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We consider the behavior of a stochastic system composed of several identically distributed, but non inde-
pendent, discrete-time absorbing Markov chains competing at each instant for a transition. The competition
consists in determining at each instant, using a given probability distribution, the only Markov chain allowed
to make a transition. We analyze the first time at which one of the Markov chains reaches its absorbing state.
When the number of Markov chains goes to infinity, we analyze the asymptotic behavior of the system for
an arbitrary probability mass function governing the competition. We give conditions for the existence of the
asymptotic distribution and we show how these results apply to cluster-based distributed storage when the
competition is handled using a geometric distribution.

Keywords: asymptotic analysis; competing Markov chains; cluster-based distributed systems; Markov
chains, geometric distribution

1. Introduction

Competing Markov chains generally contend with each other for a set of resources, see for instance
Fourneau (2008) and the references therein. The resulting process is then a multidimensional
Markov chain based on the Cartesian product of the states spaces and on competition rules over
resources. In this paper, the Markov chains do not compete for resources but for transitions.
More precisely, we consider a stochastic system composed of n identically distributed, but non
independent, discrete-time absorbing Markov chains competing at each instant for a transition.
The competition consists in determining at each instant, using a given probability mass function
with n values, the only Markov chain allowed to make a transition.

For this system, we analyze the absorption time Θγ
n at which one of the n Markov chains

reaches its absorbing state, when the probability mass function is γ(n). The distribution of this
random variable has already been studied in Anceaume et al. (2010), in particular when the
probability mass function γ(n) handling the competition is uniform. In that case, we studied the
asymptotic behavior of the system when the number n of Markov chains goes to infinity.

We propose here the study of the asymptotic behavior of the system when the number n of
Markov chains goes to infinity, for an arbitrary probability mass function γ(n) governing the
competition. More precisely, we give conditions on the probability mass function γ(n) governing
the competition for the existence of a limiting distribution for Θγ

n. We apply these results to the
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case where the competition is governed by a geometric distribution and we study the effects of
this distribution on a model of a large-scale cluster-based distributed storage.

The remainder part of the paper is organized as follows. In the next section, we describe the
model, the notation and we give the transient state distribution of the global Markov chain
composed of the n joined identically distributed local Markov chains. We also extend a result
obtained in Anceaume et al. (2010). This result is a recurrence relation that allows us not only
to compute the distributions of Θγ

n but also to compute the limiting distribution of Θγ
n when

it exists. In Section 3, we study the asymptotic behavior of the system when n goes to infinity
and we give conditions on the probability mass function γ(n) governing the competition for
the existence of the limiting distribution of Θγ

n. We also show how to compute this limiting
distribution. We apply these results in Section 4 to the case where the probability mass function
γ(n) governing the competition is geometric. Section 5 is devoted to an application of these
results to a model of a cluster-based distributed storage.

2. Transient Analysis

We consider a homogeneous discrete-time Markov chain X = {Xk, k ≥ 0} with a finite state
space S composed of a set of transient states denoted by B and an absorbing state denoted by
a. The associated transition probability matrix P can thus be partitioned as

P =
(

Q v
0 1

)
,

where Q is the submatrix of dimension |B| × |B| containing the transitions between states of
B. In the same way, v is the column vector with |B| entries representing the transitions from
the transient states to the absorbing state. We suppose that the initial state lies in B, i.e.
�{X0 ∈ B} = 1, and we denote by α the row vector of dimension |B| containing the initial
probability distribution, i.e. for every i ∈ B, αi = �{X0 = i}. We denote by Θ1 the total time
the Markov chain X spends in B or equivalently the first instant at which the absorbing state
a is reached. We have Θ1 = inf{k ≥ 0 | Xk = a}. The complementary cumulative distribution
function of Θ1 is easily derived as, see for instance Neuts (1981),

�{Θ1 > k} = �{Xk ∈ B} = αQk
�,

where � is the column vector of dimension |B| with all entries equal to 1. Since all the states of
B are transient, the matrix I − Q is invertible and the expectation of Θ1 is given by E(Θ1) =
α(I − Q)−1�, where I is the identity matrix.

Let us now consider, for n ≥ 1, n Markov chains denoted by X(1), . . . ,X(n) stochastically
equivalent to X, i.e. with the same state space S, the same transition probability matrix P and
the same initial probability distribution α. These n Markov chains are in competition at each
instant to make a transition using the probability mass function γ(n) = (p1,n, . . . , pn,n).

From these n Markov chains, we construct a new Markov chain denoted by Y = {Yk, k ≥ 0}
as follows. The state space of Y is equal to Sn and Yk = (X(1)

k , . . . ,X
(n)
k ). A transition in the

Markov chain Y corresponds to a transition in only one of the Markov chains X(1), . . . ,X(n),
all the rest staying in the same state. The Markov chain that makes the transition is chosen in
accordance with the probability mass function γ(n), which means that the Markov chain X(�)

makes the transition with probability p�,n. We suppose, without loss of generality that for any
�, 0 < p�,n < 1.

The transition probability matrix of Y is detailed in Anceaume et al. (2010) where we give the
transient distribution of the Markov chain Y . The first instant Θγ

n at which one of the n Markov
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chains X(1), . . . ,X(n) gets absorbed when the probability mass function is γ(n) is defined as

Θγ
n = inf{k ≥ 0 | ∃r such that X

(r)
k = a}.

When n = 1, we have γ(1) = 1 and, thus Θγ
1 = Θ1. We give below its distribution which has

been obtained in Anceaume et al. (2010). We first introduce the set Sk,� defined , for every k ≥ 0
and � ≥ 1, by Sk,� = {k = (k1, . . . , k�) ∈ �� | k1 + · · · + k� = k}. For every k ≥ 0 and n ≥ 1, we
have

�{Θγ
n > k} =

∑
k∈Sk,n

k!
k1! · · · kn!

n∏
r=1

(pr,n)krαQkr�. (1)

The computational complexity of �{Θγ
n > k} using (1) is exponential. A way to reduce this

complexity is provided by the following theorem. This theorem improves the one obtained in
Anceaume et al. (2010) which has been obtained only for h = n.

Theorem 2.1 : For every k ≥ 0, n ≥ 2 and h = 1, . . . , n, we have

�{Θγ
n > k} =

k∑
�=0

(
k

�

)
(ph,n)� (1 − ph,n)k−� αQ�

��{Θγ(1)

n−1 > k − �}, (2)

where the probability mass function γ(1)(n − 1) = (p(1)
1,n−1, . . . , p

(1)
n−1,n−1) associated with Θγ(1)

n−1
and with the choice of h is defined, by

p
(1)
r,n−1 =

pr,n

1 − ph,n
for r = 1, . . . , h − 1 and p

(1)
r,n−1 =

pr+1,n

1 − ph,n
for r = h, . . . , n − 1.

Proof : For every k ≥ 0 and n ≥ 2, we fix a value of h with 1 ≤ h ≤ n. In Relation (1), we
extract the index kh in the multiple sum indexed by k ∈ Sk,n. Then, we rename it � and next,
for h < n, we perform the changes of variables kh+1 := kh, . . . , kn := kn−1. We thus obtain

�{Θγ
n > k} =

k∑
�=0

(ph,n)� αQ��

�!

∑
k∈Sk−�,n−1

k!
k1! · · · kn−1!

h−1∏
r=1

(pr,n)kr αQkr�

n−1∏
r=h

(pr+1,n)kr αQkr�.

Multiplying and dividing the right-hand side respectively by (k − �)! and (1 − ph,n)k−�, we get

�{Θγ
n > k} =

k∑
�=0

(
k

�

)
(ph,n)� (1 − ph,n)k−� αQ�

�

×
∑

k∈Sk−�,n−1

(k − �)!
k1! · · · kn−1!

h−1∏
r=1

(
pr,n

1 − ph,n

)kr

αQkr�

n−1∏
r=h

(
pr+1,n

1 − ph,n

)kr

αQkr�.
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Using the definition of γ(1)(n − 1), we obtain, from Relation (1) again,

�{Θγ
n > k} =

k∑
�=0

(
k

�

)
(ph,n)� (1 − ph,n)k−� αQ�

�

∑
k∈Sk−�,n−1

(k − �)!
k1! · · · kn−1!

n−1∏
r=1

(
p
(1)
r,n−1

)kr

αQkr�

=
k∑

�=0

(
k

�

)
(ph,n)� (1 − ph,n)k−� αQ�

��{Θγ(1)

n−1 > k − l},

which completes the proof. �

This result shows that the computation of �{Θγ
n > k} can be done using a simple recurrence

with a polynomial complexity. The expectation of Θγ
n is then obtained by

E(Θγ
n) =

∞∑
k=0

�{Θγ
n > k}. (3)

3. Asymptotic Analysis

This section is devoted to the analysis of the distribution on Θγ
n when n is large. This is generally

the case in practice for large-scale distributed systems which are studied in the last section. For
every n ≥ 1 and x ∈ �, we introduce the transform Fn(x) defined by

Fn(x) =
∞∑

k=0

xk

k!
�{Θγ

n > k}.

An explicit expression of function Fn is given in the following theorem, which is proved in
Anceaume et al. (2010).

Theorem 3.1 : For every n ≥ 1 and x ∈ �, we have

Fn(x) =
n∏

�=1

αeQxp�,n�, (4)

and, for every k ≥ 0, �{Θγ
n > k} = F

(k)
n (0), where F

(k)
n is the k-th derivative of the function Fn

with respect to x.

This result not only shows that �{Θγ
n > 0} = 1 as expected, but it also shows that, for every

n ≥ 1, we have �{Θγ
n > 1} = αQ� = F ′

n(0). It also gives access to an expression of �{Θγ
n > k}

for any k. Adopting this point of view, our strategy in order to compute limn→∞�{Θγ
n > k}

is to compute F (x) = limn→∞ Fn(x), an analytic function of x, so as to deduce the value
limn→∞�{Θγ

n > k} = F (k)(0). To pass to the limit in a clean fashion, we need the following.
Hypothesis (H) – Limiting value of the powers sums of the p�,n’s.

For any k ≥ 1, the limit Vk = lim
n→∞

n∑
�=1

(p�,n)k exists.

Important remark. The above assumption is harmless. Indeed, introducing the quantities
Vn,k =

∑n
�=1(p�,n)k, it is clear that 0 ≤ Vn,k ≤ 1 for any value of n ≥ 1 and k ≥ 1. There-

fore, there exists a subsequence in n, say nj with nj → ∞ as j → ∞, such that Vnj ,k has a
limit as j → ∞ for any k ≥ 1. We are here merely assuming that the limit Vk is well defined
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without refering to taking a subsequence in the original Vn,k’s. To give an example, suppose that
the p�,2n’s are uniformly distributed, i.e. p�,2n = 1/(2n), in which case V2n,k = 1/(2n)k−1 → 0
whenever k ≥ 2, and V2n,1 = 1, while the p�,2n+1’s are geometrically distributed with parameter
b and truncation at step 2n+1, i.e. p�,2n+1 = (1− b)�−1b, for � ≤ 2n and p2n+1,2n+1 = (1− b)2n,
in which case V2n+1,k → bk/(1 − (1 − b)k). In that case it clearly does not make sense to study
the whole sequence Vn,k itself, and we need to separate the case when n is odd and the case when
n is even. We assert here that this situation is generic, and that, up to extracting a subsequence,
one may always assume that the original sequence Vn,k itself possesses a limit Vk for any k.

With this assumption in mind, the following theorem gives the limit of the transform Fn(x).
This result was obtained in Anceaume et al. (2010) only in the case where the p�,n’s are uniformly
distributed.

Theorem 3.2 : Under hypothesis (H), F (x) = limn−→∞ Fn(x) exists, whenever |x| < ln 2, and
the limit is uniform on compact subsets of {x | |x| < ln 2}. Besides, we have the explicit value

F (x) = exp

⎛
⎝∑

m≥1

∑
k1≥1

· · ·
∑

km≥1

(−1)m+1

m

αQk1� . . . αQkm�

k1! . . . km!
xk1+···+kmVk1+···+km

⎞
⎠ . (5)

Proof : Starting from Relation (4), we recover, expanding into power series in x, the value

ln (Fn(x)) =
n∑

�=1

ln
(
α eQxp�,n�

)
=

n∑
�=1

ln

⎛
⎝1 +

∑
k≥1

αQk�

k!
xk(p�,n)k

⎞
⎠

Hence, using the fact that 0 ≤ αQk
� ≤ 1 whenever k ≥ 0, and deducing the bound

∣∣∣∣∣∣
∑
k≥1

αQk�

k!
xk(p�,n)k

∣∣∣∣∣∣ ≤
∑
k≥1

|x|k
k!

= e|x| − 1 < 1,

whenever |x| < ln 2, we may expand further and obtain

ln (Fn(x)) =
n∑

�=1

∑
m≥1

(−1)m+1

m

⎛
⎝∑

k≥1

αQk�

k!
xk(p�,n)k

⎞
⎠

m

=
n∑

�=1

∑
m≥1

(−1)m+1

m

∑
k1≥1

· · ·
∑

km≥1

αQk1� . . . αQkm�

k1! . . . km!
xk1+···+km(p�,n)k1+···+km

=
∑
m≥1

∑
k1≥1

· · ·
∑

km≥1

(−1)m+1

m

αQk1� . . . αQkm�

k1! . . . km!
xk1+···+km

(
n∑

�=1

(p�,n)k1+···+km

)
.

The above expansions clearly converge in any desirable sense whenever |x| < ln 2 (say, for
instance, uniformly in x on compact subsets of {x | |x| < ln 2}). The existence of the limiting
values Vk, together with the pointwise bound

∣∣∣∣∣(−1)m+1

m

αQk1� . . . αQkp�

k1! . . . km!
xk1+···+km

(
n∑

�=1

(p�,n)k1+···+km

)∣∣∣∣∣ ≤ |x|k1+···+km

k1! . . . km!
,
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a converging series whenever |x| < ln 2, therefore provides the limit

lim
n→∞ ln (Fn(x)) =

∑
m≥1

∑
k1≥1

· · ·
∑

km≥1

(−1)m+1

m

αQk1� . . . αQkp�

k1! . . . km!
xk1+···+kmVk1+···+km

,

and the above convergence is uniform on compact subsets of {x | |x| < ln 2}. �

Armed with the above theorem, we deduce the limiting behavior of �{Θγ
n > k}.

Theorem 3.3 : Under hypothesis (H), for every k ≥ 0, we have

lim
n−→∞�{Θ

γ
n > k} = F (k)(0).

Proof : The argument is standard. The function Fn(x) being clearly analytic on the disk {z ∈
� | |z| < ln 2}, we may write, for any 0 < r < ln 2 and k ≥ 0, the relation

�{Θn > k} = F (k)
n (0) =

k!
2iπ

∫
|z|=r

Fn(z)
zk+1

dz.

Hence, using the above-mentioned uniform convergence of Fn towards F , we recover

lim
n→∞�{Θn > k} = lim

n→∞
k!
2iπ

∫
|z|=r

Fn(z)
zk+1

dz =
k!
2iπ

∫
|z|=r

F (z)
zk+1

dz.

On the other hand, in view of Relation (5), the function F is itself clearly analytic on the disk
{z ∈ � | |z| < ln 2}, so we may write similarly

k!
2iπ

∫
|z|=r

F (z)
zk+1

dz = F (k)(0),

which completes the proof. �

We denote by Θγ the random variable having as distribution the limiting distribution of Θγ
n.

We then have from Theorem 3.3, under hypothesis (H), for every k ≥ 0,

lim
n−→∞�{Θ

γ
n > k} = �{Θγ > k} = F (k)(0).

The following two corollaries show how to compute recursively the distribution of Θγ . Again,
note that this limiting distribution was obtained in Anceaume et al. (2010) only in the case
where the p�,n’s are uniformly distributed.

Corollary 3.4: Under hypothesis (H) and if, for a fixed h ≥ 1, we have lim
n−→∞ ph,n = b ∈ (0, 1),

then, we have, for every k ≥ 0,

�{Θγ > k} =
k∑

�=0

(
k

�

)
b�(1 − b)k−�αQ�

��{Θγ(1)
> k − �}. (6)

Proof : In order to use Theorem 2.1, we have to check that hypothesis (H) is valid for distri-
bution γ(1)(n− 1). If hypothesis (H) is satisfied and if, for a fixed h ≥ 1, lim

n−→∞ ph,n = b ∈ (0, 1),
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then we have

V
(1)
n−1,k =

n−1∑
�=1

(p(1)
�,n−1)

k =
1

(1 − ph,n)k

(
h−1∑
�=1

p�,n +
n∑

�=h+1

p�,n

)
=

Vn,k − (ph,n)k

(1 − ph,n)k
,

so the limit V
(1)
k exists and we have

V
(1)
k = lim

n→∞V
(1)
n−1,k =

Vk − bk

(1 − b)k
.

Using Theorem 3.3 and taking the limit in Relation (2), we get Relation (6). �

To illustrate this last result, consider for instance the distribution γ(n) = (1/2, 1/2(n −
1), . . . , 1/2(n−1)). Hypothesis (H) is clearly satisfied (we have Vk = 1/2k, for every k ≥ 1). Since
p1,n = 1/2, we take h = 1. We then have γ(1)(n − 1) = (1/(n − 1), . . . , 1/(n − 1)), which is the
uniform distribution. It has been shown in Anceaume et al. (2010) that �{Θγ(1)

> k} = (αQ�)k.
We thus get from Relation (6)

�{Θγ > k} =
1
2k

k∑
�=0

(
k

�

)
αQ�

�(αQ�)k−� = α

(
1
2
Q +

αQ�

2
I

)k

�.

Corollary 3.5: Under hypothesis (H), if, for a fixed h ≥ 1, we have lim
n−→∞ ph,n = b ∈ (0, 1)

and if γ(1)(n − 1) = γ(n − 1), for every n ≥ 2 then, we have �{Θγ > 0} = 1 and, for every
k ≥ 1,

�{Θγ > k} =
1

1 − (1 − b)k

k−1∑
�=0

(
k

�

)
(1 − b)�bk−�

�{Θγ > �}αQk−�
�.

Proof : Since �{Θγ
n > 0} = 1 for every n ≥ 1, we have �{Θγ > 0} = 1. From Corollary 3.4

and since γ(1)(n) = γ(n) for every n ≥ 2, we have

�{Θγ > k} =
k∑

�=0

(
k

�

)
b�(1 − b)k−�αQ�

��{Θγ > k − �}.

Extracting the term containing �{Θγ > k}, which corresponds to index � = 0, from the right
hand side, we get the desired relation. �

Without any loss of generality, by renumbering the Markov chains, we take in the remainder
part of the paper h = 1. This means, from Theorem 2.1, that the probability mass function
γ(1)(n − 1) = (p(1)

1,n−1, . . . , p
(1)
n−1,n−1) associated with Θγ(1)

n−1 is given, for r = 1, . . . , n − 1, by

p
(1)
r,n−1 =

pr+1,n

1 − p1,n
. (7)

For a fixed value of n ≥ 2, the computation of the distribution of Θγ
n with a given probability

mass function γ(n) necessitates the computation of the distribution of Θγ(1)

n−1 with the probability
mass function γ(1)(n− 1) given by Relation (7). Let ε be a predetermined error tolerance. If we
want to compute �{Θγ

n > k} for every k such that �{Θγ
n > k} > ε, we need to determine an
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integer K such that, for every i = 1, . . . , n, �{Θγ(n−i)

i > K} ≤ ε, and then to compute, from
Relation (2), for i = 1, . . . , n, the values of �{Θγ(n−i)

i > k} for k = 0, . . . ,K − 1. Note that
the probability mass function associated with Θγ(n−i)

i is γ(n−i)(i) = (p(n−i)
1,i , . . . , p

(n−i)
i,i ) which

is obtained from γ(n−i−1)(i + 1) by normalizing its last i entries by 1 − p
(n−i−1)
1,i+1 , where we set

γ(0)(n) = γ(n) and p
(0)
�,n = p�,n. The following lemma will be used in the next theorem where we

propose a value of K. An inequality between vectors is meant entrywise.

Lemma 3.6: For every k ≥ 1, the vector function f(x) defined by f(x) = (xQ + (1− x)I)k�,
for x ∈ [0, 1], is decreasing.

Proof : The function f is differentiable on the interval (0, 1) and its derivative f ′ is given by

f ′(x) = k(xQ + (1 − x)I)k−1(Q�− �).

The matrix Q being substochastic, we have Q� − � ≤ 0 with strict inequality for at least one
entry. We thus have f ′(x) ≤ 0 which means that function f is decreasing on interval [0, 1]. �

For every n ≥ 1, we introduce the numbers mn defined by mn = min
i=1,...,n

p
(n−i)
1,i . The two follow-

ing theorems are improvements of the corresponding results obtained in Anceaume et al. (2010)
since they do not use the fact that the p�,n’s are decreasing with �.

Theorem 3.7 : For every n ≥ 1, for every ε ∈ (0, 1), we have

max
i=1,...,n

�{Θγ(n−i)

i > k} ≤ ε for every k ≥ K,

where K = inf
{
k ≥ 0

∣∣∣ α (mnQ + (1 − mn)I)k � ≤ ε
}
.

Proof : For every i = 1, . . . , n, we have

�{Θγ(n−i)

i > k} =
k∑

�=0

(
k

�

)
(p(n−i)

1,i )�(1 − p
(n−i)
1,i )k−�αQ�

��{Θγ(n−i+1)

i−1 > k − �}

≤
k∑

�=0

(
k

�

)
(p(n−i)

1,i )�(1 − p
(n−i)
1,i )k−�αQ�

�

= α
(
p
(n−i)
1,i Q + (1 − p

(n−i)
1,i )I

)k
�

≤ α (mnQ + (1 − mn)I)k � (from Lemma 3.6).

Note that matrix mnQ + (1−mn)I is substochastic, i.e. (mnQ + (1−mn)I)� ≤ � with a strict
inequality for at least one entry. This implies that α (mnQ + (1 − mn)I)k

� is decreasing with k

and that lim
k−→∞

α (mnQ + (1 − mn)I)k
� = 0. So, for a fixed ε ∈ (0, 1) and by definition of integer

K we have, for every i = 1, . . . , n,

�{Θγ(n−i)

i > k} ≤ ε, for every k ≥ K,

which completes the proof. �
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In the same way, we obtain a similar result for the computation of the expected values
E(Θγ(n−i)

i ), for i = 1, . . . , n, for which the truncation of the series (3) is needed.

Theorem 3.8 : For every n ≥ 1, for every ε ∈ (0, 1),

0 ≤ max
i=1,...,n

(
E(Θγ(n−i)

i ) −
L−1∑
k=0

�{Θγ(n−i)

i > k}
)

≤ ε,

where L = inf
{

k ≥ 0
∣∣∣∣ 1

mn
α(I − Q)−1 (mnQ + (1 − mn) I)k � ≤ ε

}
.

Proof : We introduce the notation

ri = E(Θγ(n−i)

i ) −
L−1∑
k=0

�{Θγ(n−i)

i > k}.

We then have, for every i = 1, . . . , n,

ri =
∞∑

k=L

�{Θγ(n−i)

i > k}

=
∞∑

k=L

k∑
�=0

(
k

�

)
(p(n−i)

1,i )�(1 − p
(n−i)
1,i )k−�αQ�

��{Θγ(n−i+1)

i−1 > k − �}

≤
∞∑

k=L

k∑
�=0

(
k

�

)
(p(n−i)

1,i )�(1 − p
(n−i)
1,i )k−�αQ�

�

=
∞∑

k=L

α
(
p
(n−i)
1,i Q + (1 − p

(n−i)
1,i )I

)k
�

≤
∞∑

k=L

α (mnQ + (1 − mn)I)k
� ( from Lemma 3.6)

= α (I − (mnQ + (1 − mn) I))−1 (mnQ + (1 − mn) I)L �

=
1

mn
α(I − Q)−1 (mnQ + (1 − mn) I)L

�

≤ ε by definition of integer L.

which means that maxi=1,...,n ri ≤ ε. �

It is easily checked, from Relation (6), that the same result holds for the limiting expected
value E(Θγ). More precisely, if lim

n−→∞ p1,n = b > 0, then, for every ε ∈ (0, 1), we have

0 ≤
(

E(Θγ) −
J−1∑
k=0

�{Θγ > k}
)

≤ ε,

where J = inf
{

k ≥ 0
∣∣∣∣ 1

b
α(I − Q)−1 (bQ + (1 − b) I)k

� ≤ ε

}
.
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4. Geometric distribution

We suppose in this section that the probability mass function γ(n) is the one of the geometric
distribution with parameter b ∈ (0, 1), truncated at step n, i.e. γ(n) is given, for n ≥ 2 and
r = 1, . . . , n − 1 by pr,n = (1 − b)r−1b and pn,n = (1 − b)n−1. Clearly hypothesis (H) is satisfied
and from Relation (7), we have p1,n = b and thus lim

n−→∞ p1,n = b. From Relation (7), we have

γ(1)(n − 1) = γ(n − 1), for every n ≥ 2. Thus, we have from Theorem 2.1, for every n ≥ 2 and
k ≥ 1,

�{Θγ
n > k} =

k∑
�=0

(
k

�

)
b� (1 − b)k−� αQ�

��{Θγ
n−1 > k − �}. (8)

Moreover, Corollary 3.5 applies, i.e., for every k ≥ 1,

�{Θγ > k} =
1

1 − (1 − b)k

k−1∑
�=0

(
k

�

)
(1 − b)�bk−�

�{Θγ > �}αQk−�
�. (9)

5. Application to cluster-based distributed storage

A cluster-based distributed storage peer-to-peer system guarantees durable access to large scale
applications such as file sharing, streaming, or video-on-demand. It is achievable by harnessing
the very large storage space globally provided by the many unused or idle nodes connected
to the network. A common approach to handle these nodes is by having nodes that are close
to each other according to a given proximity metric to self-organize into clusters. Specifically,
each object (e.g. data stream, file) is divided into k equal size fragments, and recoded into a
potentially unlimited number of independent check blocks through a rateless-erasure coding (also
called Fountain) scheme (e.g. Luby (2002)). Fundamental property of erasure coding is that one
may recover an initial object by collecting k′ distinct check blocks generated by different sources,
with k′ slightly greater than k. During the coding phase, each check block ci is generated by
(i) choosing a degree di from a particular degree distribution, (ii) randomly choosing di distinct
input symbols (called neighbors of ci) among the k input symbols, and (iii) combining the di

neighbors into a check block ci by performing a bitwise xor operation. The key idea of the
decoding process is to build the Tanner graph based on the set of received check blocks. Upon
receipt of check blocks, the decoder (i) finds any check block ci with degree equal to one, (ii)
removes the edge between ci and ki in the Tanner graph, and (iii) executes a bitwise xor
operation between ki and any remaining check block cr that has ki as neighbor, and remove
the edge between cr and ki. These steps are repeated until all k input symbols are successfully
recovered. To guarantee the success of the decoding, the degree distribution is designed so that
as few as possible check blocks are needed to ensure minimum redundancy among them, and
the average degree is as low as possible to reduce the average number of symbol operations to
recover the original data. This amounts to generating check blocks so that in average no more
than 1/4 of them are of degree one to start the decoding and to prevent a too high amount of
redundancy among these check blocks, 1/2 of them are of degree 2 so that combined with degree
1 check blocks they allow to cover a large proportion of input blocks, and 1/8 of them are of
degree 3 so that the decoding process is unlikely to get stuck. The repartition of the other check
blocks classically shows a steep decline, i.e. 1/2i of them are of degree i. These check blocks are
disseminated to the nodes of the system so that all the nodes that receive degree 1 check blocks
self-organize into a cluster, those that receive degree two check blocks self organize into another
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cluster, and so on. Nodes can freely join and leave a cluster. For scalability and reliability reasons
the number of nodes in a cluster is constrained. When the cluster size undershoots m nodes,
then new check blocks are generated so that new nodes will join the cluster. Similarly when it
exceeds M then generation of check blocks is suspended. In this model, γ(n) = (p1,n, . . . , pn,n),
where p�,n = 1/2�, for � = 1, . . . , n−1 and pn,n = 1/2n−1, represents the distribution that allows
to choose, at each instant (that corresponds to a join or leave event), a given cluster. Θγ

n then
represents the first instant at which a cluster reaches its minimal (m) or maximal (M) size.

We model the effects of join and leave events using a homogeneous discrete-time Markov chain
denoted by X = {Xn, n ≥ 0}, which represents the evolution of the number of nodes in a cluster.
This Markov chain is depicted in Figure 5 in which q = 1 − p and p ∈ (0, 1). The transition

m+1 m+2 · · · · · · M -2 M -1

a

p p p p

q q q q

1

q p

Figure 1. Markov chain model of one cluster

probability p means that a new peer joins the cluster while the transition probability q means
that a peer leaves the cluster. The transition from state m + 1 to the absorbing state expresses
the fact that the cluster has reached its minimal size m and that the coding has to be activated.
In the same way the transition from state M − 1 to the absorbing state means that the cluster
has reached its maximal size M and that the coding has to be suspended. The initial distribution
α that we consider is the unit row vector ej where j = �(M + m)/2	. This means that X0 = j
with probability 1. The matrix Q which gives the transitions between the transient states of X
is thus a tri-diagonal matrix where non-zero entries are Qi,i+1 = p and Qi,i−1 = q = 1 − p. As
explained above, the probability mass function γ(n) is a truncated geometric distribution with
parameter b = 1/2, i.e. given by pr,n = 1/2r, for every r = 1, . . . , n − 1 and pr,n = 1/2n−1. The
distribution of Θn is then given by (8) and its limiting behavior is given by (9).

For the numerical evaluations, we have chosen p = 1/2. With this value, we easily get
E(Θ1 | X0 = i) = (i − m)(M − i). We have also chosen m = 4 and M = 16 which implies that
the number of transient states is equal to 11, that X0 = 10 and E(Θ1) = 36. By the way, it
is easily checked that α(I − Q)−1 = (1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1). For an error tolerance fixed to
ε = 10−4, the obtained values for the truncation steps K, L and J used to compute respectively
the distribution of Θγ

n, its expectation and the expectation of Θγ are K = 550 and L = J = 787.
Note that, since mn = 1/2 is independent of n, so are K and L and since mn = b = 1/2, we
have L = J .

Figure 2 shows the distributions of Θγ
n and Θγ for different values of n. It is worth noting that

the limiting distribution is reached very quickly for small values of n.
This result shows that the application designer does not need to determine the system size n

(for n ≥ 5) in order to calibrate the periods at which he must generate or suspend the coding
process. For instance, for every n ≥ 5, we have �{Θγ

n > 100} ∈ [0.0893, 0.0928). This proves the
scalability of this approach. This argument is confirmed in Table 1 which shows the expected
values of Θγ

n and Θγ for different values of n.

E(Θγ
1) E(Θγ

2) E(Θγ
3) E(Θγ

4) E(Θγ
5) E(Θγ

6) E(Θγ
7) E(Θγ

8) E(Θγ)
36 42.2046 47.4027 50.6644 52.0177 52.3487 52.3928 52.3960 52.3961
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Figure 2. From bottom to the top: �{Θγ
1 > k}, �{Θγ

2 > k}, �{Θγ
3 > k}, �{Θγ

4 > k}, �{Θγ
5 > k}, �{Θγ > k} as functions

of k.

Table 1: Values E(Θγ
n) and E(Θγ) for different values of n.
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