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Abstract

In a previous paper [Ca1], the author studied a low density limit in the periodic Von
Neumann equation with potential, modified by a damping term. The model studied in [Ca1],
considered in dimensions d ≥ 3, is deterministic. It describes the quantum dynamics of an
electron in a periodic box (actually on a torus) containing one obstacle, when the electron
additionally interacts with, say, an external bath of photons. The periodicity condition
may be replaced by a Dirichlet boundary condition as well. In the appropriate low density
asymptotics, followed by the limit where the damping vanishes, the author proved in [Ca1]
that the above system is described in the limit by a linear, space homogeneous, Boltzmann
equation, with a cross-section given as an explicit power series expansion in the potential.

The present paper continues the above study in that it identifies the cross-section previ-
ously obtained in [Ca1] as the usual Born series of quantum scattering theory, which is the
physically expected result. Hence we establish that a Von Neumann equation converges, in
the appropriate low density scaling, towards a linear Boltzmann equation with cross-section
given by the full Born series expansion: we do not restrict ourselves to a weak coupling limit,
where only the first term of the Born series would be obtained (Fermi’s Golden Rule).
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1 Introduction

The present paper is the continuation of a previous work [Ca1] of the author (see also the an-
nouncement of a weaker result [CD]). In [Ca1], it is proved that a Von Neumann equation with
a damping term converges along some low density limit towards a linear, space homogeneous,
Boltzmann equation. We recall below the precise asymptotics and convergence results obtained
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in [Ca1] (Theorem 1 below). However, the cross-section exhibited in [Ca1] has a rather com-
plicated expression (see (2.7)), and its connection with the usual Born series is by no means
clear. In this context, the present paper identifies the cross-section appearing in [Ca1] as the
usual Born series of quantum scattering. It is important to note that the present paper obtains,
along some low density asymptotics in a Von Neumann equation, a Boltzmann equation with
cross-section given by the full Born series. In the simpler case of a weak coupling asymptotics,
the resulting cross-section would reduce to the first term of the Born series expansion. This
point also answers questions raised at the physical level in [Co], see point c) of the introduction
below.

a) The physical context
Let us now give the context in which the present paper takes place. The general question is

the following: let us consider the quantum evolution of an electron (or a beam of non-interacting
electrons) in a field of obstacles. This situation is a priori described by the Schrödinger equa-
tion, or more generally the Von Neumann equation, where a perturbing potential describes the
interaction of the electron with the obstacles. To simplify things, one may assume that each
obstacle, labelled by the index j ∈ N and centered around the position Xj ∈ Rd (throughout
the paper we shall assume d ≥ 3), creates the potential λV (x − Xj) at x ∈ Rd, where V is a
fixed, real-valued profile, and λ ∈ R is a coupling constant. Here and in the sequel, we always
assume that V is small, smooth, and decaying enough so that a reasonnable scattering theory is
at hand for the potential V . Hence the electron undergoes the influence of the total potential,

Vtot(x) = λ
∑
j

V (x−Xj) , (1.1)

at x, where the sum is locally finite (say). Physically, such a situation is expected to describe
the evolution of an electron in a distribution of impurities, and a typical application of such a
model is the analysis of semi-conductor devices (see [MRS], or also [Fi]).

Now, the solution of the Schrödinger, or the Von Neumann equation, with potential Vtot is
often too complicated and one looks for asymptotic models. The typical regime under interest
considers large times and small values of the potential: in such regimes, it is physically expected
(see [Pa], [VH1,2,3], [KL1,2], [Ku], [Pr], [Vk], [Zw], or also [Ck], see [Fi] for recent developments,
see also [KPR] for a more mathematical but still formal approach) that the dynamics of the
electron may be asymptotically described by a linear Boltzmann equation of the form,

∂tf(t,n) =
∫

Rd
[Σ(n,k)f(t,k)− Σ(k,n)f(t,n)] dk , (1.2)

in the space homogeneous case, or more generally,

∂tf(t,x,n) + n · ∇xf(t,x,n) =
∫

Rd
[Σ(n,k)f(t,x,k)− Σ(k,n)f(t,x,n)] dk , (1.3)

in the space inhomogeneous case. Here, f(t,n) (respectively f(t,x,n)) represents the probability
at time t ∈ R that the electron has the momentum n ∈ Rd (and possibly position x ∈ Rd). Also,
the right-hand-side of (1.2) (as well as (1.3)) has the usual structure of a gain term plus a loss
term: at time t (and possibly position x), the electron may jump from the momentum k to the
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momentum n, with probability Σ(n,k), hence the contribution
∫

Σ(n,k)f(t,k)dk in (1.2) - this

is the gain term -, but it may symmetrically jump from the momentum n to another momentum

k, with the probability Σ(k,n), hence the contribution −
∫

Σ(k,n)f(t,n)dn in (1.2) - this is

the loss term. The quantity Σ(n,k) is usually called the cross-section.
The physically relevant value of the cross-section Σ depends on the exact asymptotic regime

considered in the original Schrödinger, or Von Neumann, equation. One distinguishes two main
regimes. In the weak coupling limit (also known as the Van-Hove limit), the obstacles are
distributed so that one typically finds one obstacle per unit volume, but the coupling constant λ
in (1.1) is small, and long times of the order 1/λ2 are considered. The mathematically relevant
limit is λ → 0. Since each encounter with an obstacle has an effect of the order of magnitude
λ2 on the dynamics (this is a consequence of the Fermi Golden Rule (1.7) below), the weak
coupling regime corresponds to a case where the electron typically undergoes many “collisions”
with the obstacles per unit time in the new time scale (typically 1/λ2), but each “collision”
affects the electron by a small quantity of the order λ2, so that the total effect of the obstacles
on the dynamics of the electron is of the order 1. The second regime is the low density regime,
also known under the name of Boltzmann-Grad limit. Here obstacles are distributed so that one
finds a small amount ε (ε → 0) of obstacles per unit volume, and long time scales of the order
1/ε are considered. Also, the coupling constant λ is kept of the order 1. In this regime, the
electron typically meets one obstacle per unit time in the new time scale, but each encounter
with an obstacle has immediately an effect of the order 1 on the dynamics.

These two different regimes are expected to give two different cross-sections. In the low
density regime, one expects that the dynamics of the electron is indeed asymptotically described
by an equation of the form (1.2) (or (1.3)), the relevant cross-section Σ satisfying in this case
Σ = Σld where,

Σld(n,k) = 2πδ(n2 − k2)|T (k,n)|2 . (1.4)

Here T is the usual T -matrix of quantum theory (see [RS]), naturally associated with the po-
tential λV , and expressed in the momentum representation. It is defined as,

S(n,k) = δ(n− k)− 2iπT (n,k) , (1.5)

where S is the scattering operator associated with λV (again in the momentum representation).
It is known [RS] that |T |2 admits a power series expansion in terms of the potential λV , called
the Born series, whose first term is given by,

|T (n,k)|2 = λ2|V̂ (n− k)|2 +O(λ3) , (1.6)

where V̂ is the Fourier transform of the potential V . In the weak coupling regime on the other
hand, one also expects that the dynamics of the electron is asymptotically described by an
equation of the form (1.2) (or (1.3)), the relevant cross-section Σ satisfying in this case Σ = Σwc

where,

Σwc(n,k) = 2πδ(n2 − k2)|V̂ (n− k)|2 . (1.7)
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This equality is known under the name of “Fermi Golden Rule”. Such cross-sections are routinely
considered in the modelling of semi-conductor devices ([MRS], [Fi]). We emphasize in passing
that Σwc somehow corresponds to the lower order expansion of Σld in the potential.

b) Mathematical derivations
Numerous mathematical works have rigorously studied the convergence of the Schrödin-

ger equation towards equations of the form (1.2) or (1.3) in the weak coupling limit, and the
cross-section (1.7) is indeed derived. We wish to quote the stochastic approach developped
in [Sp], [HLW], [La], [EY1,2] (see also the more recent work [PV], where the authors consider
a different stochastic framework). All these works consider the case of randomly distributed
obstacles (Xj ≡ Xj(ω), where ω is the stochastic parameter and the Xj ’s are as in (1.1)),
and the convergence holds in expectation with respect to ω, or almost surely. Obviously, one
key difficulty in such a rigorous derivation lies in the fact that the original time-reversible
Schrödinger equation is expected to converge towards the time-irreversible Boltzmann equation,
which justifies that the convergence can by no means hold in any “strong” sense (e.g. without
removing some exceptional zero-measure set).

For a different approach, handling the low density limit, we also wish to quote [Dü]: here the
author considers the quantum dynamics of an atom (or a system with a finite number of energy
levels), coupled with a Fermi gas of electrons at thermal equilibrium. The reduced dynamics of
the atom is proved to be asymptotically described by a quantum dynamical semi-group involving
a linear Boltzmann operator, with cross-section given by the appropriate Born series expansion.
In the same spirit, but for different kind of limiting equations, let us mention the work [CEFM],
where the dynamics of an electron coupled to a system of harmonic oscillators is proved to
converge, in the appropriate scaling limit, towards a Fokker-Planck equation.

Related works in a deterministic framework are [Ni1,2], or also [Ca3], but these works do
not give the convergence towards a true Boltzmann equation of the form (1.2) nor (1.3).

c) The present model: description of the regime, results obtained in [Ca1]
The above mentionned works [Sp], [HLW], [La], [EY1,2] thus assert that, outside some “ex-

ceptional configurations” of the obstacles, the convergence of the associated Schrödinger equation
towards a Boltzmann equation indeed holds. It is natural to ask whether, for one particular,
deterministic, configuration of the obstacles, the same convergence holds.

In this context, the first key motivation for the present work together with [Ca1] is to study
the convergence of the Von Neumann equation towards the linear Boltzmann equation (1.2) in
one particular situation, namely the periodic one.

As it is clear below, a second strong motivation is to give a rigorous basis to the physical
approach of conventionnal scattering theory (see e.g. [CTDL]): here, computations are usually
performed on systems with dicrete spectrum (e.g. the Laplacian in a finite box), and the size of
the box is eventually set to infinity to recover systems with continuous spectrum. This procedure
of “taking the size of the box to infinity” is questionned from a physical point of view in [Co],
and the present paper actually gives a mathematical answer to the questions raised in [Co].
We readily mention that all the results stated here and below in the periodic case hold as well
when the periodic boundary conditions are replaced by Dirichlet boundary conditions, see [Ca1]
(the periodic framework is chosen only for notational convenience: the eigenfunctions exp(inx)
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arising in the periodic case simply have to be replaced by cos(nx) in the case of Dirichlet
boundary conditions, hence the need for extra, but unimportant, symmetrisations in the latter
case).

The model is the following: as in conventionnal scattering theory (see [Ck], [CTDL], [Boh],
see also [Co]), one considers an electron in a large periodic box of size L, [−πL, πL]d ⊂ Rd, with
periodic boundary conditions. One smooth potential with compact support of size 1 is set at the
origin, so that the density of obstacles readily is of the order 1/Ld. Since we wish to consider a
low density limit, times of the order Ld are considered in [Ca1]. In the Fourier space (indexed
by integer numbers n ∈ Zd, since the original model is posed in a box of finite volume), the
usual Von Neumann equation describing the dynamics of the electron is,

i

Ld
∂tρ

L(t, n, p) =
p2 − n2

L2
ρL(t, n, p) (1.8)

+
λ

Ld

∑
k∈Zd

[
V̂

(
n− k

L

)
ρL(t, k, p)− V̂

(
k − p

L

)
ρL(t, n, k)

]
.

(one recognizes the Fourier transform of usual commutator with −∆x + λV (x) on the right-
hand-side of (1.8) - see [Ca1] for details on the normalisations). The initial datum in (1.8) is
taken of the form,

ρL(0, n, p) =
1
Ld
ρ0
(
n

L

)
1[n = p] , (1.9)

where ρ0 is a given, smooth and decaying profile. Here, ρL(t, n, p) is the so-called density matrix
of the electron, indexed by the scaling parameter L: the diagonal values ρL(t, n, n) represent
the probability, at time t, that the electron is in the eigenstate (2πL)−d/2 exp(in · x/L) of the
Laplacian −∆x in the periodic box [−πL, πL]d, and the off-diagonal values ρL(t, n, p) (n 6= p)
represent correlations between the various occupation numbers ρL(t, n, n). The initial datum
(1.9) is a generalisation of the usual thermodynamical equilibrium with inverse temperature β for
the free Von Neumann equation (i.e. equation (1.8) for V̂ ≡ 0), for which ρ0(n) = exp(−βn2).
Also, V̂ represents the usual Fourier transform of the potential V , defined as,

V̂ (n) =
∫

Rd
V (x) exp(−in · x)dx

(
=
∫
[−πL,πL]d

V (x) exp(−in · x)dx

)
, (1.10)

and the last equality comes from the assumption of compact support on V . The low density
limit in (1.8) corresponds to the limit L→∞ in (1.8).

This is where some care has to be taken. Equation (1.8) describes the quantum evolution of
an electron on a torus. In particular, the distribution of obstacles is periodic, which is a highly
specific, as well as a non-generic case. It is actually proved in [CP1,2] that the low density limit
L → ∞ in (1.8) does not give the desired Boltzmann equation (1.2) with cross-section (1.4):
mathematically speaking, one needs some extra, regularising parameter, and this turns out to
be a physical necessity as well, see [Hu]. Indeed, as readily seen on (1.8), the periodicity gives
rise to specific phase coherence effects: roughly speaking, the solution of (1.8) gives rise to highly
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oscillating factors exp(iLd−2[n2 − p2]t), so that the contribution of the set of integer numbers n
and p such that n2 = p2 turns out to abnormally dominate the asymptotic process. In [CP1,2],
this effect is precisely quantified in terms of arithmetic considerations, and the main result is that
the asymptotic dynamics L→∞ in (1.8) remains time-reversible. We mention in passing that
the above mentionned non-convergence result [CP1,2] in the fully periodic case is somehow not
surprising: the low density limit for a classical particle moving through a periodic distribution of
hard spheres does not converge towards the physically expected Boltzmann equation neither, as
proved in [BGW], contrary to the case of a classical particle moving through random obstacles,
treated in [BBS].

For all these reasons, the exact model in which the low density limit is performed in [Ca1]
is a modified version of (1.8). To be specific, we modify our model so as to take into account
an additional interaction of the electron with, typically, an external bath of phonons, at least at
a phenomenological level. Physically, such an interaction leads to an exponential decay of both
the diagonal and the off-diagonal part of the density-matrix, but the decay in the off-diagonal
part typically is much quicker than that of the diagonal part. Hence, following [NM], [SSL],
[Boy], [Lo], this leads to the introduction of an additional damping term in (1.8), measured by
the small damping parameter α > 0, and acting on the off-diagonal part of the density matrix
only. Thus, in [Ca1], we start with,

i

Ld
∂tρ

L,α(t, n, p) =
p2 − n2

L2
ρL,α(t, n, p)− iαρL,α(t, n, p)1[n 6= p] (1.11)

+
λ

Ld

∑
k∈Zd

[
V̂

(
n− k

L

)
ρL,α(t, k, p)− V̂

(
k − p

L

)
ρL,α(t, n, k)

]
,

with initial datum given by (1.9) as well. Here, we emphasize the dependence of the density
matrix upon the two scaling parameters L and α. Note that the introduction of a damping
term readily makes the original model (1.11) in which we pass to the limit time irreversible. We
mention in passing that the additional damping term involved in (1.11) satisfies the so-called
Linblad-property ([Li]), as proved in [Ca1].

Associated with the sequence of occupation numbers ρL,α(t, n, n), we build up the natural
distribution,

fL,α(t,n) :=
∑

n∈Zd

ρL,α(t, n, n)δ
(
n− n

L

)
. (1.12)

The main theorem obtained in [Ca1] asserts the following (we refer to [Ca1] for more precise
and complete statements),

Theorem 1 ([Ca1])
Let fL,α be as in (1.12), where ρL,α solves (1.11) with initial datum ρ0. Let D ≥ d + 1 and
assume the initial datum ρ0 and the potential V have the following regularity,

‖ρ0‖TD(Rd) := ‖(1 + n2)D/2ρ0(n)‖L∞(Rd) <∞ , (1.13)

‖V̂ ‖S2D(Rd) :=
∑

|γ|≤2D

‖(1 + n2)D∂γ
nV̂ (n)‖L∞(Rd) <∞ ,
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Assume also that |λ| ≤ λ0 for some small enough λ0 > 0 whose value only depends upon the
norms of ρ0 and V̂ in the above spaces. Assume finally that d ≥ 3. Then,
(i) the following non-commuting limit exists in C0(R+

t ;
[
S2D(Rd)

]∗
−weak∗), as well as [L1(R+

t ;

TD(Rd))]∗ −weak∗, where E∗ denotes the dual space of the Banach space E,

f(t,n) = lim
α→0

lim
L→∞

fL,α(t,n) , (1.14)

(ii) f satisfies in the distribution sense an equation of the form,

∂tf(t,n) =
∫

Rd
[Σ1(n,k)f(t,k)− Σ2(n,k)f(t,n)]dk , (1.15)

f(0,n) = ρ0(n) ,

for some cross-sections Σ1 and Σ2 whose value is given as an explicit power series expansion in
λ (see (2.7) below for the explicit formulae).

d) Statement of our main Theorem
In this context, the main theorem of the present paper is the following,

Theorem 2 Under the assumptions of Theorem 1 above, the cross-sections Σ1 and Σ2 appearing
in equation (1.15), as derived in [Ca1] (see (2.7) below) coincide with the low density cross-
section Σld defined above see (1.4)), in the sense that,

Σ1(n,k) = Σld(n,k) = 2πδ(n2 − k2)|T (k,n)|2 , (1.16)∫
Rd

Σ2(n,k) dk =
∫

Rd
Σld(k,n) dk = 2π

∫
Rd
δ(n2 − k2)|T (n,k)|2 dk .

where T is the T -matrix associated with λV in the momentum representation.

The remainder part of the present paper is dedicated to the proof of the main theorem.

The interested reader may find in [Ca2] a review about the present work together with [Ca1],
as well as about the non-convergence result obtained in [CP1,2].

2 Proof of the main Theorem

The proof is divided into two steps. First we recall the explicit value of the Born series expansion
of the T -matrix associated with λV , and also recall the explicit value of the cross-sections Σ1

and Σ2 as derived in [Ca1] (Property 1). We introduce in passing the notations used throughout
the paper (Defnition 1). The idea is that both the T -matrix and the two cross-sections Σ1 and
Σ2 involved in (1.15) are naturally given as power series in λ (or, equivalently, λV ). Secondly,
we prove in several steps that the above mentionned series coincide term by term (Lemma 3).
This identification relies on two facts: on the one hand, the power series in λ which define both
Σ1 and Σ2 can be built up using a simple iteration procedure (see (2.8)-(2.9) and Lemma 2).
On the other hand, the implementation of this iteration procedure is greatly simplified upon the
use of a Lemma (Lemma 1) identifying the sum of certain oscillatory integrals naturally arising
in the formulation of the problem.
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2.1 Explicit value of the Born series expansion, the cross-sections Σ1 and Σ2

We begin with some notations,

Definition 1 (i) Let V̂ be the Fourier transform of V as defined in (1.10). Then, for any n,
k1, . . . , kl, p in Rd, we define,

V̂l+1(n,k1, . . . ,kl,p) := il+1V̂ (n− k1)V̂ (k1 − k2) · · · V̂ (kl−1 − kl)V̂ (kl − p) . (2.1)

Note that, since V is real valued, and if ∗ denotes complex conjugation, we have,

[V̂l+1(n,k1, . . . ,kl,p)]∗ = (−1)l+1V̂l+1(p,kl, . . . ,k1,n) . (2.2)

(ii) We introduce the distribution over R2d,

∆(n,p) :=
∫ +∞

s=0
exp(i[n2 − p2]s)ds . (2.3)

It satisfies,

∆(n,p) = πδ(n2 − p2) + ipv
(

1
n2 − p2

)
. (2.4)

Remark 1 Upon using standard theorems about composition of distributions (See [Hö]), the
Dirac mass and principal value involved in (2.4) are easily seen to be well-defined, at least in
dimensions d ≥ 3. The identity between the oscillatory integral on the left-hand-side of (2.4) and
its right-hand-side is easily proved as well. However, as we will see below, the cross-sections Σ1

and Σ2 derived in [Ca1] naturally involve products of such distributions, and a typical product
is of the form ∆(n,k1)∆(n,k2) · · ·∆(n,kl), say, l being a large integer parameter. One key
difficulty handled in [Ca1] is to prove that such products are indeed well-defined as distributions
(this is not a consequence of the standard theorems about products of distributions having
certain properties on their wave fronts), and to control the regularity of these products in, say,
Sobolev spaces with negative exponents in terms of l: the exponent should not grow too fast
with l. Both tasks are accomplished in [Ca1], upon considering these products as oscillatory
integrals, and upon explicitely using the fact that the phase in (2.3) is quadratic. We give in
Lemma 4 of the appendix a version of the needed regularity result that will be sufficient for our
purposes. 2

With these notations, we are able to formulate both T and Σ1, Σ2, as power series expansion in
λ,

Property 1 Under the assumptions of Theorem 1, we have,
(i) The T -matrix associated with λV admits the following power expansion,

T (n,k) =
∑
l≥0

λl+1Tl(n,k) , (2.5)

Tl(n,k) := −i
∫

Rld
∆(k,k1)∆(k,k2) · · ·∆(k,kl)V̂l+1(n,k1, . . . ,kl,k) dk1 · · · dkl ,
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with the obvious convention that T0(n,k) := V̂1(n,k). This equality holds in the distribution
sense.
(ii) As a consequence, the cross-section Σld defined in (1.4) admits the power expansion, valid
in the distribution sense,

Σld(n,k) = 2πδ(n2 − k2)
∑
l≥1

λl+1Σld
l (n,k) , (2.6)

Σld
l (n,k) :=

l−1∑
s=0

∫
R(l−1)d

(−1)s+1∆(k1,n) · · ·∆(ks,n)∆(n,ks+1) · · ·∆(n,kl−1)

V̂l+1(n,k1, . . . ,ks,k,ks+1, . . . ,kl−1,n) dk1 · · · dkl−1 .

Here, the convention is used that the integrand reduces to ∆(n,k1) · · ·∆(n,kl) V̂l+1(n, k1, . . . ,
kl−1, k, n) in the case s = l − 1, and similarly if s = 0.
(iii) The distribution f = limα→0+ limL→∞ fL,α of Theorem 1 satisfies indeed an equation of the
form (1.15), in that it satisfies in the distribution sense,

∂tf(t,n) =
∑
l≥1

λl+1Ql(f)(t,n) , (2.7)

Ql(f)(t,n) := (2 Re)
∑

ε1,... ,εl

(−1)ε1+···+εl

∫
Rdl

∆(n− ε1k1,n + ε̃1k1)

∆(n− ε1k1 − ε2k2,n + ε̃1k1 + ε̃2k2) · · ·∆(n− ε1k1 − · · · − εlkl,n + ε̃1k1 + · · ·+ ε̃lkl)
[iV̂ (k1)] · · · [iV̂ (kl)][iV̂ ∗(k1 + · · ·+ kl)]f(t,n− ε1k1 − · · · − εlkl) dk1 · · · dkl ,

where the sum carries over all values of (ε1, . . . , εl) ∈ {0, 1}l, and the convention ε̃i = 1− εi is
used.
(iv) Formulae (2.7) may be rewritten in the compact form,

∂tf(t,n) = −iλ
∫

Rd
[V̂ (n− k)g(t,k,n)− V̂ (k− n)g(t,n,k)] dk , (2.8)

up to introducing the auxiliary distribution,

g(t,n,p) := −iλ∆(n,p)V̂ (n− p)[f(t,p)− f(t,n)] (2.9)

−iλ∆(n,p)
∫

Rd
[V̂ (n−m)g(t,m,p)− V̂ (m− p)g(t,n,m)] dm .

Remark 2 (regularity)
(i) It is well known that the Born series expansion (2.5) converges pointwise for λ small enough
and V smooth enough (e.g. V of Rollnik class in dimension d = 3). Since the asymptotic process
performed in [Ca1] and leading to formulae (2.7) anyhow requires an important regularity on
V , we shall not try to give optimal estimates. We simply mention the following: as mentionned
in Theorem 1, for any given D ≥ d+ 1, we have the regularity f(t,n) ∈ C0(R+

t ;
[
S2D(Rd)

]∗
) as

well as f(t,n) ∈
(
L1(R+

t ; TD(Rd)
)∗

(see Theorem 1 for the definition of the spaces TD(Rd) and
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S2D(Rd)). Using this regularity result as well as Lemma 4 given in the Appendix, it is easy to
establish the following estimates, valid for any smooth test function φ(n,k) respectively ψ(n),∣∣∣∣∫

R2d
δ(n2 − k2)Tl(n,k)φ(n,k) dndk

∣∣∣∣ ≤ C(D)l‖V̂ ‖l+1
S2D(Rd)

‖φ‖SD(R2d) , (2.10)∣∣∣∣∫ t

0
ds

∫
Rd
Ql(f)(s,n)ψ(n) dn

∣∣∣∣ ≤ C0C(t,D)l‖V̂ ‖l+1
S2D(Rd)

‖ψ‖S2D(Rd) , (2.11)

for some universal constant C(t,D) depending on t and D only, and some constant C0 depending
on the norms of ρ0 and V̂ in (1.13). These estimates are enough to give a (weak) sense to the
series defining Σld as well as

∑
λl+1Ql, for λ small enough.

(ii) Formula (2.6) is an obvious consequence of (2.5). In turn, (2.5) is derived in many textbooks,
see for example [RS]. Also, note that formula (2.7) is obviously of the form (1.15): the loss term
corresponds to the contributions due to ε1 = · · · = εl = 0, and the gain term corresponds to
all other contributions. We refer to [Ca1] for the proof of (2.7). Finally, note that (2.7) readily
follows from the compact formulation (2.8)-(2.9) upon solving (2.9) iteratively to express g in
terms of f , and upon writing the integral term on the right-hand-side of (2.8) under the form

λ
1∑

ε=0

∫
Rd

(−1)ε[iV̂ (k)]g(n− εk,p + ε̃p)dk (see [Ca1] for details).

(iii) We refer to [Ca1] (comments after (2.2)) for other questions concerning the precise regularity
and support assumptions on V̂ . Note also that formulae (2.8) and (2.9) are essentially formula
(3.23)-(3.24) in [Ca1]. 2

Having now given the explicit form of the series expansions in λ which give the values of Σld,
Σ1, and Σ2, we are in position to prove the identity (1.16) of our main Theorem. This is done
in two steps. First we give a convenient power series expansion relating the auxiliary function g
in terms of f in (2.8)-(2.9). This relies on Lemma 1. Then, we insert the value of g in equation
(2.8) and turn to identifying the gain and loss terms.

2.2 Computing g in (2.9)

The two main results of this subsection are the following,

Lemma 1 The following identity holds true in the distribution sense in the variables n, m, p
in Rd, when d ≥ 3,

∆(n,p)[∆(n,m) + ∆(m,p)] = ∆(n,m)∆(m,p) . (2.12)

From Lemma 4 both sides of (2.12) are defined in the distribution sense, when tested against
functions of SD(R3d).
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Lemma 2 Under the assumptions of Theorem 1, the auxiliary distribution g appearing in (2.9)
admits the following expression,

g(t,n,p) =
∑
l≥1

λl
[
al(n,p)f(t,n) + bl(n,p)f(t,p) +

∫
Rd
cl(n,m,p)f(t,m) dm

]
, (2.13)

up to defining,

al(n,p) = (2.14)∫
Rd(l−1)

∆(n,p)∆(n,k1) · · ·∆(n,kl−1)V̂l(n,k1, . . . ,kl−1,p) dk1 · · · dkl−1 ,

bl(n,p) = (2.15)

(−1)l
∫

Rd(l−1)
∆(n,p)∆(k1,p) · · ·∆(kl−1,p)V̂l(n,k1, . . . ,kl−1,p) dk1 · · · dkl−1 ,

cl(n,m,p) = (2.16)
l−2∑
s=0

(−1)s+1
∫

Rd(l−2)
∆(n,m)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−2)∆(m,p)

V̂l(n,k1, . . . ,ks,m,ks+1, . . . ,kl−2,p) dk1 · · · dkl−2 .

Remark 3 From Lemma 4 and the regularity of the distribution f , the distributions appearing
above are well defined: more precisely, for any test function ψ(n,p) the following is easily
established,∣∣∣∣∫ t

0
ds

∫
R2d

g(s,n,p)ψ(n,p) dndp
∣∣∣∣ ≤∑

l≥1

|λ|l‖V̂ ‖l
S2D(Rd)‖ψ(n,p)‖S2D(R2d) . (2.17)

2

Proof of Lemma 1
The proof relies on the following observation: from Lemma 4 the left-hand-side of (2.12) is,

= lim
α→0

i

n2 − p2 + iα

[
i

n2 −m2 + iα
+

i

m2 − p2 + iα

]
,

hence,

= lim
α→0

i

n2 − p2 + iα

i(n2 − p2 + 2iα)
(n2 −m2 + iα)(m2 − p2 + iα)

= lim
α→0

(
−1

(n2 −m2 + iα)(m2 − p2 + iα)
− iα

(n2 − p2 + iα)(n2 −m2 + iα)(m2 − p2 + iα)

)

= lim
α→0

(
∆α(n,m) ∆α(m,p) + α ∆α(n,p) ∆α(n,m) ∆α(m,p)

)
= ∆(n,m)∆(m,p) .
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2

Proof of Lemma 2
As mentionned in Remark 3, the fact that all distributions appearing in Lemma 2 are well-
defined, and the series in (2.13) indeed converges, is easily proved by means of Lemma 4.

Now, the proof of formulae (2.14)-(2.16) is obtained by induction.
Upon solving (2.9) iteratively, it is obvious that g admits a power expansion (in λ) of the

form (2.13). Also, we readily obtain the lower order term of this expansion,

g(t,n,p) = −iλ∆(n,p)V̂ (n− p)[f(t,p)− f(t,n)] +O(λ2) .

This gives the first terms of the expansion (2.13), namely,

a1(n,p) = +i∆(n,p)V̂ (n− p) ,
b1(n,p) = −i∆(n,p)V̂ (n− p) ,
c1(n,m,p) = 0 ,

as claimed in (2.14)-(2.16).
We compute the next coefficients by induction. Assume that al, bl and cl are indeed given

by (2.14)-(2.16). Then, using equation (2.9), we easily obtain that the next coefficients al+1,
bl+1, and cl+1 are given by,

al+1(n,p) = i∆(n,p)
∫

Rd
V̂ (k− p)al(n,k) dk , (2.18)

bl+1(n,p) = −i∆(n,p)
∫

Rd
V̂ (n− k)bl(k,p) dk , (2.19)

cl+1(n,m,p) = −i∆(n,p)
[
V̂ (n−m)al(m,p)− V̂ (m− p)bl(n,m) (2.20)

+
∫

Rd
[V̂ (n− k)cl(k,m,p)− V̂ (k− p)cl(n,m,k)] dk

]
.

Clearly, (2.18) together with the value of al gives the correct value of al+1 given by (2.14), and
the same holds for bl+1. There remains to compute cl+1. For that purpose, we insert the values
of al, bl and cl in (2.20) and obtain,

cl+1(n,m,p) = −∆(n,p)[ ∫
R(l−1)d

V̂1(n,m)∆(m,p)∆(m,k1) · · ·∆(m,kl−1)V̂l(m,k1, . . . ,kl−1,p) dk1 · · · dkl−1

−(−1)l
∫

R(l−1)d
V̂1(m,p)∆(n,m)∆(k1,m) · · ·∆(kl−1,m)V̂l(n,k1, . . . ,kl−1,m) dk1 · · · dkl−1

+
∫

R(l−1)d
V̂1(n,k)

l−2∑
s=0

(−1)s+1∆(k,m)∆(k1,m) · · ·∆(ks,m)

∆(m,ks+1) · · ·∆(m,kl−2)∆(m,p)
V̂l(k,k1, . . . ,ks,m,ks+1, . . . ,kl−2,p) dkdk1 · · · dkl−2
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−
∫

R(l−1)d
V̂1(k,p)

l−2∑
s=0

(−1)s+1∆(n,m)∆(k1,m) · · ·∆(ks,m)

∆(m,ks+1) · · ·∆(m,kl−2)∆(m,k)

V̂l(n,k1, . . . ,ks,m,ks+1, . . . ,kl−2,k) dkdk1 · · · dkl−2

]
.

Now we treat separately the case s = 0 in the second sum over s, and set k = kl−1 in the
corresponding integral. Also, we treat separately the case s = l − 2 in the first sum over s, and
make the change of variables k → k1, k1 → k2, . . . , kl−2 → kl−1 in the corresponding integral.
The remainding terms in the two sums over s are treated as follows: in the second sum, we
simply change variables k → kl−1 in the integral term; in the first sum we set s → s − 1, and
change variables k → k1, k1 → k2, . . . , kl−2 → kl−1 in the integral term. All these operations
give,

cl+1(n,m,p) =
∫

R(l−1)d
dk1 · · · dkl−1(

− V̂l+1(n,m,k1, . . . ,kl−1,p)∆(n,p)

[∆(m,p)∆(m,k1) · · ·∆(m,kl−1) + ∆(n,m)∆(m,k1) · · ·∆(m,kl−1)]
−(−1)l+1V̂l+1(n,k1, . . . ,kl−1,m,p)∆(n,p)

[∆(n,m)∆(k1,m) · · ·∆(kl−1,m) + ∆(m,p)∆(k1,m) · · ·∆(kl−1,m)]

−
l−2∑
s=1

(−1)sV̂l+1(n,k1, . . . ,ks,m,ks+1, . . . ,kl−1,p)∆(n,p)

[∆(m,p)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−1)

+∆(n,m)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−1)]

)
.

Hence, using Lemma 1 to simplify the above sums of ∆-distributions, we obtain,

cl+1(n,m,p) =
∫

R(l−1)d
dk1 · · · dkl−1(

− V̂l+1(n,m,k1, . . . ,kl−1,p)∆(n,m)∆(m,k1) · · ·∆(m,kl−1)∆(m,p)

−(−1)l+1V̂l+1(n,k1, . . . ,kl−1,m,p)∆(n,m)∆(k1,m) · · ·∆(kl−1,m)∆(m,p)

−
l−2∑
s=1

(−1)sV̂l+1(n,k1, . . . ,ks,m,ks+1, . . . ,kl−1,p)

∆(n,m)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−1)∆(m,p)

)
.

This ends the proof of Lemma 2. 2

It is now an easy task to prove the main Theorem, as we do in the next section.
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2.3 Proof of the main Theorem

To prove our main Theorem, we establish the following,

Lemma 3 Under the assumptions of Theorem 1, we have,
(i) The cross-section Σ1 in equation (1.15) satisfies,

Σ1(n,k) =
∑
l≥1

λl+1Σ1
l (n,k) ,

Σ1
l (n,k) := 2πδ(n2 − k2)

l−1∑
s=0

∫
R(l−1)d

(−1)s+1V̂l+1(n,k1, . . . ,ks,k,ks+1, . . . ,kl−1,n)

∆(k1,n) · · ·∆(ks,n)∆(n,ks+1) · · ·∆(n,kl−1) dk1 · · · dkl−1

(ii) In particular, we have,

Σ1(n,k) = Σld(n,k) = 2πδ(n2 − k2)|T (k,n)|2 . (2.21)

(iii) The cross-section Σ2 in equation (1.15) satisfies,

∫
Rd

Σ2(n,k) dk =
∫

Rd

∑
l≥1

λl+1Σ2
l (n,k)

 dk , (2.22)

∫
Rd

Σ2
l (n,k) dk :=

∫
Rld

V̂l+1(n,k1, . . . ,kl,n) (2.23)

[(−1)l∆(k1,n) · · ·∆(kl,n)−∆(n,k1) · · ·∆(n,kl−1)] dk1 · · · dkl

(iv) In particular, we have,∫
Rd

Σ2(n,k) dk = 2π
∫

Rd
δ(n2 − k2)|T (n,k)|2 dk . (2.24)

Remark 4 Our main theorem is a simple reformulation of parts (ii) and (iv) of the above
Lemma. Note also that all the distributions and power series arising in the above Lemma are
well-defined, thanks to Lemma 4. We do not write the corresponding estimates. 2

Proof of Lemma 3
Part (ii) of the Lemma is implied by part (i), by virtue of formula (2.6). There remains to prove
(i), (iii), and (iv). We first prove (i) and (iii).

To do so, we insert the series expansion (2.13) of the function g into (2.8), and identify the
loss and gain terms. We write,

∂tf(t,n) = λ

∫
Rd

[V̂ (n,k)g(t,k,n)− V̂ (k,n)g(t,n,k)] dk (2.25)

=
∑
l≥1

λl+1dl(t,n) ,
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up to introducing,

dl(t,n) =

−
∫

Rld
V̂1(n,k)

[
∆(k,n)∆(k,k1) · · ·∆(k,kl−1)V̂l(k,k1, . . . ,kl−1,n)f(t,k)

+(−1)l∆(k,n)∆(k1,n) · · ·∆(kl−1,n)V̂l(k,k1, . . . ,kl−1,n)f(t,n)
]
dkdk1 · · · dkl−1

+
∫

Rld
V̂1(k,n)

[
∆(n,k)∆(n,k1) · · ·∆(n,kl−1)V̂l(n,k1, . . . ,kl−1,k)f(t,n)

+(−1)l∆(n,k)∆(k1,k) · · ·∆(kl−1,k)V̂l(n,k1, . . . ,kl−1,k)f(t,k)
]
dkdk1 · · · dkl−1

+
l−2∑
s=0

∫
Rld

f(t,m)
[
(−1)sV̂1(n,k)V̂l(k,k1, . . . ,ks,m,ks+1, . . . ,kl−2,n)

∆(k,m)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−2)∆(m,n)
−(−1)sV̂1(k,n)V̂l(n,k1, . . . ,ks,m,ks+1, . . . ,kl−2,k)

∆(n,m)∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl−2)∆(m,k)
]
dmdkdk1 · · · dkl−2 .

Hence we recover, upon renaming the integration variables,

dl(t,n) = f(t,n)
∫

Rld
V̂l+1(n,k1, . . . ,kl,n) (2.26)

[(−1)l+1∆(k1,n) · · ·∆(kl,n) + ∆(n,k1) · · ·∆(n,kl)] dk1 · · · dkl

+
∫

Rld
f(t,k)

[
− V̂l+1(n,k,k1, . . . ,kl−1,n)∆(k,n)∆(k,k1) · · ·∆(k,kl−1)

+(−1)lV̂l+1(n,k1, . . . ,kl−1,k,n)∆(n,k)∆(k1,k) · · ·∆(kl−1,k)
]
dkdk1 · · · dkl−1

+
l−2∑
s=0

∫
Rld

f(t,k)(−1)sV̂l+1(n,m,k1, . . . ,ks,k,ks+1, . . . ,kl−2,n)

∆(m,k)∆(k1,k) · · ·∆(ks,k)∆(k,ks+1) · · ·∆(k,kl−2)∆(k,n) dmdkdk1 · · · dkl−2

−
l−2∑
s=0

∫
Rld

f(t,k)(−1)sV̂l+1(n,k1, . . . ,ks,k,ks+1, . . . ,kl−2,m,n)

∆(n,k)∆(k1,k) · · ·∆(ks,k)∆(k,ks+1) · · ·∆(k,kl−2)∆(k,m) dmdkdk1 · · · dkl−2 .
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Clearly, formulae (2.25) and (2.26) establish formulae (2.22) and (2.23) for the loss term in
(1.15), so that (iii) is proved. There remains to identify the gain term. From (2.26), we obtain,

Σ1
l (n,k) =∫

R(l−1)d

[
− V̂l+1(n,k,k1, . . . ,kl−1,n)∆(k,n)∆(k,k1) · · ·∆(k,kl−1)

+(−1)lV̂l+1(n,k1, . . . ,kl−1,k,n)∆(n,k)∆(k1,k) · · ·∆(kl−1,k)

+
l−2∑
s=0

(−1)sV̂l+1(n,k1, . . . ,ks+1,k,ks+2, . . . ,kl−1,n)

∆(k1,k) · · ·∆(ks+1,k)∆(k,ks+2) · · ·∆(k,kl−1)∆(k,n)

−
l−2∑
s=0

(−1)sV̂l+1(n,k1, . . . ,ks,k,ks+1, . . . ,kl−1,n)

∆(n,k)∆(k1,k) · · ·∆(ks,k)∆(k,ks+1) · · ·∆(k,kl−1)
]
dk1 · · · dkl−1 .

We treat separately the case s = 0 in the second sum over s, as well as the term s = l− 2 in the
first sum. Upon reindexing some variables, we obtain,

Σ1
l (n,k) =∫

R(l−1)d

[
− V̂l+1(n,k,k1, . . . ,kl−1,n)[∆(k,n) + ∆(n,k)]∆(k,k1) · · ·∆(k,kl−1)

+(−1)lV̂l+1(n,k1, . . . ,kl−1,k,n)[∆(k,n) + ∆(n,k)]∆(k1,k) · · ·∆(kl−1,k)

+
l−2∑
s=1

(−1)s+1V̂l+1(n,k1, . . . ,ks,k,ks+1, . . . ,kl−1,n)

[∆(k,n) + ∆(n,k)]∆(k1,k) · · ·∆(ks,k)∆(k,ks+1) · · ·∆(k,kl−1)
]
dk1 · · · dkl−1 .

Observing that (see (2.4)),

∆(n,k) + ∆(k,n) = 2πδ(n2 − k2) ,

we obtain part (i) of the Lemma. This ends the proof of (i) and (iii).

To prove (iv), we take a smooth test function f̃(n) ∈ C∞c (Rd). We want to evaluate the
quantity,

A :=
∫

R2d

[
Σ1(n,k)f̃(k)− Σ2(n,k)f̃(n)

]
dndk .

To do so, we use the equivalence between formulae (2.8)-(2.9) and (1.15) (or equivalently (2.7)).
Thus, to f̃ we associate g̃(n,p) defined through formula (2.9) with f(t, .) now replaced by f̃(.).
We readily have,

A = −iλ
∫

R2d

[
V̂ (n− k)g̃(k,n)− V̂ (k− n)g̃(n,k)

]
dndk . (2.27)
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Now, by virtue of Lemma 2 applied to f̃ and g̃, we obtain,

g̃(n,p) =
∑
l≥1

λl
[
al(n,p)f̃(n) + bl(n,p)f̃(p) +

∫
Rd
cl(n,m,p)f̃(m) dm

]
, (2.28)

where the coefficients al, bl, cl are given by formulae (2.14) through (2.16). Lemma 4 now asserts
that the change of variables (n,k) → (k,n) is allowed in (2.27), and we recover,

A = −iλ
∫

R2d

[
V̂ (n− k)g̃(k,n)− V̂ (k− n)g̃(n,k)

]
dndk = 0 . (2.29)

Since (2.29) is valid for any smooth f̃ , we obtain,∫
Rd

Σ1(k,n) dk =
∫

Rd
Σ2(n,k) dk , (2.30)

as distributions in the variable n. This together with part (ii) of Lemma 3 establishes (iv). 2

3 Appendix

Lemma 4 Let l ∈ N, l ≥ 1. Let m, k1, . . . , kl be variables in Rd. Let 0 ≤ s ≤ l. Assume
d ≥ 3. Then,
(i) the following distribution is well defined over R(l+1)d,

∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl) , (3.1)

with the convention that this distribution reduces to ∆(k1,m) · · ·∆(kl,m) in the case s = l,
resp. ∆(m,k1) · · ·∆(m,kl) in the s = 0. More precisely, for any D ≥ d + 1, there exists
a constant C(D) such that the duality product of the distribution (3.1) with a test function
φ(m,k1, . . . ,kl) is bounded by,

C(D)l‖φ‖SD(R(l+1)d) . (3.2)

The space SD(R(l+1)d is the space of functions having D moments and D derivatives in L∞ as
defined in (1.13).
(ii) For α > 0, let,

∆α(n,p) :=
∫ +∞

0
exp(i[n2 − p2]s− αs) ds . (3.3)

Then, the following weak limit holds, upon testing against any test function φ in the space
SD(R(l+1)d) (D ≥ d+ 1) appearing in (3.2),

lim
α→0

∆α(k1,m) · · ·∆α(ks,m)∆α(m,ks+1) · · ·∆α(m,kl) (3.4)

= ∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl) .

(iii) The statements analogous to (i) and (ii) above hold true when an additional variable kl+2 ∈
Rd is given, and the distribution (3.1) is replaced by,

∆(k1,kl+2) ∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl) ,
or, ∆(kl+2,kl) ∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl) ,
or, ∆(k1,kl) ∆(k1,m) · · ·∆(ks,m)∆(m,ks+1) · · ·∆(m,kl) .

(3.5)
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We refer to [Ca1], Lemma 3.1 and proof, for a proof of the above Lemma.
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[CTDL] C. Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique Quantique, I et II, Enseignement des Sci-
ences, Vol. 16, Hermann (1973).
[Co] M. Combescot, Is there a generalized Fermi Golden Rule ?, Preprint Université Paris VI (1999).
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