.
We do not recall the definitions of these functions but rather recall some basic
bounds on them. Indeed we have (see [Te]),

C(e)g' ™ < plq) <q, (7.38)
and,
@) <C. (7.39)
Hence, putting (7.39), (7.38), and (7.37) together gives,

(B < o— P9

q
< Cf(e
(&)=
so that we obtain in (7.35),

|Ra(B)| < C(e)g > (ged(q, B)' ™ =Cle) Y q et

q>A tB, tlq
q>A
<Cle) Y, a?t=Cl) t| > o
t|B , tlq t|B g=0 mod t
q=A q>A

_ 0(6) Zt Z t72+8q72+6

t|B q>AJt

<ClE) (D 1] a7t

t|B
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and (7.31) is proved.

Fourth step: estimating the partial sum S 4
For a given integer [, we first write,

A+A175

. 1 d S(ai>Qi) !
(GaBas = 1o 2 Z <Hq>

B=A 1<qi,...,qi<A . i=1

ay
a; € L, 4;] , Vi
L
xe | — g —1 B .
iz 4

ged(a;,q;) =1
Taking (7.33) into account, we can upper-bound,

(Sa(B))as|

1 A+AS l A l o
=T | 2 > (H ‘é)e(—[Z
B=A 1<qi,....q<A  a1.... .4 i i=1

a; € [1,q;], Vi
ged(ag, g;) =1

1
< C' Z 53 XYa,a (Aa 5) ) (7.40)

1<q1,... . ¢t <A i

up to introducing the quantity,

1 A+AS l .
9q1, q (A>6) = Z W Z € <_ lz —

ay, ..., ap B=A =1 i
a; € [1,q;], Vi
ged(ag, q;) =1

B> . (7.41)

Now, using that g is symmetric in (g1, --,q), we may readily upper bound in
(7.40),

l Gar,q (A, 6
ShByag| <ot Y el (7.42)
1<q<sqca BTG
There remains therefore to estimate g as it is defined in (7.41).
Fifth step: estimating gq, ... q (A, 0)
For any given values of the ¢;’s, the function g is defined as a sum over all integers
a; € [1,¢;] such that ged(a;,q;) =1 (i =1,...,1). Let Gy, ... 4 denote the set of

all such a;’s. We are now naturally led to estimate differently several contributions
arising from the following subsets Gy, ,... q,-

a a
a- First case: contribution of the subset 2y 42ez

q1 1
First of all, we easily estimate the cardinality of such a;’s,

ai ai
#{(ala"' 7al)€G(111-~~7ql s.t. q++ql€Z} <qq -
1
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(this is true at least if A > 2, which is the case here). For this reason, the corre-
sponding contribution to gg, ... 4 (A, ) is bounded by,

@ .. q 1oy

a a
b- Second case: contribution of the set 2y 2 ¢ 7
a1 aQ
In this case we wish to use the easy estimate,

1 A+ATT? Lo 9
—_— — 2| B||<inf|1 7.44
- - (14 A1-9) —
iz di
where ||z|| := min,ez|z — n|. For this reason we need to further subdivide the
present case according to whether the quantity
l
1> (ai/ao)ll
i=1
is “large” or “small”, as follows.
l a; 1
b-1- First sub-case: contribution of the set Z = > =G/2)
izt 1 4
l
i 1
The cardinality of -tuples (a1, - ,a;) € Gg,,... q satistying Z & > 7y
— % B
i=1 q1

is trivially bounded by ¢; - - - ¢;. For this reason, the corresponding contribution to
9qu - q (A, 6) is bounded by,

g 0Py, g
<qi... L =1 S 7.45
S X T T Al (7.45)

xle
Al = T1=(/2
i ql(/)

b-2- Second sub-case: contribution of the set

It is known (see [Nie], [Gre], or also [Pl], and [Te]) that the quantity ai/q; is
“uniformly distributed” in the interval [0, 1] as ay varies with the constraints 1 <
a1 < ¢ and ged(ag, q1) = 1. As a consequence, it is readily seen that there exists
a constant C(0) such that for any z € R, we have,

ai
— =z

# {a1 € [1,q1] s-t. ged(ar,q1) = 1 and .
1

#{a1 € [1,q1] s.t. ged(ar, q1) = 1}
1
267D

<L }
- —(0
qi (6/2)

(7.46)

el
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(Indeed, the left-hand-side of (7.46) behaves like 2/qi_6/2 as ¢1 — 00). In other
words, the proportion of a1’s satisfying the additional constraint |la/q1 — z|| <

l/qi_(6/2) has the same size as the interval [z — q§5/2)_1, z +q§5/2)‘1]. Now, (7.46)
implies that, for any z € R,
<1 }
— —(6
q} (6/2)

ai
— =z
q1

# {al € [1,q1] s-t. ged(a1,q1) = land ‘

1 5/2
< C(0) T N C(5>Q1/ )
4
and we readily deduce that,
l

>

im1 i

1
- —(9
qi (6/2)

# {(al, coosa) € Gy, g St } < C((S)quqg coeqr . (7.47)
From (7.47) and (7.44), it is easily deduced that the contribution of the a;’s such
that || 22:1 a;/q| < l/qif(a/m to the sum defining g, ... 4,(A4,9) is bounded by,

<C0)n .- (7.48)

Sixth step: the final upper bound on © 4
Now, putting (7.42), (7.43), (7.45), and (7.48) together gives,

(Sa(B))as|

gy g g q
> +0@) Y e

<! ===
1-6,2 2
A0 g, << <g<a o

1<q1 < <@ <A

l 2 q_(5/2) (logql)l —24(8/2) l
<CO' Y (B g (log ¢1)

—~ Al-5
< (W) (Al_(éﬁi_(ﬂog A 1)
< (c(&" . (7.49)

Last step: conclusion
Putting estimates (7.32) and (7.49) together gives,

(&' (B))as ~aoo (BU(B)as < (CEN) .
This proves Lemma 5. g
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