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Abstract

We study the limiting behavior of a nonlinear Schrödinger equation de-
scribing a 3 dimensional gas that is strongly confined along the vertical, z
direction. The confinement induces fast oscillations in time, that need to be
averaged out. Since the Hamiltonian in the z direction is merely assumed con-
fining, without any further specification, the associated spectrum is discrete
but arbitrary, and the fast oscillations induced by the nonlinear equation entail
countably many frequencies that are arbitrarily distributed. For that reason,
averaging can not rely on small denominator estimates or like.

To overcome these difficulties, we prove that the fast oscillations are almost
periodic in time, with values in a Sobolev-like space that we completely identify.
We then exploit the existence of long time averages for almost periodic function
to perform the necessary averaging procedure in our nonlinear problem.

Key words : Adiabatic approximation, Sobolev scale associated with a self-adjoint
operator, error estimates, nonlinear analysis, two dimensional electron gas, almost
periodic functions.
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1 Introduction

In this paper, we study the asymptotic behavior of a nonlinear gas of quantum
particles, evolving in the three dimensional space (x, z) ∈ R3 (x ∈ R2, z ∈ R), yet
strongly confined along the vertical z direction. The dynamics of the gas essentially
occurs along the remaining, horizontal x plane, and our goal is to recover the limiting
dynamics along x, by performing the relevant averaging procedure.

Such nonlinear and strongly confined gases are typically encountered in the study
of Bose condensation, which is the example we have in mind throughout this paper.
In this context, an atomic gas is confined in a given region of space, and an appropri-
ate cooling procedure makes it possible to set all atoms in the same quantum state,
described by the same wave function Ψ. This somehow “macroscopic” wave function
Ψ satisfies a Schrödinger equation. The fact that the underlying gas is made up of
many atoms which interact pairwise is usually taken into account using a mean-field
model, and the appropriate Schrödinger equation is nonlinear.

Mathematically speaking, the present text is devoted to the study of a nonlin-
ear Schrödinger equation in the presence of a small parameter. The mathematical
context is similar in spirit to the so-called Born-Oppenheimer approximation: the
confining Hamiltonian in the z direction, called Hz in the sequel, carries a weight
1/ε which, as ε→ 0, enhances the time oscillations of Ψ, of the form exp(−itHz/ε)
(roughly), and the difficulty is to average out these oscillations.

In this text, we show that the strong confinement allows to develop an averaged
model over the discrete eigenspaces of Hz. This model describes the limiting dynam-
ics along the x plane. The point is, we are able to completely develop the averaging
procedure over all the eigenspaces at once. The limiting model is an infinite system
of coupled, nonlinear, Schrödinger equations, describing the averaged evolution of Ψ
over each eigenspace. In particular, all energy levels are coupled through the averaged
nonlinearity. This contrasts with the previous study performed in [BMSW] where
only the ground state, i.e. the eigenspace associated with the lowest eigenenergy
of Hz, is treated, and the limiting model is a single, scalar, nonlinear Schrödinger
equation, describing the averaged evolution of Ψ over this single eigenspace. This
also contrasts with the Born-Oppenheimer situation (see [ST], [T], [HJ]), where the
emphasis is more on the separation between two distinguished eigenspaces, but the
spectrum is not necessarily discrete.

The key observation in the present study, that makes it possible to perform a
clean averaging procedure, relies on the fact that the operator exp(−itHz/ε) is almost
periodic in time. In other words, it carries a discrete, possibly infinite, number of
independent time-oscillations. This observation allows to average exp(−itHz/ε) in
time without having to deal with the difficulty of small denominators (see [BCD]
in the context of laser-matter interaction). It also allows to formulate our limiting
model in a “good” functional framework, without having to project it over all the
eigenspace ofHz, a difficult if not impossible task, that is the very reason why the text
[BMSW] restricts to a situation where only the ground state is occupied. Obviously,
the counterpart is that our error terms are bounded by nothing better than o(1): a
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simpler, periodic framework (i.e. only one time-oscillation, as in [BMSW]) certainly
allows to obtain improved convergence rates, yet such a simplified framework is
definitely not generic. Incidentally, in the course of the analysis, we are also led to
identifying the Sobolev scale associated with the operator Hz = −∂2/∂z2+Vc(z) (see
below for the notation), i.e. the domain of the successive powers (−∂2/∂z2 +Vc(z))

m

(m ≥ 0). This turns out to be an important and delicate step of our analysis,
which leads us to use an appropriate pseudodifferential calculus, based on the Weyl-
Hörmander calculus and on the associated Sobolev spaces developed by Bony and
Chemin in [BC].

1.1 The model

Let (x, z) be the variable in R3 = R2 × R, where z ∈ R lies in the vertical direction
(say), and x ∈ R2 belongs to the horizontal plane. It is important to stress that,
though the present text presents a three-dimensional framework, our techniques are
immediately adapted in any dimension Rd = Rd−p×Rp. In particular, the physically
important case p = 2, d = 3 may be treated along the present lines.

According to the splitting R3 = R2 × R, take two Hamiltonians

Hx = −∆x + V (x), and Hz = − ∂2

∂z2
+ Vc(z), (1.1)

where both potentials V (x) and Vc(z) are assumed C∞, real valued, and bounded
from below. Without loss of generality, we may assume, by using the standard shift
in time, that both potentials are bounded away from zero, i.e. we may assume

V (x) ≥ 1 and Vc(z) ≥ 1.

Other, more specific, assumptions on the potentials Vc(z) and V (x) are needed in
the present text, which are detailed now.

A key assumption of this paper is that Vc is confining, i.e.

Vc(z) −→
|z|→∞

+∞. (1.2)

As is well known [RS], this ensures that the spectrum of Hz = −∂2/∂z2 + Vc(z) is
discrete, when considered as a linear, unbounded operator over L2(R), with domain

D(Hz) = {Ψ(z) ∈ L2(R) s.t. ∂2
zΨ ∈ L2(R) and Vc(z) Ψ ∈ L2(R)}.

Throughout this paper, the eigenelements of Hz will be denoted by the collection of
eigenenergies Ep ≥ 0 and eigenfunctions χp(z), as p runs in N. They satisfy, for any
index p,

Hzχp(z) = Ep χp(z). (1.3)

Also, it is well known that Ep → +∞ as p→∞, that the Ep’s may be chosen to be
non-decreasing, while the χp’s may be chosen so as to form an orthonormal basis of
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L2(R). We will assume these monotonicity and orthonormality properties hold true
from now on.

For later functional analytic purposes, we shall actually assume a reinforced ver-
sion of confinement in the z direction. This is a more technical point. Indeed, our
study requires the following three conditions

∀α ∈ N,
∂αVc

∂zα
(z) = O

(
Vc(z)

)
as |z| → ∞, (1.4)

∃Mz > 0, Vc(z) = O
(
|z|Mz

)
as |z| → ∞, (1.5)

∃M ′
z > 0,

|∂z Vc(z)|
Vc(z)

= O
(
|z|−M ′

z

)
as |z| → ∞. (1.6)

In other words, Vc(z) should roughly behave like a symbol at infinity in z (this is
the meaning of assumptions (1.4) and (1.6)), and V should have at most polynomial
growth at infinity in z (this is assumption (1.5)). These assumptions typically exclude
potentials behaving like exp(|z|) at infinity or so, or potentials which oscillate too
fast at infinity like |z|2 sin(|z|2) or so, for which the analysis we present in this text
probably becomes false anyhow. However, assumptions (1.4) through (1.6) typically
allow polynomial behavior of arbitrary degree. It even allows potentials that behave
like |z|a at infinity in one direction, and |z|b for some b 6= a at infinity in the other
direction. Obviously, assumptions (1.2) and (1.4) are met in the case where Hz

simply is the harmonic oscillator −∂2/∂z2 + |z|2, which is the example we keep in
mind throughout the paper, relevant in the context of Bose condensation.

Concerning the potential V (x) in the x direction, the present study may be carried
either when V (x) is confining or when it is uniformly bounded. For definiteness, and
because the physical situation we have in mind is again Bose condensation, we shall
assume V (x) is confining as is Vc(z), namely

V (x) −→
|x|→∞

+∞, (1.7)

while we also assume a reinforced version of confinement in the x direction as we did
in the z direction, namely

∀α ∈ N2,
∂αV

∂xα
(x) = O

(
V (x)

)
as |x| → ∞, (1.8)

∃Mx > 0, V (x) = O
(
|x|Mx

)
as |x| → ∞, (1.9)

∃M ′
x > 0,

|∇x V (x)|
V (x)

= O
(
|x|−M ′

x

)
as |x| → ∞. (1.10)

We stress that these assumptions are not essential in our analysis, and the alternative
situation where V (x) ∈ C∞b (R2) (C∞ and bounded functions) could be handled
as well. Again, the typical potential we have in mind is the harmonic oscillator
−∆x + |x|2.
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Now, let ε > 0 be the small parameter that measures the strength of the confine-
ment in the z direction, relative to that in the x plane. Take a nonlinearity

F : R 7→ R, F ∈ C∞(R).

Our goal is to study the following nonlinear Schrödinger equation, written in dimen-
sionless form, along the limit ε→ 0:

i∂tΨ
ε(t, x, z) = Hx Ψε +

1

ε
Hz Ψε + F (|Ψε|2) Ψε. (1.11)

Here Hx = −∆x + V (x), and Hz = −∂2/∂z2 + Vc(z), as before (see (1.1)). In
other words, we study the idealized limit where confinement in z is infinite, and the
quantum particles are essentially confined in the horizontal plane R2. The definite
example we have in mind in the context of Bose condensation is F (u) = ±u.

An initial datum is also prescribed for (1.11), namely

Ψε(0, x, z) = Ψ0(x, z) ∈ L2(R2 × R). (1.12)

In order to have “good” uniform bounds on Ψε, and on the nonlinear term F (|Ψε|2),
we shall additionally assume that Ψ0 possesses a “good” regularity in the Sobolev
scale induced by the nonnegative, self-adjoint operators Hx and Hz. This is a delicate
point of our analysis, which we now briefly discuss.

Namely, we shall suppose the following:

There exists an m > 3/2 such that

Ψ0 ∈ Bm :=
{
u ∈ L2(R3) s.t. Hm/2

x u ∈ L2(R3), and Hm/2
z u ∈ L2(R3)

}
. (1.13)

As we show later, it turns out the spaces B` (` ≥ 0) form a scale of Hilbert spaces,
and they may be endowed with either the norm

‖u‖2
B`

:= ‖u‖2
L2(R3) + ‖H`/2

x u‖2
L2(R3) + ‖H`/2

z u‖2
L2(R3), (1.14)

or the equivalent norm (we use the same notation for simplicity)

‖u‖2
B`

:= ‖u‖2
H`(R3) + ‖V (x)`/2 u‖2

L2(R3) + ‖Vc(z)
`/2 u‖2

L2(R3), (1.15)

where H`(R3) denotes the usual Sobolev space.
The reason for the present assumption is the following. First, the condition

m > 3/2 in (1.13) makes Bm an algebra, as we show in Proposition 2.5, and the
nonlinear application Ψε 7→ F (|Ψε|2) Ψε is seen to be locally Lipschitz in Bm. Second,

and more importantly, the fact that the operators H
m/2
x and H

m/2
z commute with

Hx +Hz/ε in (1.11), allows to prove that Ψε is uniformly bounded in Bm, despite the
singular term Hz/ε. This observation is very reminiscent of the use of Heisenberg
derivatives in the analysis of semi-classical Schrödinger equations.

Now, the crucial fact that both norms (1.14) and (1.15) are equivalent is not an
obvious point, and the proof of this actually is an important and delicate step of our
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analysis (see Theorem 2.1, whose proof occupies the whole section 2). We refer to
[He] for a similar equivalence of norms, in the particular case where Hx ≡ −∆x + |x|2
and Hz ≡ −∂2/∂z2 + |z|2 are harmonic oscillators: even in this particular case, we
stress that the proof of the equivalence is not obvious. Specifically, it turns out an
appropriate pseudodifferential calculus needs to be used in order to prove both norms
(1.14) and (1.15) are equivalent, even whenHx = −∆x+|x|2 andHz = −∂2/∂z2+|z|2
(see [He] in this case), and our proof uses in a crucial way the Weyl-Hörmander
calculus, following ideas by Bony and Chemin [BC], and the more recent work by
Helffer and Nier [HN]. We stress that a “pedestrian” proof of the desired equivalence
probably is out of reach, see below for further comments.

At this point of the discussion, we are in position to try to characterize the limit
of Ψε in Bm. This is where almost-periodicity enters, which is the key observation of
the present text.

1.2 Heuristic approach to the strong confinement limit

Let us now give a flavor of the limiting behavior of Ψε(t, x, z) in the Schrödinger
equation (1.11), and of the difficulties encountered in this text.

The probably most natural approach is to first project the Schrödinger equation
(1.11) over the orthonormal basis (χp)p∈N. Admitting for the moment there exists a

time T0 > 0 such that Ψε is bounded in C0([0, T0];Bm), uniformly with respect to ε,
we may write the orthogonal decomposition

Ψε(t, x, z) =
∑
p≥0

ψε
p(t, x) χp(z) with ψε

p(t, x) := 〈Ψε(t, x, z), χp(z)〉,

and it may be assumed that the ψε
p’s possess nice uniform bounds in the space

C0([0, T0]; l
2(N;L2(R2))) (the l2 norm may be improved into a weighted l2 norm,

using the Ep’s). Here and throughout the paper, we use the notation

〈u, v〉 :=

∫
R
u v dz. (1.16)

Using this, the Schrödinger equation (1.11) may be decomposed into

i∂tψ
ε
p(t, x) = Hx ψ

ε
p +

Ep

ε
ψε

p

+
∑
r≥0

〈
F
(∣∣∣∑

q≥0

ψε
q(t, x)χq(z)

∣∣∣2) , χr(z)χp(z)
〉
ψε

r , (1.17)

an infinite system of coupled, nonlinear, Schrödinger equations, on the ψε
p(t, x)’s

(p ∈ N, x ∈ R2).

In view of (1.17), ∂tψ
ε
p clearly has size O(1/ε). For this reason, it is now natural to

filter out the oscillations exp(−itEp/ε) of ψε
p induced by Hz, in the spirit of Schochet

and Grenier’s works [Sc], [Gr]. Hence, we define, for each p ≥ 0, the new unknown

φε
p(t, x) := ψε

p(t, x) exp (+itEp/ε) . (1.18)
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The φε
p’s naturally satisfy the filtered system

i∂tφ
ε
p(t, x) = Hx φ

ε
p

+
∑
r≥0

e−it
Er−Ep

ε

〈
F
(∣∣∣∑

q≥0

φε
q(t, x)χq(z) e−it

Eq
ε

∣∣∣2) , χr χp

〉
φε

r. (1.19)

Clearly, ∂tφ
ε
p is an O(1) quantity. Even more, the system (1.19) is an infinite di-

mensional, nonlinear and coupled differential system on the φε
p’s (p ∈ N), of the

form

∂tu
ε = Auε +B(t/ε, uε), (1.20)

and the nonlinearity B showing up on the right-hand-side of (1.19) clearly possesses
some “periodicity” in time, due to the oscillatory factors exp(itEp/ε) and like (to
be more precise, the time dependence of the nonlinearity at hand turns out to be
almost-periodic, as we discuss later in the text, see also section 3).

At this level, it now becomes quite tempting to average in time the system (1.19),
or, equivalently, the toy model (1.20). This is actually the key ingredient in Scho-
chet’s work [Sc]. Indeed, it is well known that, provided the function B(τ, u) entering
(1.20) possesses some ergodicity property in time, the reference system (1.20) con-
verges towards

∂tu = Au+Bav(u), where Bav(u) := lim
T→∞

1

T

∫ T

0

B(τ, u) dτ. (1.21)

We refer to [SV] and [LM] for statements of this form in the context of ODE’s.
We also refer to [BCD], [BCDG], or more recently [CDG1], [CDG2] for this kind
of averaging procedure in the context of laser-matter interaction, yet for infinite
dimensional systems. We also refer to the deep paper [MS] in the context of fluid
mechanics, for the use of similar averaging tools in infinite dimensional systems (here,
very fine resonance questions are considered). We last refer to the deep paper [L] for
similar averaging techniques, yet in a context where continuously many frequencies
are involved, a situation in which, as in the present paper, an appropriate non-
standard analytic framework needs to be set up to deal with the rapid oscilations. In
any circumstance, we mention that a typical “ergodicity” assumption on the time-
behavior of B(τ, u) is that B is periodic in time. A more general assumption is that
B(τ, u) is quasi-periodic in time, which means B(τ, u) ≡ B(ω1τ, . . . , ωNτ, u), where
B is 1-periodic in its first N arguments, and the ωi’s are rationally independent
frequencies. An even more general assumption is that B(τ, u) is almost-periodic in
time, which somehow corresponds to the quasi-periodic framework with N = +∞
independent frequencies. We refer to the sequel on that important situation, which
turns out to provide the natural framework in the present context.

For this reason, and despite the differential system satisfied by the φε
p’s is infi-

nite dimensional, it is reasonable to expect that the φε
p’s in (1.19) converge at least
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formally towards the φp’s, solution to the averaged system

i∂tφp(t, x) = Hx φp(t, x) +
∑
r≥0

φr(t, x) (1.22)

× lim
T→∞

1

T

∫ T

0

[〈
F

(∣∣∣∑
q≥0

φq(t, x)χq(z) e−iτEq

∣∣∣2) , χr(z)χp(z)

〉
e−iτ(Er−Ep)

]
dτ.

All these steps require some care yet, before becoming rigorous statements. In some
sense, the goal of this paper is to rigorously prove the convergence towards (1.22),
and even more to exhibit a functional framework that is well adapted to this infinite
dimensional problem.

1.3 Rigorous results, and statement of our main Theorem

The difficulty in making the above statements correct is twofold. Firstly, the above
procedure requires to decompose Ψε over the χp’s, hence to write down series expan-
sions of the form

∑
r≥0 . . . as in (1.22). However, it turns out to be extremely difficult

to control the convergence of these series expansions, despite the fact that we have
nice l2(L2) bounds on the φε

p’s. This is essentially due to the lack of information on
the behavior of the coefficient 〈F (| · · · |2) , χr χp〉 appearing above, for large values
of r and p. Indeed, no orthogonality property is at hand to estimate this coefficient,
except in the very special case where χp(z) = exp(ipz), corresponding to periodic
boundary conditions on z (we may yet refer to W.-M. Wang’s delicate analysis [W1],

[W2], of factors of the form

∫
R
χp(x)χq(x)χr(x)χs(x) dx - p, q, r, s ∈ N - in the case

when the χp’s are the eigenfunctions of the harmonic oscillator). Secondly, there is
in fact a deeper difficulty. Indeed, in order to quantitatively prove the convergence
of systems of the form (1.20) towards (1.21), one usually needs small denominator
estimates. They turn out to be extremely difficult to recover in the present context,
and in truth they are very probably false. For instance, in the reference situation
where F (u) = u, equation (1.19) takes the simpler form

i∂tφ
ε
p(t, x) = Hx φ

ε
p +

∑
r,s,q≥0

φε
r(t, x)φ

ε
q(t, x)φ

ε
s(t, x) e−it(Eq−Es+Er−Ep)/ε 〈χq χr , χs χp〉.

As a consequence, the averaged system on the φp’s is the same, up to the fact that the
sum

∑
r,s,q≥0 . . . eventually needs to be replaced by

∑
r,s,q≥0 1[Eq−Es+Er−Ep = 0].

Yet rigorously proving the associated convergence result requires to have has some
lower bound on

1[Eq − Es + Er − Ep 6= 0]

Eq − Es + Er − Ep

,

usually Diophantine estimates or like. However, except in the very special case
where Hz is the harmonic oscillator for which the Ep’s are known and have the value
Ep = 2p+ 1, such estimates are generally not at hand.
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These two difficulties make it necessary to find an alternative route.

One such alternative way exists in the simplified situation where the initial datum
lies in a definite energy level, or, more precisely, the case when the initial datum that
lies in the fundamental energy level,

Ψε(0, x, z) = Ψ0(x, z) = ψ0(x)χ0(z).

In this simpler case, it has been proved in [BMSW] that, for later times, the solution
Ψε(t, x, z) to (1.11) remains of the form

Ψε(t, x, z) = ψε
0(t, x)χ0(z) + small remainder,

thanks to an energy estimate. As a consequence, the sums entering (1.17), (1.19),
and (1.22) turn out to actually contain one single term in that case. This is the key
point. It obviously allows to circumvent all the above mentioned difficulties, and the
limiting model is, in that case, a single, nonlinear, Schrödinger equation, of the form

i∂tφ0(t, x) = Hxφ0 + Fav(|φ0|2)φ0.

Here, the new, averaged nonlinearity Fav is given, after the averaging procedure, by

Fav(u) :=
〈
F
(
u |χ0(z)|2

)
, |χ0(z)|2

〉
.

This gives a rigorous statement that fully justifies the heuristic limit (1.22) in that
particular case.

Here, we definitely want to place ourselves in a situation where Ψε(t, x, z) contains
many energy levels, a generic situation. As we said, the procedure of explicitly
decomposing Ψε over the χp’s leads to hard small denominators difficulties, and the
convergence of the sums entering the expected limiting system (1.22) is far from
obvious. For this reason, we adopt the following completely different point of view.

Instead of filtering out the oscillations in (1.11) after the projection over the χp’s,
which leads to (1.19), we rather do it without projecting. For that reason, we define
the new unknown

Φε(t, x, z) := exp(+itHz/ε) Ψε(t, x, z), (1.23)

in analogy with (1.18). It satisfies

i∂tΦ
ε(t, x, z) = HxΦ

ε + e+itHz/ε F

(∣∣∣e−itHz/ε Φε
∣∣∣2) e−itHz/ε Φε. (1.24)

In other words, introducing the function

τ 7→ G(τ, u) := e+iτHz F
(∣∣e−iτHz u

∣∣2) e−iτHz u, (1.25)
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equation (1.24) reads

i∂tΦ
ε(t, x, z) = HxΦ

ε +G

(
t

ε
,Φε(t)

)
. (1.26)

This is an infinite dimensional ODE, which is still of the form (1.20).
The key point lies in the observation that, for any given function u(x, z) having

reasonable Sobolev-like regularity (namely u ∈ Bm for some m > 3/2, see (1.13)), the
to-be-averaged function G(τ, u) is almost-periodic in time, with values in the Sobolev
space Bm.

The proof of these two facts is not obvious, and we refer to section 2 for the
analysis and identification of the Sobolev spaces Bm, as well as to section 3 for
the definition and functional analytic properties of almost periodic functions. The
almost-periodicity of G(τ, u) roughly means that G(τ, u) has countably many fre-
quencies in τ , which in turn translates the fact that the spectrum of Hz is discrete as
well: in view of definition (1.25) indeed, the oscillations of G(τ, u) are only created by
those of the propagator e±iτHz (the latter are discrete), appropriately combined with
the nonlinearity F (|u|2)u (and almost periodicity usually is stable upon composition
with nonlinearities).

The interesting fact about almost-periodic functions is, they do possess a well
defined long time average, and the formula

Gav(u) := lim
T→∞

1

T

∫ T

0

G(τ, u) dτ (1.27)

makes sense in Bm. Of course, the convergence rate in (1.27) is o(1) only, contrary to
periodic functions, for which the convergence rate is O(1/T ): the point is, the long
time average exists, beyond any “small denominator” consideration or like.

In any circumstance, the limiting equation for Φ = lim Φε now naturally reads

i∂tΦ(t, x, z) = HxΦ +Gav(Φ). (1.28)

The present paper is devoted to rigorously proving the convergence of (1.11), or
equivalently (1.26), towards (1.28). Note that equation (1.28) gives a rigorous state-
ment corresponding to the heuristic limit (1.22) discussed before. Note also that the
observation according to which we are here dealing with almost-periodic functions
(hence the possibility to average in time), with values in a good Sobolev space (hence
the possibility to do nonlinear analysis), are the two crucial ingredients in the present
paper. They are rigorously stated in Proposition 3.3, resp. Proposition 2.1, and the
associated proofs are given all through section 3, resp. section 2.

To summarize, in this paper, we prove the following

Main Theorem
Take m > 3/2. Take a function Ψ0(x, z) having the Sobolev-like regularity,

Ψ0(x, z) ∈ Bm :=
{
u ∈ L2(R3), s.t. Hm/2

x u ∈ L2(R3) andHm/2
z u ∈ L2(R3)

}
.
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Define Ψε(t, x, z) as the solution to

i∂tΨ
ε = HxΨ

ε +
1

ε
HzΨ

ε + F
(
|Ψε|2

)
Ψε, Ψε(0, x, z) = Ψ0(x, z).

Equivalently, define the filtered function Φε(t, x, z) = exp(+itHz/ε) Ψε as the solu-
tion to

i∂tΦ
ε = HxΦ

ε +G

(
t

ε
,Φε

)
, Φε(0, x, z) = Ψ0(x, z),

where G(τ, u) = e+iτHz F
(∣∣e−iτHz u

∣∣2) e−iτHzu. Lastly, define Φ(t, x, z) as the solu-

tion to the averaged equation

i∂tΦ = HxΦ +Gav(Φ), Φ(0, x, z) = Ψ0(x, z),

where Gav(u) = lim
T→∞

(1/T )

∫ T

0

G(τ, u)dτ in Bm. Then, the following holds

(i) There is a T0 > 0, depending only on ‖Ψ0‖Bm and on the nonlinear function F ,
such that Ψε(t), Φε(t), and Φ(t) exist and possess the smoothness C0([0, T0];Bm),
independently of ε. Besides, Bm is a Hilbert space and an algebra, when endowed
with either of the norms (1.14) or (1.15).

(ii) The following convergence holds

‖Φε − Φ‖C0([0,T0];Bm)−→ε→0
0.

(iii) The solution Φ(t) to the averaged system has the following conserved quantities

‖Φ(t)‖L2(R3) = const, 〈Φ(t), HzΦ(t)〉L2(R3) = const,〈
H1/2

x Φ(t) , H1/2
x Φ(t)

〉2
L2(R3)

+

∫
R3

Gav(Φ(t)) dx dz = const,

where Gav(Ψ) is defined, for any Ψ ∈ Bm, as

Gav(Ψ) := lim
T→∞

1

T

∫ T

0

G
(∣∣e−iτHz Ψ

∣∣2) dτ, and, G(u) :=

∫ u

0

F (v) dv.

Remarks on the Main Theorem:
• Obviously, after projecting Φ on the χp’s, system (1.26) may be seen as an in-
finite system of coupled nonlinear Schrödinger equations, involving the quantities
φp(t, x) := 〈Φ, χp〉. The underlying system coincides with the formally expected sys-
tem (1.22). This point is discussed further in the last section 5. We actually give at
the end of this paper examples for which Gav is an explicitly computable nonlinearity.
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• Needless to say, our main Theorem gives, as a particular case, the results obtained
in [BMSW] when Ψ0 is parallel with χ0. Yet the (not to be improved) o(1) conver-
gence rate of our Theorem does not allow to recover the better convergence rates
obtained in [BMSW] in this special situation.
• Note also that the above Theorem completely describes the asymptotic behavior
of Ψε, namely Ψε(t, x, z) ∼ exp(−itHz/ε) Φ(t, x, z) as ε→ 0.
• The reader’s attention is drawn to the fact that the averaged system i∂tΦ =
HxΦ +Gav(Φ) still is posed in the three dimensional space R3. It however entails a
trivial dynamics in the vertical, z direction, which only plays the role of a parameter.
Technically, factorizing out this z dependence is done by projecting the averaged
system over the basis of the χp’s.
• Point (iii) of the Theorem gives conservation of mass and energy Hz in z. The
latter is natural since the dynamics of Φ eventually is trivial in the z direction. Point
(iii) also gives the conservation of total energy in x. This piece of information may
be useful when the nonlinearity F has definite sign properties, and the above local-
in-time convergence results, may be turned into global ones.

The present paper is organized as follows.
In section 2, we identify the Sobolev scale associated with the non-negative, self-

adjoint operators Hx and Hz. In particular, we establish the equivalence of both
norms (1.14) and (1.15) for B`. We deduce the fact that Ψε is uniformly bounded
in C0([0, T0];Bm). The main result of this section are Theorem 2.1, Proposition 2.5
and Corollary 2.6.

In section 3, we recall some known facts about almost-periodic functions, and
properly define the space of almost-periodic functions with values in B`. This allows
to prove that the averaged quantity Gav(Ψ) in the Main Theorem does exist, and
enjoys nice functional properties. We also deduce that the solution Φ to the averaged
system i∂tΦ = HxΦ +Gav(Φ) exists, possesses the claimed smoothness, and satisfies
the conservation laws of point (iii). The main results of this section are Theorem 3.3
and Proposition 3.4.

In section 4, using the results of sections 2 and 3, we completely prove the conver-
gence Φε → Φ announced in the Main Theorem. Our proof relies on an adaptation
of the averaging procedure for ODE’s, for which we refer to [SV]. We do have a con-
vergence rate that is slightly more precise than o(1). Such an adaptation has been
previously exploited in [BCD], [BCDG] in the context of laser-matter interaction, for
which the natural model is an infinite dimensional system (a PDE).

Last, section 5 is devoted to the application of our Main Theorem in the case
of the simplest model of Bose condensation, namely the cubic Schrödinger equation
with harmonic confinement, for which we have F (u) = u, Hx = −∆x + |x|2, Hz =
−∂2/∂z2 + |z|2.
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2 Sobolev scale adapted to Hx and Hz

In this section, we identify the Sobolev scale adapted to Hx and Hz. Specifically,
given any real number ` ≥ 0, we completely identify the norm

‖u‖2
B`

:= ‖u‖2
L2(R3) + ‖H`/2

x u‖2
L2(R3) + ‖H`/2

z u‖2
L2(R3),

:= ‖u‖2
L2(R3) +

∥∥∥(−∆x + V (x))`/2 u
∥∥∥2

L2(R3)
+
∥∥∥(−∂2/∂z2 + Vc(z)

)`/2
u
∥∥∥2

L2(R3)
,

whenever u is smooth enough. Our main result asserts the following equivalence
between norms, valid for any real number ` ≥ 0,

‖u‖2
B`
∼ ‖u‖2

L2(R3) + ‖ (−∆x)
`/2 u‖2

L2(R3) + ‖
(
−∂2/∂z2

)`/2
u‖2

L2(R3)

+ ‖V (x)`/2 u‖2
L2(R3) + ‖Vc(z)

`/2 u‖2
L2(R3), (2.1)

where, the symbol ∼ means that there are constants c0 > 0 and c1 > 0 such that
c0 × (r.h.s. of (2.1)) ≤ (l.h.s. of (2.1)) ≤ c1 × (r.h.s. of (2.1)), independently of u.

The identification of ‖u‖B`
is a technically delicate, yet absolutely crucial step

in the present paper. Indeed, the only uniform bound at hand on Ψε, solution to
(1.11), reads

‖Ψε(t, x, z)‖L2(R3) + ‖Hm/2
x Ψε(t, x, z)‖L2(R3) + ‖Hm/2

z Ψε(t, x, z)‖L2(R3) = O(1),

on some non-trivial time interval t ∈ [0, T0], whenever the initial datum Ψ0 belongs
to Bm (m > 3/2). All other energy estimates (typically obtained by applying the
operators ∂α

x , ∂α
z , |x|α, or |z|α to the equation (1.11), and performing the natural

integration by parts which lead to an L2 bound on quantities like ∂
α/2
x Ψε or so), give

rise to commutators, hence diverging factors of the order O(1/ε), due to the fast
factor Hz/ε in (1.11). Hence they only give access to bounds of the size O(1/ε) as
well, a useless information.

The key tool we use to prove the equivalence (2.1) is the Weyl-Hörmander calcu-
lus, see e.g. [BC]. Let us comment on that point, keeping the discussion at a rather
informal level for the time being.

In terms of symbols (in the sense of pseudodifferential calculus, for some pseu-
dodifferential calculus to be precised below), assertion (2.1) is fairly natural. Indeed,
the principal symbol of 1 +H`

x +H`
z is1

σ
(
1 +H`

x +H`
z

)
(x, z, ξ, ζ) ≡ 1 +

[
ξ2 + V (x)

]`
+
[
ζ2 + Vc(z)

]`
,

where ξ and ζ are the Fourier variables associated with x resp. z, while the principal
symbol of 1 + (−∆x)

` + (−∂2
z )

`
+ V (x)` + Vc(z)

` is2

σ
(
1 +D2`

x +D2`
z + V (x)` + Vc(z)

`
)
(x, z, ξ, ζ) ≡ 1 + ξ2` + ζ2` + V (x)` + Vc(z)

`.

1From now on, given any N , and given any vector y ∈ RN , we use the notation y2 ≡ |y|2.
Similarly we set y2` ≡ |y|2` whenever ` ∈ R.

2where as usual Dx ≡ −i∂x and Dz = −i∂z.
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Using the identification of the operators with their associated principal symbols,
the whole equivalence (2.1) eventually (and informally) reduces to the existence of
positive, universal constants c0 and c1 such that

c0 ≤
1 + [ξ2 + V (x)]

`
+ [ζ2 + Vc(z)]

`

1 + ξ2` + ζ2` + V (x)` + Vc(z)`
≤ c1, (2.2)

independently of (x, z, ξ, ζ) ∈ R3 × R3. The point is, passing from the equivalence
between symbols (2.2) to the equivalence between norms (2.1), one needs to have a
proper quantization of symbols, hence a proper pseudodifferential calculus. In other
words, one needs appropriate weights together with appropriate metrics to deduce
(2.1) from (2.2) using a pseudodifferential machinery.

Now, the whole difficulty lies in the fact that the standard pseudodifferential
calculus, based on the standard metrics

dx2 + dz2 +
dξ2 + dζ2

1 + ξ2 + ζ2

can only give access to usual Sobolev-like norms, where only powers of −∆x, −∂2
z

are kept track of, or equivalently, one only takes into account powers of ξ2 and ζ2

as |ξ| and/or |ζ| go to infinity. However, going from (2.2) to (2.1) requires not only
counting powers of −∆x, −∂2

z (i.e. powers of ξ2 and ζ2), but also powers of V (x)
and Vc(z) as |x| and |z| go to infinity. Recall indeed that Vc and V are assumed
confining, a key difficulty in the present perspective.

This is the reason why we need to consider an appropriate metric that keeps track
of both aspects, and eventually develop the associated pseudodifferential machinery,
based on the Weyl-Hörmander calculus.

Our main result in this section is the following

Theorem 2.1 [equivalence of norms].
Let ` ≥ 0 be a real number. Recall Hx = −∆x + V (x) and Hz = −∂2/∂z2 + Vc(z).
The following two norms3 are equivalent,

N1(u) := ‖u‖L2(R3) + ‖H`/2
x u‖L2(R3),+‖H`/2

z u‖L2(R3),

N2(u) := ‖u‖H`(R3) + ‖V (x)`/2 u‖L2(R3) + ‖Vc(z)
`/2 u‖L2(R3).

Remark. As we already stressed, the proof of Theorem 2.1 is not direct, and
our proof uses an appropriate pseudodifferential calculus adapted to the symbol
ξ2+ζ2+V (x)+Vc(z), see Bony and Chemin’s work [BC]. This is also the route chosen
by B. Helffer in the earlier work [He]: in this paper, B. Helffer completely identifies the
Sobolev scale associated with the harmonic oscillator −∆x+|x|2, and the analogue of
Theorem 2.1 is proved there in this very case. We stress that even the identification

3Note that the norms N1 and N2 are not labeled by `, though they obviously depend on this
parameter. This is done not to overweight notation.
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of the norm ‖(1−∆x + |x|2)` u‖L2 with the obvious ‖u‖L2 +
∥∥∥(−∆x)

` u
∥∥∥

L2
+‖x2` u‖L2

is not an easy result: it readily requires developping a pseudodifferential calculus that
is adapted to the symbol 1 + ξ2 + x2.

In particular, a pedestrian proof of Theorem 2.1, directly using commutators of
both operators −∂2

z and Vc(z), respectively −∆x and V (x), probably is out of reach,
even for integer values of `. Indeed, such an analysis anyhow fails when dealing with
factors of the form∥∥∥(−∂2

z

)(`−k)/2
Vc(z)

k/2 u
∥∥∥

L2(R3)
or
∥∥∥Vc(z)

k/2
(
−∂2

z

)(`−k)/2
u
∥∥∥

L2(R3)
,

whenever 0 ≤ k ≤ `, and when it comes to trying to control such terms with the
help of the mere term

‖u‖L2(R3) +
∥∥Vc(z)

`/2
∥∥

L2(R3)
+
∥∥∥(−∂2

z

)`/2
u
∥∥∥

L2(R3)
.

Remark. Our identification of ‖u‖B`
uses the fact that Vc(z) (and V (x)) is con-

fining, see (1.2). Even more, a crucial role is played by the reinforced assumptions
(1.4) through (1.6), according to which Vc(z) behaves like a symbol at infinity in z,
whose growth is at most polynomial (and similarly for V (x)). Note however that,
would Vc(z) (and/or V (x)) be uniformly bounded together with all its derivatives
(instead of being confining), the results below would hold just the same, the proofs
being actually simpler.

2.1 Some basic facts about Weyl-Hörmander calculus

Our proof of Theorem 2.1 closely follows ideas developed by Bony and Chemin in
[BC], and more recently by Helffer and Nier [HN]. We first recall here some basic
facts about Weyl-Hörmander calculus.

Weyl-Hörmander calculus first requires a metric, and an appropriate weight func-
tion, both being required to satisfy some mild assumptions (slowness, temperance,
uncertainty principle, and admissibility - see below, see also [BC]). For instance, the
standard calculus, which is a particular case of Weyl-Hörmander calculus, is based
on the metric dx2 + dz2 + (dξ2 + dζ2)/(1 + ξ2 + ζ2), and on the associated weights
(1 + ξ2 + ζ2)` (` ∈ R). This is the calculus which is adapted when dealing with
standard Sobolev spaces H`(R3).

In the present text, we define the weight

M(x, z, ξ, ζ) :=
√

1 + ξ2 + ζ2 + V (x) + Vc(z). (2.3)

We also define the metric

g(x, z, ξ, ζ) := dx2 + dz2 +
dξ2 + dζ2

M2(x, z, ξ, ζ)
, (2.4)
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meaning that for any (x′, z′, ξ′, ζ ′) ∈ R3×R3, we set g(x, z, ξ, ζ)(x′, z′, ξ′, ζ ′) = (x′)2+
(z′)2+[(ξ′)2+(ζ ′)2]/M2(x, z, ξ, ζ). Choosing to work within the metric g equivalently
means that for any given ` ∈ R, we shall deal with the class S(M `, g) of symbols
a(x, z, ξ, ζ) ∈ C∞(R3 × R3) such that

∀α, β ∈ N3, ∃Cα,β > 0, ∀(x, z, ξ, ζ) ∈ R3 × R3,∣∣∣∂α
x,z ∂

β
ξ,ζa(x, z, ξ, ζ)

∣∣∣ ≤ Cα,β M(x, z, ξ, ζ)`−|β|. (2.5)

The idea of using this class of symbols, i.e. this weight function and this metric, is
actually borrowed from [HN]. The class S(M `, g) is a Fréchet space when endowed

with the semi-norms
∥∥∥M−`+|β|∂α

x,z ∂
β
ξ,ζa
∥∥∥

L∞(R3)
.

Following the usual terminology (see e.g. [BC]), we first claim that the metric g
is slow, temperate, and it satisfies the uncertainty principle:

• The fact that g satisfies the uncertainty principle comes from the following easy
computation. We first define the metric gσ which is dual to g with respect to
the symplectic form σ = d(x, z) ∧ d(ξ, ζ), see [BC], i.e. we set

gσ(x, z, ξ, ζ)(·) := sup
(x′,z′,ξ′,ζ′) 6=0

[·, (x′, z′, ξ′, ζ ′)]2

g(x, z, ξ, ζ)(x′, z′, ξ′, ζ ′)
,

where the Poisson bracket [(x, z, ξ, ζ), (x′, z′, ξ′, ζ ′)] equals (ξ, ζ)·(x′, z′)−(x, z)·
(ξ′, ζ ′) as usual. In the present case, gσ is easily computed, namely

gσ(x, z, ξ, ζ) := M2(x, z, ξ, ζ) (dx2 + dz2) + dξ2 + dζ2.

Now, the uncertainty principle requires (see [BC])

g ≤ gσ.

In the present case, this assertion reduces to observing

M ≥ 1.

• The slowness of g comes from the fact that there exists c > 0 such that(
M(x, z, ξ, ζ)

M(x′, z′, ξ′, ζ ′)

)±1

≤ c,

whenever |(x, z)− (x′, z′)| ≤ c−1 and |(ξ, ζ)− (ξ′, ζ ′)| ≤ c−1M(x, z, ξ, ζ).

The proof of the latter assertion, which uses the reinforced assumptions (1.4)
through (1.6), as well as (1.8) through (1.10), is left to the reader, see also
[HN]. It implies that g is slow, i.e. there exists a c > 0 such that for any
(x, z, ξ, ζ) and (x′, z′, ξ′, ζ ′), we have

sup
(x′′,z′′,ξ′′,ζ′′)∈R6

(
g(x, z, ξ, ζ)(x′′, z′′, ξ′′, ζ ′′)

g(x′, z′, ξ′, ζ ′)(x′′, z′′, ξ′′, ζ ′′)

)±1

≤ c

whenever g(x, z, ξ, ζ)(x− x′, z − z′, ξ − ξ′, ζ − ζ ′) ≤ c−1.
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• The fact that g is temperate comes from the existence of c > 0, ν > 0, such
that(

M(x, z, ξ, ζ)

M(x′, z′, ξ′, ζ ′)

)±1

≤ c
(
1 +M(x, z, ξ, ζ)2

[
(x− x′)2 + (z − z′)2

]
+ (ξ − ξ′)2 + (ζ − ζ ′)2

)ν
,

independently of (x, z, ξ, ζ) ∈ R3×R3 and (x′, z′, ξ′, ζ ′) ∈ R3×R3. The proof of
the latter assertion, which uses the reinforced assumptions (1.4) through (1.6),
as well as (1.8) through (1.10), is left to the reader, see also [HN]. It implies g
is temperate, namely there exists a c and a ν such that for any (x, z, ξ, ζ) and
(x′, z′, ξ′, ζ ′), we have

sup
(x′′,z′′,ξ′′,ζ′′)∈R6

(
g(x, z, ξ, ζ)(x′′, z′′, ξ′′, ζ ′′)

g(x′, z′, ξ′, ζ ′)(x′′, z′′, ξ′′, ζ ′′)

)±1

≤ c (1 + gσ(x, z, ξ, ζ)(x− x′, z − z′, ξ − ξ′, ζ − ζ ′))
ν
.

This being settled, we now assert that for any ` ∈ R, the weight M ` is admissible
for the metric g. This is our second claim. It comes from the following two assertions:

• for any ` ∈ R, there exists c` > 0 (which depends on `) such that(
M `(x, z, ξ, ζ)

M `(x′, z′, ξ′, ζ ′)

)±1

≤ c`,

whenever |(x, z)− (x′, z′)| ≤ c−1
` and |(ξ, ζ)− (ξ′, ζ ′)| ≤ c−1

` M(x, z, ξ, ζ).

• for any ` ∈ R, there exists c` > 0 and ν` > 0 (which depend on `) such that(
M `(x, z, ξ, ζ)

M `(x′, z′, ξ′, ζ ′)

)±1

≤

c`
(
1 +M(x, z, ξ, ζ)2

[
(x− x′)2 + (z − z′)2

]
+ (ξ − ξ′)2 + (ζ − ζ ′)2

)ν` ,

independently of (x, z, ξ, ζ) ∈ R3 × R3 and (x′, z′, ξ′, ζ ′) ∈ R3 × R3.

Lastly, there remains to observe that the value of the gain in the present calculus
is, following Hörmander [Ho],

λ(x, z, ξ, ζ) ≡
(

min
(x′,z′,ξ′,ζ′) 6=0

gσ(x, z, ξ, ζ)(x′, z′, ξ′, ζ ′)

g(x, z, ξ, ζ)(x′, z′, ξ′, ζ ′)

)1/2

= M(x, z, ξ, ζ). (2.6)

Now, given the metric g (which is slow, temperate, and satisfies the uncertainty
principle), and given the weight M ` (which is admissible), to any symbol a in the
class S(M `, g), Weyl-Hörmander calculus associates the operator

u ∈ S(R3) 7→ aw u ∈ S(R3) defined as

(aw u) (x) =

∫
R6

ei(x−x′)·ξ+i(z−z′)·ζ a

(
x+ x′

2
,
z + z′

2
, ξ, ζ

)
u(x′, z′) dx′ dz′. (2.7)
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Operator aw acts continuously on S(R3). Besides, the Weyl quantization has the
following specific feature, which is implied by the particular symmetric arguments
(x+ x′)/2 and (z + z′)/2 in (2.7) :

the operator aw is symmetric on S(R3) whenever a is real-valued.

In any circumstance, we shall make use of the following standard notation: when an
operator A coincides with aw for some a ∈ S(M `, g), we shall write A ∈ OpS(M `, g).

One of the key result of Weyl-Hörmander’s calculus is the following L2 continuity
statement, for which we refer to e.g. [BC]:

a ∈ S(1, g) ⇒ aw ∈ L(L2(R3)). (2.8)

This statement extends the celebrated Calderon-Vaillancourt Theorem of standard
pseudodifferential calculus. Note in passing that the above assertions prove that a
real-valued symbol a ∈ S(1, g) provides an essentially self-adjoint operator aw in
L(L2(R3)).

Naturally, the whole computational machinery of standard pseudodifferential cal-
culus also extends to the present context. For instance, the composition rule of two
operators aw and bw asserts that for a ∈ S(Mm, g) and b ∈ S(Mm′

, g), there exists a
c ∈ S(Mm+m′

, g) such that aw ◦ bw = cw, and, for any J ∈ N, we have the asymptotic
expansion

c(x, z, ξ, ζ) ≡ (a]wb) (x, z, ξ, ζ)

=
J−1∑
j=0

(
i
2
[Dx1,z1,ξ1,ζ1 , Dx2,z2,ξ2,ζ2 ]

)j
j!

a(x1, z1, ξ1, ζ1) b(x2, z2, ξ2, ζ2)
∣∣∣ (x,z,ξ,ζ)=(x1,z1,ξ1,ζ1)

=(x2,z2,ξ2,ζ2)

+RJ(a, b)(x, z, ξ, ζ), (2.9)

where RJ ∈ S(Mm+m′−J , g), and [., .] again denotes the Poisson bracket. Naturally,
the fact that RJ belongs to S(Mm+m′−J , g), hence a gain of J factors M , comes from
the relation (2.6). We again refer to [BC]. A consequence of the above expansion
is that a similar result holds for the commutator aw ◦ bw − bw ◦ aw = cw for some
c ∈ S(Mm+m′−1, g).

We last mention the following obvious fact, which actually is the whole motivation
for introducing the weight M and the associated metric g. In the above defined
language, we have

1−∆x − ∂2
z + V (x) + Vc(z) =

(
1 + ξ2 + ζ2 + V (x) + Vc(z)

)w ∈ OpS(M2, g).

2.2 Sobolev spaces associated with an admissible weight

Using the above defined language, proving the equivalence between norms (2.1)
roughly reduces to proving the equivalence∥∥∥((M2

)w)`/2
u
∥∥∥

L2(R3)
∼
∥∥(M `

)w
u
∥∥

L2(R3)
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whenever ` ∈ R. This task, which is essentially performed in the next paragraph,
requires some preliminary statements. We collect the necessary properties below.

Let now M(x, z, ξ, ζ) be any weight which is admissible for the metric g. The
text [BC] allows to define a Sobolev space associated with M. The construction of
Bony and Chemin is as follows. From now on, let us denote by

X = (x, z, ξ, ζ)

a generic point in R3×R3. First, Bony and Chemin start with a g-partition of unity,
namely a family of non-negative functions φX ∈ S(1, g), indexed by X, such that
each φX has its support in the ball Bg(X, r) := {Y ∈ R6 s.t. g(X)(Y − X) ≤ r2},
where the small parameter r > 0 is fixed at once (the very value of r depends on the
constants appearing in the definition of the fact that g is slow and temperate), and
one has the identity ∫

R6

φX(.) |det(g(X))|1/2 dX = 1.

Here, det(g(X)) denotes the determinant of the quadratic form g(X). In this context,
Bony and Chemin define the Sobolev space associated with the weightM(x, z, ξ, ζ) ≡
M(X), and denoted by H(M, g), as the set of functions u = u(x, z) such that

‖u‖2
H(M,g) ≡

∫
R6

M2(X) ‖φw
X u‖

2
L2(R3) |det(g(X))|1/2 dX <∞. (2.10)

Since the operator φw
X localizes u around the pointX of phase-space, the setH(M, g)

clearly extends the usual definition of the standard Sobolev spaces Hs(R3) (s ∈ R),
in which case the weight M(X) = (1 + |ξ| + |ζ|)s is prescribed. We draw the
reader’s attention to the following point: our definition of H(M, g) uses the fact
that the chosen metric g obviously is strongly temperate in the language of Bony and
Chemin, (see [BC], Definition 4.1, Definition 7.1, and Theorem 7.8). The definition
of H(M, g) would be slightly more involved without this property. Note that the
natural orthogonality property ensures that definition (2.10) does not depend on the
chosen partition of unity.

The above general definition allows to define the Sobolev scale associated with
the weights M ` (` ∈ R). With the above notation, we clearly have

∀` ≤ `′, S(R3) ⊂ H(M `, g) ⊂ H(M `′ , g) ⊂ S ′(R3).

It is also proved in [BC] that

H(1, g) = L2(R3),

while
∀`, `′, ∀a ∈ S(M `, g), aw ∈ L

(
H(M `′ , g);H(M `′−`, g)

)
.

Now, using this language, the following technical statements turn out to be a
very important preliminary result in the sequel.
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Proposition 2.2 [self-adjointness of the operators
(
M `
)w

, ` ∈ R].

Given ` ∈ R, the operator
(
M `
)w

with domain D
((
M `
)w)

= H(M `, g) is self-adjoint

on L2(R3). Besides, the norms ‖u‖H(M`,g) and ‖
(
M `
)w

u‖L2(R3) are equivalent.

Remark. The reader’s attention is drawn to the fact that operator
(
M `
)w

does

not coincide with (Mw)` = (1−∆x − ∂2
z + V (x) + Vc(z))

`/2
(the latter being obvi-

ously self-adjoint thanks to the usual functional calculus for self-adjoint operators).

Proof of Proposition 2.2.
The proof relies on elliptic regularity, and on the existence of a left and right

parametrix for
(
M `
)w

, see e.g. (2.11) below. We refer to [HN], Chapter 4, Proposi-
tion 4.5 for a proof.

Proposition 2.3 [resolvent of (M2)
w
].

The operator (M2)
w

= 1 − ∆x − ∂2
z + V (x) + Vc(z) is such that for any λ in the

resolvent set of (M2)
w
, the operator

[
(M2)

w
+ λ
]−1

belongs to OpS(M−2, g). Be-

sides, whenever λ ≥ 0, the semi-norms of the symbol of
[
(M2)

w
+ λ
]−1

in the class
S(M−2, g) are bounded independently of λ ≥ 0.

Proof of Proposition 2.3.
The proof of this Proposition is an easy application of the Beals criterion. We

refer to [HN], Chapter 4 for a proof.

2.3 Weyl-Hörmander calculus for fully elliptic operators:
functional calculus

In this paragraph, and with the help of the previously stated results and notation,
we complete the proof of the equivalence (whenever ` ∈ R)∥∥∥((M2

)w)`
u
∥∥∥

L2(R3)
∼
∥∥(M `

)w
u
∥∥

L2(R3)

A symbol a ∈ S(M `, g) is said to be fully elliptic whenever there is a c > 0 such
that the reverse bound∣∣a(x, z, ξ, ζ)| ≥ cM `(x, z, ξ, ζ)

holds true, independently of (x, z, ξ, ζ) ∈ R3×R3. Typically, the symbol 1+ξ2 +ζ2 +
V (x)+Vc(z) ∈ S(M2, g) is fully elliptic. In the context of standard pseudodifferential
calculus, it is well-known that a fully elliptic symbol a is such that the operator aw

admits an inverse, the principal symbol of which is 1/a. In the present context (and
because our metric is strongly temperate - see [BC] Theorem 7.6), this result extends
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to symbols in the class S(M `, g): whenever a ∈ S(M `, g) is fully elliptic, there exists
a b ∈ S(M−`, g) and a c ∈ S(M−`, g) such that

aw ◦ bw = cw ◦ aw = Id. (2.11)

Now, one of the important successes of standard pseudodifferential calculus is the
so-called functional calculus of Helffer and Robert [HR] (see also [Ma] or [DmS] for
a modern presentation). It typically asserts that, for any function f ∈ C∞(R; R)
and under mild assumptions on the real-valued symbol a, the operator4 f(aw) still is
a pseudodifferential operator. Besides, the principal symbol of f(aw) coincides with
f(a). The key ingredient to the proof of this fact is the so-called Helffer-Sjöstrand
formula, which asserts that, for any self-adjoint operator A, we have

f(A) =
1

2π

∫
C

∂f̃

∂λ
(λ) [A− λ]−1 dλ ∧ dλ,

where λ ∈ C, the measure dλ ∧ dλ is the standard 2-dimensional volume in C, and
f̃(λ) denotes an almost-analytic extension of f over C. We refer, e.g. to [DmS] on
that point. Typically, the Helffer-Sjöstrand formula establishes that computing f(A)
roughly reduces to computing the resolvent [A− λ]−1 for any λ ∈ C. In turn, this
observation is the key to establish that f(aw) is a pseudodifferential operator as is
aw, and that the complete symbol of f(aw) may be computed as a full asymptotic
expansion, using the asymptotic expansion of the symbol of [aw − λ]−1.

As we now show, the similar results hold and can be proved along the same lines
in the context of Weyl-Hörmander calculus: we now identify f

(
(M2(x, z, ξ, ζ))

w)
whenever f(x) ≡ x`.

Proposition 2.4 Let ` ∈ R. Then
[
(M2)

w]` ∈ OpS(M2`, g). Besides, the following
assertion holds true [(

M2
)w]` − (M2`

)w ∈ OpS(M2`−1, g)

Remark. Note that the information
[
(M2)

w]` ∈ OpS(M2`, g) is not obvious. Note
also that the second assertion of the Proposition does not give the complete asymp-

totic expansion of
[
(M2)

w]`
, but only its principal symbol. This turns out to be

enough for our purposes. Note finally that our proof does not use the Helffer-
Sjöstrand formula, but a simpler, particular, version of it, borrowed from [Yo]: this
simplified approach is borrowed from [HN].

Proof of Proposition 2.4.
Our proof follows [HN], Chapter 4, proof of Theorem 4.8.
Whenever λ ≥ 0, we know from Weyl-Hörmander calculus (see formula (2.9))

that [(
M2
)w

+ λ
]
◦
[(
M2 + λ

)−1
]w

= Id +R(λ),

4which is well-defined thanks to the usual functional calculus for self-adjoint operators.
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where R(λ) ∈ OpS(M−1, g) has a symbol whose semi-norms all have size O((1 +

λ)−1). Besides, the semi-norms of
(
(M2)

w
+ λ
)−1

have size O(1), uniformly with
respect to λ ≥ 0, thanks to Proposition 2.3. As a consequence, we recover for any
λ ≥ 0, [(

M2
)w

+ λ
]−1 −

[(
M2 + λ

)−1
]w

= R′(λ) ∈ OpS(M−3, g),

where all seminorms of R′(λ) have size O((1 + λ)−1).

This first observation readily allows to deduce the result of the Proposition for
integer values of the parameter `. Indeed, taking λ = 0 in the above formula gives[(

M2
)w]−1

=
[
M−2

]w
+R′(0)

and, since
[
(M2)

w]−1 ∈ OpS(M−2, g) while R′(0) ∈ OpS(M−3, g), iterating the
above formula |`| times (when ` ≤ 0), or simply iterating (M2)

w
` times (when

` ≥ 0) provides, in conjunction with standard Weyl-Hörmander calculus (see (2.9),
the identity

∀` ∈ Z,
[(
M2
)w]` − [M2`

]w ∈ OpS(M2`−1, g).

Let us now come to the case of real, non-integer values of `.
The previous result, when combined with standard Weyl-Hörmander calculus

(formula (2.9)), allows to reduce the proof to the mere case when −1 < ` < 0
(actually any non-empty interval of R would do as well). This being observed, we
use the following formula, valid for −1 < ` < 0

[(
M2
)w]`

= −sin(`π)

π

∫ +∞

0

λ`
[(
M2
)w

+ λ
]−1

dλ. (2.12)

This formula actually holds true when Mw is replaced by any self-adjoint operator,
and we use here the result of Proposition 2.2. Now, we may write[(

M2
)w

+ λ
]−1

=
[(
M2 + λ

)−1
]w

+R′(λ),

and the semi-norms of the involved pseudodifferential operators on the right-hand-
side have size O((1 + λ)−1). As a consequence, the integral in (2.12) does converge,
and we have[(

M2
)w]`

= −sin(`π)

π

∫ +∞

0

λ`
[(
M2
)w

+ λ
]−1

dλ

= −sin(`π)

π

∫ +∞

0

λ`
([(

M2 + λ
)−1
]w

+R′(λ)
)
dλ

=
(
M2`

)w − sin(`π)

π

∫ +∞

0

λ` R′(λ)︸ ︷︷ ︸
∈S(M−3,g), with semi-norms =O((1+λ)−1)

dλ,
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where we again used formula (2.12) with (M2)
w

replaced by its symbol M2` to
identify the term

(
M2`

)w
. As a consequence, we have proved[(

M2
)w]` − (M2`

)w ∈ S(M−3, g) whenever − 1 < ` < 0.

This finishes the proof of the Proposition.

2.4 Proof of Theorem 2.1

Take any ` ≥ 0 and u ∈ B`. The proof is decomposed into two steps.

First step
We have,∥∥∥(1−∆x − ∂2

z + V (x) + Vc(z)
)`/2

u
∥∥∥2

L2(R3)

= 〈
(
1−∆x − ∂2

z + V (x) + Vc(z)
)`
u , u〉L2(R3)

= 〈
((
M2
)w)`

u , u〉2L2(R3) =
∥∥∥((M2

)w)`/2
u
∥∥∥2

L2(R3)

hence, according to Proposition 2.4, we recover∥∥∥(1−∆x − ∂2
z + V (x) + Vc(z)

)`/2
u
∥∥∥2

L2(R3)
=
∥∥(M `

)w
u+Ru

∥∥2

L2(R3)
,

where R ∈ OpS(M `−1, g). We now claim that for any ε > 0, there is a C(ε) > 0
such that

‖Ru‖L2(R3) ≤ C(ε) ‖u‖L2(R3) + ε
∥∥(M `

)w
u
∥∥

L2(R3)
. (2.13)

Assuming for a while that (2.13) has been proved, we easily recover the equivalence∥∥∥(1−∆x − ∂2
z + V (x) + Vc(z)

)`/2
u
∥∥∥2

L2(R3)
∼
∥∥(M `

)w
u
∥∥2

L2(R3)
. (2.14)

Let us now prove (2.13). The fact that R ∈ OpS(M `−1, g) gives

‖Ru‖L2(R3) ≤ ‖u‖H(M`−1,g) .

The definition of the space H(M `−1, g) (see (2.10)) provides

‖u‖2
H(M`−1,g) =

∫
R6

M2(`−1)(X) ‖φw
X u‖

2
L2(R3) |det(g(X))|1/2 dX

=

∫
R6

M2`(X)

M2(X)
‖φw

X u‖
2
L2(R3) |det(g(X))|1/2 dX.
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Hence, decomposing R6 into {|X| ≤ R} ∪ {|X| > R} for some large R, and using
the fact that 1/M(X) goes to zero as X goes to infinity, we eventually recover

‖Ru‖2
L2(R3) ≤ C(ε) ‖u‖2

L2(R3) + ε ‖u‖2
H(M`,g).

There remains to observe that Proposition 2.2 asserts the equivalence of ‖u‖H(M`,g)

with
∥∥(M `

)w
u
∥∥

L2(R3)
, and we are in position to deduce (2.13).

Second step
From formula (2.2) we know there exist two positive constants c0 and c1 such

that

c0 ≤
M2`(x, z, ξ, ζ)

1 + |ξ|2` + |ζ|2` + V (x)` + Vc(z)`
≤ c1.

Hence, using the definition of H(M `, g), we recover

‖u‖2
H(M`,g) =

∫
R6

M2`(X) ‖φw
X u‖

2
L2(R3) |det(g(X))|1/2 dX

≤ c1

∫
R6

(
1 + |ξ|2` + |ζ|2` + V (x)` + Vc(z)

`
)
‖φw

X u‖
2
L2(R3) |det(g(X))|1/2 dX

= c1

(
‖u‖2

L2(R3) + ‖ (−∆x)
`/2 u‖2

L2(R3) + ‖
(
−∂2

z

)`/2
u‖2

L2(R3)

+ ‖V (x)`/2 u‖2
L2(R3) + ‖Vc(z)

`/2 u‖2
L2(R3)

)
.

The reverse inequality is obtained similarly. As a consequence, we recover the equiv-
alence between norms∥∥(M `

)w
u
∥∥2

L2(R3)
∼ ‖u‖2

L2(R3) +
∥∥∥(−∆x)

`/2 u
∥∥∥2

L2(R3)

+
∥∥∥(−∂2

z

)`/2
u
∥∥∥2

L2(R3)
+
∥∥V (x)`/2 u

∥∥2

L2(R3)
+
∥∥Vc(z)

`/2 u
∥∥2

L2(R3)
.

This, in combination with (2.14), ends the proof of Theorem 2.10.

2.5 Various useful consequences of Theorem 2.1

This paragraph is devoted to the proof of the following

Proposition 2.5 [Properties of the Sobolev scale B`].
Take a real number ` > 3/2. Define the Sobolev space B` as the completion of the
set of smooth functions u(x, z) under the norm

‖u‖2
B`

:= ‖u‖2
H`(R3) + ‖V (x)`/2 u‖2

L2(R3) + ‖Vc(z)
`/2 u‖2

L2(R3).

Then, B` is a Hilbert space and B` ⊂ L∞(R3) continuously. Moreover, the following
properties hold true:
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(i) [algebra property].
Take any nonlinear function f ∈ C∞(R) (with a possibly unbounded support), and
satisfying f(0) = 0. Then, the mapping

u ∈ B` 7→ f(u) ∈ B`

is well-defined and locally Lipschitz. It also satisfies the tame estimate

‖f(u)‖B`
≤ Cf

(
‖u‖L∞(R3)

)
‖u‖B`

.

Here, Cf (s) > 0 depends on f and s ≥ 0. It is a locally bounded function of s.

(ii) [compact embeddings].
Take two real numbers `′ > `′′ ≥ 0. Then, the embedding B`′ ⊂ B`′′ is compact.

As an immediate corollary of this result, we also have the following non-trivial
uniform existence result.

Corollary 2.6 Take a real number m > 3/2. Take an initial datum Ψ0(x, z) in
(1.12) such that

Ψ0(x, z) ∈ Bm.

Then, there is a T0 > 0, independent of ε, which only depends on ‖Ψ0‖Bm and on
the nonlinear function F , such that the nonlinear Schrödinger equation (1.11) with
initial datum Ψ0 possesses a unique solution Ψε(t, x, z) with the smoothness

Ψε(t, x, z) ∈ C0([0, T0], Bm).

Remark. Proposition 2.5 is essentially an immediate corollary of Theorem 2.1.
Indeed, part (i) of the Proposition relies on the fact that the usual Sobolev space
H`(Rd) is an algebra whenever ` > d/2, and that the tame estimate of point (i) then
holds true when B` is replaced by H`(Rd) - see e.g. [AG] - (here, d = 3), while part
(ii) uses the fact that the embedding H`′ ⊂ H`′′ is locally compact, while Vc(z)

`′

resp. V (x)`′ obviously dominate Vc(z)
`′′ resp. V (x)`′′ at infinity, due to confinement.

Similarly, Corollary 2.6 is essentially a consequence of Theorem 2.1, Proposition 2.5,
and Gronwall’s Lemma. The noticeable fact here is the independence of T0 on ε,
which is a direct consequence of the fact that Hx and Hz obviously commute with
the fast oscillatory term Hz/ε on the right-hand-side of equation (1.11).
Lastly, note that Corollary 2.6 asserts that there is a common, non-trivial time-
interval, such that all solutions to i∂tΨ

ε = HxΨ
ε + ε−1HzΨ

ε + F (|Ψε|2) Ψε exist on
the same time interval [0, T0]. Of course each maximal existence time Tε ≤ +∞ as-
sociated with each solution Ψε a priori depends on ε > 0. The point is, infεTε ≥ T0.
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Proof of Proposition 2.5.
Take u and f as in the statement of the Proposition. We know from Proposition

2.1 that the B` norm of u is equivalent with

‖u‖H`(R3) + ‖Vc(z)
`/2 u‖L2(R3) + ‖V (x)`/2 u‖L2(R3),

where H`(R3) is the usual Sobolev space. Since ` > 3/2, we readily know have the
usual tame estimate for f(u),

‖f(u)‖H`(R3) ≤ Cf

(
‖u‖L∞(R3)

)
‖u‖H`(R3).

(We have used the notation of the Proposition). On the other hand, we have

‖Vc(z)
`/2 f(u)‖L2(R3) ≤ Cf

(
‖u‖L∞(R3)

)
‖Vc(z)

`/2 u‖L2(R3),

where Cf (.) is as in the Proposition. Obviously, the similar inequalities hold when
Vc(z) is replaced by V (x). This ends the proof of the tame estimate. The fact that
u 7→ f(u) is locally Lipschitz in B` is proved along the same lines. This ends the
proof of part (i) of the Proposition. Similarly, part (ii) is the consequence of the
locally compact embedding H`′(R3) ⊂ H`′′(R3), together with the fact that V and
Vc go to infinity at infinity, so that ‖V (x)`′/2 u‖L2 strictly dominates ‖V (x)`′′/2 u‖L2

and the same for Vc. We skip the easy details.

Proof of Corollary 2.6.
Take Ψ0 ∈ Bm. For any given ε > 0, we look for a solution ψε(t, x, z) to (1.11) as a
solution of the fixed point equation

Ψε(t, x, z) = exp

(
−it

[
Hx +

Hz

ε

])
Ψ0(x, z)

− i

∫ t

0

exp

(
−i(t− s)

[
Hx +

Hz

ε

])
F
(
|Ψε(s, x, z)|2

)
Ψε(s, x, z) ds. (2.15)

Thanks to point (i) of Proposition 2.5, the mapping u ∈ Bm 7→ F (|u|2)u ∈
Bm is locally Lipschitz. Even more, due to the fact that both operators Hx and
Hz commute with the propagator exp

(
−it

[
Hx + Hz

ε

])
, it is readily seen that the

following Lipschitz estimate holds true whenever t ≥ 0, namely∥∥∥∫ t

0

exp

(
−i(t− s)

[
Hx +

Hz

ε

])
[
F
(
|u(s, x, z)|2

)
u(s, x, z)− F

(
|v(s, x, z)|2

)
v(s, x, z)

]
ds
∥∥∥

Bm

≤ t× sup
s∈[0,t]

∥∥∥F (|u(s, x, z)|2) u(s, x, z)− F
(
|v(s, x, z)|2

)
v(s, x, z)

∥∥∥
Bm

≤ t× CF

(
‖u‖C0([0,t];Bm); ‖v‖C0([0,t];Bm)

)
× ‖u− v‖C0([0,t];Bm),
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where u and v belong to the space C0([0, t];Bm). Here, the function CF (., .) is
independent of ε, it is a nondecreasing function of its arguments, and it does depend
on the nonlinearity F . With these ingredients at hand, it is now an easy task to
deduce, see e.g. [C], that for any given ε > 0, there exists a (possibly small) time
Tε > 0, and a unique solution Ψε(t, x, z) ∈ C0([0, Tε];Bm) to the integral equation
(2.15). This provides incidentally the unique solution to (1.11) with initial datum
Ψ0.

Let us now prove that there is a common lower bound T0 such that Tε ≥ T0

for any ε > 0. Taking the scalar product of the equation with Ψε first gives the
conservation of mass

∂t

(
‖Ψε(t, x, z)‖2

L2(R3)

)
= 0.

Next, multiplying the equation by Hm
x Ψε + Hm

z Ψε and integrating by parts gives,
using the crucial fact that Hx and Hz commute with Hx +Hz/ε,

∂t

(
‖Hm/2

x Ψε(t, x, z)‖2
L2(R3) + ‖Hm/2

z Ψε(t, x, z)‖2
L2(R3)

)
=
〈 [
Hm/2

x +Hm/2
z

] [
F (|Ψε|2) Ψε

]
,
[
Hm/2

x +Hm/2
z

]
Ψε
〉

≤
∥∥∥F (|Ψε|2) Ψε

∥∥∥
Bm

∥∥Ψε
∥∥

Bm
≤ CF

(∥∥Ψε
∥∥2

L∞

) ∥∥Ψε
∥∥2

Bm
,

where CF (u) is a locally bounded, non-decreasing function of u ≥ 0, and we have
used Proposition 2.5. Eventually, we have obtained

∂t

(
‖Ψε(t, x, z)‖2

Bm

)
≤ CF

(∥∥Ψε
∥∥2

L∞

) ∥∥Ψε
∥∥2

Bm
,

hence, using the Sobolev embedding Bm ⊂ L∞

∂t

(
‖Ψε(t, x, z)‖2

Bm

)
≤ CF

(∥∥Ψε
∥∥2

Bm

) ∥∥Ψε
∥∥2

Bm
,

for a possibly larger value of CF (.). Gronwall’s Lemma then proves that there is
a common T0 > 0 such that ‖Ψε(t, x, z)‖Bm remains bounded on [0, T0] whenever
ε > 0.

This completes the proof.

3 Almost periodic functions (in time) with values

in Bm (in space)

In this section, we first collect various known facts about Hilbert valued almost-
periodic functions Θ(τ). The corresponding results are Propositions 3.1 and 3.2
below. For obvious reasons, our focus is on almost-periodic functions with values
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in the Sobolev spaces B`. Next, we deduce from these known facts the properties
that will be useful for our asymptotic analysis. Our main result is Proposition 3.3.
Needless to say, in our perspective, the key fact about almost-periodic functions

Θ(t) is the existence of their long time average Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ, and the

point is, no small-divisors estimate (or like) is needed to define such averages. In
some sense, the small divisor estimates are encoded in the very definition of almost-
periodic functions.

We begin with the

Definition and Proposition 3.1 (Borrowed from [LZ])
Let ` ≥ 0. A function Θ : τ ∈ R 7→ Θ(τ) ∈ B`, with Θ ∈ C0(R;B`), is called
almost-periodic, and we note Θ ∈ AP(R, B`), whenever the set of translates

{τ 7→ Θ(τ + h), h ∈ R}

has compact closure in the norm L∞(R, B`).

Equivalently, Θ ∈ AP(R, B`) if and only if Θ(τ) is the strong limit of trigonometric
polynomials, i.e. for any δ > 0, there exists a trigonometric polynomial

Θδ(τ) =

Nδ∑
n=1

θn,δ exp(iλn,δτ), such that sup
τ∈R

‖Θ(τ)−Θδ(τ)‖B`
≤ δ,

where the θn,δ’s belong to B`, the λn,δ’s belong to R, and Nδ is some finite integer.

Remark. The above definition, namely the precompactness criterion, is usually
called Bochner’s criterion for almost-periodicity. The equivalence with being the
uniform limit of trigonometric polynomials is a standard (and crucial) fact about
almost-periodic functions. It is proved, e.g., in [LZ], and in any textbook about
almost-periodic functions.

Remark. Note that a function Θ ∈ AP(R, B`) necessarily satisfies Θ ∈ L∞(R, B`).

With this definition, it turns out that one may do Fourier analysis on almost
periodic functions. In particular, the long-time average of Θ(τ) (which plays the role
of the mean mode in standard Fourier analysis), is well defined, as shown by the

Proposition 3.2 (Borrowed from [LZ])
Let ` ≥ 0 and take Θ ∈ AP(R, B`). Then, the following strong limit exists in B`,

Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ.
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More generally, for any λ ∈ R, the Fourier-like coefficient

Θ̂(λ) := lim
T→∞

1

T

∫ T

0

Θ(τ) exp(−iλτ) dτ,

is well-defined as a limit in B`. Last, Bessel’s inequality holds, i.e. for any sequence
{λn}n∈N ∈ RN, we have

∑
n∈N

∥∥Θ̂(λn)
∥∥2

B`
≤ lim

T→∞

1

T

∫ T

0

∥∥Θ(τ)
∥∥2

B`
dτ

(
≤ ‖Θ‖L∞(R,B`)

)
.

Remark. As an immediate consequence of Bessel’s inequality, the coefficients Θ̂(λ)

are non-zero for countably many values of λ only. The λ’s such that Θ̂(λ) is non-zero
are called the almost-periods of Ψ. Actually, Parseval’s equality holds as well, namely∑

λ∈Λ

∥∥Θ̂(λ)
∥∥2

B`
= lim

T→∞

1

T

∫ T

0

∥∥Θ(τ)
∥∥2

B`
dτ,

where the sum runs over Λ := {λ such that Θ̂(λ) 6= 0}. Again, we refer to [LZ].

Remark. A particular case of almost-periodic functions is formed by quasi-periodic
functions. Given any finite-dimensional vector ω = (ω1, . . . , ωN) ∈ RN , called
frequency-vector, whose components are assumed pairwise rationally independent
for simplicity, and given a set of Fourier coefficients Θ̂(α) ∈ B`, indexed by α ∈ ZN ,
a typical quasi-periodic (hence almost periodic) function is

Θ(τ) :=
∑

α∈ZN

Θ̂(α) exp(i ω · ατ)

provided the sum converges. In that direction, one may assume that the frequency
vector ω satisfies the Diophantine estimate

∃C > 0, ∃γ > 0, ∀α ∈ ZN \ {0}, |ω · α| ≥ C

|α|γ
,

(a generic estimate whenever γ > N−1, see [A]), while the Θ̂(α)’s decay fast enough,

‖Θ̂(α)‖B`
≤ C|α|−γ−N−1,

for some C independent of α. In that case, the mean value of Θ, namely Θav =
limT→∞(1/T )

∫ T

0
Θ(τ) dτ , coincides with the coefficient Θ̂(0) associated with α = 0

in the sum that defines Θ(τ). Even more, one has the convergence rate∥∥∥Θav −
1

T

∫ T

0

Θ(τ) dτ
∥∥∥

B`

≤ C

T
,
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for some C independent of T . In this picture, the almost-periodic framework corre-
sponds to the case of infinitely many independent frequencies (N = ∞), and when
no Diophantine estimate is at hand.

We now turn to drawing the consequences of Proposition 3.2 that are of interest
in our study of the equation i∂tΨ

ε = HxΨ
ε + ε−1HzΨ

ε +F (|Ψε|2)Ψε. Our first result
in that direction is the

Proposition 3.3 Take ` > 3/2 and take Θ(x, z) ∈ B`. Under these circumstances,
the following holds:
(i) the function

τ 7→ e+iτHz F
(∣∣e−iτHz Θ

∣∣2) e−iτHz Θ =: G(τ,Θ)

belongs to AP(R;B`). Hence, one may define the long time average as the limit in
B`,

Gav(Θ) := lim
T→∞

1

T

∫ T

0

G(τ,Θ) dτ.

(ii) the function Θ 7→ Gav(Θ) is locally Lipschitz in B`. Moreover, for any `′ such
that 3/2 < `′ ≤ `, it satisfies the tame estimate

‖Gav(Θ)‖B`
≤ CF,`′

(
‖Θ‖B`′

)
‖Θ‖B`

,

where CF,`′(s) only depends on F , `′ and s ≥ 0, and is locally bounded in s.

Next, we have all the necessary tools that allow to perform the natural nonlinear
analysis of the averaged model i∂tΦ = HxΦ +Gav(Φ), obtained from the oscillatory
equation i∂tΨ

ε = HxΨ
ε + ε−1HzΨ

ε + F (|Ψε|2) Ψε.

Proposition 3.4 Take m > 3/2 and Ψ0 ∈ Bm. Then, there is a T0 > 0, only
depending on ‖Ψ0‖Bm and the nonlinear function F , such that the solution Φ to the
averaged equation

i∂tΦ = HxΦ +Gav(Φ), Φ(0, x, z) = Ψ0(x, z),

exists and is unique in C0([0, T0];Bm). Even more, it satisfies the conservation laws
of the Main Theorem, namely

‖Φ(t)‖L2(R3) = const,
〈
H1/2

z Φ(t) , H1/2
z Φ(t)

〉
L2(R3)

= const,〈
H1/2

x Φ(t) , H1/2
x Φ(t)

〉2
L2(R3)

+

∫
R3

Gav(Φ(t)) dx dz = const

on the time interval t ∈ [0, T0]. Here Gav(Ψ) := lim
T→∞

1

T

∫ T

0

G
(∣∣e−iτHz Ψ

∣∣2) dτ for

any Ψ ∈ Bm, and G(u) :=

∫ u

0

F (v) dv (u ∈ R).
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The remaining part of this section is essentially devoted to the proof of Proposi-
tion 3.3, for which parts (i) and (ii) are established separately. Then, the proof of
Proposition 3.4 comes as an easy corollary.

Proof of Proposition 3.3 - Part (i).
The proof is performed in three steps.

First step: AP(R;B`) is stable upon multiplication by exp(iτHz)
We first claim that, given any function Θ ∈ AP(R, B`), the new function τ 7→
exp(iτHz)Θ(τ) belongs to AP(R, B`) as well.

In order to prove this, we use the characterization of almost-periodic functions as
strong limits of trigonometric polynomials (Proposition 3.1). The Bessel inequality
gives us the necessary uniform bound needed to pass to the limit in the approximation
process.

Let us come to the details. Take a small δ > 0. We wish to approximate
exp(iτHz)Θ(τ) by a trigonometric polynomial, to within δ.

Firstly, since Θ ∈ AP(R;B`), we may find a trigonometric polynomial

Θδ(τ) :=

Nδ∑
n=1

θn,δ exp(i λn,δτ), such that
∥∥Θ(τ)−Θδ(τ)

∥∥
C0(R;B`)

≤ δ,

where the θn,δ’s belong to B` and the λn,δ’s belong to R. We clearly have the uniform
bound ‖Θδ(τ)‖C0(R;B`) ≤ C, for some C > 0 independent of δ. On top of that, we
obviously have∥∥ exp(iτHz) Θ(τ)− exp(iτHz) Θδ(τ)

∥∥
C0(R;B`)

≤ δ, (3.1)

since exp(i τHz) preserves the B` norm.

Secondly, the Bessel inequality, when applied to Θδ, gives the crucial uniform
bound

Nδ∑
n=1

‖θn,δ‖2
B`
≤ lim

T→∞

1

T

∫ T

0

‖Θδ(τ)‖2
B`
dτ ≤ sup

τ∈R
‖Θδ(τ)‖2

B`
≤ C,

for some C independent of δ. This is due to the fact that the θn,δ’s coincide with

the Fourier-like coefficients lim
T→∞

(1/T )

∫ T

0

Θδ(τ) exp(−iλn,δτ) dτ . For this reason,

we recover the uniform bound (by definition of the B` norm)

Nδ∑
n=1

∑
p≥0

(1 + E`
p)
∥∥〈θn,δ , χp〉

∥∥2

L2(R2)
+

Nδ∑
n=1

∑
p≥0

∥∥〈H`/2
x θn,δ , χp〉

∥∥2

L2(R2)
≤ C.
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Hence, we may approximate Θδ(τ) =
∑

p≥0〈Θδ(τ) , χp〉χp by a finite sum. More
precisely, given δ, one may find an integer Pδ such that

Nδ∑
n=1

∑
p>Pδ

(1 + E`
p)
∥∥〈θn,δ , χp〉

∥∥2

L2(R2)
+

Nδ∑
n=1

∑
p>Pδ

∥∥〈H`/2
x θn,δ , χp〉

∥∥2

L2(R2)
≤ δ.

In particular, we recover the estimate

sup
τ∈R

∥∥∥∥∥Θδ(τ)−
Pδ∑

p=0

〈Θδ(τ) , χp〉χp

∥∥∥∥∥
B`

≤ δ.

Note that the existence of such a truncation parameter Pδ is intimately related with
the Bessel inequality. As a consequence,

sup
τ∈R

∥∥∥∥∥exp(i τHz)Θ
δ(τ)−

Pδ∑
p=0

ei τEp 〈Θδ(τ) , χp〉χp

∥∥∥∥∥
B`

≤ δ. (3.2)

Third, it turns out that the function

Pδ∑
p=0

ei τEp 〈Θδ(τ) , χp〉χp =

Nδ∑
n=0

Pδ∑
p=0

ei τ [Ep+λn,δ ] 〈θn,δ , χp〉χp

obviously is a trigonometric polynomial, with coefficients in B`. Even more, one
deduces from (3.1) and (3.2) the estimate

sup
τ∈R

∥∥∥ exp(i τHz) Θ(τ)−
Pδ∑

p=0

ei τEp 〈Θδ(τ) , χp〉χp

∥∥∥
B`

≤ 2δ.

This establishes the fact that the function τ 7→ exp(i τHz) Θ(τ) belongs to AP(R;B`).

Second step: AP(R;B`) is an algebra

We now prove that, given any Θ ∈ AP(R;B`), the function τ 7→ F (|Θ(τ)|2) Θ(τ)
belongs to AP(R;B`) as well. In other words, AP(R;B`) is an algebra. This obviously
uses the fact that B` is an algebra whenever ` > 3/2 (Proposition 2.5).

Since Θ ∈ AP(R;B`), Θ belongs in particular to L∞(R;B`). Since ` > 3/2 and
B` ⊂ H`(R3) ⊂ L∞(R3), the function Θ(τ) belongs to L∞(R×R3). As a consequence,
there exists a C∞c function FM(x) (x ∈ R) such that

F (|Θ(τ)|2) ≡ FM(|Θ(τ)|2).

(In essence, one may take FM as any regularization of the function x 7→ F (x)×1[|x| ≤
M ], where M is an upper bound of ‖Θ(τ)‖L∞(R×R3)).

Now, since Θ ∈ AP(R;B`), Θ(τ) is also the limit in L∞(R, B`) of trigonometric
polynomials Θδ(τ). On top of that, since FM(x) belongs to C∞c , it also is the limit
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in C∞c (R) of polynomials, denoted by, say, FM,δ. Hence, using the fact that B`

is an algebra, for each δ > 0, the function FM,δ(|Θδ(τ)|2) Θδ(τ) is a trigonometric
polynomial (in time τ), with coefficients in B` (in space). Even more, the sequence
FM,δ(|Θδ(τ)|2) Θδ(τ) approaches FM(|Θ(τ)|2) Θ(τ) ≡ F (|Θ(τ)|2) Θ(τ) as δ → 0, in
the space L∞(R;B`).

This ends the proof that the mapping τ 7→ F (|Θ(τ)|2) Θ(τ) belongs to AP(R;B`).

Third step: conclusion
The proof of Proposition 3.3, part (i), is now immediate.

Given Θ ∈ B`, the first step ensures τ 7→ exp(−i τHz) Θ(τ) belongs to AP(R;B`).
Then, the second step ensures that τ 7→ F (| exp(−i τHz) Θ(τ)|2) exp(−i τHz) Θ(τ)
as well belongs to AP(R;B`). The first step in turn ensures that τ 7→ exp(+i τHz)
F (| exp(−i τHz) Θ(τ)|2) exp(−i τHz) Θ(τ) belongs to AP(R;B`).

This proves Proposition 3.3 - Part (i).

Proof of Proposition 3.3 - Part (ii).
We only prove the tame estimate, since the locally Lipschitz property is established
along the same lines. We take a function Θ in B`, and estimate∥∥∥Gav(Θ)

∥∥∥
B`

=
∥∥∥ lim

T→∞

1

T

∫ T

0

G(τ,Θ) dτ
∥∥∥

B`

≤ lim
T→∞

1

T

∫ T

0

∥∥∥G(τ,Θ)
∥∥∥

L∞(R;B`)
dτ

(this uses the fact that the lim
T→∞

. . . holds in B`)

≤ sup
τ∈R

∥∥∥G(τ,Θ)
∥∥∥

B`

= sup
τ∈R

∥∥∥e+iτHz F
(∣∣e−iτHz Θ

∣∣2) e−iτHz Θ
∥∥∥

B`

= sup
τ∈R

∥∥∥F (∣∣e−iτHz Θ
∣∣2) e−iτHz Θ

∥∥∥
B`

(we use the fact that eiτHz is unitary in the B` norm).

Then, the Proposition becomes essentially clear. Indeed, we may further estimate,
for any 3/2 < `′ ≤ `,∥∥∥Gav(Θ)

∥∥∥
B`

≤ CF

(
sup
τ∈R

∥∥∥ exp(−i τHz) Θ
∥∥∥

L∞(R3)

)
sup
τ∈R

∥∥∥ exp(−i τHz) Θ
∥∥∥

B`

≤ CF,`′

(
sup
τ∈R

∥∥∥ exp(−i τHz) Θ
∥∥∥

B`′

)
sup
τ∈R

∥∥∥ exp(−i τHz) Θ
∥∥∥

B`

= CF,`′

(∥∥Θ∥∥
B`′

) ∥∥Θ∥∥
B`
,

where CF (s) resp. CF,`′(s) depend on F resp. F and `′, they are locally bounded
function of s ≥ 0, and we have used the tame estimate of Proposition 2.5-(i) together
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with the Sobolev embedding B`′ ⊂ L∞(R3).

Proof of Proposition 3.4.
The existence, regularity, and uniqueness part of Proposition 3.4 is an immediate
consequence of Proposition 3.3. Indeed, as already underlined in the proof of Corol-
lary 2.6, which provides a similar statement, the key ingredient to proving existence
and uniqueness of a local-in-time solution to i∂tΦ = HxΦ + GavΦ, with prescribed
initial datum in Bm, is the fact that the mapping Φ ∈ Bm 7→ Gav(Φ) ∈ Bm is locally
Lipschitz, combined with the fact that the propagator exp(itHx) is unitary in Bm.
We again refer to [C] on these matters.

There only remains to prove the claimed conservation laws.

Conservation of mass is easy. Indeed, we write

d

dt

(
‖Φ(t)‖2

L2(R3)

)
= 2 Re

〈
1

i
[HxΦ +Gav(Φ)] , Φ

〉
L2(R3)

= 2 Im 〈Gav(Φ) , Φ〉L2(R3) ,

due to the fact that Hx is self-adjoint. Now, recalling that

Gav(Φ) = lim
T→∞

1

T

∫ T

0

e+iτHz F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ dτ,

we may write, for any given T > 0,

Im

〈
1

T

∫ T

0

e+iτHz F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ dτ , Φ

〉
L2(R3)

=
1

T

∫ T

0

Im
〈
F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ , e−iτHz Φ
〉

L2(R3)
dτ = 0.

Hence, passing to the limit T → ∞ in Bm, which is licit thanks to Proposition 3.2,
we recover

Im 〈Gav(Φ) , Φ〉L2(R3) = 0.

The conclusion is ‖Φ(t)‖L2(R3) = const.

We stress in passing that all integrations by parts we perform here and below
are perfectly licit when m > 3/2 is sufficiently large (to ensure, say, HxΦ ∈ L2(R3),
Gav(Φ) ∈ L2(R3), or so). Hence the relation ‖Φ(t)‖L2(R3) = const. is true for any
m > 3/2, as shown by a standard regularization procedure (take a sequence of initial
data Ψn

0 ∈ Bm′ for some large m′, which converges towards the given initial data Ψ0

in Bm).

Conservation of Hz (energy along the z-axis) is proved in the same spirit, i.e.

d

dt

(
〈Φ(t) , Hz Φ(t)〉L2(R3)

)
= 2 Re

〈
1

i
[HxΦ +Gav(Φ)] , Hz Φ

〉
L2(R3)

= 2 Im 〈Gav(Φ) , Hz Φ〉L2(R3) ,
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due to the fact that Hx and Hz are self-adjoint. Besides, recalling the definition of
Gav, we may write, for any given T > 0,

Im

〈
1

T

∫ T

0

e+iτHz F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ dτ , Hz Φ

〉
L2(R3)

=
1

T

∫ T

0

Im
〈
F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ , Hz e−iτHz Φ
〉

L2(R3)
dτ = 0.

where we used the fact that Hz is self-adjoint and it commutes with e−iτHz (a crucial
fact throughout our analysis). Passing to the limit T → ∞ thanks to Proposition
3.2, we recover

Im 〈Gav(Φ) , Hz Φ〉L2(R3) = 0.

The conclusion is

〈Φ(t) , Hz Φ(t)〉L2(R3) = 〈H1/2
z Φ(t) , H1/2

z Φ(t)〉L2(R3) = const.

We end with the proof of the conservation of total energy along x. We write

d

dt

(
〈Φ(t) , Hx Φ(t)〉L2(R3)

)
= 2 Re

〈
1

i
[HxΦ +Gav(Φ)] , Hx Φ

〉
L2(R3)

= 2 Im 〈Gav(Φ) , Hx Φ〉L2(R3) = 2 Im 〈Gav(Φ) , i∂tΦ−Gav(Φ)〉L2(R3)

= −2 Re 〈Gav(Φ) , ∂tΦ〉L2(R3) .

We may further observe that, for any given T > 0, we have

Re

〈
1

T

∫ T

0

e+iτHz F
(∣∣e−iτHz Φ

∣∣2) e−iτHz Φ dτ , ∂tΦ

〉
L2(R3)

=
1

T

∫ T

0

Re
〈
F
(∣∣e−iτHz Φ(t)

∣∣2) e−iτHz Φ(t) , ∂t

[
e−iτHz Φ(t)

]〉
L2(R3)

dτ

=
1

T

∫ T

0

Re

∫
R3

F
(∣∣e−iτHz Φ

∣∣2)× e−iτHz Φ× ∂t[e−iτHz Φ] dx dz dτ

=
1

2T

∫ T

0

∫
R3

F
(∣∣e−iτHz Φ

∣∣2)× ∂t

[∣∣e−iτHz Φ
∣∣2] dx dz dτ

=
1

2

d

dt

(
1

T

∫ T

0

∫
R3

G
(∣∣e−iτHz Φ

∣∣2)) dx dz dτ,

where we used the notation G(u) =

∫ u

0

F (v) dv whenever u ∈ R. Passing to the

limit T →∞ thanks to Proposition 3.2 eventually produces the relation

2 Re 〈Gav(Φ) , ∂tΦ〉L2(R3) = lim
T→∞

d

dt

(
1

T

∫ T

0

∫
R3

G
(∣∣e−iτHz Φ

∣∣2)) dx dz dτ

=
d

dt

∫
R3

Gav(Φ) dx dz.
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This ends the proof of the conservation of energy along x.

Note that in these estimates, all limits are justified by using repeatedly Proposi-
tion 3.2 (which allows to perform long-time averages), Proposition 3.3 (which allows
to do nonlinear analysis), and the regularity at hand for Φ, while all integrations by
parts are justified as well, at least whenm is large enough. The obtained conservation
laws then hold for any m > 3/2, using the standard regularization argument.

Proposition 3.4 is now proved.

4 Proof of the Main Theorem

Points (i) and (iii) of the Main Theorem are already proved. There remains to
perform the averaging procedure in time, i.e. to prove point (ii).

In order to do so, we first prove a reduced version of the result, for initial data
Ψ0 that possess the improved regularity Ψ0 ∈ Bm+2 (instead of Bm as in our main
Theorem). It turns out that part (ii) of our main Theorem then comes as an easy
corollary.

We state and prove the

Proposition 4.1 Let Ψ0 ∈ Bm+2 with m > 3/2. Let Φε(t) and Φ(t) satisfy, as in
the main theorem, i∂tΦ

ε = HxΦ
ε + G(t/ε,Φε), resp. i∂tΦ = HxΦ + Fav(Φ), with

initial datum Ψ0, where G(τ, u) = e+iτHz F (|e−iτHzu|2) e−iτHzu. Then,

‖Φε(t)− Φ(t)‖C0([0,T0];Bm)−→ε→0
0.

Corollary 4.2 Let Ψ0 ∈ Bm with m > 3/2. Let Φε(t) and Φ(t) satisfy, as in the
main theorem, i∂tΦ

ε = HxΦ
ε + G(t/ε,Φε), resp. i∂tΦ = HxΦ + Fav(Φ), with initial

datum Ψ0. Then,

‖Φε(t)− Φ(t)‖C0([0,T0];Bm)−→ε→0
0.

Remark. Note that, though the solutions Φε and Φ in Proposition 4.1 both possess
the improved regularity C0([0, T0];Bm+2), the convergence Φε → Φ only holds in the
weaker space C0([0, T0];Bm). Technically speaking, this stems from the fact that the
proof of Proposition 4.1 requires that ∂tΦ

ε and ∂tΦ belong to Bm, while the equations
i∂tΦ

ε = HxΦ
ε+G(t/ε,Φε) and i∂tΦ

ε = HxΦ
ε+Gav(Φ) only provide ∂tΦ

ε ∈ Bm under
the condition HxΦ

ε ∈ Bm, which in turn requires Φε ∈ Bm+2, and similarly for Φ.
The Corollary 4.2 next ensures Φε → Φ in C0([0, T0];Bm) provided Φε and Φ

belong to Bm only, a property that is deduced from Proposition 4.1 using a regular-
ization procedure.
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Proof of Proposition 4.1. .

First step: reduction of the proof
We follow the strategy developed in [SV] for finite-dimensional ODE’s (see [BCD]
for an adaptation in the infinite-dimensional situation). The filtered function Φε

satisfies

i∂tΦ
ε = Hx Φε +G(t/ε,Φε), Φε(0) = Ψ0,

where G(t,Ψ) := e+i tHz F (|e−i tHz Ψ|2) e−i tHz Ψ is almost periodic. (4.1)

We wish to estimate the difference with the averaged system

i∂tΦ = Hx Φ +Gav(Φ), Φ(0) = Ψ0,

where Gav(Ψ) := lim
T→∞

1

T

∫ T

0

G(τ,Ψ) dτ. (4.2)

In order to do so, we choose a (large) time T (ε) such that T (ε) = o(1/ε) as ε → 0.
The “good” choice for T (ε) is made precise below - see (4.14). Associated with T (ε),

we introduce the auxiliary solution Φ̃ε to

i∂tΦ̃
ε = Hx Φ̃ε + G̃ε(t/ε, Φ̃

ε), Φ̃ε(0) = Ψ0,

where G̃ε(t,Ψ) :=
1

T (ε)

∫ t+T (ε)

t

G(s,Ψ) ds. (4.3)

Our strategy is to successively prove that the two terms Φε − Φ̃ε and Φ̃ε − Φ go to
zero in C0([0, T0];Bm). As we shall see, each term requires specific arguments.

Second step: some preliminary bounds
Take Ψ0 ∈ Bm+2.
Before estimating Φε − Φ̃ε and Φ̃ε − Φ, a preliminary remark is in order.
Repeating the Proof of Proposition 3.3 - Part (ii) given before, the function u 7→
G̃ε(t, u) clearly is locally Lipschitz in all Sobolev spaces B` (` > 3/2). Even more,
the following estimate holds true, independently of ε,∥∥∥G̃ε(t, u)

∥∥∥
B`

≤ CF

(
‖u‖B`

)
‖u‖B`

(` > 3/2),

for some CF (s) which is locally bounded in s ≥ 0. As a consequence, there exists a

T0, independent of ε, such that the solution Φ̃ε to (4.3) exists, is unique, and has the
regularity C0([0, T0], Bm+2). Even more, there exists a common upper-bound M > 0
such that

sup
0<ε<1

[∥∥Φε
∥∥

C0([0,T0];Bm+2)
+
∥∥Φ̃ε

∥∥
C0([0,T0];Bm+2)

+
∥∥Φ∥∥

C0([0,T0];Bm+2)

]
≤M. (4.4)

Similarly, the following uniform Lipschitz property may be stated:

sup
0<ε<1

sup
0≤τ≤T0/ε

sup
sup(‖u‖Bm+2

,‖v‖Bm+2)≤M

[
‖G(τ, u)−G(τ, v)‖Bm+2 (4.5)

+ ‖G̃ε(τ, u)− G̃ε(τ, v)‖Bm+2 + ‖Gav(u)−Gav(v)‖Bm+2

]
≤ C(F,M) ‖u− v‖Bm+2 ,
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for some constant C(F,M) > 0 that depends on F and M only. The analogous
Lipschitz estimate actually holds with Bm+2 everywhere replaced by Bm as well.

Third step: estimating G̃ε(t/ε, u)−Gav(u) for each u ∈ Bm+2

Estimating the difference between Φ̃ε−Φ in equations (4.2) and (4.3), clearly requires

to estimate, for any given u ∈ Bm+2, the difference G̃ε(τ, u)−Gav(u), for τ ’s belonging
to the interval [0, T0/ε]. This is what we do in the present step.

For any given u ∈ Bm+2, we introduce the two convergence rates

δ(0)(ε, u) := sup
0≤τ≤2T0/ε

∥∥∥ ε

2T0

∫ τ

0

[
G(σ, u)−Gav(u)

]
dσ
∥∥∥

Bm+2

,

δ(2)(ε, u) := sup
0≤τ≤2T0/ε

∥∥∥ ε

2T0

∫ τ

0

[
G(σ, u)−Gav(u)

]
dσ
∥∥∥

Bm

. (4.6)

Note that δ(2) measures a convergence rate with loss of smoothness (loss of “two
derivatives”). This explains the exponent “(2)”. Note also the obvious relation

δ(2)(ε, u) ≤ δ(0)(ε, u).

The reason for introducing separately δ(2) and δ(0) becomes clear below: it is mainly
due to the fact that δ(2)(ε, u) → 0 uniformly with respect to u, while δ(0) probably
does not share this uniformity.

We are now in position to state the

Lemma 4.3
(i) For any given u ∈ Bm+2 (m > 3/2), we have

δ(0)(ε, u) →
ε→0

0, and δ(2)(ε, u) →
ε→0

0. (4.7)

(ii) Take M is as in (4.4), and introduce the uniform convergence rate

δ
(2)
M (ε) := sup

‖u‖Bm+2
≤M

δ(2)(ε, v). (4.8)

Then,

δ
(2)
M (ε) →

ε→0
0. (4.9)

(iii) For any 0 ≤ t ≤ T0, we have (here, M is as in (4.4)),

sup
‖u‖Bm+2

≤M

∥∥∥G̃ε(t/ε, u)−Gav(u)
∥∥∥

Bm

≤ 2 T0
δ
(2)
M (ε)

ε T (ε)
. (4.10)
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Remark. Note that the right-hand-side of (4.10) does not necessarily go to zero

with ε: an appropriate choice of T (ε) has to be done, and only δ
(2)
M (ε) goes to zero at

this stage. We recall in passing that T (ε) will be chosen so that εT (ε) → 0 as ε→ 0

(εT (ε) =

√
δ
(2)
M (ε) will do).

Proof of Lemma 4.3.

For any given u ∈ Bm+2, the quantity (1/T )

∫ T

0

G(τ, u) dτ goes to Gav(u) in Bm+2,

hence in Bm, as T → ∞. This is the definition of Gav. This proves part (i) of the
Lemma. Here, we have used the information m > 3/2, together with Proposition
3.3.

To prove point (ii), we argue by contradiction. In the opposite case where

δ
(2)
M (ε) 6→ 0, we would be able to build up two sequences εn → 0, and un such

that ‖un‖Bm ≤ M , with δ(2)(εn, un) 6→ 0. Yet, since the embedding Bm+2 ⊂ Bm is
locally compact (Proposition 2.5), one may build up a subsequence, still denoted by
un, such that un → u in Bm, for some limit u. Even more, the following estimate is
obvious

|δ(2)(εn, un)− δ(2)(εn, u)| −→
n→∞

0,

while we clearly have δ(2)(εn, u) →
n→∞

0. We deduce δ(2)(εn, un) → 0. This establishes

the contradiction. Point (ii) is proved.

Last, (iii) is easily established. Indeed, we may write

sup
‖u‖Bm+2

≤M

∥∥∥G̃ε(t/ε, u)−Gav(u)
∥∥∥

C0([0,T0];Bm)

= sup
‖u‖Bm≤M

sup
0≤τ≤T0/ε

∥∥∥ 1

T (ε)

∫ τ+T (ε)

τ

[
G(σ, u)−Gav(u)

]
dσ
∥∥∥

Bm

,

so that, writing

∫ τ+T (ε)

τ

... =

∫ τ+T (ε)

0

...−
∫ τ

0

..., we eventually recover the estimate

(iii). Here we use the fact that throughout the computations, we assume ε T (ε) ≤ T0.
This ends the proof of the Lemma.

Fourth step: estimating Φ̃ε − Φ
This becomes an easy task once (4.10) is established.

Indeed, the difference ∆ε(t) := Φ̃ε(t)− Φ(t) satisfies

i∂t∆
ε(t) = Hx ∆ε(t) + G̃ε(t/ε, Φ̃

ε(t))−Gav(Φ(t)), ∆ε(0) = 0,
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from which it follows that for any t ∈ [0, T0] we have

‖∆ε(t)‖Bm ≤
∥∥∥∫ t

0

exp(−i(t− s)Hx)
[
G̃ε(s/ε, Φ̃

ε(s))−Gav(Φ(s))
]
ds
∥∥∥

Bm

≤
∫ t

0

∥∥∥ G̃ε(s/ε, Φ̃
ε(s))−Gav(Φ(s))

∥∥∥
Bm

ds.

Hence, using the uniform Lipschitz property (4.5) (with Bm+2 replaced by Bm),
together with the estimate (4.10), we recover

‖∆ε(t)‖Bm ≤ C(F,M)

∫ t

0

‖∆ε(s)‖Bm ds+

∫ t

0

∥∥∥ G̃ε(s/ε,Φ(s))−Gav(Φ(s))
∥∥∥

Bm

ds

≤ C(F,M)

∫ t

0

‖∆ε(s)‖Bm ds+

∫ t

0

sup
‖u‖Bm+2

≤M

∥∥∥ G̃ε(s/ε, u)−Gav(u)
∥∥∥

Bm

ds

≤ C(F,M)

∫ t

0

‖∆ε(s)‖Bm ds+ 2T0
δ
(2)
M (ε)

ε T (ε)
.

Now, Gronwall’s Lemma gives

∀0 ≤ t ≤ T0, ‖Φ̃ε(t)− Φ(t)‖Bm ≤ C
δ
(2)
M (ε)

ε T (ε)
, (4.11)

where C > 0 only depends on T0, M , F .

Fifth step: estimating Φε − Φ̃ε

This estimate is more delicate than the previous one. It relies on an appropriate
“integration by parts”, see below.

Introducing the difference ∆ε(t) := Φε(t)−Φ̃ε(t) as before (we use the same letter
∆ε since no confusion is possible), we readily have

i∂t∆
ε(t) = Hx ∆ε(t) +G(t/ε,Φε(t))− G̃ε(t/ε, Φ̃

ε(t)), ∆ε(0) = 0.

Hence, for 0 ≤ t ≤ T0, we recover, using (4.5) again,

‖∆ε(t)‖Bm ≤
∥∥∥ ∫ t

0

ei(t−s)Hx

[
G(s/ε,Φε(s))− G̃ε(s/ε, Φ̃

ε(s))
]
ds
∥∥∥

Bm

≤ C(F,M)

∫ t

0

‖∆ε(s)‖Bm ds

+
∥∥∥ ∫ t

0

ei(t−s)Hx

[
G(s/ε,Φε(s))− G̃ε(s/ε,Φ

ε(s))
]
ds
∥∥∥

Bm

. (4.12)

We are thus led to estimating the second term on the right-hand-side of (4.12). To
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do so, we write, whenever 0 ≤ t ≤ T0,∫ t

0

ei(t−s)Hx

[
G(s/ε,Φε(s))− G̃ε(s/ε,Φ

ε(s))
]
ds

=

∫ t

0

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t

0

ei(t−s)Hx G

(
s+ ε T (ε)u

ε
,Φε(s)

)
ds du

=

∫ t

0

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds

−
∫ 1

0

∫ t

0

ei(t−s)Hx G

(
s+ ε T (ε)u

ε
,Φε(s+ ε T (ε)u)

)
ds du +Rε

1

=

∫ t

0

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t+ε T (ε) u

ε T (ε) u

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds du

+Rε
1 +Rε

2

=

∫ t

0

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t

0

ei(t−s)Hx G
(s
ε
,Φε(s)

)
ds du

+Rε
1 +Rε

2 +Rε
3.

Eventually, we have established∫ t

0

ei(t−s)Hx

[
G(s/ε,Φε(s))− G̃ε(s/ε,Φ

ε(s))
]
ds = Rε

1 +Rε
2 +Rε

3,

and we have postponed the task of estimating the (implicitely defined) remainders
Rε

1, R
ε
2, and Rε

3, for the moment.

The third remainder Rε
3 is easily estimated by

‖Rε
3‖Bm ≤

∫ ε T (ε)

0

∥∥∥G(s
ε
,Φε(s)

)∥∥∥
Bm

ds+

∫ t+ε T (ε)

t

∥∥∥G(s
ε
,Φε(s)

)∥∥∥
Bm

ds

≤ 2 ε T (ε)
∥∥∥G(s

ε
,Φε(s)

)∥∥∥
C0([0,T0+ε T (ε)];Bm)

≤ C(F,M) ε T (ε).

The last line uses the Lipschitz condition (4.5), together with the fact that Φε(s) is
uniformly bounded in Bm, whenever 0 ≤ s ≤ T0 + ε T (ε). Note that, stricto sensu,
Φε(s) is only defined for 0 ≤ s ≤ T0. However, since ε T (ε) → 0, the solution Φε(s)
is easily seen to exist up to slightly larger times T0 + ε T (ε) (T0 is not the maximal
existence time of Φε(s)).

There remains to estimate Rε
1 and Rε

2.

Concerning Rε
1, we write

‖Rε
1‖Bm ≤ C(F,M) ε T (ε) ‖∂tΦ

ε(s)‖C0([0,T0+ε T (ε)];Bm).
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Yet, the equation

i∂tΦ
ε = HxΦ

ε +G(s/ε,Φε),

together with the bounds at hand for Φε in C0([0, T0+ε T (ε)];Bm+2) and the uniform
Lipschitz property (4.5) satisfied by G(s/ε, .), clearly imply

‖∂tΦ
ε(s)‖C0([0,T0+ε T (ε)];Bm) ≤ C,

for some C > 0 independent of ε. Eventually, we have established

‖Rε
1‖Bm ≤ C εT (ε),

for some C > 0 independent of ε.

Concerning Rε
2, we write in the similar spirit

‖Rε
2‖Bm ≤ (T + ε T (ε))

∥∥∥[eiεT (ε)uHx − 1
]
G
(s
ε
,Φε(s)

)∥∥∥
C0([0,1]×[0,T0+ε T (ε)];Bm)

≤ εT (ε) (T + ε T (ε))
∥∥∥HxG

(s
ε
,Φε(s)

)∥∥∥
C0([0,T0+ε T (ε)];Bm)

≤ εT (ε) (T + ε T (ε))
∥∥∥G(s

ε
,Φε(s)

)∥∥∥
C0([0,T0+ε T (ε)];Bm+2)

(note the loss of ”two derivatives”)

≤ C(F,M) εT (ε).

Summarizing, the Gronwall Lemma gives in (4.12),

∀0 ≤ t ≤ T0, ‖Φε(t)− Φ̃ε(t)‖Bm ≤ C εT (ε), (4.13)

for some C > 0 independent of ε.

Sixth and last step: conclusion
Gathering the results established in the fourth and fifth steps, we recover

∀0 ≤ t ≤ T0, ‖Φε(t)− Φ(t)‖Bm ≤ C

(
ε T (ε) +

δ
(2)
M (ε)

ε T (ε)

)
.

For that reason, the optimal choice for T (ε) is

T (ε) =

√
δ
(2)
M (ε)/ε. (4.14)

We check, a posteriori, that ε T (ε) =

√
δ
(2)
M (ε) → 0, a property that has been used

many times in the above estimates. This choice of T (ε) gives

∀0 ≤ t ≤ T0, ‖Φε(t)− Φ(t)‖Bm ≤ C

√
δ
(2)
M (ε) → 0. (4.15)
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This ends the proof of Proposition 4.1.

Proof of Corollary 4.2.
Take m > 3/2 and Ψ0 ∈ Bm. Given a small δ > 0, pick a Ψ0,δ ∈ Bm+2 such that

‖Ψ0 −Ψ0,δ‖Bm
≤ δ.

Associated with Ψ0,δ, define the solutions Ψε
δ(t), Φε

δ(t), Φδ(t) to i∂tΨ
ε
δ = HxΨ

ε
δ +

ε−1HzΨ
ε
δ + F (|Ψε

δ|2) Ψε
δ, resp. i∂tΦ

ε
δ = HxΦ

ε
δ + G(t/ε,Φε

δ), resp. i∂tΦδ = HxΦδ +
Gav(Φδ), with initial data Ψ0,δ.

We already know from our previous results that there is a T0 > 0, independent of
ε, such that Ψε(t), Φε(t), Φ(t) belong to C0([0, T0], Bm), uniformly in ε. This comes
from the (uniform in ε) Gronwall estimate

∂t ‖Ψε(t)‖Bm
≤ CF

(
‖Ψε(t)‖Bm

)
‖Ψε(t)‖Bm

,

and similarly for Φε(t) and Φ(t) In particular, as a consequence of the above bound,
T0 may be estimated from below by a quantity that only depends on F and ‖Ψ0‖Bm .

We also know that for each δ, there is a T δ
0 such that Ψε

δ(t), Φε
δ(t), Φδ(t) belong to

C0([0, T δ
0 ], Bm+2), uniformly in ε. More precisely, the tame estimates of Propositions

2.5-(i) and 3.3-(ii) establish the following Gronwall estimate

∂t ‖Ψε
δ(t)‖Bm+2

≤ CF

(
‖Ψε

δ(t)‖Bm

)
‖Ψε

δ(t)‖Bm+2
,

and similarly for Φε
δ(t) and Φδ(t). As a consequence, the existence time T δ

0 in Bm+2

of all these functions may be estimated from below by a quantity that only depends
on F and ‖Ψ0,δ‖Bm . Since ‖Ψ0 −Ψ0,δ‖Bm

≤ δ, we may ensure that the ‖Ψ0,δ‖Bm is

a close as we wish to ‖Ψ0‖Bm , so that T δ
0 may be in turn assumed as close as needed

to T0. For this reason, and without loss of generality, we may safely assume in the
remaining part of this argument that all functions Ψε(t), Φε(t), Φ(t), and Ψε

δ(t),
Φε

δ(t), Φδ(t) are defined on the same time interval [0, T0].
Now, Proposition 4.1 asserts

‖Φε
δ(t)− Φδ(t)‖C0([0,T0];Bm) →ε→0

0.

On the other hand, the tame estimates of Propositions 2.5-(i) and 3.3-(ii) and Gron-
wall’s Lemma ensure

‖Φε
δ(t)− Φε(t)‖C0([0,T0];Bm) ≤ C

(
‖Ψ0,δ‖Bm

)
‖Ψ0,δ −Ψ0‖Bm

≤ C
(
‖Ψ0,δ‖Bm

)
δ

≤ C
(
‖Ψ0‖Bm

)
δ,

as well as

‖Φδ(t)− Φ(t)‖C0([0,T0];Bm) ≤ C
(
‖Ψ0,δ‖Bm

)
‖Ψ0,δ −Ψ0‖Bm

≤ C
(
‖Ψ0,δ‖Bm

)
δ

≤ C
(
‖Ψ0‖Bm

)
δ.
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We are now in position to conclude: first choosing a δ such that the various bounds
C
(
‖Ψ0‖Bm

)
δ become small, then choosing ε such that ‖Φε

δ(t)− Φδ(t)‖C0([0,T0];Bm+2)

becomes small as well, the Corollary is proved.
We stress the importance of the tame estimate of Proposition 2.5-(i), as well as

that of Proposition 3.3-(ii), throughout this proof: it is the key ingredient to have
the necessary uniformity along the regularizing process δ → 0.

5 Application: the cubic Schrödinger equation,

with harmonic confinement

In this section, we apply our Main Theorem to the following simplest model of Bose
condensation

i∂tΨ
ε(t) =

(
−∆x + x2

)
Ψε(t) +

1

ε

(
−∂2/∂z2 + z2

)
Ψε(t) + |Ψε(t)|2 Ψε(t).

(5.1)

In other words, we specify our discussion to the case

Hx = −∆x + |x|2, Hz = −∂2/∂z2 + |z|2, F (u) = +u.

We know from the Main Theorem that this model is asymptotically described by

i∂tΦ(t) =
(
−∆x + x2

)
Φ(t)

+ lim
T→∞

1

T

∫ T

0

e+iτ [−∂2/∂z2+|z|2]
∣∣∣e−iτ [−∂2/∂z2+|z|2] Φ(t)

∣∣∣2 e−iτ [−∂2/∂z2+|z|2] Φ(t) dτ.

(5.2)

The conservation of total energy along x, here takes the following form

〈Φ(t) , Hx Φ(t)〉+
1

4
lim

T→∞

1

T

∫ T

0

∫
R3

∣∣e−iτHz Φ(t)
∣∣4 dx dz dτ = const, (5.3)

which involves the sum of two non-negative terms, hence each term is uniformly
bounded, and the solution exists globally in time in B1, i.e. Φ(t) ∈ C0([0,+∞[;B1).

Let us now give a more explicit form to (5.2). We know that the eigenelements
of the harmonic oscillator −∂2/∂z2 + |z|2 are

Ep = (2p+ 1), and χp(z) = Hp(z) exp(−|z|2/2),

where Hp is the p-th Hermite polynomial. Hence, introducing the quantities

φp(t, x) = 〈Φ(t, x, z) , χp(z)〉 , (p ∈ N),
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equation (5.2) readily becomes

i∂tφp =
(
−∆x + x2

)
φp

+ lim
T→∞

1

T

∫ T

0

∑
r,s,q∈N

φr(t)φq(t)φs(t) e−iτ [Eq−Es+Er−Ep] 〈χq χr , χs χp〉 dτ,

Now, since the Ep’s are integers, the lim
T→∞

1

T

∫ T

0

. . . simply becomes averaging over

one period, namely
1

2π

∫ 2π

0

. . ., and the latter integral transforms the sum
∑
q,r,s

. . .

into a sum over those integers such that Eq + Er = Ep + Es, or, in other words,
q + r = p+ s. We thus recover the averaged model

i∂tφp(t, x) =
(
−∆x + x2

)
φp +

∑
r,s,q/q+r=p+s

Ap,q,r,s φr φq φs (5.4)

where Ap,q,r,s := 〈χq χr , χs χp〉 .

This is an infinite system of cubic Schrödinger equations along the x plane. Note that
we do not have any simple information about the behavior of the given coefficients
Ap,q,r,s entering the system, despite the fact that the eigenfunctions χp are explicitly
known. This makes it definitely easier to deal directly with the equation on Φ
(without projecting).

As a special case, equation (5.4) allows to recover the one mode situation treated
in [BMSW]. Indeed, when the initial datum satisfies

Φ(0, x, z) = φ0(0, x)χ0(z),

i.e. when Φ(0) lies entirely in the eigenspace associated with the lowest energy
E0 = 1, it is easily seen that the function

Φ(t, x, z) = φ0(t, x)χ0(z)

solves the averaged system (5.2), provided φ0(t, x) solves the one-mode problem

i∂tφ0(t, x) =
(
−∆x + x2

)
φ0 + A0,0,0,0 |φ0(t)|2 φ0(t). (5.5)

This is due to the fact that, starting from the mode p = 0, equation (5.4) can only
feed the mode p = 0 and no new mode is switched on. Uniqueness of the solutions
to (5.2) then establishes that the above Φ is the relevant solution. As desired, we
exactly recover the one-mode averaged model derived in [BMSW] (see introduction).

One can even go a bit further, namely, when the initial datum is any one-mode
function

Φ(0, x, z) = φp(0, x)χp(z),
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for some given index p, i.e. when Φ(0) lies entirely in the eigenspace associated with
the energy Ep, it is easily seen that the function

Φ(t, x, z) = φp(t, x)χp(z)

solves the averaged system (5.2), provided φp(t, x) solves the one-mode problem

i∂tφp(t, x) =
(
−∆x + x2

)
φp + Ap,p,p,p |φp(t)|2 φp(t). (5.6)

Again, starting from the mode p, equation (5.4) can only feed the same mode p and
no new mode is switched on. Uniqueness again establishes that the above Φ is the
relevant solution. This observation extends the results of [BMSW] to any one-mode
solution. Note that uniqueness is not obvious when arguing directly on the projected
system (5.4).

Now, in the opposite case where the initial datum contains at least two distinct
modes, say p0 and p1, it is clear that equation (5.4) immediately allows to switch
on the modes 2p0 − p1, 2p1 − p0, hence the modes 4p0 − 3p1 and so on, so that
eventually an infinite number of modes is switched on, and the need for a clean
functional analytic framework to treat equation (5.4), namely the formulation (5.2),
becomes transparent. This observation is the reason why we actually tackle the
generic multi-mode case in this article.

We wish to end this text with a last, bibliographical comment.
In [BaMSW], the above problem (5.4) has been formally derived. The authors

study the existence and uniqueness for a simplified problem by proceeding to a
truncation of the modes. Namely they consider the problem

i∂tΦp = Hxφp +
∑

r,s,q/q+r=p+s and p,q,r,s≤L

Ap,q,r,sφr φq φs. (5.7)

Needless to say, the truncated problem (5.7) is considerably simpler than (5.4), in
that all the convergence issues of the series expansion are then removed. To study
the above truncated problem, they consider it as a cubic Schrödinger system in R2.
The local existence in H1(R2)L is proved by showing that the cubic term is locally a
Lipschitz function in H1(R2)L. The global existence of solutions is shown by using
the defocusing character of the cubic term, which is a version of the above energy
conservation (5.3). Unfortunately, the Lipschitz constant tends to +∞ as L tends to
+∞, so that the approach of [BaMSW] seemingly does not allow the construction
of solutions to the whole limit problem. This again shows the necessity to avoid
projections in the present context, be it at the level of the asymptotic process, or
even at the level of the limiting model itself: the compact formulation (5.2) contains
more information than its projection (5.4).

In that perspective, another aspect of our approach is that it eventually justifies
the fact that a truncated system can be considered for numerical purposes, even
though the convergence rate is not known. Indeed, our approach actually allows
to construct the solutions of all truncated problems at once, and to show that they
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provide indeed a good approximation of the untruncated one in Bm (m > 3/2), as
L→∞. Let us show this last statement. Let θL be a cutoff function in C∞(R) such
that

0 ≤ θL ≤ 1; θL(u) = 1 for u ≤ EL; θL(u) = 0 for u ≥ EL+1.

The truncated problem may be written

i∂tΦL(t) = HxΦ + FL
av(ΦL), ΦL(0) = θL(Hz)Ψ0, (5.8)

where
FL

av(u) := θL(Hz)Fav (θL(Hz)u) ,

whenever u ∈ Bm. Since θL(Hz) is a bounded operator on Bm, with norm equal to
1, it is clear that FL

av exists and has essentially the same properties as Fav. Since
θL(Hz) converges strongly, as L tends to +∞, to the identity in Bm, we have

lim
L→+∞

sup
u∈Cm

‖θL(Hz)u− u‖Bm = 0,

where Cm may be any given compact subset of Bm. Consequently, it is readily seen
that we have

lim
L→+∞

sup
u∈Cm

‖Fav(u)− FL
av(u)‖Bm = 0.

We also have the uniform Lipschitz property

sup
‖u‖Bm ,‖v‖Bm≤M

‖FL
av(u)− FL

av(v)‖Bm ≤ C(M) ‖u− v‖Bm ,

with a constant C(M) independent of L. These two properties are enough to show
that if [0, T ) is the maximal existence interval for the untruncated problem in Bm,
then for any T0 < T , the truncated problem, with L large enough, has a unique
solution ΦL in C0([0, T0], Bm) and we have

lim
L→+∞

‖Φ− ΦL‖C0([0,T0],Bm) = 0.

Let us finally notice that the energy estimate for the truncated problem is obviously
obtained by replacing the function Gav(Ψ) by GL

av(Ψ) := Gav(θL(Hz)Ψ).
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