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1 Introduction

In this paper, we consider the following high frequency Helmholtz equation,

+ i
αε

ε
uε + ∆uε +

n2(x)

ε2
uε = Sε(x) , x ∈ Rd , (1)

where the source term Sε in (1) concentrates on a p-dimensional manifold

Γ ⊂ Rd, i.e. it is chosen of the form,

Sε(x) := − 1

εq

∫
Γ

A(y)eiφ(y)/εS

(
x− y

ε

)
dσ(y) . (2)



The factor n(x)/ε in (1) is the scaled refraction index, and the scaling param-

eter ε prescribes the typical wavelength of solutions uε to the given Helmholtz

equation. The prefactor αε > 0 is a regularizing parameter, with,

αε → α ≥ 0 as ε→ 0 , (3)

so that αε may vanish asymptotically, but the positivity of αε for any given

ε > 0 uniquely determines uε in (1). The right hand side of (1) models a source

concentrating on a surface Γ via the concentration profile ε−qS((x − y)/ε).

Note that the exact value of the scaling exponent q ≥ 0 in terms of the

dimensions p and d is made precise below, and it depends on the behavior of

the refraction index n(x) together with the phase φ(x). The source emits waves

with amplitude A ∈ R and phase φ, oscillating with the same wavelength ε as

uε, via the term A(y) exp(iφ(y)/ε), so as to create resonance effects between

the highly oscillating function uε and the source itself. Finally, Γ is a smooth

p-dimensional manifold (0 ≤ p ≤ d) with euclidian surface measure dσ. We

actually assume that Γ is given as the range of the embedding (i.e. the proper

injective immersion) γ : Rp 7→ Rd. We also assume that for fixed t the vectors

{ ∂γ
∂tj

(t)} form an orthonormal basis for the p-dimensional tangent space to

Γ, Tγ(t)Γ. These assumptions can always be realized locally, and we simply

assume for convenience here that they are satisfied globally.

Using the global parametrization γ we can thus write (1) as,

+i
αε

ε
uε + ∆uε +

n2(x)

ε2
uε = (4)

− 1

εq

∫
Rp
A(γ(t))eiφ(γ(t))/εS

(
x− γ(t)

ε

)
dt.

The goal of this paper is to present a description of the high frequency limit

ε→ 0 in (1).

Before going further, we mention that the model under consideration (1)

may seem fairly general, since the refraction index n(x) is allowed to vary with

x, and the source Γ may have non-vanishing curvature. We are indeed able

to present a formal description of the asymptotics ε→ 0 in (1) in the case of



a variable refraction index n(x), as well as for a general smooth manifold Γ.

However, the rigorous results presented in this paper are merely concerned with

the case of a constant refraction index n(x) ≡ n0, together with a p-dimensional

affine subspace Γ. Even the formal analysis sometimes requires the assumption

that n(x) is constant, depending on the exact regime under consideration (see

below). These two restrictions on n and Γ deserve some comments. First, the

restriction on the refraction index is not just a technicality, and it is linked to

the difficulty of finding a reasonable “radiation condition at infinity” in this

case, a difficulty that we are not able to overcome in the present framework. In

other words, the regularizing parameter +i(αε/ε)u
ε uniquely prescribes uε in

(1), and the difficulty lies in defining the limiting value of uε as the regularizing

parameter αε/ε is set to 0+. On the other hand, the restriction on Γ (namely

that Γ should have vanishing curvature) stems from more technical reasons,

and a future work intends to state rigorous results for general sources Γ (and

in all regimes), see [3].

Now, we wish to describe the propagation of quadratic quantities, like the

local energy density |uε(x)|2, as ε → 0. As it is classical since the works of

Tartar [10], Lions and Paul [7], Gérard, Mauser, Markowich and Poupaud,

[4, 6], this can be done via the Wigner measure f associated with the family

uε. The outcome of our study is that we can identify three different regimes.

The first possible regime is a propagative regime, obtained under the typical

assumption |∇φ(x)| < n(x) for any x (or more precisely |∇τφ(x)| < n(x),

∀x ∈ Γ, see below). In this case, the scaling exponent q in (2) has to be taken

as,

q =
3 + d+ p

2
, (5)

and the limiting Wigner measure is described by a transport equation,

+ αf(x, ξ) + ξ · ∇xf +
1

2
∇xn

2(x) · ∇ξf = Q(x, ξ). (6)

This equation describes the propagation of energy in the medium having re-

fraction index n(x) as in geometrical optics (propagation along the rays of



geometrical optics), and in this picture f(x, ξ) can be seen as the energy den-

sity carried by rays located at the position x with velocity ξ. The source

term Q in the right-hand-side of (6) is the remainder of the source Sε in the

Helmholtz equation (1) as it is defined in (2), and it cannot be obtained via

geometrical optics analysis. It keeps track of the interaction between the high

oscillations of the source term Sε and the ones generated by the high frequency

Helmholtz operator ∆x +n2(x)/ε2. For this reason, the limiting energy source

Q(x, ξ) is naturally concentrated on the curve Γ in the space variable x. Also,

it is concentrated on velocities ξ such that ξ2 = n2(x) and ξ should have a

specific direction in terms of ∇φ(x). For instance, when, 0 < p < d, we are

able to get the explicit formula,

Q(x, ξ) = 2pπp+1|Ŝ(ξ)|2 (7)∫
Γ

δ(x− y) δ(ξτ
y −∇τφ(y)) δ

(
n2(y)− |ξ|2

)
|A(y)|2dσ(y) ,

where ξτ
y is the component of ξ tangential to the curve at y, ξν

y its normal

component, and ∇τφ(y) denotes in the same vein the part of ∇φ(y) which is

tangential to Γ at y, a convention that we shall keep throughout the paper.

Hence, the source emits rays in the direction of ∇τφ(y). This role of ∇τφ(y) is

well-known and, for instance, the basis for the working of so-called phase array

antennae. We actually have to supplement (6) with a radiation condition at

infinity in the case α ≡ 0, analogous to the Sommerfeld radiation condition

for the Helmholtz equation, and this creates the key difficulty in passing to

the limit from (1) to (6). We refer to the sequel for details on this point.

The second possible limit is obtained in a resonant regime, where |∇τφ(x)| >
n(x), ∀x ∈ Γ. Our formal analysis is now restricted to the case of a constant

refraction index n(x) ≡ n0. In this regime the waves created by the source

term Sε in (1) and the ones created by the high frequency Helmholtz operator,

interact in a weaker way than in the propagative regime. For this reason, the

source Sε in (1) has to be amplified in a stronger way than in the propagative

regime above, so that the scaling exponant q in (2) has the greater value,

q =
4 + d+ p

2
, (8)



in this case (compare with (5)). The assumption |∇τφ(x)| > n(x) implies

indeed that no ray vector ξ satisfies at the same time the two conditions

ξτ
y = ∇τφ(y) and ξ2 = n2(y) needed in the propagative regime, see (7). For

this reason, the interaction between the two waves is entirely located on the

curve Γ, hence the energy density f itself is located on Γ, and it does not

propagate outside Γ. We find that the Wigner measure is directly given by,

f(x, ξ) = (2π)p

∫
Γ

δ(x− y) δ(ξτ
y −∇τφ(y))

|Ŝ(ξ)2|A(y)|2

(n2(y)− |∇φ(y)|2)2
dσ(y) , (9)

under the assumption that |∇φ|(x) > n(x) (≡ n0).

The third possible regime, called the characteristic regime, is the border-

line between the resonant and the propagative regimes. It corresponds to the

typical situation where |∇τφ|(x) ≡ n(x) on Γ, and our formal study is again

restricted to the case of a constant refraction index n(x) ≡ n0. In this regime,

the two typical sets ξ2 = n2(y) and ξτ
y = ∇τφ(y) intersect tangentially. The

interaction between waves created by the source term and waves created by the

Helmholtz operator is stronger than in the resonant regime where these two

sets do not intersect. Also, this interaction may be either weaker or stronger

than in the propagative case where these two sets intersect transversely, de-

pending on the value of d − p (compare (10), (8) and (5)). We perform the

complete analysis of the characteristic regime under the simplifying assump-

tion that the phase φ depends linearly on its argument. It turns out that the

energy density is again located on Γ in this case (the interaction is still too

weak to propagate outside Γ). Though the energy does not propagate outside

Γ, we show that it is propagated inside Γ, according to the flow of ∇τφ. Also,

the following choice of the scaling exponent q is prescribed,

q =
4 + 3d+ p

4
. (10)

However, we do not know whether these conclusions still hold true in more

general situations, where the curve Γ has non-vanishing curvature, or the phase

φ depends non-linearly upon its argument.



We wish to mention here that the distinction between these three regimes

(propagative/resonant/characteristic) naturally arising in the present context

is reminiscent of the standard distinction between, respectively, hyperbolic,

elliptic, and glancing covectors arising in the study of semi-classical measures

for boundary value problems. See e.g. [5] for the asymptotic analysis of the

eigenfunctions of the Laplacian on a bounded domain, or [8] for the asymptotic

analysis of a Schrödinger equation with interface.

We wish to end this introduction by mentioning that the kind of limit under

consideration here is already studied in [2], where the simple case of a point

source (p = 0) is treated, but the refraction index n(x) is allowed to depend

on x. As in [2], one important difficulty in passing to the limit in (1) lies in

the fact that the solution uε(x) typically decays too slowly with x, in the sense

that it belongs to weighted spaces of the form L2(〈x〉−βdx), for some (large

enough) β > 0. This is due to the fact that the Helmholtz operator is not

elliptic and generates roughly speaking a singularity of the form δ(ξ2−n2(x)).

in the Fourier space (here ξ is the Fourier variable corresponding to x). The

situation actually gets more difficult to control in the present context, due to

the highly oscillating source terms (2) that we consider in (1). They generate

a new singularity of the form δ(ξτ
y − ∇τφ(y)), y ∈ Γ, in the Fourier space.

(Like above, ξτ
y is the component of ξ tangent to the manifold Γ at y). As a

consequence, we have to control, say, the singularity created by the product of

these two Dirac masses in order to obtain uniform weighted L2 estimates. In

the case treated in [2], the specific shape of the source term makes it possible

to use new uniform (in ε) estimates for the Helmholtz operator established by

B. Perthame and L. Vega in [9], also valid for a variable refraction index n(x),

and the problem is reduced to controlling the Wigner transform of functions

merely lying in weighted L2 spaces, instead of the natural L2 framework. In

the present paper, the estimates established in [9] cannot be applied due to

the lack of decay of the source in the directions of Γ, and the new difficulty

lies in obtaining the desired a priori weighted-L2 estimates. We are only able

to get these bounds in the case of a constant refraction index (n(x) ≡ n0),



where reasonably explicit formulae are at hand, and this is the reason of our

restriction on n when proving rigorous convergence results.

Notation

For a given p-dimensional surface Γ, a point y ∈ Γ, and a given vector ξ, we

use the notation ξ = ξτ
y + ξν

y ∈ TyΓ + T⊥
y Γ. According to the context, ξτ

y is

considered either as a vector in Rp, or a vector in (a p-dimensional subspace

of) Rd, without notational distinction.

If Γ is a linear subspace, we drop the index y and simply write ξτ and ξν

instead of ξτ
y and ξν

y . For instance, if Γ = Rp × {0} ⊂ Rd, each vector x ∈ Rd

is decomposed as x = xτ + xν ∈ Rp + Rd−p.

Finally, we shall make repeated use of the standard notation, valid for any

x ∈ Rd,

〈x〉 := (1 + x2)1/2 .

2 Formal derivation

The aim of this section is to present the formal computations leading from the

high frequency Helmholtz equation (1) to equations of the form (6) or (9). In

particular, we wish to point out the distinction between the different regimes

(propagative/resonant/characteristic). In this section, all profiles (φ, S, A, γ)

are assumed smooth (say C∞). Also, the profiles S and A are assumed to

decay fast enough at infinity if needed, and we shall never make this point

more precise in the sequel.

We already mentioned in the introduction that the high frequency limit

ε → 0 in (1) combines the emergence of a first Dirac mass δ(ξ2 − n2(x))

created by the singular support of the Helmholtz operator in Fourier space,

and a second one δ(ξτ
y −∇τφ(y)) (y ∈ Γ) due to the oscillations of the source

in (1). In particular, for a given x ∈ Γ, the Helmholtz operator selects those

frequencies with given modulus ξ2 = n2(x), while the source term concentrates



on frequencies such that ξτ
x = ∇φ(x), and a resonance may occur, depending

on whether the sphere ξ2 = n2(x) and the affine subspace ξτ
x = ∇φ(x) intersect

or not. The fact that such resonance can occur in some cases, but cannot occur

in other cases, is the very reason for the different regimes we point out, as we

show below.

We begin this section by briefly introducing the main tool of our analysis,

namely the Wigner transform. With an exception in Section 2.4, this formal

derivation is concerned with the study of (1) in the most singular case where

the asymptotic regularizing parameter α vanishes,

α ≡ 0 .

2.1 The Wigner transform

We begin by defining the Fourier transform of u(x),

û(ξ) = (Fu)(ξ) =

∫
Rd

exp(−ix · ξ)u(x)dx (11)

and its inverse

(F−1û)(x) =
1

(2π)d

∫
Rd

exp(ix · ξ)û(ξ)dξ. (12)

Next, letting uε(x) be the unique solution to (1) (in L2(Rd), say), we introduce

its Wigner transform f ε(x, ξ) as,

f ε(x, ξ) := Fy→ξ

(
uε(x+ ε

y

2
) uε(x− ε

y

2
)

)
. (13)

As desired, f ε is obviously a quadratic function of uε. We mention in passing

the following easy equality, valid for any (smooth enough) function uε, namely,∫
Rd
f ε(x, ξ)dξ = (2π)d|uε|2(x) ,

and the right-hand-size is precisely the energy density, a quantity whose asymp-

totic behaviour we wish to describe. As a second comment concerning the

definition (13), we recall that, from (1), uε(x) typically varies on scales of the

order ε (∼ wavelength), so that the decorrelations x + εy/2 and x − εy/2 in



(13) allow to “read” the oscillations of uε on this scale, and to get much better

informations than the mere weak convergence of uε in some weighted L2 space.

These two remarks briefly motivate the introduction of f ε as in (13), but we

refer to [11], [7], [6] among others for a more complete discussion of the Wigner

transform.

We now turn to computing the equation satisfied by f ε. Using the notation,

f̂ ε(x, y) := F−1
ξ→yf

ε(x, ξ) = uε(x+ ε
y

2
) uε(x− ε

y

2
) ,

it is classical to observe the identity,

divy∇xf̂ ε(x, y) =
ε

2

[
∆xu

ε(x+ ε
y

2
) uε(x− ε

y

2
)− uε(x+ ε

y

2
) ∆xuε(x− ε

y

2
)

]
.

From this, we get, using (1),

ξ · ∇xf
ε(x, ξ) = −iFy→ξ

(
divy∇xf̂ ε(x, y)

)
= ε Im Fy→ξ

(
Sε(x+ ε

y

2
)uε(x− ε

y

2
)

)
−ε Im Fy→ξ

([
n2(x+ εy

2
)

ε2
+ i

αε

ε

]
uε(x+ ε

y

2
)uε(x− ε

y

2
)

)
.

Here we used the identity (Fg)(ξ) = (Fg)(−ξ). Hence, as it is well known

(See e.g. [7]), the Wigner transform turns the Helmholtz equation (1) into a

“transport equation” with a source term of the form,

+ αεf
ε(x, ξ) + ξ · ∇xf

ε − i

2

1

(2π)d
δnε(x, ξ) ∗ξ f

ε = Qε(x, ξ) . (14)

We use here the notation,

δnε(x, ξ) := Fy→ξ

(
n2(x+ εy

2
)− n2(x− εy

2
)

ε

)
. (15)

Also, the source term in (14) is given by,

Qε(x, ξ) = ε Im Fy→ξ

(
Sε(x+ ε

y

2
) uε(x− ε

y

2
)

)
. (16)

Obviously, the source term (16) is the remainder of the right-hand-side Sε in

(1), and it will be clear below that Qε actually contains most of the difficulties



while passing to the limit ε→ 0 in (14).

The above computations give the desired equation for the Wigner transform

f ε of uε. We now turn to computing the limiting equation for f ε. More

precisely, assume for the moment that we are able to compute the weak limit

Q(x, ξ) of Qε(x, ξ). It is clear from (15) that the following weak convergence

holds,

δnε(x, ξ) →ε→0 Fy→ξ

(
y · ∇xn

2(x)
)

= i(2π)d∇ξδ(ξ) · ∇xn
2(x) . (17)

Hence, at least formally, we readily deduce that f ε, solution to (14), converges

weakly towards the solution f(x, ξ) to the following transport equation,

+ 0f + ξ · ∇xf(x, ξ) +
1

2
∇xn

2(x) · ∇ξf = Q(x, ξ) , (18)

where the limiting source Q is still unknown at present.

The term +0f in (18) deserves detailed comments. It is the remainder

of the term +αεf
ε in (14), and it means that we are considering the unique

outgoing solution to ξ · ∇xf + ∇xn
2(x) · ∇ξf/2 = Q. In other terms, the

solution f to (18) can be defined as the limit when η → 0+ of the solution gη

to +ηgη + ξ · ∇xgη + ∇xn
2(x) · ∇ξgη/2 = Q. To rephrase this definition, we

may say that f is also given by,

f(x, ξ) =

∫ +∞

0

Q(X−s
0 (x, ξ),Ξ−s

0 (x, ξ)) ds , (19)

where the trajectories Xs
0(x, ξ) and Ξs

0(x, ξ) are at the same time the bicharac-

teristics of the Helmholtz operator −∆x − n2(x) (as predicted by geometrical

optics), as well as the characteristic curves of the transport equation (18), i.e.

the solutions to the ordinary differential system,

d

ds
Xs

0(x, ξ) = Ξs
0(x, ξ) , X0

0 (x, ξ) = x ,

d

ds
Ξs

0(x, ξ) =

(
1

2
∇xn

2

)
(Xs

0(x, ξ)) , Ξ0
0(x, ξ) = ξ .

(20)

As a conclusion we have shown that, at least formally, the asymptotic be-

haviour of the Wigner transform f ε of uε is described by the transport equa-

tion (18), where Q is the weak limit of Qε given by (16), which is assumed



to exist for the moment. The subsequent subsections are concerned with the

actual computation of Q, the limiting source of energy. To be more precise,

the asymptotic process ε → 0 is not always naturally described in terms of

Q, and we shall sometimes consider fε itself and directly compute its limit f .

Indeed, and as we shall demonstrate below, the propagative regime naturally

leads to the propagation of energy along the bicharacteristic curves (20) so

considering Qε is natural. The resonant regime, on the other hand, leads to

a situation where the energy remains entirely localized on the source Γ with-

out being propagated neither outside nor inside Γ, and considering fε itself

is somehow more natural. Finally the characteristic regime leads to a situa-

tion where energy is actually propagated inside the curve Γ, and we chose to

consider fε as well in this case.

2.2 The propagative regime

This regime is obtained under the assumption,

0 ≤ p < d , |∇τφ(y)| < n(y) , ∀y ∈ Γ . (21)

In this case, the manifold Γ on which the source in (1) concentrates does not

fill the whole space (assumption p < d). Moreover, when x lies on Γ, the two

singular sets {ξ2 = n2(x)} and {ξτ
x = ∇τφ(x)} do intersect. As a consequence,

we are able to compute the limit of Qε in this case, and the Wigner measure

is indeed described by a Liouville equation with a source term as in (6) and

(18). This is shown in the computations below.

As mentioned in the introduction, the following choice for the scaling ex-

ponent q (see (2)) is prescribed,

q =
3 + d+ p

2
. (22)

2.2.1 The case p > 0

In order to compute the limit of Qε and thus establish the exact form of the

equation (18) obtained in the previous subsection, we will go through some



intermediate steps.

Firstly, due to the concentration profile S((x − y)/ε) in the definition (2)

of Sε, it is natural to introduce, for any point γ(z) lying on Γ (z ∈ Rp), the

rescaled function wε
γ(z)(y) (y ∈ Rd) defined as,

wε
γ(z)(y) ≡ ε(d−p−1)/2uε(γ(z) + εy)e−iφ(γ(z))/ε. (23)

Obviously, wε
γ(z)(·) measures the concentration of uε(x) on Γ close to the point

γ(z), and it also carries the relevant oscillations of uε at this point. These two

facts allow us to compute the limit of wε
γ(z)(·) in the next step.

Secondly, wε
γ(z) carries the right scaling in ε, and it turns out that the

source term Qε and its asymptotic behaviour are easily expressed in terms of

this scaled help function. Indeed, inverting formula (23), we obtain from (16)

and the definition of Sε,

Qε(x, ξ) =

= −ImFy→ξ
1

ε
1+d+p

2

∫
Rp
A(γ(t)) exp

(
i
φ(γ(t))

ε

)
S

(
x− γ(t)

ε
+
y

2

)
uε
(
x− ε

y

2

)
dt

= −ImFy→ξ
1

εd

∫
Rp
A(γ(t))S

(
x− γ(t)

ε
+
y

2

)
wε

γ(t)

(
x− γ(t)

ε
− y

2

)
dt. (24)

Now, letting ψ(x, ξ) be a smooth test function, and testing (24) against ψ, the

change of variables X = (x − γ(t))/ε readily gives the obvious concentration

effect on Γ,

〈Qε, ψ〉 =

∫
R2d

Qε(x, ξ) ψ(x, ξ) dx dξ

= −Im

∫
R2d

Fy→ξ

(∫
Rp
A(γ(t))S

(
X +

y

2

)
wε

γ(t)

(
X − y

2

)
dt

)
ψ(γ(t)+εX, ξ)dXdξ

∼ε→0 −Im

∫
R2d

Fy→ξ

(∫
Rp
A(γ(t))S

(
X +

y

2

)
wγ(t)

(
X − y

2

)
dt

)
ψ(γ(t), ξ)dXdξ

= −Im

∫
Rd

∫
Rp
A(γ(t))Ŝ(ξ)ŵγ(t)(ξ)ψ(γ(t), ξ)dξdt, (25)



so that the problem is reduced to determining the limit wγ(t)(y) := limε→0w
ε
γ(t)(y),

or more precisely its Fourier transform ŵγ(t)(ξ). This is done in the next two

steps.

Thirdly, we observe from (1) that, for any fixed z, the function wε
γ(z)(y)

satisfies the rescaled equation,

+ iεαε w
ε
γ(z)(y) + ∆yw

ε
γ(z) + n2(γ(z) + εy) wε

γ(z) = W ε
γ(z)(y) , (26)

where the rescaled source term W ε
γ(z)(y) is given by,

W ε
γ(z)(y) := −ε(d−p+3)/2Sε(γ(z) + εy) exp (−iφ(γ(z))/ε) (27)

= − 1

εp

∫
Rp
A(γ(t)) exp

(
i
φ(γ(t))− φ(γ(z))

ε

)
S

(
y +

γ(z)− γ(t)

ε

)
dt .

As in the previous subsection, we can now formally pass to the limit in equation

(26) up to computing the actual limit of the source term W ε
γ(z). We have from

(27),

W ε
γ(z) = −

∫
Rp
A(γ(z + εt)) exp(i

φ(γ(z + εt))− φ(γ(z))

ε
)

S(y +
γ(z)− γ(z + εt)

ε
)dt

→ε→0 −
∫

Rp
A(γ(z)) exp (i〈∇φ(γ(z)), Dγ(z) · t〉) S (y −Dγ(z) · t) dt (28)

=: Wγ(z)(y) ,

where Dγ(z) denotes the Jacobian matrix of γ at z and 〈., .〉 denotes the scalar

product in Rd. Hence, we deduce that wε
γ(z) formally converges towards the

solution wγ(z) to,

+ i0wγ(z)(y) + ∆ywγ(z) + n2(γ(z)) wγ(z) = Wγ(z)(y) . (29)

By this we mean that wγ(z) should be the limit at η → 0+ of the unique

solution to +iηw(y) + ∆yw+ n2(γ(z))w = Wγ(z)(y). In other words, the term

+i0wγ(z) in (29) specifies the radiation condition at infinity for wγ(z), and this

means in view of (26) that the radiation condition for wε
γ(z) given by the term

+iεαεw
ε
γ(z) is somehow preserved along the limiting process.



Before actually computing wγ(z)(y) as it is given by (29), we emphasize

here that the assumed preservation of the radiation condition as ε → 0

is far from obvious. More precisely, it is easy to prove that wγ(z) satisfies

∆ywγ(z) + n2(γ(z))wγ(z) = Wγ(z), even for a variable refraction index n(x).

However, one should note that both the regularizing parameter εαε and the

refraction index n(γ(z) + εy) vary with ε in (26). (The fact that the source

term also depends on ε turns out to be less difficult to handle). In particular,

while for ε > 0 the refraction index n(γ(z) + εy) behaves like, say, n(∞) for

large values of y, the limiting refraction index n(γ(z)) in (29) has constant

value n(γ(z)) 6= n(y) at infinity in y. As in [2], this turns out to create consid-

erable difficulties in keeping track of the radiation condition at infinity while

ε → 0. Even for a given smooth right-hand-side in (26) (independent of ε),

it is a conjecture that (26) actually goes to (29), with the correct radiation

condition. In this perspective, the only case where we are able to rigorously

keep track of this condition is obtained when the refraction index does not

depend on y (see the next sections). In this case indeed, one can explicitely

invert the Helmholtz operator, and the problem becomes considerably easier

to handle. We may say as a conclusion that, though all the preceeding formal

limits may be turned into rigorous ones even for a variable n, the deep diffi-

culty in passing to the limit from (26) to (29) is the reason why we restrict

ourselves with a constant n in Section 3.

As a fourth step, when the formal limit (29) is correct, we readily deduce

from (29) and (28) the actual value of ŵγ(z)(ξ). Indeed, we have from (29),

that

ŵγ(z) = lim
η↓0

Ŵγ(z)(ξ)

n2(γ(z))− |ξ|2 + iη
=:

Ŵγ(z)(ξ)

n2(γ(z))− |ξ|2 + i0
, (30)

where we implicitely use the fact that one can compose the distribution,

1

x+ i0
= p.v.

(
1

x

)
− iπδ(x) ∈ D′(R) , (31)

with the map ξ −→ n2(γ(z)) − ξ2 from Rd to R, at least when n(γ(z)) 6= 0,



which is the case here. (We let p.v. denote the principal value in (31).) On

the other hand, upon Fourier transforming (28), we obtain,

Ŵγ(z)(ξ) = −
∫

Rp+d
A(γ(z))ei〈∇φ(γ(z)),Dγ(z)·t〉 e−iy·ξ S(y −Dγ(z) · t) dt dy

= −
∫

Rp
A(γ(z)) exp (i〈∇φ(γ(z))− ξ,Dγ(z) · t〉) Ŝ(ξ) dt

= −(2π)pA(γ(z)) Ŝ(ξ) δ(ξτ
γ(z) −∇τφ(γ(z))) , (32)

where we used the notation given in the introduction. (For fixed z ∈ Rp and

ξ ∈ Rd we let ξ = ξτ
γ(z) + ξν

γ(z) ∈ Tγ(z)Γ + T⊥
γ(z)Γ, and the actual value of ξτ

γ(z)

is ξτ
γ(z) = τDγ(z) · ξ.) Finally, combining (30) and (32) we get

ŵγ(z)(ξ) = −
A(γ(z)) Ŝ(ξ) δ(ξτ

γ(z) −∇τφ(γ(z)))

n2(γ(z))− |ξ|2 + i0
. (33)

This, together with (25) and (31), then gives,

〈Qε, ψ〉 ∼ε→0

∼ε→0 Im

∫
Rd+p

(2π)p|A|2(γ(t))|Ŝ|2(ξ)
n2(γ(t))− |ξ|2 − i0

δ(ξτ
γ(t) −∇τφ(γ(t))) ψ(γ(t), ξ) dξ dt

= (2π)pπ

∫
Rd+p

δ(ξτ
γ(t) −∇τφ(γ(t))) δ(n2(γ(t))− |ξ|2) (34)

|A|2(γ(t)) |Ŝ|2(ξ) ψ(γ(t), ξ) dξ dt .

The fifth and last step is merely a summary of the preceeding steps, to-

gether with the analysis of the previous subsection. The points (34) and (14)

show that, in the case under consideration here, the limiting Wigner distribu-

tion f(x, ξ) associated with uε satisfies the transport equation with a source

term,

+0f(x, ξ) + ξ · ∇xf +
1

2
∇xn

2(x) · ∇ξf = 2pπp+1|Ŝ(ξ)|2 (35)∫
Γ

δ(x− y) δ(ξτ
y −∇τφ(y)) δ

(
n2(y)− |ξ|2

)
|A(y)|2dσ(y) .

This ends the present study and justifies the statement of the introduction.



Remark 1. It is obvious from the definition of these Dirac masses that the

product (of distributions in ξ),

δ(ξτ
y −∇τφ(y)) δ

(
n2(y)− |ξ|2

)
=

δ(ξτ
y −∇τφ(y)) δ

(
n2(y)− |∇τφ(y)|2 − |ξν

y |2
)
,

is ill-defined when |∇τφ(y)|2 = n2(y). This is related to the homogeneity

property,

δ(λ2 − ξ2) = (2λ)−1δ(λ− |ξ|) ,

valid for any λ > 0, which shows that a singularity occurs as λ → 0. This

simple observation explains in part why the limit ε→ 0 is different in the prop-

agative regime (|∇τφ(y)| < n(y)) and in the characteristic regime (|∇τφ(y)| ≡
n(y)).

2.2.2 The case p=0

In fact the same scaling as aboves is correct for p = 0, up to dropping A, φ,

replacing Γ with {0}, and interpreting (1) as,

+ iαεu
ε + ∆uε +

n2(x)

ε2
uε = − 1

ε(3+d)/2
S
(x
ε

)
, x ∈ Rd. (36)

In this case we have W0(y) = S(y). Consequently, ŵ0(ξ) = Ŝ(ξ)/(n2(0)− ξ2 +

i0) and we obtain the limiting equation,

+ 0f(x, ξ) + ξ · ∇xf +
1

2
∇xn

2(x) · ∇ξf = πδ(x) δ(n2(0)− ξ2) |Ŝ(ξ)|2 . (37)

This case was studied in [2].

2.3 The resonant regime

This regime occurs under the assumptions,

0 < p ≤ d , |∇τφ|(y) > n(y) , ∀y ∈ Γ . (38)

(To be complete, we may add that the resonant regime also occurs in the case

when the source Γ fills the whole space, p = d, and |∇τφ(y)| < n(y), ∀y ∈ Γ).



The following choice for the scaling exponent q in (2) is prescribed in this

regime,

q =
4 + d+ p

2
. (39)

The second restriction in (38) forces the two singular sets (in Fourier space)

{ξ2 = n2(y)} and {ξτ
y = ∇τφ(y)} (y ∈ Γ), to have void intersection. In view

of formula (35) established in the previous subsection, this case can not be

correctly described by the same transport equation (35) as in the case p < d,

|∇τφ|(y) < n(y), since the right-hand-side of (35) then vanishes. Indeed,

the product δ(ξτ
γ(z) −∇xφ(x)) δ(n2(γ(z)) − ξ2) formally vanishes under these

circumstances. This leads to thinking that the scaling q = (3 + d+ p)/2 used

in the propagative regime is actually incorrect in the resonant regime under

consideration, hence the need for the appropriate rescaling (39).

To be more precise, using results which are only proven later, we may show

that the solution uε actually tends to zero as ε→ 0 in the present case when

the scaling in (22) is used. Indeed, by Theorem 2 we have, with the notations

of the previous subsection,

||uε||B∗
p
2

≤ ε1/2C||wε
γ(z)||B∗

p
2

(40)

and a simple adaptation of Theorem 1 gives in this case,

||wε
γ(z)||B∗

p
2

≤ C||S||B p
2

. (41)

Following the above remarks and indications, we now prove that, upon cor-

rectly rescaling (1, 2), it is possible to directly compute the Wigner measure

f . As we prove below, the function f itself turns out to be supported only on

the curve Γ.

Firstly, with the choice of q given in (39), we now wish to study the limit

ε→ 0 in,

+i
αε

ε
uε(x) + ∆xu

ε +
n2(x)

ε2
uε = (42)

− 1

ε2+ p+d
2

∫
Γ

A(y) exp

(
i
φ(y)

ε

)
S

(
x− y

ε

)
dσ(y) .



Also, we rescale and extend the definition of wε
x to any x ∈ Rd by simply

setting,

wε
x(y) ≡ uε(x+ εy) exp(−iφ(x)

ε
) (x ∈ Rd) . (43)

At last, we restrict the present analysis to the case where the refraction index

is constant, that is,

n(x) ≡ n0 , ∀x ∈ Rd . (44)

The formal analysis we propose below holds analogously for a more general

refraction index, though it leads to a questionable limiting procedure in a non-

linear function of uε, see below. This is the reason for the present restriction.

Secondly, we now express the Wigner function f ε itself in terms of the

rescaled help function wε
x. This gives,

f ε(x, ξ) = Fy→ξu
ε
(
x+

ε

2
y
)
uε
(
x− ε

2
y
)

= Fy→ξw
ε
x

(y
2

)
wε

x

(
−y

2

)
=

22d

(2π)d

(
ŵε

x ? ŵε
x

)
(2ξ) =

2d

(2π)d

∫
Rd
ŵε

x(2ξ − η) ŵε
x(η) dη . (45)

Hence we have left to pass to the limit on the non-linear expression ŵε
x ∗ ŵε

x.

Thirdly, we now perform the desired limiting procedure by using the equa-

tion for wε
x. Indeed, for any fixed x ∈ Rd the function wε

x(y) satisfies the

equation,

+iεαεw
ε
x(y) + ∆yw

ε
x + n2(x+ εy)wε

x = W ε
x(y) ,

that is, under the assumption (44),

+ iεαεw
ε
x(y) + ∆yw

ε
x + n2

0 w
ε
x = W ε

x(y) , (46)

where the rescaled source term W ε
x is given by,

W ε
x(y) = − 1

ε
p+d
2

∫
Rp
A(γ(t)) exp

(
i
φ(γ(t))− φ(x)

ε

)
S

(
x− γ(t)

ε
+ y

)
dt. (47)



Now, roughly speaking, we way summarize the computations below in the fol-

lowing way: the factor ε−d/2S(y+(x−γ(t)/ε) in (47) enforces the appearance

of the Dirac mass δ(x − γ(t)) in (45), while for x ∈ Γ, x = γ(z), the fac-

tor ε−p/2 exp(i[φ(γ(t)) − φ(γ(z))]/ε generates a term exp(i〈∇φ(γ(z)), Dγ(z) ·
(z−t)〉) upon rescaling. These two facts briefly justify the formula (50) below.

The above rough summary is made precise in a fourth step. We write,

using (46) together with (47),

ŵε
x(ξ) = − ε−

p+d
2 Ŝ(ξ)

n2
0 − |ξ|2 + iεαε

(48)∫
Rp
A(γ(t)) exp

(
i
φ(γ(t))− φ(x) + 〈x− γ(t), ξ〉

ε

)
dt.

This gives in (45),

f ε(x, ξ) =
2d

(2π)dεp+d

∫
Rd+2p

Ŝ(2ξ − η) Ŝ(η)

[n2
0 − (2ξ − η)2 + iεαε] [n2

0 − η2 − iεαε]
(49)

A(γ(t)) A(γ(t′)) exp

(
i
φ(γ(t))− φ(γ(t′)) + 〈γ(t′)− γ(t), η〉

ε

)
exp

(
2i
〈x− γ(t), ξ − η〉

ε

)
dt dt′ dη .

Now one has to take care of the highly oscillating terms exp(i · /ε) in (49).

This can be done by using the non-stationary phase lemma. Alternatively, the

natural rescaling,

t′ 7→ t+ εt′, η 7→ ξ + εη/2 ,

gives the desired concentration phenomena in the variables t′ and η,

f ε(x, ξ) =
1

(2π)d

∫
Rd+2p

Ŝ(ξ − εη/2) Ŝ(ξ + εη/2)

[n2
0 − (ξ − εη/2)2 + iεαε] [n2

0 − (ξ + εη/2)2 − iεαε]

A(γ(t)) A(γ(t+ εt′)) exp (−i〈x− γ(t), η〉)

exp

(
i
φ(γ(t))− φ(γ(t+ εt′)) + 〈γ(t+ εt′)− γ(t), ξ + εη/2〉

ε

)
dt dt′ dη ,



so that,

f ε(x, ξ) ⇀
1

(2π)d

∫
Rd+2p

|Ŝ|2(ξ)
[n2

0 − ξ2]2
|A|2(γ(t)) exp (−i〈x− γ(t), η〉)

exp (i [〈Dφ(γ(t)), Dγ(t) · t′〉 − 〈Dγ(t) · t′, ξ〉]) dtdt′dη

=
1

(2π)d

∫
Rd+2p

|Ŝ|2(ξ)
[n2

0 − ξ2]2
|A|2(γ(t)) exp (−i〈x− γ(t), η〉)

exp
(
−i〈ξτ

γ(t) −∇τφ(γ(t)), t′〉
)
dtdt′dη .

Upon explicitely performing the dη and dt′ integrations we thus obtain the

weak limit f of the Wigner function f ε,

f(x, ξ) = (2π)p |Ŝ|2(ξ)
[n2

0 − ξ2]2

∫
Γ

δ(x− y)δ
(
ξτ
y −∇τφ(y)

)
|A|2(y)dσ(y) . (50)

This ends the analysis of the resonant regime. As we see, the limiting

value f is directly computed here, up to the restriction (44) at least. The

semi-classical measure f is entirely supported on positions x ∈ Γ, as well as

frequencies ξ having prescribed tangential part ξτ
γ(t) = ∇τφ(γ(t)), as it was

already the case while computing the limiting source term Q in the previous

subsection.

2.4 The characteristic regime

This case is the borderline between the propagative and the resonant regimes.

It is obtained by assuming,

∇τφ(y) ≡ n(y) , ∀y ∈ Γ . (51)

In this case indeed, for any point y ∈ Γ, the corresponding sets {ξτ
y = ∇τφ(y)}

and {ξ2 = n2(y)}, where the frequencies concentrate in Fourier space, inter-

sect tangentially. Roughly speaking, and in analogy with (34), the product

δ(ξτ
y −∇τφ(y)) δ(ξ2−n2(y)) naturally arising along the high frequency limit is

therefore more singular than in the case where the two singular sets intersect

transversely. See the remark at the end of Section 2.2.1. The apriori estimates

in Section 3 are actually no longer valid. This subsection is devoted to showing



that, upon correctly rescaling Sε, one can directly compute the actual limiting

value f of fε. Again, we restrict ourselves in this subsection to the case of a

constant refraction index,

n(x) ≡ n0 .

Also, it turns out that, for sake of homogeneity, we have to impose a non-

vanishing regularising parameter α to get a meaningful limit in this case,

αε → α > 0 .

Without this assumption, the Wigner function f ε might diverge. Indeed, when

αε → 0, one has to replace the prefactor ε in (58) by εαε, and easy compu-

tations lead to a (possibly) diverging f ε, depending on the specific values of

φ, γ. We refer also to Remark 3, where the constant C(α) is easily seen to

blow-up when α→ 0.

However, these prescriptions are not enough, and we have to make two last

simplifying assumptions, namely that the phase φ and the parametrization γ

of the manifold Γ are linear. In the general case indeed where φ and/or γ

are true non-linear functions of their arguments, additional oscillations occur,

leading to an intricate limiting procedure. Under these assumptions at least,

the correct scaling exponent q in (2) for the characteristic regime turns out to

be,

q =
4 + 3d+ p

4
. (52)

It is clear from the computations below that the present scaling is imposed

by the singularity created by the product δ(ξτ
y −∇τφ(y)) δ(ξ2 − n2(y)) at the

point where the two surfaces intersect tangentially, see (57). We now turn to

the detailed analysis of the present case.

Without loss of generality, the simplifying assumption we need may be



written,

φ(x) = ∇φ · x , ∀x ∈ Rd , (53)

γ(t) = (t, 0) ∈ Rp × Rd−p , ∀t ∈ Rp ,

where ∇φ ∈ Rd is a fixed vector. It turns out that the complete treatment of

the present case requires the additional constraint that the source Γ has large

enough a dimension, namely,

p > d− 4 , (54)

and we refer to Remark 3 at the end of this section for this technical point.

We are now interested in passing to the limit in the equation,

+i
αε

ε
uε(x) + ∆xu

ε +
n2(x)

ε2
uε = (55)

− 1

ε
3d+p

4
+1

∫
Γ

A(y) exp

(
i
φ(y)

ε

)
S

(
x− y

ε

)
dσ(y) .

As a second step, we compute the actual value of the Wigner measure f ε

(before any scaling limit), as in the resonant case treated in Section 2.3. The

computations are the same, since only the scaling differs in the present case.

Upon testing f ε(x, ξ) against some smooth test function ψ(x, ξ), we readily

obtain,

〈f ε, ψ〉 =
2d

(2π)dε
3d+p

2
−2

∫
R3d+2p

ψ(x, ξ) exp

(
2i
〈x− γ(t), ξ − η〉

ε

)
(56)

A(γ(t)) A(γ(t′)) exp

(
i
φ(γ(t))− φ(γ(t′)) + 〈γ(t′)− γ(t), η〉

ε

)
Ŝ(2ξ − η) Ŝ(η)

[n2
0 − (2ξ − η)2 + iεαε] [n2

0 − η2 − iεαε]
dt dt′ dη dξ dx ,

where γ and φ are at present still general functions.

Before going further, we now comment as a third step on the formal asymp-

totic behaviour of f ε as it is given in (56). As in the previous subsection, the

highly oscillating phases in (56) are expected to cause, among other things,



the concentration of the above integral on the set ξ = η, ∇τφ(x) = ξτ
x . What

differs from the previous case is the fact that a new singularity develops in

the denominator of (56). Indeed, due to the concentration on those sets and

a characteristic phase |∇τφ|2 ≡ n2
0, the denominator should behave like,

[n2
0 − (ξτ

x)2 − (ξν
x)2 + iεαε] [n2

0 − (ξτ
x)2 − (ξν

x)2 − iεαε]

∼ε→0 [−(ξν
x)2 + iεα] [−(ξν

x)2 − iεα] = [(ξν
x)4 + ε2α2] , (57)

Hence, we are a priori led to manipulate the distribution,

1

(ξν
x)4 + ε2α2

∼ε→0 const(α) ε
d−p
2
−2 δ(ξν

x) ∈ D′(Rd−p) ,

for some constant depending on α = limε→0 αε. The new factor ε(d−p)/2−2

created by the additional singularity of the denominator is the reason for our

rescaling of the source term Sε in the characteristic regime.

The fourth step is now devoted to the precise description of the above rough

analysis. Following the intuition already described, we naturally consider the

change of variables,

ξ 7→ η + ε
ξ

2
, ητ

γ(t) 7→ ∇τφ(γ(t)) + εητ
γ(t), ην

γ(t) 7→ ε1/2ην
γ(t), (58)

in (56). The first two mappings take care of the (expected) concentration

towards ξ = η, ητ
γ(t) = ∇τφ(γ(t)). Note also that the rescaling of the normal

part of η by a factor ε1/2 is the natural one. With this scaling indeed, the term

(ξν
γ(t))

4 + ε2α2 which, by (57), is expected to come up in the limit is nicely

rescaled into ε2 [(ξν
γ(t))

4 + α2]. Now the change of variables (58) transforms



(56) into

〈f ε, ψ〉 =
εd+p+ d−p

2

(2π)dε
3d+p

2
−2ε2

∫
R3d+2p

ψ

(
x, η + ε

ξ

2

)
A(γ(t)) A(γ(t′)) (59)

exp (i〈x− γ(t), ξ〉) exp
(
i〈γ(t′)− γ(t), ητ

γ(t)〉
)

exp

(
i
φ(γ(t))− φ(γ(t′)) + 〈γ(t′)− γ(t),∇τφ(γ(t))〉

ε
+ i

〈γ(t′)− γ(t), ην
γ(t)〉√

ε

)
Ŝ(η + εξ) Ŝ(η)

[
n2

0 − (η + εξ)2

ε
+ iαε][

n2
0 − η2

ε
− iαε]

dt dt′ dη dξ dx ,

where we implicitely use the notation,

η = ∇τφ(γ(t)) + εητ
γ(t) + ε1/2ην

γ(t) . (60)

Note that the denominators in (59) are of order one, since, by (60) and the

assumption |∇τφ| ≡ n0,

n2
0 − (η + εξ)2

ε
= −(ην

γ(t))
2 − 2〈∇τφ(γ(t)), ξτ

γ(t) + ητ
γ(t)〉+O(ε1/2) ,

n2
0 − η2

ε
= −(ην

γ(t))
2 − 2〈∇τφ(γ(t)), ητ

γ(t)〉+O(ε) .

It remains therefore to take care of the last oscillating term exp(i ·/ε+ i ·/ε1/2)

in (59). In the particular case where φ and γ are linear (assumption (53)), this

term cancels out, since its value is,

〈∇τφ, t− t′〉+ 〈t′ − t,∇τφ〉
ε

+
〈t′ − t, ην〉√

ε
≡ 0 .

This is the reason for the assumption of a linear phase we made above. Hence

we can easily pass to the limit in this particular case, and by (53) we obtain,

〈f ε, ψ〉 → 1

(2π)d

∫
R3d+2p

dt dt′ dη dξ dx ψ(x,∇τφ) A(t) A(t′) (61)

exp (i〈xτ − t, ξτ 〉) exp (i〈xν , ξν〉) exp (i〈t′ − t, ητ 〉)
|Ŝ|2(∇τφ)

[−(ην)2 − 2〈∇τφ, ξτ + ητ 〉+ iα][−(ην)2 − 2〈∇τφ, ητ 〉 − iα]

=
1

(2π)p

∫
R4p+d

dt dt′ dξτ dη dxτ ψ(xτ ,∇τφ) A(t) A(t′)

exp (i〈xτ − t, ξτ 〉) exp (i〈t′ − t, ητ 〉)
|Ŝ|2(∇τφ)

[−(ην)2 − 2〈∇τφ, ξτ + ητ 〉+ iα][−(ην)2 − 2〈∇τφ, ητ 〉 − iα]
,



where the last equality is obtained by explicitely performing the dξν integra-

tion, which gives (2π)d−pδ(xν). Now the change of variables ξτ 7→ ξτ − ητ

gives,

〈f, ψ〉 = (2π)−p

∫
R4p+d

dt dt′ dξτ dη dxτ ψ(xτ ,∇τφ) A(t) A(t′)

exp (i〈xτ − t, ξτ 〉) exp (−i〈xτ − t′, ητ 〉)
|Ŝ|2(∇τφ)

[−(ην)2 − 2〈∇τφ, ξτ 〉+ iα][−(ην)2 − 2〈∇τφ, ητ 〉 − iα]

= (2π)−p

∫
Rp
dxτ ψ(xτ ,∇τφ)∫

Rd−p
dην

∣∣∣∣Ŝ(∇τφ)

∫
R2p

dt dητ A(t) exp (i〈xτ − t, ητ 〉)
[−(ην)2 − 2〈∇τφ, ητ 〉+ iα]

∣∣∣∣2 .
As a fifth and last step, we conclude by saying that the final value of f is,

f(x, ξ) = (2π)−pδ(xν) δ(ξτ −∇τφ) δ(ξν) A(xτ ) , (62)

where the energy density A(xτ ) is,

A(xτ ) =

∫
Rd−p

dην

∣∣∣∣Ŝ(∇τφ)

∫
R2p

dt dητ A(t) exp (i〈xτ − t, ητ 〉)
[−(ην)2 − 2〈∇τφ, ητ 〉+ iα]

∣∣∣∣2
=

∫
Rd−p

dην

∣∣∣∣∣Ŝ(∇τφ)

∫
Rp
dητ Â(ητ ) exp (i〈xτ , ητ 〉)

[−(ην)2 − 2〈∇τφ, ητ 〉+ iα]

∣∣∣∣∣
2

, (63)

and Â denotes the Fourier transform of A. The characteristic regime thus

leads to a situation where the energy is entirely concentrated on the curve Γ in

the space variable x, and on rays with purely tangential velocity ξτ
x = ∇τφ(x),

ξν = 0. The constraint ξτ = ∇τφ(x) is a common feature with the propagative

and resonant regimes, whereas the second constraint ξν = 0 is specific to the

characteristic regime. Nevertheless, this characteristic regime is of propagative

type because f(x, ξ) depends in a non-local way upon the data, though it

cannot be described by the mere propagation along bicharacteristics as in the

propagative case. We make this point more precise below.



Remark 2. Energy propagation inside the source Γ.

Though in the present regime, the energy does not propagate outside the source

Γ, we may observe that, in some sense the energy density f is given as the

average of a complex amplitude propagating along the source Γ itself.

More precisely, we write the energy density A as the following average over

the normal direction,

A(xτ ) :=

∫
Rd−p

dην |a(xτ , ην)|2 ,

with the obvious notation for a(xτ , ην),

a(xτ , ην) = Ŝ(∇τφ)

∫
Rp
dητ Â(ητ ) exp (i〈xτ , ητ 〉)

[−(ην)2 − 2〈∇τφ, ητ 〉+ iα]
.

We prove below that the complex amplitude a(xτ , ητ ) is the solution of the

transport equation posed on the source Γ,

[α+ i(ην)2]a(xτ , ην) + 2∇τφ · ∇xτa = i(2π)pŜ(∇τφ)A(xτ ) . (64)

(Recall that, from the assumption (53), Γ is the linear subspace parameterized

by xτ ).) This proves that the amplitude A in the source term Sε acts in (64)

as a source on Γ (weighted according to the concentration profile S). In this

way, a collection of complex amplitudes a(xτ , ην) indexed by normal rays ην

is built up, each one being propagated along Γ in the direction of ∇τφ. Each

such complex amplitude carries the energy |a(xτ , ην)|2, and the energy density

f at the point xτ and in the direction ξτ = ∇τφ is then given from (62) as the

total contribution
∫
dην |a(xτ , ην)|2.

Let us now turn to the proof of (64), and for sake of simplicity, we restrict

ourselves to the case ∇τφ ≡ e1, the general case being easily deduced then.

The proof entirely relies on the well known formula in one dimension,∫
R
dξ

exp(ixξ)

ξ − z
= (2iπ) exp(izx) 1(x > 0) , ∀ Im z > 0 . (65)

Let x2,p ∈ Rp−1 denote the vector formed by components x2, . . . , xp of x. Using

(65) in the explicit formula for a, we can then indeed write,

a(xτ , ην) = (2π)p−1Ŝ(e1)

∫
R2

dt1 dη1
A(t1, x2,p, 0) exp (i(x1 − t1)η1)

[−(ην)2 − 2η1 + iα]



=
−i
2

(2π)pŜ(e1)

∫
R
dt1 A(x1 − t1, x2,p, 0) exp

(
−t1(α+ i(ην)2)

2

)
1(t1 > 0)

= −i(2π)pŜ(e1)

∫ +∞

0

dt1 A(x1 − 2t1, x2,p, 0) exp
(
−t1(α+ i(ην)2)

)
,

so that a obviously satisfies,

[α+ i(ην)2]a(xτ , ην) + 2e1 · ∇xτa = i(2π)pŜ(e1)A(xτ ) ,

and (64) is easily deduced in the case of a general value of∇τφ with |∇τφ| = n0.

Remark 3. Convergence of the integral in (63).

Note that the integral defining the amplitude A converges. Indeed, upon

rotating the axes, we may again assume ∇τφ ≡ e1, the first vector of the

basis, so that by virtue of the Fourier inversion formula equation (63) gives,

A(xτ ) =

(2π)2(p−1)

∫
Rd−p

dην

∣∣∣∣Ŝ(∇τφ)

∫
R
dη1

(Fx1→η1A) (η1, x2,p, 0) exp (ix1η1)

[−(ην)2 − 2η1 + iα]

∣∣∣∣2 .
Using the assumed smoothness and fast decay of the profile A under the form

| (Fx1→η1A) (η1, x2,p, 0)| ≤ C〈η1〉−N for some large enough exponent N , we can

upper bound,

|A(xτ )| ≤ C(α)

∫
Rd−p

dην

∣∣∣∣∫
R

dη1

〈η1〉N〈η1 + (ην)2〉

∣∣∣∣2

≤ C(α)

∫
Rd−p

dην

∣∣∣∣ 1

〈ην〉2

∫
R

dη1

〈η1〉N−1

∣∣∣∣2 < +∞

at least for a manifold Γ with dimension p satisfying, 4 > d− p. This is where

the constraint (54) on the dimension p enters.

3 Precise results in the propagative regime

In this section we show precise convergence results justifying the formal analy-

sis of Section 2, at least for a more restricted form of (1). In particular, we only

consider the case where Γ is a linear manifold and the index of refraction is con-

stant. Moreover, in order to simplify the proof, we also confine ourselves to the



case when the amplitude A has compact support, corresponding to a compact

source. Also, we restrict ourselves to rigorously justifying the convergence

of the Wigner measure f ε in the mere propagative regime |∇τφ(x)| < n(x)

(actually we use the more stringent assumption |∇τφ(x)| < n(x) − δ, see H3

below).

We wish to mention that the same kind of approach proposed here allows

to treat the characteristic and resonant regimes as well, at least for sources Γ

having vanishing curvature. Also, and as mentioned in the introduction, the

assumption that Γ is a linear subspace, i.e. has vanishing curvature, may be

removed following essentially the same approach, and we may treat the three

regimes (propagative/resonant/characteristic) for true manifolds Γ. This last

work is in progress [3].

3.1 Convergence of the Wigner measure f ε

As mentioned above, the rigorous convergence of f ε is restricted to various

assumptions on the index of refraction n, the parametrization γ, the concen-

tration profile S, the amplitude A, and the phase φ. Before stating these

restrictions, we need to introduce the following weighted L2 spaces in which

uniform estimates on wε
γ(z) and uε are at hand.

Definition 1. Define the ball C−1 = {x ∈ Rd
∣∣ |x| ≤ 1/2} and, for any j ∈ N,

define the annulae Cj = {x ∈ Rd
∣∣ 2j−1 ≤ |x| ≤ 2j}. Then, for any s ∈ R, the

space Bs(Rd) is defined as the space of functions u ∈ L2
loc(Rd) satisfying,

‖u‖Bs ≡
∞∑

j=−1

2js

(∫
Cj

|u|2(x)dx

)1/2

<∞. (66)

The dual B∗
s of Bs is the space of functions u ∈ L2

loc(Rd) such that,

‖u‖B∗
s
≡ sup

j≥−1
2−js

(∫
Cj

|u|2dx

)1/2

<∞. (67)

This definition is reminiscent of the usual Besov spaces, where similar norms



are given in the Fourier space. Also, up to defining the more usual weighted

L2 spaces L2
s(Rd) as L2(Rd, 〈x〉2sdx) (s ∈ R), we may observe that,

L2
s+λ ⊂ Bs ⊂ L2

s, L2
−s ⊂ B∗

s ⊂ L2
−(s+λ), ∀s ∈ R, ∀λ > 0, (68)

with continuous embedding. We finally mention here that we may as well

work with the homogeneous version of the spaces Bs, B
∗
s , where the ball

|x| ≤ 1/2 is not treated separately. Instead we can define Cj as the annu-

lus {2j−1 ≤ |x| ≤ 2j} for any j ∈ Z, and give the homogeneous space Bs the

norm
∑

j∈Z 2js‖u‖L2(Cj), and analogously for the homogeneous version of B∗
s .

The reason for our introduction of Bs mainly comes from the standard fact

that the constant coefficient inverse Helmholtz operator (−∆x − n2
0 ± i0)−1

sends Bs into B∗
s for any s ≥ 1/2, see [1, 9]. Further useful properties of these

spaces are given in Section 3.2 below.

Now, the exact assumptions we need are the following:

(H1) The index of refraction is constant,

n(x) ≡ n0, ∀x ∈ Rd . (69)

(H2) The source Γ is a linear subspace, and more precisely,

γ(x) = γ(xτ , xν) ≡ (xτ , 0), ∀x ∈ Rd . (70)

(H3) The phase φ is uniformly non-characteristic, in the sense that there

exists a (small) δ > 0, such that,

|∇τφ(x)| ≤ n0 − δ < n0, ∀x ∈ Rd . (71)

The assumption (H3) ensures indeed that the propagative regime is obtained

uniformly in space, as was formally shown in Section 2.2 above.

(H4) The profiles φ, A has the following regularity

A ∈ Cp+2
c (Rp), φ ∈ Cp+2(Rp). (72)



(H5) The source function S decays at infinity such that

S ∈ B p+1
2

(Rd). (73)

With these assumptions, the following apriori estimates hold true.

Theorem 1. Let wε
z be the solution to (26) under the assumptions H1–H5.

Alternatively, we could replace H4 by A = const and ∇φ = const. Then there

is a positive constant C, independent of z, ε and αε such that

‖wε
z‖B∗

p+1
2

≤ C‖S‖B p+1
2

. (74)

The estimate (74) is the key estimate of the present paper. It is obtained by

cutting the Fourier space ξ ∈ Rd into pieces, according to whether the ray

vector ξ satisfies ξ2 = n2
0 and/or ξτ = ∇τφ(x) when x ∈ Γ. In this picture,

the uniform assumption (71) is a geometric one. Also, the decay assumption

(73) is the natural one since we shall need to take restrictions of F(wε
z)(ξ) over

these subspaces of codimension 1 and d−p respectively, an operation which is

precisely allowed in the spaces Bs for s “large enough”. We refer to the proof

given in Section 4.1, as well as property (84) for details.

It turns out that the bound (74) immediately gives the following bound on uε.

Theorem 2. Let uε be the solution to (1) under the assumptions H1–H5 and

λ < (p+ 1)/2 a real number. Then there is a positive constant C independent

of ε and z such that,

‖uε‖B∗
p+1
2 −λ

≤ Cελ 〈γ(z)〉
p+1
2
−λ ‖wε

z‖B∗
p+1
2 −λ

. (75)

Finally, the convergence of the Wigner measure f ε is an easy consequence of

(75) as well. We have



Theorem 3. Assume that H1–H5 hold and that f ε is the Wigner transform

of uε, the solution to (1). Define also, for any t ∈ R, the space Xt of test

functions φ as the completion of the Schwarz space S(R2d) under the norm,

‖φ‖Xt :=

∫
Rd
dy sup

x∈Rd
〈|x|+ |y|〉τ

∣∣ (Fξ→yφ) (x, y)
∣∣ . (76)

The space Xt is a Banach space with dual X∗
t . Under these circumstances, the

following holds.

(i) For any λ > 0, the sequence f ε is uniformly bounded in X∗
p+1+λ, i.e.

there exists a constant Cλ, independent of ε, such that,

‖f ε‖X∗
p+1+λ

≤ Cλ ‖S‖2
B p+1

2

. (77)

(ii) There exists a subsequence of {f ε} which converges in the weak-* topology

of X∗
p+1+λ, for any λ > 0. The limiting value f is a non-negative, locally

bounded measure satisfying the more precise localisation property∫
R2d

f(x, ξ)

〈x〉p+1+λ
dxdξ ≤ Cλ ‖S‖2

B p+1
2

, (78)

for some constant Cλ independent of ε.

Now, the assumptions (H1–H5) merely ensures the convergence of f ε. In

order to identify the limiting energy density f as the outgoing solution to the

transport equation (6) we need the following additional assumptions.

(H6) The regularising parameter αε has polynomial decay, i.e. there exists

a β ≥ 0, such that,

αε → α ≥ 0, αε ≥ εβ. (79)

(H7) The source function S decays at infinity such that

〈x〉NS(x) ∈ L2(Rd) , for some N >
p+ 1

2
+

β

1 + β
d. (80)



Note that this requires more regularity of S than H5, since L2
N ⊂ B(p+1)/2.

Also, β can be arbitrarily large, provided N satisfies (80).

Under these stronger assumptions, we have

Theorem 4. Assume that H1–H4 together with H5–H6 hold. Assume also

that f ε is the Wigner transform of uε, solution to (1). Then,

(i) The limiting measure f , given in Theorem 3, satisfies the transport equa-

tion (6), with Q given by (34),

αf(x, ξ) + ξ · ∇xf = Q(x, ξ) , (81)

Q(x, ξ) = 2pπp+1

∫
Rp
dt δ(x− t) δ(ξτ −∇τφ(t)) δ(n2

0 − ξ2) |A|2(t)|Ŝ|2(ξ).

(ii) The Sommerfeld radiation condition holds in the following weak form.

For any function R ∈ D(R2d\{ξ = 0}), let g(x, ξ) solve the dual problem,

− αg + ξ · ∇xg = R , (82)

so that the function g is given by g(x, ξ) =
∫∞

0
e−αtR(x + ξt, ξ)dt, also

for the case α ≡ 0 (see Section 1). We have the duality property,∫
Rd

∫
Rd
R(x, ξ)f(x, ξ)dxdξ = −

∫
Rd

∫
Rd
Q(x, ξ)g(x, ξ)dxdξ . (83)

In contrast to Theorem 2 and Theorem 3, Theorem 4 is not an easy conse-

quence of Theorem 1, and its proof requires different ideas. The key difficulty

lies in keeping track of the radiation condition at infinity along the limiting

process ε→ 0 when the regularising parameter αε eventually vanishes, α ≡ 0.

Note in particular that g does note decay in the direction x · ξ > 0, also for

a very smooth R, so that even the mere convergence of the duality product

〈Q, g〉 in (83) is not obvious.

The proofs of the above theorems are now given in the most singular case

where the regularising parameter αε vanishes asymptotically, α ≡ 0.



3.2 Some properties of the spaces Bs

The use of the spaces Bs is standard in the study of the Helmholtz operator,

as well as in the context of scattering theory in quantum mechanics. What

makes these spaces interesting are their useful properties in the Fourier space.

In particular, we shall need the following specific properties of the spaces Bs in

the sequel, which we simply give here without proofs, refering to [1] for more

details. These will be used in establishing the uniform estimate (74) on wε
z.

Property 1. For functions in Bp/2 we are allowed to take “traces” over p-

dimensional planes, in the sense that, for any u ∈ Bp/2(Rd), we have,

‖u(xτ , xν)‖L1(Rp,L2(Rd−p)) :=

∫
Rp
dxτ

(∫
Rd−p

dxν |u|2(xτ , xν)

)1/2

≤ C‖u‖Bp/2(Rd). (84)

This follows from the definition (66) via an easy computation.

Property 2. The spaces Bs are ordered. If s ≥ t, then Bs ⊂ Bt with

continuous embedding.

This is obvious from the definition (66).

Property 3. The spaces Bs are stable with respect to localization in the

Fourier space. Indeed, for any localization χ ∈ CN
c (Rd), we have,

‖F−1χFu‖Bs ≤ Cs‖χ‖CNb
‖u‖Bs , 0 < s < N, (85)

where the norm in CN
b is given as usual by,

||ψ||CNb ≡
∑
|α|≤N

||Dαψ||L∞ . (86)

Property 4. More generally, the spaces Bs are stable with respect to local

smooth changes of variables in the Fourier space. Let Ω1 and Ω2 be two open



subsets of Rd and ψ : Ω1 7→ Ω2 a CN+1 diffeomorphism. For any localization

χ ∈ CN
c (Ω1), we have,

‖F−1χ(û ◦ ψ)‖Bs ≤ Cs‖χ‖CNb
‖ψ‖CN+1

b
‖u‖Bs , 0 < s < N. (87)

The operators in (85) and (87) will be of repeated use in the sequel. A typical

application of these result gives that the operator,

(Tu)(x) := F−1 ((φ ◦ ψ)| detDψ|(û ◦ ψ)) (x), φ ∈ CN
c (Ω2), (88)

sends Bs into itself.

4 Proofs

4.1 Proof of Theorem 1

The proof relies on an appropriate decomposition of the Fourier space. The

very first step consists in formulating the estimate (74) by duality. We take a

test function v ∈ B p+1
2

, and consider the duality product,

〈wε
z, v〉 =

1

(2π)d
〈ŵε

z, v̂〉 =
1

(2π)d

∫
Rd

R̂ε
z(ξ)

n2
0 − ξ2 + iεαε

Ŝ(ξ)v̂(ξ)dξ , (89)

where we used the fact that wε
z satisfies the rescaled Helmholtz equation (26)

with a constant index n ≡ n0. We also introduced

R̂ε
z(ξ) =

∫
Rp
ei 〈ξ,γ(z)−γ(z+εt)〉/ε A(γ(z + εt)) e−i (φ(γ(z))−φ(γ(z+εt)))/ε dt. (90)

The result (74) follows once the bound,

|〈wε
z, v〉| ≤ C(A, φ) ‖S‖Bp/2 ‖v‖Bp/2 , (91)

is proved, which we do now.

We start by noting that the assumption of a linear source (70) simplifies

(90) into,

R̂ε
z(ξ) ≡ R̂ε

z(ξ
τ ) =

∫
Rp
e−i〈ξτ ,t〉A(z + εt)e−i (φ(z)−φ(z+εt))/ε dt

= Fx→ξ

(
δ(xν)A(z + εxτ )e−i (φ(z)−φ(z+εxτ ))/ε

)
, (92)



so that we may use in the next estimates the following trivial bound, valid for

any test function ψ,

|〈R̂ε
z, ψ̂〉| ≤ ‖A‖L∞

∫
Rp
|ψ|(xτ , 0)dxτ . (93)

Next, we partition the integral (89) into three different contributions which

we treat separately. For each case we let the generic symbol χ ∈ C∞ denote a

smooth function which localizes on the corresponding set. Also, the variable

δ used below refers to the assumption of a uniformly non-characteristic phase

(71).

Case 1: Contribution of the set |n0 − |ξ|| ≥ δ/4.

We begin with the set away from the circle n2
0 = ξ2, where the integrand

denominator is non-singular. We introduce the operator T , defined as a smooth

Fourier multiplier,

(Tu)(x) := F−1

(
χ(ξ)

n2
0 − ξ2 + iεαε

û(ξ)

)
(x). (94)

By (85), this operator is bounded in Bs for any 0 < s <∞, independently of

ε on this set. We now estimate∣∣∣∣∣
∫

Rd

R̂ε
z(ξ

τ )

n2
0 − ξ2 + iεαε

Ŝ(ξ)v̂(ξ)χ(ξ)dξ

∣∣∣∣∣ ≤ ‖A‖L∞

∫
Rp
|(TS ?x v)(−xτ , 0)| dxτ

≤ C‖A‖L∞

∫
Rp
||TS(xτ , ·)||L2(Rd−p)dx

τ

∫
Rp
||v(xτ , ·)||L2(Rd−p)dx

τ

≤ C‖A‖L∞‖TS‖Bp/2‖v‖Bp/2

≤ C‖A‖L∞‖S‖Bp/2‖v‖Bp/2 , (95)

where we successively used (93), the Cauchy-Schwarz inequality in the variable

xν , the property (84) of the space Bp/2 (traces over p-dimensional subspaces),

and the uniform boundedness of the operator T .

Case 2: Contribution of the set |n0 − |ξ|| ≤ δ/4, |ξν | ≥ δ/4.

On this set we explicitly use the fact that the quantities ξ2 − n2
0 and ξτ give

p+ 1 independent variables. Indeed, the Jacobian matrix,

d(ξτ , ξ2 − n2
0)

dξ
=

(
Ip 0
2ξτ 2ξν

)
(96)



has maximal rank p+1 everywhere on the (compact) set under consideration.

Hence, we are able to further subdivide this set and choose a finite open cover

such that the change of variables ξ 7→ Ξ with,

Ξτ = ξτ , Ξp+1 = ξ2 − n2
0 , (97)

defines a diffeomorphism on each subset.

We index the subdivision by θ and let ξθ(Ξ) denote the local inverse change

of variables. Moreover, the corresponding localizing function χθ may always

be written as a product of two localizing functions as χθ(ξ) = χθ
1(ξ) × χβ

2 (ξ)

for technical convenience. With this notation, the two operators,

(T1u)(x) = F−1
(
(χθ

1û) ◦ ξθ
)
(x), (98)

(T2v)(x) = F−1

(
[
(
χθ

2v̂
)
◦ ξθ]×

∣∣∣∣dξθ

dΞ

∣∣∣∣) (x),

are both bounded in B(p+1)/2 by (87). Dropping the index θ to enhance legi-

bility, we then get for each fixed θ,∣∣∣∣∣
∫

Rd

R̂ε
z(ξ

τ )

n2
0 − ξ2 + iεαε

Ŝ(ξ)v̂(ξ)χ(ξ)dξ

∣∣∣∣∣
=
∣∣∣ ∫

Rd

R̂ε
z(Ξ

τ )

−Ξp+1 + iεαε

(Ŝχ1v̂χ2)(ξ(Ξ))

∣∣∣∣ dξdΞ
∣∣∣∣ dΞ ∣∣∣ ,

and, upon using (93) again together with the basic identity (65) to Fourier

transform 1/(−Ξp+1 + iεαε),

≤ C‖A‖L∞

∫
Rp+1

∣∣e−εαεxp+11(xp+1 > 0) (T1S ?x T2v)(−xτ ,−xp+1, 0)
∣∣ dxτdxp+1

≤ C‖A‖L∞

∫
Rp+1

∣∣(T1S ?x T2v)(x
τ , xp+1, 0)

∣∣ dxτdxp+1

≤ C‖A‖L∞‖S‖B p+1
2

‖v‖B p+1
2

, (99)

where the last inequality is obtained using (84) as in the previous case.

Case 3: Contribution of the set |n0 − |ξ|| ≤ δ/4, |ξν | ≤ δ/4.

The key property of this set is that the sphere ξ2 = n2
0 and the linear space

ξτ = ∇τφ(x) do not intersect, thanks to the assumption (71) of a uniformly

non-characteristic phase, see (102) below.



For this case, we only need to use the new variable Ξ1 = ξ2−n2
0. Since the

Jacobian matrix d(ξ2 − n2
0)/dξ has rank one on the set under consideration,

there exists a finite open cover indexed by θ, and finitely many changes of

variables Ξθ(ξ), with inverse ξθ(Ξ), such that the first coordinate satisfies

Ξθ
1(ξ) = ξ2 − n2

0. Letting χθ(Ξ) = χθ
1(ξ)× χθ

2(ξ) be the collection of localizing

functions, we introduce the two operators,

T3u = F−1((χθ
1R̂

ε
zû) ◦ ξθ), T4v = F−1

(
(χθ

2v̂) ◦ ξθ

∣∣∣∣dξθ

dΞ

∣∣∣∣) . (100)

It is clear from (87) that T4 is bounded on the spaces Bs, and we prove below

in Lemma 1 that the source R̂ε
z(ξ) has enough regularity (i.e. roughly speaking

it has “one derivative”) to ensure the boundedness of T3 on B1/2 by (87).

With this information, and after dropping the index θ for convenience, we

get for any fixed θ,∣∣∣∣∣
∫

Rd

R̂ε
z(ξ

τ )

n2
0 − ξ2 + iεαε

Ŝ(ξ)v̂(ξ)χ(ξ)dξ

∣∣∣∣∣
=

∣∣∣∣∫
Rd

1

−Ξ1 + iεαε

(ŜR̂ε
zχ1v̂χ2)(ξ(Ξ))

∣∣∣∣ dξdΞ
∣∣∣∣ dΞ∣∣∣∣

= (2π)d+1

∣∣∣∣∫
R
e−εαεx11(x1 > 0)(T3S ?x T4v)(−x1, 0)dx1

∣∣∣∣
≤ C

∫
R

∣∣(T3S ? T4v)(x1, 0)
∣∣ dx1

≤ C‖T3S‖B1/2
‖T4v‖B1/2

≤ C‖S‖B 1
2

‖v‖B 1
2

. (101)

It remains to show that T3 is bounded on B1/2, which by (87) boils down to

proving that the multiplier χ1R̂
ε
z ∈ C1

c (Rd) uniformly in ε and z. This is an

easy consequence of Lemma 1 in view of the bound from below

|∇φ(x)− ξτ | ≥
√
ξ2 − (ξν)2 − |∇φ|(x) ≥ δ

2
, (102)

which follows from (71) together with |n0 − |ξ|| ≤ δ/4 and |ξn| ≤ δ/4.



Conclusion

Together with Property 2 in Section 3.2, estimates (95), (99), and (101) show

that,

| 〈wε
z, v〉 | ≤ C‖S‖B p+1

2

‖v‖B p+1
2

, (103)

and Theorem 1 is proved.

We have left to show

Lemma 1. Fix z ∈ supp A(γ(t)). Assume that Ω ⊂ Rd is open and that,

0 < η := inf
(ξτz ,ξνz )∈Ω

|∇φ(γ(z))− ξτ
z | ≤ 1. (104)

Also, let χ ∈ C∞
c (Ω). Finally, let k ∈ N and assume that A(γ(t)) ∈ Cp+1+k

c (Rp)

and φ(γ(t)) ∈ Cp+1+k(Rp). Then, the source R̂ε
z(ξ) defined in (90) has C1 reg-

ularity in the sense that there exists a positive constant C depending on the

size of the support of A, but independent of ε and z, such that,

χR̂ε
z ∈ C1

c (Ω), with ||χR̂ε
z||C1

b
≤ εk C

η2(p+1+k)
||χ||C1

b
||A||Cp+1+k

b
. (105)

If A = const, γ(xτ , xν) = (xτ , 0) and ∇φ = const, then χR̂ε
z ≡ 0.

Proof. Using the definition (90) we write,

χ(ξ)R̂ε
z(ξ) = χ(ξ)

∫
Rp
A(γ(z + εt))

exp

(
−i(φ(γ(z))− φ(γ(z + εt))) + 〈ξ, γ(z + εt)− γ(z)〉

ε

)
dt

= χ(ξ) exp

(
i
〈ξ, γ(z)〉 − φ(γ(z))

ε

)
× 1

εp

∫
Rp
A(γ(t)) exp

(
i
ψ(t)

ε

)
dt ,

where we defined ψ(t) := φ(γ(t))−〈ξ, γ(t)〉, and we used the change of variables

t 7→ t/ε. In the easy case where the amplitude A is constant on a linear

manifold, we compute,

1

εp

∫
Rp
A(γ(t))ei

ψ(t)
ε dt = A

∫
Rp
e−i〈ξτ−∇τφ,t〉dt = δ(ξτ −∇τφ), (106)



and the result follows directly from (104).

Under the first assumption, A(γ(t)) ∈ Cp+1+k
c (Rp) and ψ(γ(t)) ∈ Cp+1+k(Rp),

the non-stationary phase method can be used (see e.g. [1]): For a given non-

negative integer k, there is a constant C, depending on the support of A, such

that,

1

εp+k

∣∣∣∣∫
Rp
A(γ(t))ei

ψ(t)
ε dt

∣∣∣∣ ≤
C
∑

|α|≤p+k

‖DαA(γ(t))‖L∞

(
inf

t∈supp(A◦γ)
|∇ψ(γ(t))|

)|α|−2(p+k)

. (107)

Now, since |∇ψ| = |∇φ− ξτ
z | > η > 0, we obtain the final bound,

|χR̂ε
z| ≤ εk C

η2(p+k)
‖χ‖L∞ ||A||Cp+kb

. (108)

The bound on |D(χR̂ε
z)| follows from the same technique, since for any j =

1, . . . , p, we have,

χ(ξ)∂ξj R̂
ε
z(ξ) = χ(ξ)ei

〈ξ,γ(z)〉−φ(γ(z))
ε(

γj(z)

εp+1

∫
Rp
A(γ(t))ei

ψ(t)
ε dt +

i

εp

∫
Rp
tjA(γ(t))ei

ψ(t)
ε dt

)
, (109)

and we conclude as above, using that |γ(z)| is bounded for z ∈ supp(A ◦ γ),
and A(γ(t)) ∈ Cp+1+k

c (Rp) as well as tjA(γ(t)) ∈ Cp+k
c (Rp).

Finally, for fixed ε, z the functions χR̂ε
z and D(χR̂ε

z) are continuous since

A(γ(t))) and tjA(γ(t))) are L1 functions and Lebesgue’s convergence theorem

applies.

4.2 Proof of Theorem 2 and Theorem 3

Both theorems are easy consequences of Theorem 1.

Proof of Theorem 2

We begin by noting that for s > 0 the norm B∗
s is in fact equivalent to the

norm,

‖u‖B∗
s
≤ sup

R>1

1

Rs

(∫
|x|<R

|u|2dx
)1/2

≤ C||u||B∗
s
. (110)



Indeed, the left inequality is trivial while the right one follows from,

sup
R>1

1

Rs

(∫
|x|<R

|u|2dx
)1/2

≤ sup
R>1

∑
|2j |≤R

2−js

(∫
Cj

|u|2dx

)1/2

≤ sup
R>1

sup
j≥−1

2j≤R

2−js

(∫
Cj

|u|2dx

)1/2

×
∑
2k≤R

2−ks

≤ C sup
j≥−1

2−js

(∫
Cj

|u|2dx

)1/2

,

since the series in the last line converges for s > 0. The equivalence (110)

allows us to turn the estimate (74) on wε
z into a bound on uε,

sup
R>1

1

Rs

(∫
|x|<R

|uε|2dx
)1/2

≤ εd/2 sup
R>1

1

Rs

(∫
ε|x|<R+|γ|

|uε(γ(z) + εx)|2dx
)1/2

≤ Cε(p+1)/2 sup
R>1

(
ε 〈γ(z)〉
ε(R + |γ|)

)s(∫
ε|x|<R+|γ|

|wε
z|2dx

)1/2

≤ Cε(p+1)/2−s 〈γ(z)〉s sup
R>1

1

Rs

(∫
|x|<R

|wε
z|2dx

)1/2

, (111)

and taking s = (p+ 1)/2− λ gives the result.

Proof of Theorem 3

The proof is given in two steps.

First step. We prove that f ε is uniformly bounded in Xp+1+λ, for any λ > 0.

This is an easy consequence of the estimate (75) on uε. Indeed, we take λ > 0

and set t = (p + 1 + λ)/2. We also choose a test function ψ in X2t, and use

the notation ψ̂(x, y) ≡ Fξ→yψ(x, ξ). Now we consider the duality product,

〈f ε, ψ〉 = 〈Fξ→yf
ε,Fξ→yψ〉

=

∫
Rd

∫
Rd
u
(
x+

ε

2
y
)
u
(
x− ε

2
y
)
ψ̂(x, y)dxdy. (112)



On the other hand, the uniform boundedness of uε ∈ B∗
p+1
2

readily gives,

‖ 〈x〉−t uε‖L2 = ‖uε||L2
−t
≤ Cλ‖uε||B∗

p+1
2

≤ Cλ‖S‖B p+1
2

, (113)

for some positive constant Cλ, since t > (p + 1)/2. (As is well-known the

constant in the continuous embedding B∗
s ⊂ L2

−(s+λ) only depends on λ.)

Therefore, also using the estimate 〈x+ y〉 〈x− y〉 ≤ 〈|x|+ |y|〉2 in (112), we

get,

| 〈f ε, ψ〉 |

≤
∫

Rd

∫
Rd

|u(x+ ε
2
y)u(x− ε

2
y)|〈

x+ ε
2
y
〉τ 〈

x− ε
2
y
〉τ 〈x+

ε

2
y
〉τ 〈

x− ε

2
y
〉τ

|ψ̂(x, y)|dxdy

≤ ‖u‖2
L2
−t

∫
Rd

sup
x∈Rd

〈
x+

ε

2
y
〉τ 〈

x− ε

2
y
〉τ

|ψ̂(x, y)|dy

≤ Cλ||S||2B p+1
2

∫
Rd

sup
x∈Rd

〈|x|+ |y|〉2t |ψ̂(x, y)|dy. (114)

Hence, | 〈f ε, ψ〉 | ≤ Cλ‖S‖2
B p+1

2

‖ψ‖Xp+1+λ
for any λ > 0, which proves the

uniform bound,

‖f ε‖X∗
p+1+λ

≤ Cλ‖S‖2
B p+1

2

. (115)

Second step. The space X∗
p+1+λ is a Banach space with predual Xp+1+λ.

This, together with (115), gives the existence of a subsequence, still denoted by

f ε, which converges in the weak-* topology of X∗
p+1+λ towards some limiting

distribution f ∈ X∗
p+1+λ. The non-negativity of f is a general property of

Wigner measures, see for instance [7] and [10]. The fact that f ≥ 0 as a

distribution implies that f is in fact a locally bounded measure. Finally,

the more precise localisation property (78) is obtained by choosing the test



function ψτ (x, ξ) = exp(−τξ2)/ 〈x〉p+1+λ. Indeed, using (114) gives,∫
R2d

f(x, ξ)

〈x〉p+1+λ
dxdξ = lim

τ→0
〈f, ψτ 〉

≤ lim
τ→0

Cλ||S||2B p+1
2

∫
Rd

sup
x∈Rd

〈|x|+ |y|〉p+1+λ e−|y|
2/τ

τ d/2 〈x〉p+1+λ
dy

= lim
τ→0

Cλ||S||2B p+1
2

∫
Rd
〈y〉p+1+λ e

−|y|2/τ

τ d/2
dy

= lim
τ→0

Cλ||S||2B p+1
2

∫
Rd

〈√
τy
〉p+1+λ

e−|y|
2

dy

= Cλ||S||2B p+1
2

∫
Rd
e−|y|

2

dy. (116)

4.3 Proof of Theorem 4

The proof is given in several steps.

First step: Preliminary reduction

In order to show that f satisfies (83), we take a test function R ∈ D(R2d\{ξ =

0}) and let gε be the solution to,

− αεgε + ξ · ∇xgε = R(x, ξ). (117)

By duality, it is clear from (14) that,

〈Qε, gε〉 = 〈f ε, R〉 (= αε 〈f ε, gε〉+ 〈ξ · ∇xf
ε, gε〉) . (118)

Hence proving the relation (83) reduces to proving the following convergence

results,

lim
ε→0

〈Qε, gε〉 = 〈Q, g〉 , (119)

together with,

lim
ε→0

〈f ε, R〉 = 〈f,R〉 , (120)

where g and Q are defined in the theorem.



Since R ∈ Xp+1+λ for λ > 0, the convergence (120) immediately follows

from the weak-* convergence of f ε. Moreover, by (16) and the computation

(24), the left hand side of (119) satisfies

〈Qε, gε〉 = Re

(
i

εd

∫
R2d+p

dxdydtA(t)S

(
x− t

ε
+
y

2

)
wε

t

(
x− t

ε
− y

2

)
ĝε(x, y)

)

= − Im

(∫
R2d+p

dxdydtA(t)S(x+ y)wε
t (x)ĝε(t+ ε(x+ y/2), y)

)
,

where ĝε(x, y) := (F−1
ξ→ygε)(x, y), and we decompose,

= − Im

∫
R2d+p

dxdydtA(t)S(x+ y)wε
t (x)(ĝε(t+ ε(x+ y/2), y)− ĝε(t, y))

− Im

∫
R2d+p

dx dy dt A(t)S(x+ y)wε
t (x)(ĝε(t, y)− ĝ(t, y))

− Im

∫
R2d+p

dxdydtA(t)S(x+ y)wε
t (x)ĝ(t, y)

≡ Iε + IIε + IIIε. (121)

The rest of the analysis is devoted to proving that Iε and IIε go to zero, as

well as computing the limit of IIIε.

Second step: Preliminary estimates on ĝε(x, y)

The study of Iε and IIε is performed along the same lines as in [2]. The key

point lies in proving that the (Fourier transformed) test function ĝε(x, y) decays

sufficiently fast in the y variable at infinity to balance the lack of integrability

of the prefactor S(x+ y)wε
t (x) in x and y. This is the reason why we estimate

ĝε(x, y) in the present step.

Firstly, one readily obtains from (117) the explicit value,

gε(x, ξ) = −
∫ +∞

s=0

exp(−αεs) R(x+ ξs, ξ) ds ,

= − 1

|ξ|

∫ +∞

s=0

exp(−αε|ξ|−1s) R

(
x+

ξ

|ξ|
s, ξ

)
ds , (122)

after changing variables s → s/|ξ|, and using the fact that the support of R

does not meet the set of vanishing velocities {ξ = 0}. Let us introduce the



constants r0 and R0 for the support of R,

(x, ξ) ∈ supp R ⇒ 0 < r0 ≤ |ξ| ≤ R0, |x| ≤ R0. (123)

Note then that the integral in s ∈ [0,+∞[ in the last formula actually ranges

over a subset of the compact set s ∈ [|x|−R0, |x|+R0]. For this reason, we are

able to upper bound ĝε(x, y) in the following way. Let M be a non-negative

even integer and estimate the moment,∣∣〈y〉M ĝε(x, y)
∣∣ =

=

∣∣∣∣〈y〉M ∫
Rd

∫ +∞

s=0

exp(−iyξ) exp(−αε|ξ|−1s)
1

|ξ|
R

(
x+

ξ

|ξ|
s, ξ

)
ds dξ

∣∣∣∣
=

∣∣∣∣∫
Rd

∫ +∞

s=0

exp(−iyξ)〈i∂ξ〉M
{

exp(−αε|ξ|−1s)
1

|ξ|
R

(
x+

ξ

|ξ|
s, ξ

)}
ds dξ

∣∣∣∣
≤ C

∫ +∞

s=0

sup
r0≤|ξ|≤R0

∣∣∣∣〈i∂ξ〉M
{

exp(−αε|ξ|−1s)

|ξ|
R

(
x+

ξ

|ξ|
s, ξ

)}∣∣∣∣ ds
≤ C

∫ +∞

s=0

sup
|ξ|≤R0

〈s〉M exp(−αε|ξ|−1s)1
(∣∣∣s− |x|∣∣∣ ≤ R0

)
ds , (124)

for some constant C > 0 depending on M together with the profile R. Hence,

〈y〉M
∣∣ĝε(x, y)

∣∣ ≤ C〈x〉M exp(−Cαε|x|) . (125)

In other words, we arrive at the bound,

〈y〉M
∣∣ĝε(x, y)

∣∣ ≤ C [〈x〉M ∧ αε
−M ] , (126)

where we use the usual notation a∧b := min(a, b). The result trivially extends

to all real M ≥ 0. Note also that the first bound, (125), remains true for ĝ

with α = 0. By the same argument as in (124), we also have the following

equicontinuity,

〈y〉M |ĝε(x1, y)− ĝε(x2, y)| =

≤ C

∫ +∞

s=0

sup
|ξ|≤R0

〈s〉Me−αε|ξ|−1s

∣∣∣∣R(x1 +
ξ

|ξ|
s, ξ

)
−R

(
x2 +

ξ

|ξ|
s, ξ

)∣∣∣∣
≤ C|x1 − x2| 〈|x1|+ |x2|〉M . (127)



Third step: Convergence of IIIε

We begin by showing that any subsequence of {wε
t} converges to the outgoing

solution wt of (29). We introduce the solution w̃ε
t to the auxiliary equation,

iεαεw̃
ε
t + ∆w̃ε

t + w̃ε
t = A(t)

∫
Rp
e−i〈t′,∇φ(t)〉S (xτ − t′, xν) dt′. (128)

As is well-known, any subsequence of {w̃ε
t} converges weakly to wt in B∗

(p+1)/2

as ε→ 0, since the right-hand-side of (129) belongs to B(p+1)/2. Now, define,

V ε(t′) = A(t+ εt′) exp

(
i
φ(t+ εt′)− φ(t)

ε

)
− A(t) exp (i 〈t′,∇φ(t)〉) . (129)

The difference qε = wε
t − w̃ε

t satisfies,

iεαεqε + ∆qε + qε =

∫
Rp
V ε(t′)S (xτ − t′, xν) dt′. (130)

We prove the weak convergence of qε to zero. To this aim, we take a test

function v ∈ B(p+1)/2. The same procedure as in Section 4.1 gives, for all

k > 0,

| 〈qε, v〉 | ≤
∫

Rp

∣∣V ε(xτ )(TS ? v)(xτ , 0)
∣∣ dxτ

+

∫
Rp+1

∣∣V ε(xτ )(T1S ?x T2v)(x
τ , xp+1, 0)

∣∣ dxτdxp+1

+ εk C

δ2(p+1+k)
||A||Cp+1+k

b
||S||B1/2

||v||B1/2
. (131)

The first two terms converge to zero by the dominated convergence theorem,

and the last term also tends to zero by (72). Hence wε
t

∗
⇀ wt in B∗

(p+1)/2.

In order to derive a bound on the integrand, we take advantage of the

compactness of the support of A, defining A0 to be a constant such that

t ∈ suppA implies |t| ≤ A0. By (68), Theorem 1, and by using the Cauchy-

Schwarz inequality in the x variable, we get,∣∣∣∣∫
Rd+p

A(t)S(x+ y)wε
t (x)ĝ(t, y)dxdt

∣∣∣∣
≤ C sup

|t|≤A0

∫
Rd
〈x+ y〉N |S(x+ y)| |w

ε
t (x)| 〈x〉

p+1+0
2

〈x〉
p+1+0

2 〈x+ y〉N
|ĝ(t, y)|dx

≤ C||S||L2
N
||S||B p+1

2

sup
x∈Rd, |t|≤A0

〈|x|+ |y|〉
p+1+0

2

〈x〉N
|ĝ(t, y)|, (132)



where we also used the decay assumption S ∈ L2
N . Here and in the sequel the

symbol +0 means some small positive number whose actual value is irrelevant.

Through (68) and (125) there are therefore constants C and M such that we

can bound (132) by,

· · · ≤ C

〈y〉M− p+1+0
2

∈ L1(Rd), M >
p+ 1

2
+ d. (133)

Consequently, we can use the dominated convergence theorem to obtain,

IIIε = − Im

∫
Rd+p

A(t)
〈
S(·+ y), wε

t

〉
ĝ(t, y)dtdy

→ − Im

∫
Rd+p

A(t) 〈S(·+ y), wt〉 ĝ(t, y)dtdy, (134)

since S(x+ y) ∈ B(p+1)/2 for all fixed y. Hence, IIIε → 〈Q, g〉 by (34).

Fourth step: Convergence of IIε

From the result in the second and third steps the convergence of IIε follows

easily. By the same procedure as in (132) we immediately get,

|IIε| ≤ C

∫
Rd

sup
x∈Rd,
|t|≤A0

[
〈|x|+ |y|〉 p+1+0

2

〈x〉N
|ĝε(t, y)− ĝ(t, y)|

]
dy. (135)

Here and in the rest of this paragraph, C denote various constants depending

on the natural norms of A, S, and the test function R. The last term is easily

estimated by,

≤ C sup
y∈Rd, |t|≤A0

〈y〉
p+1+0

2
+M |ĝε(t, y)− ĝ(t, y)| , (136)

up to choosing M > d. Reasoning as we did in establishing (124), we conclude

that the right-hand-side of (136) is bounded by,

≤ C

∫ A0+R0

s=0

〈s〉
p+1+0

2
+M sup

|ξ|≤R0

∣∣∣e−αε|ξ|−1s − e−α|ξ|−1s
∣∣∣ ds , (137)

and the dominated convergence theorem allows us to conclude that IIε → 0.



Fifth step: Convergence of Iε

As in the preceding steps, we get,

|Iε| ≤ C

∫
Rd

sup
x∈Rd,
|t|≤A0

[
〈|x|+ |y|〉 p+1+0

2

〈x〉N
|ĝε(t+ ε(x+

y

2
), y)− ĝε(t, y)|

]
dy. (138)

It becomes therefore natural to estimate the right hand side of (138) differently

on the following three sets,

D1 := {x, y / |x+
y

2
| ≤ ε−1+0} , D2 := {x, y / |x+

y

2
| ≥ ε−1+0, |x| ≥ |y|

4
} ,

D3 := {x, y / |x+
y

2
| ≥ ε−1+0, |x| ≤ |y|

4
} . (139)

On the first set, we are able to use (127), the uniform continuity of ĝε(x, y) as

mentioned in the second step above. Hence the corresponding contribution to

Iε obviously goes to zero with ε.

On the second set, we cannot use the continuity of ĝε anymore, so we now

rely on (126) to upper-bound the corresponding contribution. By also using

the fact that |x| ≥ Cε−1+0 on D2, we get

· · · ≤ C

∫
Rd

sup
x≥Cε−1+0

[
〈|x|+ |y|〉 p+1+0

2

〈x〉N
〈ε(|x|+ |y|)〉M ∧ αε

−M

〈y〉M

]
dy

≤ C

∫
Rd

1

〈y〉M
dy × sup

x≥Cε−1+0

[
〈x〉

p+1+0
2

−N (〈εx〉M ∧ αε
−M)

]
≤ C ε−[β+1][ p+1+0

2
−N ]−βM → 0 , (140)

up to choosing M > d but close to d, and using the assumptions (79, 80). (In

addition we assumed that N < (p+ 1)/2 + d which is no restriction.)

We argue in the same way on the set D3 and obtain,

· · · ≤ C

∫
|y|≥Cε−1+0

|y|
p+1+0

2
〈εy〉M ∧ αε

−M

〈y〉M
dy

≤ C εM−[β+1][ p+1+0
2

+d] → 0 , (141)

up to choosing M large enough (M > (β+1)(d+(p+1)/2) will do) and using

(79).



Last step: Conclusion

We have now proved the relation (83). The fact that f satisfies the Liouville

equation in the sense of distribution follows easily from (83) by setting R =

−αψ + ξ · ∇xψ for testfunctions ψ ∈ D(R2d) and noting that since decay

estimates are trivial in this case, the support of R can include {ξ = 0}. This

ends the proof of Theorem 4.
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