
Digital Object Identifier (DOI) 10.1007/s00211-005-0599-0

2 1 1 0 5 9 9
Jour. No Ms. No.

B Dispatch: 2/3/2005
Total pages:
Disk Received ✓
Disk Used ✓

Journal: Numer. Math.
Not Used
Corrupted
Mismatch

Numer. Math. (2005) Numerische
Mathematik

Long-time averaging for integrable
Hamiltonian dynamics

Eric Cancès1, François Castella2,3, Philippe Chartier3, Erwan Faou3,
Claude Le Bris1, Frédéric Legoll1,4, Gabriel Turinici1

1 CERMICS, Ecole Nationale des Ponts et Chaussées, Marne-La-Vallée, France and
MICMAC, INRIA, Rocquencourt, France

2 IRMAR, University of Rennes I, Rennes, France
3 IPSO, INRIA, Rennes, France
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Summary. Given a Hamiltonian dynamical system, we address the question
of computing the limit of the time-average of an observable. For a completely
integrable system, it is known that ergodicity can be characterized by a dio-
phantine condition on its frequencies and that this limit coincide with the
space-average over an invariant manifold. In this paper, we show that we
can improve the rate of convergence upon using a filter function in the time-
averages. We then show that this convergence persists when a symplectic
numerical scheme is applied to the system, up to the order of the integrator.

Mathematics Subject Classification (2000):

1 Introduction

Consider a Hamiltonian dynamical equation in R
d × R

d{
ṗ(t) = −∇qH(p(t), q(t)), p(0) = p0,

q̇(t) = ∇pH(p(t), q(t)), q(0) = q0.
(1)

Let M(p0, q0) be the manifold {(p, q) ∈ R
2d |H(p, q) = H(p0, q0)}. The

solution of (1) is a dynamical system onM(p0, q0)with the invariant measure

dρ(p, q) = dσ(p, q)

‖∇H(p, q)‖
2

,
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where dσ(p, q) is the measure induced onM(p0, q0) by the Euclidean metric
of R

2d (see for instance [4]), and ‖ · ‖
2

the Euclidean norm in R
2d .

It is a common problem to estimate the space average of an observable1

A over the manifold M(p0, q0)∫
M(p0,q0)

A(p, q)dρ(q, p)∫
M(p0,q0)

dρ(q, p)
,(2)

through the limit of the time average

lim
T→∞

1

T

∫ T

0
A(p(t), q(t))dt,(3)

where (p(t), q(t)) is the solution of (1). The attention of the reader should be
drawn on the fact that one can only expect the coincidence of (3) and (2) in
very specific situations. Generally speaking, the trajectory originating from
(p0, q0) lies on a submanifold of M(p0, q0): in order to recover the correct
space average (2), it is necessary to average (3) over several initial conditions.

Our wish is here to give a sound ground to (and in some cases improve
[3]) the numerical simulations of the time average (3).

The conditions under which the limit (3) can be identified can not be stated
in general apart from the two specific -and somewhat opposite- situations:

– in the case of a differential equation with an hyperbolic structure, giving
rise to mixing, the convergence of (3) toward (2) for T going to infinity
is insured at a typical rate of 1/

√
T . It is the belief of the authors that not

much can be gained in this situation due to the presence of chaos;
– in the case of an integrable system, a well-known result of Bohl, Sierpinski

and Weyl (see [2] and references therein) states that, under a non-resonant
condition on the frequency vector associated with the initial condition,
the space average of a continuous function on the manifold

S(p0, q0) = {(p, q) ∈ R
d × R

d ;
I1(p, q) = I1(p0, q0), . . . , Id(p, q) = Id(p0, q0)},(4)

where I1, . . . , Id are the d invariants of the problem (1), coincide with the
long-time average of this function. Moreover, if the frequencies satisfy
a diophantine condition, the convergence is of order T −1. Being more
analytically tractable, this case allows for the design of more elaborated
averaging methods than the straightforward numerical simulation of (3).

1 Properties of a physical system at thermodynamical equilibrium such as radial distri-
butions, free energies, transport coefficients can be computed as averages of some observ-
ables over the phase space of a representative microscopic system. In most applications of
interest, this microscopic system is composed of a high number of particles, making the
computation of averages a challenging issue.
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In realistic situations, Hamiltonian systems belong neither to the first cat-
egory, nor to the second one: they typically exhibit different behaviors for
different energy levels. Nevertheless, the acceleration techniques presented in
this paper are relevant to actual computations for the following two reasons:

– their efficiency appears also in situations where integrability assumptions
are not satisfied (see the companion paper [3]).

– their induced computational overhead is only marginal and thus not penal-
izing when integrability assumptions are violated. Meanwhile, when the
explored energy level is such that the system can be (locally) considered
as integrable, a significant acceleration is observed.

Integrable systems under some diophantine condition will thus constitute a
natural framework for this work. Besides, all the results presented here could
be extended with only minor modifications to the case of near-integrable
systems.

In the following, we consider a completely integrable Hamiltonian system
(1) in the sense of the Arnold-Liouville theorem [2,5]: There exist d invari-
ants I1 = H, I2, . . . , Id in involution (i.e. their Poisson Bracket {Ii, Ij } = 0)
such that their gradient are everywhere independent, and the trajectories of
the system remain bounded. Under these conditions, there exist action-angles
variables (a, θ) in a neighborhoodU of S(p0, q0). We have (p, q) = ψ(a, θ),
where ψ is a symplectic transformation

ψ : D × T
d � (a, θ) �→ (p, q) ∈ U,

with T
d = (R/2πZ)d the standard d-dimensional flat torus, and D a neigh-

borhood in R
d of the point a0 such that (a0, θ0) = ψ−1(p0, q0). By defi-

nition of action-angle variables, the Hamiltonian H(p, q) of (1) is writen
H(p, q) = K(a) in the coordinates (a, θ), and thus the dynamics reads{

ȧ(t) = 0,

θ̇ (t) = ω(a(t)),
(5)

where ω = ∂K/∂a is the frequency vector associated with the problem. The
solution of this system for initial data (a0, θ0) is simply writen a(t) = a0 and
θ(t) = ω(a0)t + θ0.

For fixed (a0, θ0) = ψ(p0, q0), the image of S(p0, q0) under ψ−1 is the
torus {a0} × T

d . On this torus, the measure dθ is invariant by the flow of (5).
Considering the pull-back of this measure by the transformation ψ , we thus
get a measure dµ(p, q) on S(p0, q0) which is invariant by the flow of (1).
For any function A(p, q) defined on S(p0, q0) we define the space average:

〈A〉 :=
∫
S(p0,q0)

A(p, q)dµ(p, q)∫
S(p0,q0)

dµ(p, q)
= 1

(2π)d

∫
Td

A ◦ ψ(a0, θ)dθ.(6)
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For a fixed time T , the time average is defined as

〈A〉(T ) := 1

T

∫ T

0
A(p(t), q(t))dt.(7)

In a first step, we will investigate the extent to which the convergence of
the time average (7) toward the space average (6) can be accelerated through
the use of weighted integrals of the form

〈A〉ϕ(T ) :=
∫ T

0 ϕ
(
t
T

)
A(p(t), q(t))dt∫ T

0 ϕ
(
t
T

)
dt

,(8)

where ϕ is a positive smooth function with compact support in [0, 1] (later
on, we will refer to ϕ as the filter function; it is sometimes refereed as a win-
dow function in the context of signal processing [10]). In a second step, we
will consider the time-discretization of (8), i.e. the discretization of both the
integral through Riemann sums and the trajectory with symplectic integra-
tors. In particular, we will derive estimates of the convergence with respect
to T and the size h of the time-grid, which are in perfect agreement with the
numerical experiments conducted in [3].

2 The complete analysis of the d-dimensional harmonic oscillator

In this section, we illustrate the main ideas of the paper in the rather sim-
ple situation of the d-dimensional harmonic oscillator, where most of the
analysis can be conducted in an explicit way. Hereafter, H(p, q) is thus the
Hamiltonian function from R

d × R
d to R defined as

H(p, q) = 1

2

d∑
k=1

(ω2
kq

2
k + p2

k ),(9)

and the corresponding dynamics is governed by the equations{
ṗk = −ω2

kqk

q̇k = pk
, k = 1, . . . , d.

The exact trajectory lies on the d-dimensional manifold S(p0, q0) defined
by (4) where the Ik(p, q) = 1

2

(
ω2
kq

2
k + p2

k

)
are the conserved energies of

the d oscillators. Hence, denoting r0
k = √

2Ik(p0, q0), k = 1, . . . , d and
z = (ω1q1 + ip1, . . . , ωdqd + ipd) the aggregated vector of rescaled posi-
tions and momenta, the exact solution is of the form

z(t) = (
r0

1e
i(ω1t+φ1), . . . , r0

d e
i(ωd t+φd)) ,(10)
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where φ = (φ1, . . . , φd) depends on the initial conditions (p0, q0). As a
consequence, the space average (6) we wish to approximate may be written
here as:

〈A〉 = 1

(2π)d

∫
Td

(A ◦
)(r0, θ)dθ,

where 
(r0, θ) = (
r0
1
ω1

cos(θ1), r
0
1 sin(θ1), . . . ,

r0
d

ωd
cos(θd), r0

d sin(θd)). As
for the time-average (7), it reads:

〈A〉(T ) = 1

T

∫ T

0
(A ◦
)(r0, ωt + φ)dt.

In order to estimate the rate of convergence of (7) toward (6), we expand
A ◦
 in a Fourier series (the conditions under which this expansion is valid
will be detailed in the following sections):

(A ◦
)(r0, θ) =
∑
α∈Zd

Â ◦
(r0, α)eiα·θ ,

where α · θ = α1 θ1 + · · · + αd θd and with:

Â ◦
(r0, α) = 1

(2π)d

∫
Td

(A ◦
)(r0, θ)e−iα·θdθ.

In particular, Â ◦
(r0, 0) = 〈A〉. Hence, we have:

|〈A〉 − 〈A〉(T )| ≤ 1

T

∑
α∈Zd , α =0

2|Â ◦
(r0, α)|
|α · ω| .(11)

This infinite sum can then be bounded if we assume, on one hand, that the
vector of frequencies ω = (ω1, . . . , ωd) satisfies Siegel’s diophantine con-
dition

∃ γ, ν > 0, ∀α ∈ Z
d, |α · ω| > γ |α|−ν,(12)

and on the other hand, that the Fourier coefficients decay sufficiently rapidly.
This relatively poor rate of convergence (1/T ) may now be considerably
improved by considering iterated averages of the form:

〈A〉k(T ) := 1

T k

∫ T

0
· · ·
∫ T

0
(A ◦
)(r0, (t1 + · · · + tk) ω + φ)dt1 · · · dtk.

(13)

Using Fourier expansions as in (11), we indeed obtain in a very similar way
the following error estimate for (13):

|〈A〉 − 〈A〉k(T )| ≤ 1

T k

∑
α∈Zd , α =0

2|Â ◦
(r0, α)|
|α · ω|k ,(14)
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and under slightly more stringent bounds on the |Â ◦
(r0, α)|, (14) leads to
a rate of convergence of 1/T k. Inspired by these computations, and noticing
that (13) is a special case of (8) (more precisely 〈A〉k(T /k) = 〈A〉ϕ(T ) with
ϕ ≡ χ∗k

[0,1/k], the kth-convolution of the characteristic function of [0, 1/k]),
we will consider in the sequel more general filter functions and demonstrate
that the rate of convergence can be further improved.

Now, a natural question that arises is whether the techniques explained
above are amenable to numerical computations, when both the trajectory z(t)
and the integrals (7) or (13) are approximated using numerical schemes. In
the case of the harmonic oscillator, it turns out that the numerical trajectory
zh(tn) (i.e. the approximation at time tn = nh of z(tn)), when the under-
lying scheme is a symplectic (or symmetric) Runge-Kutta method, may be
interpreted as the exact solution of a harmonic oscillator with modified fre-
quencies ωhk = ωk�(hωk). In particular, the numerical trajectory lies on the
same manifoldS(q0, p0) as the exact one. For the velocity-Verlet scheme (and
partitioned methods), the same interpretation is possible, though the numer-
ical trajectory would lie on an invariant torus O(h2)-close to S(q0, p0): this
situation is more typical of what happens for general integrable Hamiltonian
syste ms.

In our situation, we have:

zh(tn) = (
r0

1e
i(ω1�(hω1)tn+φ1), . . . , r0

d e
i(ωd�(hωd)tn+φd)) ,

where � is a smooth function defined by

�(y) = 1

y
arctan

(
R(iy)− R(−iy)
i(R(iy)+ R(−iy))

)
,

R(z) being the stability function of the method (in fact, � is real analytic as
soon as R has no pole on the imaginary axis and satisfies�(y) = 1 +O(yr)
where r denotes the order of convergence of the Runge-Kutta method). As
a consequence, the Riemann sum associated with (13) (note that (15) with
k = 1 corresponds to (7)) reads, for T = nh, n ∈ N,

〈A〉Rie
k (T ) := 1

nk

n−1∑
j1=0

· · ·
n−1∑
jk=0

(A ◦
)(r0, (j1 + · · · + jk)hω�(ωh)+ φ),

(15)

where ω�(ωh) = (ω1�(ω1h), . . . , ωd�(ωdh)), so that using once again
Fourier expansions, we get straightforwardly:

|〈A〉 − 〈A〉Rie
k (T )| ≤ 1

nk

∑
α∈Zd , α =0

|Â ◦
(r0, α)|
∣∣∣∣einhα·(ω�(ωh)) − 1

eihα·(ω�(ωh)) − 1

∣∣∣∣
k

.

(16)
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Bounding the above infinite sum now requires to bound the term |einx −
1|/|eix − 1| for x of the form x = hα · (ω�(ωh)). To this aim, we use the
following two inequalities

∃C0, x0 > 0, ∀ n ∈ N, ∀ |x| ≤ x0,

∣∣∣∣einx − 1

eix − 1

∣∣∣∣ ≤ C0
1

|x| ,(17)

∀ n ∈ N, ∀ x ∈ R,

∣∣∣∣einx − 1

eix − 1

∣∣∣∣ ≤ n,(18)

according to whether |x| is small (17) or not (18). The bound we are looking
for is now based on the following lemma:

Lemma 1 Assume that the vector of frequencies ω satisfies the diophantine
condition (12) and the Runge-Kutta method is of order r . Then, there exist
strictly positive constants c and h0 such that

∀h ≤ h0 ∀α ∈ Z
d, |α · (ω�(ωh))| ≤ γ

2
|α|−ν �⇒ |α| ≥ c h− r

ν+1 .

Proof Assume that there exists α ∈ Z
d such that

|α · (ω�(ωh))| ≤ γ

2
|α|−ν.

Then, from �(hωk) = 1 + O(|hωk|r ), we obtain for h sufficiently small:

γ

2
|α|−ν ≥ |ω · α| − C|α| |hω|r

≥ γ |α|−ν − C|α| |hω|r ,
where C is the strictly positive constant contained in the term O (note that
if � ≡ 1, although the constant C is zero, there is no α violating condition
(12) and the lemma remains valid). Hence,

|α| ≥
(

γ

2C|ω|r h
−r
) 1

ν+1

.

��
Besides, for |α| ≤ ch−r/(ν+1) we have |hα · ω�(ωh)| ≤ c̃h1−r/(ν+1) for a
constant c̃ independent of h. Hence if ν > r − 1, then for small enough h we
have |hα · ω�(ωh)| ≤ x0 defined in (17). Now we can split the sum in (16)
into ∑

1≤|α|≤ch− r
ν+1

|Â ◦
(r0, α)| Ck0

nkhk|α · (ω�(ωh))|k

+
∑

|α|≥ch− r
ν+1

|Â ◦
(r0, α)|.(19)
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Using Lemma 1 for the first term and assuming that the Fourier coefficients
|Â ◦
(r0, α)| decay exponentially with |α|, an estimate of the form

|〈A〉 − 〈A〉Rie
k (T )| = O

(
1

T k
+ exp

(
− ch−s

))
,

with s = r/(ν + 1). Whenever a symplectic partitioned method is used, the
quadratic invariants Ik might be preserved only up to the order of the scheme,
and an additional term hr then comes into play which becomes dominant: for
general Runge-Kutta methods, the best possible estimate is thus of the form

|〈A〉 − 〈A〉Rie
k (T )| = O

(
1

T k
+ hr

)
.(20)

The term 1/T k is the intrinsic error component of the iterated-average,
whereas the term hr reflects the use of a numerical scheme of order r . It
is worth noticing that there is no secular component in hr (neither in the
bound e−

c
hs ): symplectic schemes (partitioned or not) preserve quadratic in-

variants for all times (either exactly or up to the order of the method). Our
aim in next sections is to prove that (20) remains true over exponentially long
times for averages with general filter functions and for general integrable
Hamiltonian systems with bounded trajectories.

3 Approximation of the average: The continuous case

The function ϕ considered in Formula (8) is somewhat arbitrary. The most
commonly used function in practice is ϕ ≡ 1, which corresponds to the
usual time-average as defined in (7), for which convergence when T tends to
infinity is rather slow (with rate 1/T ). For the harmonic oscillator, we have
seen that the use of iterated-averages (which can be seen as a special case
of filtered-averages) allows for a significant acceleration of the convergence.
Theorem 1 below shows that with increasingly smooth functions ϕ satisfy-
ing appropriate zero boundary conditions, it is possible to improve the rate
of convergence to 1/T k for any integer k > 1, not only for the harmonic
oscillator, but for a general integrable Hamiltonian system. It is then natural
to investigate what happens in the limit when k tends to infinity. To this aim,
we shall consider, as an example of infinitely differentiable functions ϕ with
compact support [0, 1] that satisfy ϕ(k)(0) = ϕ(k)(1) = 0 for any k ∈ N, the
function ξ defined below:

ξ : [0, 1] −→ [0,+∞[

x �−→ exp

(
− 1

x(1 − x)

)
.(21)
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In the sequel, we shall assume that the estimates

‖ξ (k)‖
L1 :=

∫ 1

0
|ξ (k)(x)|dx ≤ µβkkδk,(22)

‖ξ (k)‖
L∞ := sup

x∈[0,1]
|ξ (k)(x)| ≤ µβkkδk,(23)

hold for some strictly positive constants µ, β and δ. The existence of such
constants will be shown in appendix (Lemma 3).

Theorem 1 Consider the completely integrable system (1), and assume that
the diophantine condition (12) is satisfied for ω(a0) defined in (5) by the
initial condition (q0, p0), with (q0, p0) = ψ(a0, θ0). Consider a function
A real analytic on R

d × R
d (the observable). Recall that to this function

we associate the space-average 〈A〉, the time-average 〈A〉(T ) and the fil-
tered time-average 〈A〉ϕ(T ) respectively defined in (6), (7) and (8), where
ϕ ∈ C0(0, 1) (the filter function) is assumed to be positive. Then we have the
following convergence estimates:

1. There exists a constant c depending on A, d, ν and γ such that

|〈A〉(T )− 〈A〉| ≤ c

T
.

2. Let k ≥ 1. If ϕ is Ck+1(0, 1) with ϕ(j)(0) = ϕ(j)(1) = 0 for all j =
0, . . . , k − 1, then there exist positive constants c0 and R depending on
A, ϕ, d, ν and γ , such that (here ν ∈ N, though a similar formula holds
for general ν using the � function)

|〈A〉(T )− 〈A〉| ≤ c(k, ϕ)

T k+1
,

where

c(k, ϕ) = c0R
k+1(ν(k + 1)+ 1)!

× 1

‖ϕ‖
L1

(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L1

)

3. If ξ defined in (21) is taken as the filter function, then there exist strictly
positive constants c1, κ and ρ depending on A, d, ν and γ , such that∣∣〈A〉ξ (T )− 〈A〉∣∣ ≤ c1e

−κT 1/ρ
.

Proof Statement 1 is proved in Arnold [2]. It may also be obtained as a spe-
cial case of 2 with ϕ ≡ 1. Now, if A is real analytic on R

d × R
d , then so is

A◦ψ on the d-dimensional torus T
d and we can expand it as a Fourier series

(A ◦ ψ)(a0, α) =
∑
α ∈ Zd

Â ◦ ψ(a0, α)e
iα·θ ,
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with exponentially decaying coefficients:

∀α ∈ Z
d, |Â ◦ ψ(a0, α)| ≤ Ce−

|α|
C ,

where C is a strictly positive real constant. The integral over T
d of the first

coefficient of the series (α = 0) is straightforwardly identified as the space-
average

Â ◦ ψ(a0, 0) = 1

(2π)d

∫
Td

(A ◦ ψ)(a0, θ)dθ.

Writing
∫ T

0 ϕ
(
t
T

)
dt = T ‖ϕ‖

L1 := χ−1, the error can be computed as fol-
lows:

〈A〉ϕ(T )− 〈A〉 = χ
∑

α ∈ Zd , α =0

Â ◦ ψ(a0, α)

∫ T

0
ϕ
( t
T

)
eiα·(θ0+tω(a0))dt

= χ
∑

α ∈ Zd , α =0

Â ◦ ψ(a0, α)e
i(α·θ0)

∫ T

0
ϕ
( t
T

)
eit (α·ω(a0))dt.(24)

Now, the integral in each term of the series can be integrated by parts

∫ T

0
ϕ
( t
T

)
eit (α·ω(a0))dt =

[
ϕ
(
t
T

)
eit (α·ω(a0))

i(α · ω(a0))

]T
0

− 1

T i(α · ω(a0))

∫ T

0
ϕ′
( t
T

)
eit (α·ω(a0))dt.

Integrating repeatedly by parts, this last term can be written as

eiT (α·ω(a0))ϕ(1)− ϕ(0)

i(α · ω(a0))
− 1

T i(α · ω(a0))

∫ T

0
ϕ′
( t
T

)
eit (α·ω(a0))dt

= · · · = (−1)k

(T i(α · ω(a0)))
k

∫ T

0
ϕ(k)

( t
T

)
eit (α·ω(a0))dt,

and eventually,

∫ T

0
ϕ
( t
T

)
eit (α·ω(a0))dt = (−1)k

(T i(α · ω(a0)))
k+1T

[
ϕ(k)

( t
T

)
eit (α·ω(a0))

]T
0

− (−1)k

(T i(α · ω(a0)))
k+1

∫ T

0
ϕ(k+1)

( t
T

)
eit (α·ω(a0))dt.

Inserting this expression in equation (24) and taking the moduli of both sides,
we finally get the bound
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|〈A〉ϕ(T )− 〈A〉| ≤
(|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L1)

T k+1‖ϕ‖
L1

×
∑

α∈Zd , α =0

|Â ◦ ψ(a0, α)|
|α · ω(a0)|k+1

It remains to justify the convergence of the series considered above (and to
bound its limit).This is a consequence of the diophantine condition |α · ω(a0)|
≤ γ

|α|ν , which gives here

∑
α∈Zd , α =0

|Â ◦ ψ(a0, α)|
|α · ω(a0)|k+1 ≤

∑
α∈Zd , α =0

Ce−
|α|
C

( |α|
γ 1/ν

)ν(k+1)

≤ Cην(k+1)
∑

α∈Zd , α =0

e−
|α|
C

( |α|
ηγ 1/ν

)ν(k+1)

.

We now take η = 2C
γ 1/ν so that 1/(γ 1/νη) = 1/(2C) and we obtain:

∑
α∈Zd , α =0

|Â ◦ ψ(a0, α)|
|α · ω(a0))|k+1 ≤ Cην(k+1)(ν(k + 1)+ 1)!

∑
α∈Zd

e−
|α|
2C

≤ C(2C)ν(k+1)(8C)d

γ k+1
(ν(k + 1)+ 1)!,

where we have used xn ≤ ex(n+ 1)!. Statement 3 is a consequence of State-
ment 2 with a suitably chosen k: since ξ (k)(0) = ξ (k)(1) = 0 for any k ∈ N,
we have indeed that for all k ≥ 0:

|〈A〉ξ (T )− 〈A〉| ≤ c1

(r1
T

)k+1
(k + 1)δ(k+1)(ν(k + 1)+ 1)!,

with c1 = c0µ and r1 = Rβ, µ and β being the constants of (22). Now let ν̃
be the nearest integer to ν toward infinity. This gives:

|〈A〉ξ (T )− 〈A〉| ≤ c1

(
r1ν̃

ν̃

T

)k+1

(k + 1)(δ+ν̃)(k+1)

≤ c1e
f (k+1),

where f (�) = �[log(r1ν̃ν̃/T ) + (δ + ν̃) log(�)]. The minimum of f for

positive � is attained for � = 1
e

(
T

r1ν̃ν̃

)1/(ν̃+δ)
and is

fmin = −(δ + ν̃)

e

(
T

r1ν̃ν̃

) 1
(δ+ν̃)

.

��
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Remark 1 In the proof of Theorem 1, one gets c0 = C(8C)d , R = (2C)ν/γ ,

c1 = µc0, κ = (δ+ν̃)e−1ν̃− ν̃
ν̃+δ and ρ = (δ+ν̃), where ν̃ = ν+1. The values

of these constants rely heavily on the sharpness of estimates (22) and it is
likely that they might be improved. Nevertheless, the convergence behavior
would be essentially the same for large dimensions: even if ξ were analytic,
one would get ρ = 1+ν̃. More noticeably, since almost all frequenciesω(a0)

satisfy the diophantine condition for some γ as soon as ν > d − 1, we may
think of ν̃ as being d and thus δ as being approximately 1 + d. The rate of
convergence thus directly depends on the dimension of the phase-space.

4 Semi-discrete averages

We now wish to investigate whether the estimates of Theorem 1 persist when
one replaces the integrals by Riemann sums. It turns out, quite remarkably,
that its proof can be almost readily adapted.

Theorem 2 Assume that the conditions of Theorem 1 are satisfied and let
T = nh > 0 for a given integer n ≥ 2. Let us further define the Riemann
sums corresponding to the continuous time-average

〈A〉Rie(T ) := 1

n

n−1∑
j=0

A(p(jh), q(jh)),

and the filtered time-average

〈A〉Rie
ϕ (T ) :=

∑n−1
j=0 ϕ(

j

n
)A(p(jh), q(jh))∑n−1
j=0 ϕ(

j

n
)

,

where ϕ ∈ C0(0, 1) is the filter function. Then we have the following conver-
gence estimates:

1. There exist constants c and c∗ depending on A, d, ν, γ and ω = ω(a0)

such that

∣∣〈A〉Rie(T )− 〈A〉∣∣ ≤ c

T
+ c∗ exp

(
− 1

c∗h

)
.

2. Let k ≥ 1. If ϕ is Ck+1(0, 1) with ϕ(j)(0) = ϕ(j)(1) = 0 for all j =
0, . . . , k − 1, then there exist strictly positive constants c∗, c0 and R
depending on A, ϕ, d, ν, γ and ω such that

∣∣〈A〉Rie(T )− 〈A〉∣∣ ≤ c(k, ϕ)

T k+1
+ c∗ exp

(
− 1

c∗h

)
,
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where

c(k, ϕ) = c0R
k+1kk(ν(k + 1)+ 1)!

× 1

‖ϕ‖
L1

(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L∞

)
.

3. If ξ is taken as the filter function, then there exist strictly positive constants
c∗, c1, κ and ρ depending on A, d, ν, γ and ω, such that

∣∣〈A〉Rie
ξ (T )− 〈A〉∣∣ ≤ c1e

−κT 1/ρ + c∗ exp

(
− 1

c∗h

)
.

Remark 2 In the proof of Theorem 2, one gets ρ = (δ + 1 + ν̃) and κ =
(δ + 1 + ν̃)e−1(ν̃)−

ν̃
ν̃+δ+1 , where ν̃ = ν + 1.

Proof Statement 1 is a special case of Statement 2 with ϕ ≡ 1, so that we
focus on the error estimate for the filtered average. Expanding (A ◦ ψ) in
Fourier series as in Theorem 1 and denoting Sn = ∑n−1

j=0(1/n)ϕ(j/n), we
have:

〈A〉Rie
ϕ (T )− 〈A〉 = 1

nSn

∑
α ∈ Zd , α =0

Â ◦ ψ(a0, α)e
i(α·θ0)

×
n−1∑
j=0

ϕ
(j
n

)
eiα·jhω,

where ω = ω(a0). We use the following result, whose proof is given in
Appendix:

Lemma 2 For a given filter-function ϕ inCk+1(0, 1)with ϕ(j)(0) = ϕ(j)(1)
= 0 for all j = 0, . . . , k−1, and a given integer n ≥ k+2, let ϕj be the real
numbers defined by ϕj = ϕ(j/n) for j = 0, . . . , n. If b = 1 is a complex
number of modulus 1, then we have the estimate∣∣∣∣∣∣

∑
0≤j≤n−1

ϕjb
j

∣∣∣∣∣∣ ≤ 2e2kk

nk|1 − b|k+1

(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L∞

)
.

Now, we can bound the previous sum by using the following splitting

|〈A〉Rie
ϕ (T )− 〈A〉| ≤ C(k, ϕ)

nk+1Sn

∑
α ∈ Zd , 0<|α|≤(h|ω|)−1

|Â ◦ ψ(a0, α)|
|1 − eiα·hω|k+1

+
∑

α ∈ Zd , |α|>(h|ω|)−1

|Â ◦ ψ(a0, α)|.(25)
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where we have denoted

C(k, ϕ) = 2e2kk
(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L∞

)
.

Note that, since 0 < |α| ≤ (h|ω|)−1 in the first term, we have 0 < |hα·ω| ≤ 1,
so that b = eihα·ω = 1.

The second term in the right-hand side can be straightforwardly bounded
by c∗ exp(− 1

c∗h). Using (12), we have for all |α| ≤ (h|ω|)−1:

1

|1 − eiα·hω| ≤ C0
1

h|α · ω| .

The first term in the right-hand side can be estimated as

C(k, ϕ)Ck+1
0

T k+1Sn

∑
α ∈ Zd , 0<|α|≤(h|ω|)−1

|Â ◦ ψ(a0, α)|
|α · ω|k+1

and we can conclude as in the proof of Theorem 1. ��

5 Fully discrete averages

We consider the numerical trajectory (pn, qn) for n ≥ 0 obtained by a sym-
plectic rth-order numerical scheme �h from the initial point (p0, q0) =
ψ−1(a0, θ0).

For T = nh and n ∈ N, the corresponding Riemann sum reads

〈A〉Rie
ϕ,h(T ) :=

∑n−1
j=0 ϕ(

j

n
)A(pj , qj )∑n−1

j=0 ϕ(
j

n
)

.(26)

Theorem 4.4 and 4.7 of Chapter X in [5], which strongly rely on the theory
developed by Kolmogorov, Arnold and Moser [1,6–9] and on results from
the backward analysis (see [5] pp. 288 and references therein), yield the
following result:

Theorem 3 (Hairer, Lubich, Wanner [5]) Let a∗ ∈ T
d such thatω(a∗) sat-

isfies the diophantine condition (12) with constants γ and ν, and suppose that
H(p, q) is analytic on a neighborhood of the torus {(p, q) = ψ(a∗, θ) | θ ∈
T
d}. Then there exists positive constants ρ, c0, c, C0 and h0 such that for all
h ≤ h0 and µ ≤ min(r, α) where α = ν + d + 1, the following holds: There
exists a symplectic change of coordinates ψh : (a, θ) �→ (b, χ) analytic for

‖a − a∗‖ ≤ c0h
2µ and θ ∈ Uρ = {θ ∈ T

d + iRd | |Imθ | < ρ }
and hr -close to the identity in the sense that

‖(a, θ)− ψh(a, θ)‖ ≤ C0h
r for ‖a − a∗‖ ≤ c0h

2µ and θ ∈ Uρ/2,
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such that in coordinates (b, χ), the numerical trajectory (bn, χn) = ψ−1
h ◦

ψ−1(pn, qn) satisfies

bn = b0 + O(exp(−ch−µ/α)),
χn = nhωh(b0)+ O(h−2µ/α exp(−ch−µ/α)),(27)

for nh ≤ exp(ch−µ/α), where ωh(b) = ω(b)+ O(hr) uniformly in b.

Using this result, we get the following Theorem:

Theorem 4 Under the conditions and notations of Theorem 3, if the numer-
ical trajectory starts with

‖a0 − a∗‖ ≤ c0h
2µ(28)

where (a0, θ0) = ψ−1(p0, q0), then we have:

1. If ϕ is Ck+1 with ϕ(j)(0) = ϕ(j)(1) = 0 for all j = 0, . . . , k − 1 and if
A is real analytic on R

d , then there exist constants c1 and C depending
on A, γ , ν, d, k, ϕ, such that

∀h ≤ h0 ∀ T = nh ≤ exp(c1h
−µ/α),

|〈A〉Rie
ϕ,h(T )− 〈A〉| ≤ C

(
1

T k+1
+ hr

)
.(29)

2. If ξ is taken as the filter function, if A is real analytic, then there exist
constants c1 and C, depending on A, γ , ν and d such that

∀h ≤ h0 ∀ T = nh ≤ exp(c1h
−µ/α),

|〈A〉Rie
ξ,h(T )− 〈A〉| ≤ C

(
e−κT

1/ρ + hr
)
.(30)

Proof With the notation Sn = ∑n−1
j=0(1/n)ϕ(j/n), we have using Theorem

3 that

〈A〉Rie
ϕ,h(T ) := 1

nSn

n−1∑
j=0

ϕ

(
j

n

)
A ◦ ψ ◦ ψh(bj , χj ).

Using the Fourier expansion of A ◦ ψ ◦ ψh and (27), we obtain

〈A〉Rie
ϕ,h(T ) := 1

nSn

∑
α∈Zd

̂A ◦ ψ ◦ ψh(b0, α)e
iα·ϕ0

n−1∑
j=0

ϕ
(j
n

)
eiα·jhωh

+O(exp(−ch−µ/α))(31)

for nh ≤ O(exp(ch−µ/α)) (we write c for a generic constant in the exponen-
tial), where ωh = ωh(b).
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As ψh is an analytic function O(hr)-close to the identity, we have

̂A ◦ ψ ◦ ψh(b0, 0) = 〈A〉 + O(hr),
and the Fourier coefficients ̂A ◦ ψ ◦ ψh(b0, α) decay exponentially with re-
spect to α, uniformly with respect to h. Now similarly to Lemma 1 we get
that

∀h ≤ h0 ∀α ∈ Z
d, |α · (hωh))| ≤ γ

2
|α|−ν �⇒ |α| ≥ c h− r

ν+1 .

And we conclude as in the proof of Theorem 2 using Lemma 2 and a splitting
similar to (25). ��

6 Remarks on the implementation and numerical experiments

Though optimal with respect to the rate of convergence, the filter function ξ
does not seem to allow for the derivation of an error estimate: Given that the
values of the constant C in (30) is out of reach, the value of n for which

Rϕn :=
∑n

j=0 ϕ(j/n)Aj

n‖ϕ‖
L1

becomes sufficiently close (up to user’s tolerance) to its limit as n goes to
infinity can not be determined in advance. An update formula for Rϕn from n

to n+ 1 thus appears of much use and this should guide the choice of ϕ. In
order to get such a formula, we study the dependence on T of

a(T ) =
∫ T

0
ϕ
( t
T

)
A(p(t), q(t))dt.

Differentiating with respect to T leads to

da(T )

dT
= ϕ(1)A(p(T ), q(T ))− 1

T

∫ T

0

t

T
ϕ′
( t
T

)
A(p(t), q(t))dt.(32)

To be of practical use, it is thus necessary that xϕ′(x) is of the form αϕ(x)

(where α is an arbitrary constant) so that (32) becomes an ordinary differen-
tial equation for a(T ). The only admissible solutions are thus monomials in
x. We thus consider the following polynomial filter functions

ϕp(x) = xp(1 − x)p, p ∈ N.(33)

Denoting for p and n in N the elementary Riemann sums

Spn =
n∑
j=0

(j
n

)p
Aj ,
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it is easy to get the desired update formula

S
p

0 = 0 and Spn = An + (1 − 1/n)pSpn−1, n ≥ 1.

Now, since

ϕp(x) =
p∑
k=0

(−1)k
(
p

k

)
xp+k and ‖ϕp‖L1 = (p!)2

(2p + 1)!

the approximation we seek for can be obtained as the linear combination

R
ϕp
n = (2p + 1)!

n(p!)2

p∑
k=0

(−1)k
(
p

k

)
Sp+k
n .

We now consider the application of our method to the modified 2-dimen-
sional Kepler problem with Hamiltonian

H(p, q) = p2
1 + p2

2 − 1√
q2

1 + q2
2

− µ

(

√
q2

1 + q2
2 )

3
.

Besides the Hamiltonian, this system has one other invariant, the angular
momentum

L = q2p1 − q1p2.

Our goal is here to estimate the average over the manifold

S = {(p, q) ∈ R
4; L(p, q) = L(p0, q0), H(p, q) = H(p0, q0)}

For µ = 0.2, p0 = (0, 1.1)T and q0 = (1, 0)T this leads to
〈r〉 = 1.021466044527120.

To this aim, we consider the Verlet method as the basic step and use the
8th-order 15-stage composition of [13]. In figures 1 and 2 are represented
the errors |〈r〉ϕp(T ) − 〈r〉| in logarithmic scale for two different step-sizes.
On Figure 1, the three curves all reach a plateau corresponding to the hr -
error term. Refining the step-size removes this plateau (or at least shifts it to
the right, see Figure 2). In both cases, the predicted rate of convergence in
1/T p+1 is clearly observed (it corresponds to a slope of p + 1 for ϕp).
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Fig. 1. Error in the averages for p = 1, 3, 5 and h = 0.4 (2D-Kepler problem).
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Appendix: some technical results

In this appendix section, we collect a few technical results used in the paper.

Lemma 3 Let ξ be the function defined on [0, 1] by ξ(x) = e
− 1
x(1−x) . There

exist strictly positive constants µ ≤ 1, β ≤ (2
√

3 + 6)/e2 and δ ≤ 3 such
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that the following estimates hold for all k ∈ N
∗:

‖ξ (k)‖
L1 :=

∫ 1

0
|ξ (k)(x)|dx ≤ µβkkδk,

‖ξ (k)‖
L∞ = sup

x∈[0,1]
|ξ (k)(x)| ≤ µβkkδk.

Proof Looking for an expression of ξ (k)(x) of the form

ξ (k)(x) = Pk(x)

[�(x)]2k
e
− 1
x(1−x) ,

where �(x) = x(1 − x) and where Pk is a polynomial, we easily find the
recurrence relation:

P0 ≡ 1 and Pk+1 = �′ (1 − 2k�)Pk + P ′
k �

2, k ≥ 0,(34)

We now look for bounds on ballsBr of radius r > 0 and center z = 1/2+0 i ∈
C. The bounds for � and �′ read

sup
z∈Br

|�(z)| ≤ (r2 + 1/4), sup
z∈Br

|�′(z)| ≤ r,

and the Cauchy integral representation of P ′
k leads to

∀ ε > 0, sup
z∈Br

|P ′
k(z)| ≤ r + ε

ε
sup
z∈Br+ε

|Pk(z)|.

Inserting these bounds in (34) we get:

sup
z∈Br

|Pk+1(z)| ≤ r[k(2r2 − 1/2)+ 1] sup
z∈Br

|Pk(z)|

+(r2 + 1/4)2
r + ε

ε
sup
z∈Br+ε

|Pk(z)|

≤
(
r[k(2r2 − 1/2)+ 1] + r + ε

ε
(r2 + 1/4)2

)
sup
z∈Br+ε

|Pk(z)|.

Denoting C(r, k, ε) := r[k(2r2 − 1/2)+ 1] + r+ε
ε
(r2 + 1/4)2, we finally get

sup
z∈Br

|Pk+1(z)| ≤ C(r, k, ε) sup
z∈Br+ε

|Pk(z)|
≤ C(r, k, ε)C(r + ε, k − 1, ε) sup

z∈Br+2ε

|Pk−1(z)|

≤
(

k∏
i=0

C(r + iε, k − i, ε)

)
sup

z∈Br+(k+1)ε

|P0(z)|.
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A bound can then be obtained as follows: let ε0 = −1+√
3

2 , ε = ε0
k

and r = 1/2.
Then it is easy to check that for all 0 ≤ i ≤ k, we have

C

(
1

2
+ i

ε0

k
, k − i,

ε0

k

)
≤

√
3

2
[k − i + 1] + 1√

3 − 1
k + i + 1

≤
√

3 + 3

2
(k + 1),

and hence, (
k∏
i=0

C(r + iε, k − i, ε)

)
≤ [

√
3 + 3

2
(k + 1)]k+1.

Taking into account that P0 ≡ 1, we obtain

∀ k ∈ N
∗, sup

z∈B1/2

|Pk(z)| ≤ [

√
3 + 3

2
k]k.

It remains to bound 1
[�(x)]2k e

− 1
x(1−x) . Denoting Y = 1

x(1−x) , we have:

sup
x∈[0,1]

1

[�(x)]2k
e
− 1
x(1−x) = sup

Y≥4
e−Y Y 2k

≤ e−2k(2k)!

≤
(

4

e2

)k
k2k.

��
Proof of Lemma 2 Let us denote by ∇ the operator of backward divided
differences defined by:

∀ j ∈ {0, . . . , n}, ∇0ϕj = ϕj ,

∀ j ∈ {m+ 1, . . . , n}, ∇m+1ϕj = ∇mϕj − ∇mϕj−1.

The sum in the statement can then be written as
n−1∑
j=0

ϕjb
j =

n−1∑
j=1

bj
j∑
i=1

∇ϕi +
n−1∑
j=0

ϕ0b
j

= 1 − bn

1 − b
ϕ0 +

n−1∑
i=1

∇ϕi b
i − bn

1 − b

= ϕ0 − bnϕn−1

1 − b
+ 1

1 − b

n−1∑
j=1

(∇ϕj )bj = . . .

=
k∑

m=0

bm∇mϕm − bn∇mϕn−1

(1 − b)m+1
+ 1

(1 − b)k+1

n−1∑
j=k+1

(∇k+1ϕj )b
j .
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Denoting h = 1/n, it is well-known that, for all n − 1 ≤ j ≥ k + 1, there
exists ζj,k+1 ∈ [(j − k − 1)h, jh] ⊂ [0, 1] such that we have:

∇k+1ϕj = ϕ(k+1)(ζj,k+1)h
k+1

Hence, we can bound the second term in (35) as follows:∣∣∣∣∣∣
n−1∑
j=k+1

(∇k+1ϕj )b
j

∣∣∣∣∣∣ ≤ ‖ϕ(k+1)‖
L∞ h

k+1(n− k − 2).

In order to estimate the first sum, we notice that, for 0 ≤ m ≤ k ≤ n− 2,

∇mϕm = ϕ(m)(ζm,m)h
m

for some ζm,m ∈ [0,mh] and a Taylor-Lagrange expansion of ϕ(m)(ζm,m) at
order k + 1 −m gives

∇mϕm = ζ km,mh
k

(k −m)!
ϕ(k)(0)+ ζ k+1

m,mh
k+1

(k + 1 −m)!
ϕ(k+1)(ηm)

for some ηm ∈ [0,mh] ⊂ [0, 1]. Hence, we have:∣∣∣∣∣
k∑

m=0

bm

(1 − b)m
∇mϕm

∣∣∣∣∣ ≤ |ϕ(k)(0)| kkhk

|1 − b|k+1

k∑
m=0

|1 − b|m
(m)!

+‖ϕ(k+1)‖
L∞
kkhk+1

|1 − b|
k∑

m=0

|1 − b|m
(m+ 1)!

≤ e2kkhk

|1 − b|k+1

(
|ϕ(k)(0)| + h‖ϕ(k+1)‖

L∞

)
.

Similarly we have:

∇mϕn−1 = ϕ(m)(ζn−1,m)h
m

for some ζn−1,m ∈ [1 − (m+ 1)h, 1 − h] ⊂ [0, 1], so that∣∣∣∣∣
k∑

m=0

bn

(1 − b)m
∇mϕn−1

∣∣∣∣∣ ≤ 2e2kkhk

|1 − b|k+1

(|ϕ(k)(1)| + h‖ϕ(k+1)‖L∞
)
.

Gathering the contributions of all terms then gives the result. ��

Acknowledgements. The authors are glad to thank Christian Lubich for stimulating dis-
cussions on the subject of this paper, particularly for suggesting the use of general filtered
averages rather than just iterated averages. We also gratefully acknowledge the financial
support of INRIA through the contract grant “Action de Recherche Concertée" PRESTIS-
SIMO.



22 E. Cancès et al.

References

1. Arnold, V.I.: Small denominators and problems of stability of motion in classical and
celestial mechanics. Russian Math. Surveys 18, 85–191 (1963)

2. Arnold, V.I.: Mathematical methods of classical mechanics. Volume 60 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 1978

3. Cancès, E., Castella, F., Chartier, P., Faou, E., Le Bris, C., Legoll, F., Turinici, G.:
High-order averaging schemes with error bounds for thermodynamical properties
calculations by MD simulations. Submitted to J. Chem. Phys., 2003

4. Do Carmo, M.P.: Riemannian Geometry. Series Mathematics: Theory and Applica-
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