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Université des Sciences et Technologies Lille 1

F-59655 Villeneuve d’Ascq Cedex, France
thierry.goudon@math.univ-lille1.fr

Abstract

We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of
particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation.
The equation also involves an interaction operator which acts as a relaxation in the energy variable. This
paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch
equations. In the present classical setting, the homogenization procedure leads to a diffusion equation in the
energy variable, rather than a rate equation, and the presence of the relaxation operator regularizes the limit
process, leading to finite diffusion coefficients. The key assumption is that the time-oscillatory perturbation
should have well-defined long time averages: our procedure includes general “ergodic” behaviors, amongst
which periodic, or quasi-periodic potentials only are a particular case.
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1 Setting of the Problem

We consider the asymptotic behavior as ε goes to 0 of the solutions fε(t, x, v) ≥ 0 to the following kinetic
equation with relaxation term

ε2 ∂tf
ε(t, x, v) +

{
H0(x, v), fε

}
+ ε

{
V

(
t

ε2
, x

)
, fε

}
= γ Q(fε)(t, x, v), (1.1)

where Q(fε)(t, x, v) := P (fε)(t, x, v)− fε. (1.2)
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Here, the Poisson bracket
{
·, ·
}

stands as usual for
{
f, g
}

= ∇vf ·∇xg−∇xf ·∇vg. The position resp. velocity
variables x resp. v both belong to the whole space Rd (d ≥ 1), and we shall often make use of the phase-space
variable X = (x, v) ∈ R2d. Throughout this text, the Hamiltonian H0(X) ∈ C∞(R2d) is assumed given, and
confining, i.e.

lim
|X|→∞

H0(X) = +∞. (1.3)

The right-hand-side of (1.1)-(1.2) involves a projection operator P , whose value we define as

Pfε(t,X) := [Πfε] (t,H0(X)), (1.4)

where the quantity Πfε(t, E) is the mean value of fε over the energy shell

SE := {X ∈ R2d s.t. H0(X) = E},

namely,

Πfε(t, E) :=
1

h0(E)

∫
SE

fε(t,X) δ(H0(X)− E), (1.5)

where h0(E) :=
∫

SE

δ(H0(X)− E)
(
SE = H0

−1(E)
)
. (1.6)

Here, the measure δ(H0(X)− E) over SE is defined as

δ(H0(X)− E) :=
dσE(X)∣∣∇XH0(X)

∣∣ , (1.7)

where dσE(X) denotes the induced euclidean surface measure over the energy shell SE . The measure δ(H0(X)−
E) is the standard micro-canonical (or Liouville) measure of statistical physics. The fact that the above
objects Pfε(t,X) and Πfε(t, E) are well defined is proved later, under the main assumption that the measure

δ(H0(X)− E) satisfies h0(E) =
∫

SE

δ(H0(X)− E) < +∞ for almost every E ∈ H0(R2d) (see Hypothesis 1), a

requirement which somehow reinforces the fact that H0 is assumed confining. Note that throughout this text,
the prototype where H0 is the harmonic oscillator H0 = Hharm = (x2 + v2)/2 is relevant.

The kinetic equation (1.1) is written in dimensionless form. The important dimensionless parameters are
ε > 0, which goes to zero, and the relaxation parameter γ > 0, considered fixed. We refer to [CDG] for a
thorough discussion and motivation of the scaling.

The dynamics induced by equation (1.1) may be described as follows:
(a) at leading order, the evolution is driven by transport along the Hamiltonian flow of H0, i.e. along the

solutions to the Hamiltonian ODE

∂tx(t, x, v) = ∇vH0 (t, x(t, x, v), v(t, x, v)) , x(0, x, v) = x, (1.8)
∂tv(t, x, v) = −∇xH0 (t, x(t, x, v), v(t, x, v)) , v(0, x, v) = v.

We shall often use the phase-space notationX(t,X) = (x(t, x, v), v(t, x, v)). Due to the scaling in (1.1), transport
occurs at the fast time scale t/ε2 and, since H0 is confining, transport roughly induces “oscillatory” trajectories
at the fast scale t/ε2.

(b) the reference Hamiltonian H0 is perturbed by the small and oscillatory potential ε V (t/ε2).
On the one hand, this perturbation is of size ε > 0 when compared to H0, and ε perturbations of a

Hamiltonian flow are known to modify the dynamics by an O(ε2) quantity, on time scales of the order 1. Time
being rescaled by a factor 1/ε2 in our case, the perturbing term εV is expected to modify the dynamics by a
quantity of the order 1. This is usually called a weak-coupling regime.

On the other hand, the oscillations carried by the potential V (t/ε2) at the fast scale t/ε2 may interact with
those induced by the transport term at the same scale. Hence only the average effect – in time – of these
combined oscillations is expected to influence the dynamics at dominant order.
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(c) the relaxation term Q(fε) = P (fε)−fε, discussed below, models complex interaction phenomena. Since
the projection operator P (fε) projects fε onto functions of the energy H0(X) only, it is clear that Q(fε)
redistributes the energy uniformly on each energy shell SE , or, in other words, it relaxes fε to a solution of
Pfε = fε. Yet the fluctuations Pfε − fε, small but definitely non-zero in (1.1), are transported along the
Hamiltonian flow, which eventually give rise to diffusion in the energy variable. This is typically what already
happens for standard diffusion limits in kinetic theory.

In a previous text [CDG], we studied the asymptotic behavior of (1.1) under the main assumption that
the perturbing potential V (t/ε2, x) is periodic or quasi-periodic in the fast time variable. Assuming also that
the Hamiltonian flow of H0 has some stability property (an assumption that we shall need here as well, see
Hypothesis 2 below), we proved that fε goes, in some weak topology, to a function of the energy only, say
F (t,H0(X)), and that the limiting profile F (t, E) (E ∈ R) satisfies a diffusion equation in energy, of the form

∂t

[
h0(E)F (t, E)

]
− ∂E

[
b(E)h0(E) ∂EF (t, E)

]
= 0, (1.9)

where h0(E) is defined in (1.5). The effective coefficient b(E) obtained in [CDG] is non-negative. It takes into
account the average effect, in time, of the resonant interactions between X(t/ε2) and the perturbation V (t/ε2).
It also is given by an almost explicit formula involving auxiliary profile equations.

For several reasons, the periodic or quasi-periodic case is unsatisfactory.
Technically speaking, the limit equation is easily guessed in the (quasi-)periodic case, upon simply performing

a double scale expansion in the spirit of classical homogenization theory [BLP]. On top of that, the actual proofs
given in [CDG] rely on the user-friendly framework of double-scale convergence introduced in [Ng] and [A]. In
essence, (quasi-)periodicity turns out to be a strong, and quantitative version of ergodicity, for which the analysis
eventually reduces to conveniently adapting the tools of double-scale convergence.

(Quasi-)periodicity is also restrictive from the physical viewpoint. As discussed below, equation (1.1) may
describe the classical evolution, in phase space, of a collection of atoms undergoing the influence of the atomic
Hamiltonian H0, and weakly coupled to an external laser field through εV (t/ε2). The potential V then is
roughly the electric field. Hence restricting to (quasi-)periodic V ’s means restricting to (quasi-)periodic fields.

Last, the quantum equation analogous to (1.1) has been previously studied in [BCD, BCDG], and other, more
general situations than the mere (quasi-)periodic setting have been analyzed there. The analysis performed in
[BCD, BCDG] actually shows the key point is that the perturbing potential V should possess well defined long

time averages of the form lim
T→∞

1
T

∫ T

0

V (s) ds or so. The existence of such long time averages is certainly implied

by the much stronger (quasi-)periodicity assumption, but it definitely includes much more general “ergodic”
behaviors.

Adopting this point of view, our goal in the present paper is to fill the gap, i.e. to describe the asymptotic
ε → 0 for more general oscillating potentials V that are not (quasi-)periodic in time. The potentials we are
interested in are actually of KBM type (after: Krylov, Bogolioubov, Mitropolski): they are required to possess
specific long-time averages (Hypothesis 3 below).

We stress that the present extension is by no means trivial.
First, the mere formulation of the assumption we need on the potential, though of KBM type, is not

immediate. It is an original requirement. Second, the (quasi-)periodic setting essentially requires an adaptation
of tools from double-scale analysis, and allows to pass to the limit in the standard two-scale topology directly
on fε. This strategy cannot be extended in any way here. We need at variance to split fε as Pfε + (Id−P )fε

and to pass to the limit in Pfε, exploiting a specific compactness property inherited from the structure of the
equation. From this point of view, our proof shares a lot of features with the derivation of Kubo-like formula
in [GP3]. Last, an important difficulty in the analysis of (1.1) is created by the fact that the operator f 7→ Pf
does not preserve the smoothness of f , and Pf is not even once differentiable in general. This difficulty is linked
with the general lack of smoothness of the energy levels SE as E varies. In the (quasi-)periodic setting, the use
of a double-scale analysis allows to circumvent this difficulty, with the mere drawback that our homogenization
procedure does not provide a corrector. In the present framework, the lack of smoothness of Pf is more
problematic, and we do need to deal with this difficulty in order to recover the necessary compactness.
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Our main result is the following.

Theorem 1.1 Let fε
0 ≥ 0 be the initial data for (1.1). We assume that fε

0 is bounded in L2(R2d). We also
suppose the Hamiltonian has well-defined energy levels with finite measure (Hypothesis 1 below), the Hamiltonian
flow of H0 is polynomially stable (Hypothesis 2), and the potential V has some well-defined long-time averages
(Hypothesis 3). Then, the following holds:

(i) The solution fε(t,X) to (1.1) admits the decomposition

fε(t,X) = Pfε(t,X) + εgε(t,X),

where gε is bounded in L2((0, T )× R2d) and Pfε(t,X) is bounded in C0([0, T ];L2(R2d)).

(ii) up to subsequences, Pfε(t,X) converges in C0([0, T ];L2(R2d)− weak) towards a function F (t,H0(X)).

(iii) the limiting function F : R+ × R → R+ satisfies the following diffusion equation in D′([0,∞)× R):

∂t

[
h0(E)F (t, E)

]
− ∂E

[
h0(E) b(E) ∂EF (t, E)

]
= 0,

F (0, E) = lim
ε→0

Πfε
0 (E) (the limit is in L2(R)-weak).

Equivalently, F satisfies

∂t

[
h0(E)F (t, E)

]
− h0(E) a(E) ∂EF (t, E)− h0(E) b(E) ∂2

E,EF (t, E) = 0,

F (0, E) = lim
ε→0

Πfε
0 (E).

Here the coefficient a and b are defined from (1.20) below through

a(E) = Π〈A〉(E), b(E) = Π〈B〉(E).

They satisfy

h0(E) a(E) = ∂E

[
h0(E) b(E)

]
, b(E) ≥ 0.

Naturally, the above theorem extends the result obtained in [CDG] to non-periodic V ’s. More importantly,
it is worth remarking that the formal structure of the formula which defines the diffusion coefficients a and b
coincides with the one of eddy diffusivity in turbulence theory, see [Ta].

Before coming to the formulation of Hypothesis 1, 2, and 3, and to the proof of Theorem 1.1, we wish to
make two comments.

Equation (1.1) is the standard setting for the description of an atom in interaction with a light field, say
a laser. This is the prototype situation we have in mind: the unperturbed Hamiltonian H0 is the atomic
Hamiltonian, while the perturbation εV (t/ε2) is the potential energy induced by light in the vicinity of the
atom. Equation (1.1) adopts a classical mechanics description of such an interaction.

If a quantum mechanical setting is retained, the kinetic equation (1.1) becomes a quantum Liouville equation,
also known as an atomic Bloch equation. It reads in our case

iε2∂tρ
ε(t) = [H0 , ρ

ε(t)] + ε

[
V

(
t

ε2

)
, ρε(t)

]
+ γQ(ρε(t)). (1.10)

The unknown ρε(t) now is a time dependent trace class operator, called “density matrix” of the atom, all Poisson
brackets in (1.1) have become commutators between operators in (1.10), and Q(ρε) is a relaxation operator that
plays the same role as Q(fε). The factor Q(ρε) describes at a heuristic level the observed trend of various
atomic systems to relax towards equilibria of the unperturbed Hamiltonian H0. The relaxation term Q is well
documented in the physics literature (see e.g. [Lo]), while the operator Q we introduced in [CDG] comes up in
mere analogy with Q, as a classical counterpart of the quantum operator Q.

The quantum setting (1.10) has been completely analyzed in [BCD], for potentials that are either (quasi-
)periodic in time, or more generally of KBM type (with optimal convergence rates in the first situation, and
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no better error estimate than o(1) in the second). The main convergence result obtained in [BCD] is similar in
spirit to what we prove here and in [CDG]: the atom tends to be well described by a function of the energy
only, i.e. by a function N(t, n) which describes the occupation probability of the atom’s n-th eigenstate at time
t. The function N(t, n) plays the role of F (t, E). Yet the main difference with the classical case is that energy
levels now are discrete, so that the diffusion process obtained classically for F rather becomes a discrete jump
process for N .

Our second comment concerns the role of the relaxation term Q. From the modeling point of view, a
mathematically rigorous derivation of this term goes far beyond the scope of this paper. We simply use it as a
way to take into account observed relaxation phenomena. On the other hand, the asymptotic analysis of (1.1)
or (1.10) is dominated by the resonant interaction between the oscillations of V (t/ε2), and those induced by
the transport operator ε2∂t + {H0, .}. Technically, the relaxation operators Q or Q somewhat regularize the
situation in this respect: they prevent the possibility of too strong resonances (small denominators), through
the introduction of some damping in the model. One may then wonder what happens along the asymptotic
process if the relaxation term is set to zero in the original equations (1.1) or (1.10). In the quantum case,
and for (quasi-)periodic potentials V , it turns out smaller damping rates of order O(εµ) with µ < 1/2 may be
considered (see [BCD, BCDG]). The usual (undamped) formulae for the Einstein rate equations [Lo] have been
recovered in [BCD, BCDG]. The analysis heavily relies on small denominator estimates, perturbed Diophantine
estimates, and other arguments in the same vein, in the spirit of averaging techniques for ODE’s. Yet the
condition µ < 1/2 still means that damping should not be too small with respect to the other perturbations. In
this perspective, a deep gap actually separates the case “with damping” from the case “without damping” (in
this article as well as in [CDG] and [BCD, BCDG]). The mathematical and physical situation, as well as the
limiting process itself, are completely different when the (possibly small) relaxation term is set to zero from the
onset: indeed, the limiting equation (1.9) is time-irreversible, while the associated scaled equation (1.1) only
becomes irreversible through the dissipation term. The route we choose here uses a heuristic, and deterministic,
relaxation term. The reader may find in [CD, Ca1, Ca2] a similar model “with relaxations” used to rigorously
derive the Pauli master equation from the quantum Liouville equation in a deterministic framework. A second,
probably more standard approach is the introduction of stochastic averaging in the model, which gives the
necessary “loss of memory” in the analysis: to some extent, deterministic relaxation terms play a similar role
as stochastic averaging process. The deep role played by stochastic averaging in the derivation of irreversible
equations is very well explained in [CIP] (see also [Sp]). More recently, we may mention [EY1], [EY2], [PV],
[LV], or also [KPR]. There are actually several other examples of such an alternative: homogenization of
convection(-diffusion) equations (see [GP1, GP2] and the references therein), Lorentz gas involving in a billiard
(see [BDG] and [BSC]), quantum scattering limit of the Schrödinger equation ([BPR], [EY2], [PR], [PV]...). For
the (space-)homogenization of kinetic equations without dissipative term, we refer e.g. to [Al], [FH].

We now state the assumptions we need on the Hamiltonian H0, and the potential V .

We begin with the assumptions on H0, which are essentially the same as in [CDG].

Hypothesis 1 (energy levels with finite measure).
We assume that the confining Hamiltonian H0 satisfies
(i) for almost all E ∈ H0(R2d), the set

SE = {X = (x, v) ∈ R2d|H0(X) = E},

is a smooth orientable 2d − 1 submanifold of R2d. For any such E, we denote the induced euclidean surface
measure by dσE(X). We also define the (micro-canonical or Liouville) measure δ(H0(X)− E) as

δ(H0(X)− E) =
dσE(X)∣∣∇XH0(X)

∣∣ .
(ii) for any E as in (i), the set SE has finite measure with respect to δ(H0(X)− E), namely

h0(E) =
∫

SE

δ(H0(X)− E) < +∞, a.e. E ∈ H0(R2d).
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Remark. As noticed in [CDG], the Sard theorem asserts that Hypothesis 1-(i) is generically satisfied (see e.g.
[Mi]). Hence the truly important assumption is point (ii).

Hypothesis 2 (stability of the Hamiltonian flow).
Let X : (s,X) ∈ R× R2d 7−→ X(s,X) ∈ R2d be the Hamiltonian flow of H0, namely

d

ds
X(s,X) =

(
+∇vH0

−∇xH0

)(
X(s,X)

)
, X(0, X) = X = (x, v). (1.11)

We assume that the linearized flow satisfies, for any s ≥ 0 and X ∈ R2d,∣∣∣∣DXDX (s,X)
∣∣∣∣ ≤ C(X) (1 + s)p, (1.12)∣∣∣∣D2X

DX2
(s,X)

∣∣∣∣ ≤ C(X) (1 + s)p, (1.13)

for some C(X) ≥ 0 which is locally bounded in X, and some exponent p ≥ 0, independently of s.

Remark. The analysis provided in [CDG] for (quasi-)periodic potentials only requires the first stability estimate
(1.12). In the present text, estimate (1.13) is required as well. It may be somewhat relaxed into a locally
Lipschitz bound of the form |DX/DX(s,X + Y )−DX/DX(s,X)| ≤ C(X) |Y | (1 + s)p. We do not detail this
unnecessary technical point.

Remark. The crucial assumptions on H0 are Hypothesis 1-(ii) and 2. The former allows to define the relaxation
operator Q (see Lemma 1.2 below), while the latter is a strong stability assumption on the Hamiltonian flow
of H0: according to (1.12), any two trajectories starting with nearby initial data should diverge at most
polynomially with time. For the standard HamiltonianH0(X) = v2/2+V0(x), with V0 any ’reasonable’ potential,
we recall that the generic divergence of two nearby trajectories is more likely exponential in time. Naturally,
Hypotheses 1 and 2 are fulfilled in the prototype case of the harmonic oscillator Hharm(X) = (x2 + v2)/2.

We mention that the stability Hypothesis 2 may be somewhat relaxed, so as to include the case of exponential
divergence, i.e. the case when (1+s)p is replaced by exp(C1 s) for some C1 > 0. However, this can only be done
at the (unreasonable) price of considering large enough values of the relaxation parameter γ, namely γ > C1.
We do not dwell on this aspect of the analysis.

As proved in [CDG], Hypothesis 1 allows to properly define the operators Π and P , as in (1.4) and (1.5).
This gives a well-defined relaxation operator Q = Id − P in (1.1). The basic observation is that the co-area
formula reads, with the above notations

∀f ∈ L1(R2d),
∫

R2d

f(X) dX =
∫

R
Πf(E) h0(E) dE. (1.14)

Armed with (1.14), one may indeed deduce (see [CDG]) the following

Lemma 1.2 The operator P defined in (1.4) satisfies the following properties:
(i) P is a continuous projection operator on Lp spaces:

P (Pf) = Pf, ‖Pf‖Lp(R2d) ≤ ‖f‖Lp(R2d) 1 ≤ p ≤ ∞.

Besides P is conservative: for any integrable function, we have∫
R2d

Pf dX =
∫

R2d

f dX.

(ii) P is self-adjoint with respect to the inner product of L2(R2d) (denoted 〈·, ·〉 throughout the paper): for any
function f ∈ L2(R2d) and ϕ : R → R such that ϕ(H0(X)) ∈ L2(R2d), we have〈

ϕ(H0(X)), (Id− P )f
〉

= 0.
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(iii) P is non negative: if f ≥ 0 a.e. X, then Pf ≥ 0 a.e. X as well. Moreover, the stronger relation holds:

f ≥ 0 a.e. X, and Pf = 0 a.e. X =⇒ f = 0 a.e. X.

(iv) The operators f 7−→ Pf and f 7−→
{
H0, f

}
are orthogonal, i.e. the relation

P
{
H0, f

}
= 0,

holds for any f ∈ L2(R2d) such that {H0, f
}
∈ L2(R2d). Consequently, for any f, g ∈ L2(R2d) such that {H0, f

}
and {H0, g

}
in L2(R2d), we have

P (
{
H0, f

}
g) = −P (f

{
H0, g

}
).

(v) The operator Q = Id− P is a bounded operator on L2(R2d) and the relation

−
∫

R2d

Q(f)f dX =
∫

R2d

∣∣Pf − f
∣∣2 dX ≥ 0

holds for any f ∈ L2(R2d).
(vi) Let V : R× R2d → R be a C1 function. Let ϕ ∈ C∞c (R). We have

P
{
V(t), ϕ(H0)

}
= 0.

Remark. Point (v) asserts that Q relaxes towards solutions to Pf = f , and the rate of convergence is unity.
The proof of point (vi) relies on the equality

P
{
V, ϕ(H0)

}
(X) = P

({
V,H0

})
(X) ∂Eϕ(H0(X)) = 0.

There remains to specify the behavior of the perturbing potential V (s, x) in the fast time variable s. This
is the main new point in the present paper.

To motivate our approach, let us describe the situation in the quantum case, i.e. when analyzing (1.10)
instead of (1.1). The key point in [BCD, BCDG] is the following: one may transform the original PDE (1.10) into
an infinite dimensional ODE, which in turn very much behaves like a finite dimensional ODE with oscillatory
coefficients (up to small remainder terms), of the form

d

dt
yε(t) = ψ

(
t

ε2
, yε(t)

)
. (1.15)

As a consequence, the quantum problem (1.10) reduces, in essence, to performing an averaging procedure on
the ODE (1.15). Now, the basic averaging theorem for ODE’s (see e.g. [SV]) asserts that the solution yε(t) to
any oscillatory ODE of the form (1.15), converges in some topology towards the solution of the averaged ODE

d

dt
y(t) = 〈ψ〉

(
y(t)

) (
= lim

T→∞

1
T

∫ T

0

ψ
(
s, y(t)

)
ds

)
, (1.16)

provided the function ψ(s, z) has KBM dependence in the time variable s. We recall that a function ψ(s, z) is
called a KBM function whenever the limit

〈ψ〉(z) = lim
T→∞

1
T

∫ T

0

ψ(s, z) ds (1.17)

exists, for every z. We refer to e.g. [SV] for the precise statements concerning averaging of ODE’s. Periodic,
quasi-periodic, or even almost-periodic functions of time, are obvious examples of KBM functions.
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In the present paper, the analysis shows that an argument similar to the one used in the quantum context
[BCD, BCDG] allows to transform the original PDE (1.1) into a PDE with oscillatory coefficients, of the form
(roughly)

∂

∂t
yε(t, E) = α

(
t

ε2
, E

)
∂Eyε(t, E) + β

(
t

ε2
, E

)
∂2

E,Eyε(t, E), (1.18)

for some coefficients α and β. This result is very much in the spirit of observation (1.15) above. The quan-
titative statement is Proposition 2.5 below, where the relevant coefficients are the two functions A(t/ε2, X)
and B(t/ε2, X) entering Hypothesis 3. Keeping in mind the paradigm (1.15)-(1.16), the natural assumption is
that the time dependent coefficients α(s,E), β(s,E) (or A(s,E), B(s,E)) should have well defined long time
averages in s. When V is periodic or quasi-periodic in time, this requirement is easily met, since the relevant
coefficients then are (quasi-)periodic in time as well [CDG]. The natural extension, which is the purpose of this
paper, is the case when the coefficients α, β (or A, B) are merely KBM.

All these considerations motivate our main assumption on V :

Hypothesis 3 (existence of long-time averages of V ).
(i) We assume that V ∈ C3

b (R+ × Rd) is bounded with bounded derivatives up to third order.

(ii) Introduce the family of transport operators associated to the Hamiltonian flow of H0,

Su(ϕ)(X) := ϕ
(
X(u,X)

)
.

For any t ≥ 0, define the functions

A(t,X) :=
∫ t

0

e−γu

{
V (t) , Su

{
V (t+ u) , H0

}}
du,

B(t,X) :=
∫ t

0

e−γu
{
V (t),H0

}
× Su

{
V (t+ u) , H0

}
du.

We assume that A and B admit long-time averages, in that the following limits exist in L∞loc(R2d)-weak-?,

〈A〉(X) := lim
T→+∞

1
T

∫ T

0

A(s,X) ds, 〈B〉(X) := lim
T→+∞

1
T

∫ T

0

B(s,X) ds. (1.19)

(iii) Furthermore, we assume that the following limits hold true

A
( t
ε2
, X
)
⇀ 〈A〉(X), B

( t
ε2
, X
)
⇀ 〈B〉(X), in L∞loc(R+ × R2d)− weak− ?. (1.20)

Remark. Assumption (i) may be somewhat relaxed in that V may be assumed C2
b , with a Lipschitz second

derivative, globally in time, locally in X. We do not detail this technical aspect.

The above assumption requires some comments.
An important hypothesis is point (i). Indeed, we show below (Proposition 2.2) that the assumed regularity

on V and H0 implies the coefficients A and B are bounded, globally in time t ≥ 0, and locally in X. Hence the
sequences 1/T

∫ T

0
· · · are bounded in L∞loc(R2d), and they possess (up to subsequences) weak-? limits as T →∞,

limits that are automatically independent of time. This ensures the validity of statement (ii), of KBM type.
The same argument shows the sequences A(t/ε2, X) and B(t/ε2, X) also are bounded in L∞loc(R+×R2d), hence
possess weak-? limits as ε → 0. The point is, assertion (iii) requires these limits are independent of t. This in
turn implies that A(t/ε2, X) automatically goes to 〈A〉(X), and similarly for B. In summary, assumption (iii)
is considerably stronger than (ii). It should also be noted that, in the context of ODE’s, the averaging of (1.15)
only requires the long time averages 1/T

∫ T

0
ψ(s, z)ds converge, while in the present PDE context, we do need

the reinforced assumption (iii).

The remainder part of this paper is devoted to the proof of Theorem 1.1.
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2 Proof of Theorem 1.1

2.1 Two uniform bounds

Our analysis starts with the

Proposition 2.1 Suppose the initial data fε
0 is bounded in L2(R2d). Then,

(i) The family
(
fε
)
ε>0

is bounded in L∞(R+;L2(R2d)),

(ii) The family
(
gε)ε>0 :=

(
fε − Pfε

ε

)
ε>0

is bounded in L2(R+ × R2d).

Proof of Proposition 2.1
We readily observe

1
2
d

dt

∫
R2d

|fε|2 dX = γ

∫
R2d

Q(fε)fε dX = − γ

ε2

∫
R2d

|Pfε − fε|2 dX ≤ 0,

where Lemma 1.2-(vi) has been used.

For later convenience, we also state and prove the following easy, yet crucial, uniform bound on the coefficients
A(t/ε2, X) and B(t/ε2, X) entering Hypothesis 3.

Proposition 2.2 Suppose Hypotheses 2 and 3 are fulfilled. Let 0 < R <∞ and set

E(R) := {X ∈ R2d, |H0(X)| ≤ R}, B(R) := {X ∈ R2d, |X| ≤ R}.

(i) There exists 0 < ρ(R) <∞ such that any X ∈ E(R) belongs to B(ρ(R)) as well.
Moreover, for any X ∈ E(R) and u ∈ R, we have X(u,X) ∈ B(0, ρ(R)) too.

(ii) There exists a function C(R), bounded for bounded values of R > 0, such that

sup
ε>0

sup
t≥0

sup
X∈E(R)

∣∣{V (t/ε2 − u) , H0

}
Su

{
V (t/ε2) , H0

}∣∣ ≤ C(R),

sup
ε>0

sup
t≥0

sup
X∈E(R)

∣∣∣{V (t/ε2 − u) , Su

{
V (t/ε2) , H0

}}∣∣∣ ≤ C(R) (1 + u)p,

whenever u ≥ 0. The exponent p is as in Hypothesis 3.
(iii) There exists a function C(R), bounded for bounded values of R > 0, such that1

sup
ε>0

sup
t≥0

sup
X∈E(R)

∣∣∣∣A( t

ε2
, X

)∣∣∣∣ ≤ C(R)
γp+1

, sup
ε>0

sup
t≥0

sup
X∈E(R)

∣∣∣∣B( t

ε2
, X

)∣∣∣∣ ≤ C(R)
γ

.

Here, functions A and B are as in Hypothesis 3.

Proof of Proposition 2.2.
The fact that H0 is confining (1.3) readily implies point (i).

Next, point (ii) comes as an immediate consequence of the regularity assumptions we have made on H0 and
V . Indeed, we may write, whenever ε > 0, t ≥ 0, and X ∈ E(R),∣∣{V (t/ε2 − u) , H0

}
Su

{
V (t/ε2) , H0

}∣∣ ≤ ‖∇xV ‖2L∞(R×B(ρ(R))) ‖∇vH0‖2L∞(B(ρ(R)) ≤ C(R),

1Note that we implicitly assume here γ < 1 – this is no loss of generality
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where C(R) is a locally bounded function of R. Similarly, we have∣∣∣{V (t/ε2 − u) , Su

{
V (t/ε2) , H0

}}∣∣∣
≤ ‖∇xV ‖L∞(R×B(ρ(R))) ×

∥∥∥DX(u,X)
DX

∥∥∥
L∞(B(ρ(R)))

×
(
‖D2

xV ‖L∞(R×B(ρ(R))) ‖∇vH0‖L∞(B(ρ(R))) + ‖∇xV ‖L∞(R×B(ρ(R)))‖ D2
x,vH0‖L∞(B(ρ(R)))

)
≤ C(R)× (1 + u)p.

The last line uses Hypothesis 3.

Point (iii) is easily deduced, since, for any ε > 0, t ≥ 0, and X ∈ E(R), we have the two upper bounds

|B(t/ε2, X)| ≤ C(R)
∫ +∞

0

e−γu du ≤ C(R) γ−1,

|A(t/ε2, X)| ≤ C(R)
∫ +∞

0

e−γu (1 + u)p du ≤ C(R) γ−p−1.

2.2 Obtaining an equation for Pf ε

The following result completes the previous Proposition 2.1, according to which fε = Pfε+O(ε): we derive here
an equation for Pfε. We mention that the splitting fε = Pfε + ε gε into a (dominant) function of the energy,
and a (smaller) fluctuation term, is partly motivated by a similar decomposition occurring in the quantum
context, see [BCD, BCDG]. The crucial point is that the dominant function of the energy turns out to satisfy a
closed equation (up to small remainder terms). Note that [CDG] follows a completely different approach, based
on a double-scale convergence analysis for fε itself.

Proposition 2.3 The function Pfε = Pfε(t,X) satisfies the equation

∂t (Pfε) (t,X) = Lε (Pfε) (t,X) + ε
[
Rε(t,X) + Iε(t,X)

]
. (2.1)

The Leading term Lε(Pfε) is a second order, linear operator, with memory term and oscillatory coefficients. It
has the value

Lε (Pfε) (t,X) =
∫ t/ε2

0

e−γu P
{
V (t/ε2) , S−u

{
V (t/ε2 − u) , Pfε(t− ε2u)

}}
du.

The Remainder and Initial terms Rε and Iε are

Rε(t,X) =
∫ t/ε2

0

e−γu P
{
V (t/ε2) , S−u

{
V (t/ε2 − u) , gε(t− ε2u)

}}
du,

Iε(t,X) = −ε−1 e−γt/ε2
P
{
V (t/ε2) , S−t/ε2 gε

0

}
.

The picture given in Proposition 2.3 is made complete through the next technical statement, according to
which operators Lε, Rε, and Iε are bounded in some weak topology.

Proposition 2.4 Let ϕ : R → R be a C∞ compactly supported function. Then, there exists a constant C > 0,
depending on γ, supp(ϕ), H0 and V , such the following estimates hold true

sup
t≥0

∣∣∣ ∫
R2d

Lε (P fε) (t,X) ϕ(H0(X)) dX
∣∣∣ ≤ C ‖ϕ‖W 2,∞(R), (2.2)∫ ∞

0

∣∣∣ ∫
R2d

Rε(t,X) ϕ(H0(X)) dX
∣∣∣2 dt ≤ C ‖ϕ‖2W 2,∞(R), (2.3)∫ ∞

0

∣∣∣ ∫
R2d

Iε(t,X) ϕ(H0(X)) dX
∣∣∣2 dt ≤ C ‖ϕ‖2W 1,∞(R). (2.4)
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Proof of Proposition 2.3.
Proposition 2.1 naturally leads to splitting the original kinetic equation (1.1) on fε into an equation for Pfε,
and an equation on gε = (fε − Pfε)/ε. We have on the one hand

∂tPf
ε = −1

ε
P
{
V (t/ε2), fε

}
,= −1

ε
P
{
V (t/ε2), Pfε

}
−
{
V (t/ε2), gε

}
= −P

{
V (t/ε2), gε

}
,

(Lemma 1.2 has been used, which allows to cancel the O(1/ε) contribution), while, on the other hand

ε2∂tg
ε +

{
H0, g

ε
}

+ γgε = −
{
V (t/ε2), Pfε

}
− ε (Id− P )

{
V (t/ε2), gε

}
.

Hence we arrive at a system with a particular triangular structure, namely,

∂tPf
ε = −P

{
V (t/ε2), gε

}
, (2.5)

ε2∂tg
ε +

{
H0, g

ε
}

+ γgε = −
{
V (t/ε2), Pfε

}
− ε (Id− P )

{
V (t/ε2), gε

}
. (2.6)

The similar (and crucial) structure is involved in the quantum case (see [BCD, BCDG]).

Exploiting this observation, one may first express gε as a function of Pfε: the method of characteristics
readily gives

gε(t,X) = e−γt/ε2
gε
0

(
X(−t/ε2, X)

)
−
∫ t/ε2

0

e−γu
{
V (·/ε2) , Pfε

}(
t− ε2u,X(−u,X)

)
du

− ε

∫ t/ε2

0

e−γu (Id− P )
{
V (·/ε2) , gε

}(
t− ε2u,X(−u,X)

)
du. (2.7)

Now, inserting (2.7) into (2.5) roughly gives a closed equation on Pfε, namely

∂t (Pfε) = Lε (Pfε) + ε R̃ε + ε Iε,

with R̃ε =
∫ t/ε2

0

e−γu P
{
V (t/ε2) , (Id− P ) S−u

{
V (t/ε2 − u) , gε(t− ε2u)

}}
du.

There remains to observe that, for any u, we have

P
{
V (t/ε2) , P S−u

{
V (t/ε2 − u) , gε(t− ε2u)

}}
= 0,

by virtue of Lemma 1.2. Hence R̃ε = Rε, and the Proposition is proved.

Proof of Proposition 2.4.
Let us pick some R > 0 such that supp ϕ ⊂ (−R,+R). Proposition 2.2-(i) implies ϕ(H0(X)) = 0 whenever
|X| ≥ ρ(R). Actually, using the energy conservation, the function Suϕ(H0) ≡ ϕ(H0) is supported in B(ρ(R))
for any u ≥ 0. This observation is used repeatedly below.

First step: proof of estimate (2.2) on Lε

Upon using the definition of Lε, performing the obvious integration by parts, and systematically exploiting
the identity {V , ϕ(H0)} = {V , H0} ∂Eϕ(H0) and so on, we obtain,∫

R2d

Lε(Pfε)(t,X) ϕ(H0(X)) dX

=
∫

R2d

∫ t/ε2

0

e−γuP
{
V (t/ε2),S−u

{
V (t/ε2 − u), Pfε(t− ε2u)

}}
ϕ(H0) du dX

=
∫

R2d

∫ t/ε2

0

e−γu Pfε(t− ε2u)
{
V (t/ε2 − u) , Su

{
V (t/ε2) , ϕ(H0)

}}
du dX
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=
∫

R2d

∫ t/ε2

0

e−γu Pfε(t− ε2u)
{
V (t/ε2 − u) , Su

{
V (t/ε2) , H0

}
∂Eϕ(H0)

}
du dX

=
∫

R2d

∫ t/ε2

0

e−γu Pfε(t− ε2u)

[{
V (t/ε2 − u) , H0

}
Su

{
V (t/ε2) , H0

}
∂2

EEϕ(H0)

+
{
V (t/ε2 − u) , Su

{
V (t/ε2) , H0

}}
∂Eϕ(H0)

]
du dX.

This together with Proposition 2.2-(ii) allows to estimate∣∣∣∣∫
R2d

Lε(Pfε)(t,X) ϕ(H0) dX
∣∣∣∣

≤ C(R) ‖ϕ‖W 2,∞(R)

∫
R2d

∫ t/ε2

0

e−γu Pfε(t− ε2u) 1B(ρ(R)) (1 + up) du dX

≤ C(R) ‖ϕ‖W 2,∞(R) ‖fε‖L∞(R+;L2(R2d))|B(ρ(R))|1/2

∫ ∞

0

e−γu(1 + up) du

≤ C(R) γ−p ‖ϕ‖W 2,∞(R),

where the indicator function 1B(ρ(R)) is used to keep track of the compact support of ϕ, while the last estimate
uses Proposition 2.1.

Second step: proof of estimate (2.3) on Rε

The proof follows the same lines as before. Multiplying Rε by the trial function ϕ(H0) and performing the
obvious integration by parts, we obtain∫

R2d

Rε(t,X) ϕ(H0(X)) dX

=
∫

R2d

∫ t/ε2

0

gε(t− ε2u) e−γu
{
V (t/ε2 − u) , Su

{
V (t/ε2) , ϕ(H0)

}}
du dX.

=
∫

R2d

∫ t/ε2

0

gε(t− ε2u) e−γu

[{
V (t/ε2 − u) , H0} Su

{
V (t/ε2) , H0

}}
∂2

EEϕ(H0)

+
{
V (t/ε2 − u) , Su

{
V (t/ε2) , H0

}}
∂Eϕ(H0)

]
du dX.

As a consequence, using Proposition 2.2-(ii), we recover∫ ∞

0

∣∣∣ ∫
R2d

Rε(t,X) ϕ(H0) dX
∣∣∣2 dt

≤ C(R) ‖ϕ‖2W 2,∞(R)

∫ ∞

0

∣∣∣ ∫
R2d

∫ t/ε2

0

|gε(t− ε2u)| e−γu (1 + up) 1B(ρ(R)) du dX
∣∣∣2 dt

≤ C(R) ‖ϕ‖2W 2,∞(R) ‖g
ε‖2L2(R×R2d) γ

−2p ≤ C(R) γ−2p ‖ϕ‖2W 2,∞(R).

The last estimate uses Proposition 2.1.

Third step: proof of estimate (2.4) on Iε

We write∣∣∣∣∣
∫

R2d

Iε(t,X) ϕ(H0) dX

∣∣∣∣∣ =
∣∣∣∣∣
∫

R2d

ε−1 e−γt/ε2
gε
0(X) St/ε2

{
V (t/ε2),H0

}
∂Eϕ(H0(X)) dX

∣∣∣∣∣
≤ C(R) ‖ϕ‖W 1,∞(R)

∫
R2d

ε−1 e−γt/ε2
|gε

0(X)|1B(ρ(R)) dX

≤ C(R) ‖ϕ‖W 1,∞(R) ε
−1 e−γt/ε2

‖fε
0‖L2(R2d).
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Hence∫ +∞

0

∣∣∣∣∣
∫

R2d

Iε(t,X) ϕ(H0) dX

∣∣∣∣∣
2

dt ≤ C(R) ‖ϕ‖W 1,∞(R)

∫ +∞

0

ε−2 e−2γt/ε2
dt

≤ C(R) γ−1 ‖ϕ‖2W 1,∞(R).

This ends the proof of Proposition 2.4.

2.3 Analysis of the memory effect

Proposition 2.3 establishes the equation ∂t(Pfε) = Lε(Pfε) + O(ε), where the operator Lε is a second order
differential operator involving both a memory effect (this is the term Pfε(t−ε2u)) and coefficients that oscillate
in time (these are the terms V (t/ε2) etc.). The next Proposition allows to get rid of the memory effect, and
to somewhat put in evidence the true difficulty of the present analysis, namely the presence of time oscillatory
terms.

Proposition 2.5 For any smooth test functions ζ(t) ∈ C∞c (R+) and ϕ(E) ∈ C∞c (R), we have∫
R2d

Pfε
0 (X) ϕ(H0(X)) ζ(0) dX +

∫ ∞

0

∫
R2d

Pfε(t,X) ϕ(H0(X)) ζ ′(t) dt dX

+
∫ ∞

0

∫
R2d

Pfε(t,X)
[
A
( t
ε2
, X
)
∂Eϕ(H0) +B

( t
ε2
, X
)
∂2

EEϕ(H0)
]
ζ(t) dX dt = O(ε), (2.8)

where O(ε) is estimated by Cε for some C, independent of ε, which depends on the test functions ζ and ϕ.
Here, the coefficients A(t/ε2, X) and B(t/ε2, X) are defined in Hypothesis 3.

Proof of Proposition 2.5
Propositions 2.3 and 2.4 readily give, upon testing equation (2.1) against ζ(t)ϕ(H0(X)),∫

R2d

(Pfε)(0, X) ϕ(H0(X)) ζ(0) +
∫ ∞

0

∫
R2d

(Pfε)(t,X) ϕ(H0(X)) ζ ′(t)

+
∫ ∞

0

∫
R2d

Lε(Pfε)(t,X) ϕ(H0(X)) ζ(t) dt dX = O(ε).

Now, the proof of Proposition 2.4 (estimate (2.2)) provides the weak form of the operator Lε, namely∫ ∞

0

∫
R2d

Lε(Pfε)(t,X) ϕ(H0(X)) ζ(t) dt dX

=
∫ ∞

0

∫
R2d

∫ t/ε2

0

e−γu Pfε(t,X)

[{
V (t/ε2) , H0

}
Su

{
V (t/ε2 + u) , H0

}
∂2

EEϕ(H0)

+
{
V (t/ε2) , Su

{
V (t/ε2 + u) , H0

}}
∂Eϕ(H0)

]
ζ(t+ ε2u) du dX dt. (2.9)

In order to replace ζ(t+ε2u) by ζ(t) in (2.9), we evaluate the difference (here, we do not rewrite the exact value
of the term between brackets),∣∣∣∣∣

∫ ∞

0

∫
R2d

∫ t/ε2

0

e−γu Pfε(t,X)
[
· · ·
] [
ζ(t+ ε2u)− ζ(t)

]
du dX dt

∣∣∣∣∣
≤ ε2 × T ‖ζ ′‖L∞ ×

∫ t/ε2

0

u e−γu
∥∥∥Pfε

∥∥∥
L∞(R+;L2(R2d))

∥∥∥[ · · · ]∥∥∥
L2(R2d)

du

≤ ε2 × T ‖ζ ′‖L∞ × C(R) ‖ϕ‖W 2,∞ ×
∫ t/ε2

0

u (1 + u)p e−γu du

≤ C ε2,
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where we used Propositions 2.1 and 2.2, and the last constant C depends on T , R, γ, ϕ and ζ. The Proposition
is proved.

2.4 Compactness Properties

According to Proposition 2.5, the limiting dynamics of Pfε may be obtained upon averaging out the coefficients
A(t/ε2, X) and B(t/ε2, X) in equation (2.8). The averaging procedure naturally needs bounds together with
compactness properties. These elements are essentially gathered in Proposition 2.6. Yet the compactness at
hand is not enough to conclude at once, since equation (2.8) involves products of weakly convergent sequences
Pfε(t,X)×A(t/ε2, X) and Pfε(t,X)×B(t/ε2, X). The crucial point, which allows to deal with such products, is
that the function Pfε(t,X) possesses some compactness in the time variable t, while A(t/ε2, X) and B(t/ε2, X)
have some compactness in the phase-space variable X. Based on this observation Proposition 2.7 shows one
can pass to the weak limit in the above products. The idea of exploiting this particular structure in products of
weakly convergent sequences is borrowed from a similar observation made in [Li] in a different context. It may
also be seen as a version of the compensated-compactness principle.

Let us come to the details. We first state the

Proposition 2.6 Take any time T > 0.

(i) The sequence
(
∂t

[
h0(E) (Πfε)(t, E)

])
ε>0

is bounded in L2(0, T ;W−2,1
loc (R)).

As a corollary, the sequence
(
h0(E) (Πfε)(t, E)

)
ε>0

is relatively compact in C0([0, T ];L2
loc(R)−weak), and the

sequence
(
(Pfε)(t,X)

)
ε>0

is relatively compact in C0([0, T ];L2
loc(R2d)− weak).

(ii) There exists a function F (t, E) ∈ C0(R+;L2(R)) such that, up to extracting subsequences, the family
h0(E) (Πfε)(t, E) converges to h0(E) F (t, E) in C0([0, T ];L2

loc(R) − weak), while the sequence (Pfε)(t,X)
converges to F (t,H0(X)) in C0([0, T ];L2

loc(R2d)− weak).

Remark. We draw the reader’s attention to the following important difficulty. Proposition 2.6 asserts the
sequence

(
(Pfε)(t,X)

)
ε>0

has some compactness in time. This is due to the fact that, when going to the

energy variable E, the associated sequence
(
h0(E) (Πfε)(t, E)

)
ε>0

is once differentiable in time, with values

lying in the negative Sobolev space W−2,1(R), uniformly in t and ε. Note however that, though both sequences(
(Pfε)(t,X)

)
ε>0

and
(
h0(E) (Πfε)(t, E)

)
ε>0

are roughly the same object, yet the time derivative of the

sequence
(
(Pfε)(t,X)

)
ε>0

does not belong to a negative Sobolev space in any obvious way.

From Proposition 2.6, we are able to deduce the

Proposition 2.7 Take two arbitrary test functions ζ(t) ∈ C∞c (R+) and ϕ(E) ∈ C∞c (R).
The following convergence result holds∫ ∞

0

∫
R2d

(Pfε)(t,X)A
(
t

ε2
, X

)
ζ(t)ϕ(H0(X)) dtdX →

ε→0

∫ ∞

0

∫
R2d

F (t,H0(X))〈A〉(X)ζ(t)ϕ(H0(X)) dtdX.

Similarly, we have,∫ ∞

0

∫
R2d

(Pfε)(t,X)B
(
t

ε2
, X

)
ζ(t)ϕ(H0(X)) dtdX

−→
ε→0

∫ ∞

0

∫
R2d

F (t,H0(X))〈B〉(X)ζ(t)ϕ(H0(X)) dtdX.
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Proof of Proposition 2.6
The whole Proposition is essentially a consequence of Proposition 2.3 combined with the co-area formula (1.14).
We write, taking a compactly supported test function ϕ ∈W 2,∞(R),∫

R
∂t

(
h0(E) (Πfε)(t, E)

)
ϕ(E) dE

=
∫

R2d

∂t

(
P fε

)
(t,X) ϕ(H0(X)) dX (using the co-area formula)

=
∫

R2d

[Lε (P fε) + ε Rε + εIε] (t,X) ϕ(H0(X)) dX (using Proposition 2.3).

Hence, using Proposition 2.4, we may upper-bound,∫ T

0

[ ∫
R
∂t

(
h0(E) (Πfε)(t, E)

)
ϕ(E) dE

]2
dt ≤ C ‖ϕ‖2W 2,∞(R),

and the sequence
(
∂t

[
h0(E) (Πfε)(t, E)

])
ε>0

is bounded in L2(0, T ;W−2,1
loc (R)).

On the other hand, Proposition 2.1 and the co-area formula allow to similarly establish that the sequence(
h0(E) (Πfε)(t, E)

)
ε>0

is bounded in L∞(R+;L2
loc(R)). Indeed, taking a compactly supported test function

ϕ ∈ L2(R), we may write∣∣∣ ∫
R
h0(E) (Πfε)(t, E) ϕ(E) dE

∣∣∣ = ∣∣∣ ∫
R2d

(
P fε

)
(t,X) ϕ(H0(X)) dX

∣∣∣
≤ C ‖ϕ(H0(X))‖L2(R2d) ≤ C ‖ϕ‖L2(R),

where the first inequality uses Proposition 2.1 and the second estimate uses once again that H0 is confining.

Therefore, standard compactness results give that the sequence
(
h0(E) (Πfε)(t, E)

)
ε>0

is relatively compact
in C0([0, T ];L2

loc(R)− weak). Hence the existence of F (t, E) ∈ C0([0, T ];L2
loc(R)) such that h0(E) (Πfε)(t, E)

goes to h0(E) F (t, E) in C0([0, T ];L2
loc(R)− weak), as ε→ 0.

Besides, using the co-area formula again gives the similar compactness for the sequence
(
(Pfε)(t,X)

)
ε>0

.

Indeed, taking a compactly supported test function ψ(X) ∈ L2(R2d), we may write∫
R2d

(Pfε)(t,X) ψ(X) dX =
∫

R
h0(E) (Πfε)(t, E) (Πψ)(E) dE

−→
∫

R
h0(E) F (t, E) (Πψ)(E) dE =

∫
R2d

F (t,H0(X)) ψ(X) dX,

where the convergence is uniform as t varies in compact subsets of R+ (thanks to the previous result). The
Proposition is now proved.

Proof of Proposition 2.7
We only prove the first convergence result, the other one being completely similar.

Our proof closely follows that of a similar statement, given in [Li] (Lemma 5.1 page 12).

We choose two cutoff functions in time, resp. in space, Φ(X) ∈ C∞c (R2d) and χ(t) ∈ C∞c (R+), such that
Φ ≥ 0, χ ≥ 0,

∫
Φ = 1,

∫
χ = 1. Associated with these regularizing function, we take a small parameter δ > 0,

and set

χδ(t) :=
1
δ
χ

(
t

δ

)
, Φδ(X) :=

1
δ2d

Φ
(
X

δ

)
,

together with

(Pfε)δ(t,X) :=
∫

R+
(Pfε)(t+ s,X) χδ(s) ds, Fδ(t,X) :=

∫
R+
F (t+ s,X) χδ(s) ds,

Aδ

(
t

ε2
, X

)
:=
∫

R2d

A

(
t

ε2
, X − Y

)
Φδ(Y ) dY, 〈A〉δ (X) :=

∫
R2d

〈A〉 (X − Y ) Φδ(Y ) dY.
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With these notations, the argument, borrowed from [Li] and developed in the subsequent steps below, is the
following. First, standard functional analysis shows that Proposition 2.7 is true when (Pfε), A(t/ε2, X), F ,
〈A〉 are replaced by (Pfε)δ, Aδ(t/ε2, X), Fδ and 〈A〉δ, respectively. Second, the compactness of Πfε in time
(Proposition 2.6) turns out to imply some compactness of Pfε in time as well. Similarly, the coefficients
A(t/ε2, X), B(t/ε2, X) are smooth in X, uniformly in t/ε2, and for this reason they possess some compactness
in X. From this it follows that the regularized function (Pfε)δ, Aδ(t/ε2, X), Bδ(t/ε2, X) go to Pfε, A(t/ε2, X),
B(t/ε2, X) in some strong topology as δ goes to zero. The conclusion follows.

First step: Proof of a regularized version of the Proposition
We write, for any fixed value of δ > 0,∫ ∞

0

∫
R2d

(Pfε)δ(t,X) Aδ

(
t

ε2
, X

)
ζ(t) ϕ(H0(X)) dt dX =∫ ∞

0

∫
R2d

(∫
R2d

(Pfε)(s,X) Φδ(X − Y ) ϕ(H0(X)) dX

)
︸ ︷︷ ︸

=:pδ,ε(s,Y )

(∫ ∞

0

A

(
t

ε2
, Y

)
χδ(s− t) ζ(t) dt

)
︸ ︷︷ ︸

=:aδ,ε(s,Y )

ds dY,

and all integrals actually carry over compact compact sets, say t ∈ [0, T0], s ∈ [0, T0], |X| ≤ R0, |Y | ≤ R0. Now,
given δ > 0, and given arbitrary values of the variables s, Y , we have, using the known weak convergence of
Pfε (Proposition 2.6),

pδ,ε(s, Y )−→
ε→0

pδ(s, Y ) :=
∫

R2d

F (s,H0(X)) Φδ(X − Y ) ϕ(H0(X)) dX.

(We used here that the convergence of Pfε is weak in space but pointwise in time). Besides, we have the
uniform bound∣∣pδ,ε(s, Y )

∣∣ ≤ C ‖Φδ(X − Y )‖L2(R2d
Y ) ≤ C δ−d,

where C is independent of ε and δ, but it does depend on ϕ. As a consequence, the dominated convergence
Theorem gives

∀δ > 0, pδ,ε(s, Y )−→
ε→0

∫
R2d

F (s,H0(X)) Φδ(X − Y ) ϕ(H0(X)) dX strongly in L2
loc(R+ × R2d).

On the other hand, the function aδ,ε(s, Y ) satisfies the uniform bound∣∣aδ,ε(s, Y )
∣∣ ≤ C(R) γ−p−1 ‖χδ(s− t)‖L1(R2d

t ) ≤ C,

where C is independent of ε and δ (we used Proposition 2.2). All these informations allow to deduce∣∣∣∣∣
∫ T0

0

∫
B(R0)

[
pδ,ε(s, Y )− pδ(s, Y )

]
aδ,ε(s, Y ) ds dY

∣∣∣∣∣ ≤ C ‖pδ,ε − pδ‖L2([0,T0]×B(R0)) = oδ(1),

where C is independent of ε and δ, and oδ(1) denotes a term which goes to zero with ε, for any fixed δ > 0.

Using these notations, we arrive at∫ ∞

0

∫
R2d

(Pfε)δ(t,X)Aδ

(
t

ε2
, X

)
ζ(t)ϕ(H0(X)) dt dX

=
∫ T0

0

∫
B(R0)

pδ(s, Y ) aδ,ε(s, Y ) ds dY + oδ(1)

=
∫ T0

0

∫
B(R0)

A

(
t

ε2
, Y

)(∫ T0

0

∫
B(R0)

F (s,H0(X))Φδ(X − Y )ϕ(H0(X))χδ(s− t) ζ(t) ds dX

)
dt dY

+ oδ(1)

=
∫ T0

0

∫
B(R0)

〈A〉(Y )

(∫ T0

0

∫
B(R0)

F (s,H0(X))Φδ(X − Y )ϕ(H0(X))χδ(s− t) ζ(t) ds dX

)
dt dY

+ oδ(1)
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where the last equality uses the assumed weak convergence of A(t/ε2, Y ) in L∞loc(R+×R2d)-weak-? (Hypothesis
3). Hence, we may conclude∫ ∞

0

∫
R2d

(Pfε)δ(t,X)Aδ

(
t

ε2
, X

)
ζ(t) ϕ(H0(X)) dt dX

=
∫ ∞

0

∫
R2d

Fδ(t,X) 〈A〉δ (X) ζ(t)ϕ(H0(X)) dt dX + oδ(1).

Second step: estimating the effect of the regularization
The previous step allows to write∫ ∞

0

∫
R2d

[
(Pfε)(t,X)A

(
t

ε2
, X

)
− F (t,H0(X)) 〈A〉(X)

]
ζ(t)ϕ(H0(X)) dt dX

= oδ(1) +
∫ ∞

0

∫
R2d

[
(Pfε)(t,X)A

(
t

ε2
, X

)
− (Pfε)δ(t,X)Aδ

(
t

ε2
, X

) ]
ζ(t)ϕ(H0(X)) dt dX

+
∫ ∞

0

∫
R2d

[
Fδ(t,H0(X)) 〈A〉δ(X) − F (t,H0(X)) 〈A〉(X)

]
ζ(t)ϕ(H0(X)) dt dX

=: oδ(1) + Iδ,ε + IIδ. (2.10)

This serves as a definition of the two terms Iδ,ε and IIδ. We now prove that Iδ,ε and IIδ go to zero with δ,
uniformly in ε.

We begin with the most difficult term Iδ,ε. We first split in the obvious way

Iδ,ε =
∫ ∞

0

∫
R2d

(Pfε)δ(t,X)
[
A

(
t

ε2
, X

)
−Aδ

(
t

ε2
, X

)]
ζ(t)ϕ(H0(X)) dt dX

+
∫ ∞

0

∫
R2d

[
(Pfε)(t,X)− (Pfε)δ(t,X)

]
A

(
t

ε2
, X

)
ζ(t)ϕ(H0(X)) dt dX.

Next, going to the energy variable in order to treat the second term later, we split further

Iδ,ε =
∫ ∞

0

∫
R2d

(Pfε)δ(t,X)
[
A

(
t

ε2
, X

)
−Aδ

(
t

ε2
, X

)]
ζ(t)ϕ(H0(X)) dt dX

+
∫ ∞

0

∫
R
h0(E)

[
(Πfε)(t, E)− (Πfε)δ(t, E)

]
(ΠA)

(
t

ε2
, E

)
ζ(t)ϕ(E) dt dE

=
∫ ∞

0

∫
R2d

(Pfε)δ(t,X)
[
A

(
t

ε2
, X

)
−Aδ

(
t

ε2
, X

)]
ζ(t)ϕ(H0(X)) dt dX

+
∫ ∞

0

∫
R
h0(E)

[
(Πfε)(t, E)− (Πfε)δ(t, E)

]
(ΠA)δ

(
t

ε2
, E

)
ζ(t)ϕ(E) dt dE

+
∫ ∞

0

∫
R
h0(E)

[
(Πfε)(t, E)− (Πfε)δ(t, E)

] [
(ΠA)

(
t

ε2
, E

)
− (ΠA)δ

(
t

ε2
, E

)]
ζ(t)ϕ(E) dt dE.

Here, we have used a regularization of (ΠA)(t, E) in the energy variable E, namely

(ΠA)δ

(
t

ε2
, E

)
:=
∫

R
(ΠA)

(
t

ε2
, E − E′

)
χδs(E′) dE′ =

∫
R
(ΠA)

(
t

ε2
, E − δsE′

)
χ(E′) dE′, (2.11)

and s ∈]0, 1/2[ is a parameter than can be chosen arbitrarily (the need for s ∈]0, 1/2[ becomes clear later). At
this point, we have split Iδ,ε into

Iδ,ε = I(1)δ,ε + I(2)δ,ε + I(3)δ,ε ,

with the obvious notations. We prove that each term I(i)δ,ε, i = 1, 2, 3, goes to zero with δ, independently of ε.
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The first term I(1)δ,ε is easily bounded by, say,

∣∣I(1)δ,ε

∣∣ ≤ C sup
|Y |≤δ

sup
ε>0

sup
0≤t≤T0

∥∥∥∥∥A
(
t

ε2
, X + Y

)
−A

(
t

ε2
, X

)∥∥∥∥∥
L∞(B(R0))

,

where C is independent of ε and δ. Here, we implicitly assumed that supp Φ ⊂ B(1). We also used the uniform
boundedness of Pfε in L2

loc and the fact that ζ and ϕ have compact supports. Now, our assumptions on the
potential V , the Hamiltonian H0, and the flow X, readily imply the following uniform Lipschitz bounds, valid
for any compact set K ⊂ R+ × R2d,

sup
|Y |≤δ

sup
ε>0

sup
(t,X)∈K

∣∣∣∣∣D2V

Dx2

(
t

ε2
, X + Y

)
− D2V

Dx2

(
t

ε2
, X

) ∣∣∣∣∣ ≤ C δ,

sup
|Y |≤δ

sup
ε>0

sup
(t,X)∈K

∣∣∣∣∣DVDx
(
t

ε2
, X + Y

)
− DV

Dx

(
t

ε2
, X

) ∣∣∣∣∣ ≤ C δ,

sup
|Y |≤δ

sup
(t,X)∈K

∣∣∣∣∣D2H0

DX2
(X + Y )− D2H0

DX2
(X)

∣∣∣∣∣ ≤ C δ,

sup
|Y |≤δ

sup
ε>0

sup
(t,X)∈K

∣∣∣∣∣DXDX (u,X + Y )− DX

DX
(u,X)

∣∣∣∣∣ ≤ C δ (1 + u)p,

where C is independent of ε, δ, and u ≥ 0, but it does depend on the compact set K. An easy adaptation of
the proof of Proposition 2.2 then allows to deduce from these bounds that the function A(t/ε2, X) is Lipschitz,
locally in X but uniformly in the first variable, i.e.

sup
|Y |≤δ

sup
ε>0

sup
0≤t≤T0

∥∥∥∥∥A
(
t

ε2
, X + Y

)
−A

(
t

ε2
, X

)∥∥∥∥∥
L∞(B(R0))

≤ C δ, (2.12)

where C is independent of ε and δ (but it does depend on R0, T0). The conclusion is∣∣I(1)δ,ε

∣∣ ≤ C δ,

where C is independent of ε and δ.

The analysis of I(2)δ,ε follows roughly the same idea: we write

I(2)δ,ε =
∫ ∞

0

ζ(t)
〈
h0(E) (Πfε)(t, E)− h0(E) (Πfε)δ(t, E) , (ΠA)δ

(
t

ε2
, E

)
ϕ(E)

〉
dt,

where 〈. , .〉 denotes the duality bracket in the energy variable E. Hence we may safely estimate

∣∣I(2)δ,ε

∣∣ ≤ C δ sup
ε>0

sup
0≤θ≤1

∥∥∥〈∂t

[
h0(E) (Πfε)(t+ θδ, E)

]
, (ΠA)δ

(
t

ε2
, E

)
ϕ(E)

〉∥∥∥
L2([0,T0])

,

where C is independent of ε and δ. Using now the uniform boundedness of ∂t

[
h0(E) (Πfε)

]
in L2

loc(W
−2,1
loc ), we

recover, for some E0 > 0 that depends on the support of ϕ,

∣∣I(2)δ,ε

∣∣ ≤ C δ sup
ε>0

0≤t≤T0

∥∥∥(ΠA)δ

(
t

ε2
, E

)
ϕ(E)

∥∥∥
W 2,∞(R)

≤ C δ sup
ε>0

0≤t≤T0

∥∥∥(ΠA)δ

(
t

ε2
, E

)∥∥∥
W 2,∞(]0,E0[)

≤ C δ1−2s sup
ε>0

0≤t≤T0

∥∥∥(ΠA)
(
t

ε2
, E

)∥∥∥
L∞(]0,E0+1[)

≤ C δ1−2s sup
ε>0

0≤t≤T0

∥∥∥A( t

ε2
, X

)∥∥∥
L∞(B(R0))

.

18



Note that the need for using a regularized version of (ΠA)(t, E), namely (ΠA)δ)(t, E), in the splitting Iδ,ε =
I(1)δ,ε + I(2)δ,ε + I(3)δ,ε is clear in this estimate: it is enforced by the low regularity of ∂t

[
h0(E) (Πfε)

]
(t, E) in the E

variable. The choice 0 < s < 1/2 also appears clearly now. The conclusion is, using Proposition 2.2-(iii)∣∣I(2)δ,ε

∣∣ ≤ C δ1−2s,

with C independent of δ and ε.

Last the term I(3)δ,ε is obviously bounded by, say,

∣∣I(3)δ,ε

∣∣ ≤ C sup
|E′|≤δs

sup
ε>0

sup
0≤t≤T0

∥∥∥(ΠA)
(
t

ε2
, E + E′

)
− (ΠA)

(
t

ε2
, E

)∥∥∥
L2([0,E0],h0(E) dE)

≤ C sup
|E′|≤δs

sup
ε>0

sup
0≤t≤T0

∥∥∥(PA)
(
t

ε2
, E + E′

)
− (PA)

(
t

ε2
, E

)∥∥∥
L2(B(R0)

,

for some given E0 > 0 (that depends on R0), and C is independent of ε and δ. Here we used the co-area formula.
Now, estimate (2.12) establishes that the functions A(t/ε2, X) ∈ L2(B(R0)), parametrized by t ∈ [0, T0] and
ε > 0, satisfy a uniform equi-integrability criterion, hence belong to a relatively compact set of L2(B(R0)).
The continuity of the projection operator P readily implies that the functions (PA)(t/ε2, X) ∈ L2(B(R0))
also belong to a relatively compact set of L2(B(R0)). This in turn implies that the functions (PA)(t/ε2, X),
parametrized by t and ε, satisfy a uniform equi-integrability criterion, namely

sup
|E′|≤δs

sup
ε>0

sup
0≤t≤T0

∥∥∥(PA)
(
t

ε2
, E + E′

)
− (PA)

(
t

ε2
, E

)∥∥∥
L2(B(R0)

−→
δ→0

0. (2.13)

The conclusion is

I(3)δ,ε −→
δ→0

0, uniformly with respect to ε.

Summarizing, the above estimates on I(i)δ,ε (i = 1, 2, 3) give

Iδ,ε−→
δ→0

0, uniformly with respect to ε.

Let us now come to the easier term IIδ. We write as before

IIδ =
∫ ∞

0

∫
R2d

Fδ(t,H0(X))
[
〈A〉δ(X)− 〈A〉(X)

]
ζ(t)ϕ(H0(X)) dt dX

+
∫ ∞

0

∫
R
h0(E)

[
F (t, E)− Fδ(t, E)

]
(Π〈A〉)δ(E) ζ(t)ϕ(H0(X)) dt dE

+
∫ ∞

0

∫
R
h0(E)

[
F (t, E)− Fδ(t, E)

] [
(Π〈A〉)(E)− (Π〈A〉)δ(E)

]
ζ(t)ϕ(E) dt dE,

where we defined the regularization of (Π〈A〉)(E) in the energy variable E,

(Π〈A〉)δ(E) :=
∫

R
(Π〈A〉)(E − E′)χδs(E′) dE′ =

∫
R
(Π〈A〉)(E − δsE′)χ(E′) dE′, (2.14)

and s ∈]0, 1/2[ is a parameter that can be chosen arbitrarily. At this point, we have split IIδ into

IIδ = II(1)δ + II(2)δ + II(3)δ ,

with the obvious notations. A fairly easy adaptation of the estimates produced while analyzing the term Iδ,ε
gives successively∣∣II(1)δ

∣∣ ≤ C δ,
∣∣II(2)δ

∣∣ ≤ C δ,
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with C independent of δ, and

II(3)δ −→
δ→0

0.

The adaptation is obtained upon observing that the various functions A(t/ε2, X) etc. entering the analysis of
Iδ,ε, and their various weak limits (in the relevant spaces) 〈A〉(X) etc. that enter the analysis of IIδ, admit
the same boundedness properties (typically, if un ⇀ u in L2, then ‖u‖L2 ≤ infn ‖un‖L2). This is enough to
reproduce the arguments given for Iδ,ε.

Third step: conclusion
Summarizing, we have proved up to now that∫ ∞

0

∫
R2d

[
(Pfε)(t,X) A

(
t

ε2
, X

)
− F (t,H0(X)) 〈A〉(X)

]
ζ(t) ϕ(H0(X)) dt dX = oδ(1) +O(δ),

where oδ(1) goes to zero as ε→ 0 for any fixed value of δ > 0, and O(δ) is estimated by C δ with C independent
of ε and δ. This proves the Proposition.

2.5 The homogenization procedure: proof of the Theorem

We are now in position to end the proof of the main Theorem.

First step: homogenization procedure
Take two smooth test functions ζ(t) ∈ C∞c (R+) and ϕ(E) ∈ C∞c (R). Proposition 2.5 asserts∫

R2d

Pfε
0 (t,X) ϕ(H0(X)) ζ(0) dX +

∫ ∞

0

Pfε(t,X) ϕ(H0(X)) ζ ′(t) dt dX

+
∫ ∞

0

∫
R2d

Pfε(t,X)
[
A
( t
ε2
, X
)
∂Eϕ(H0) +B

( t
ε2
, X
)
∂2

EEϕ(H0)
]
ζ(t) dX dt = O(ε).

Hence, Propositions 2.6 and 2.7 allow to pass to the limit and eventually obtain∫
R2d

F (0,H0(X)) ϕ(H0(X)) ζ(0) dX +
∫ ∞

0

∫
R2d

F (t,H0(X)) ϕ(H0(X)) ζ ′(t) dt dX

+
∫ ∞

0

∫
R2d

F (t,H0(X))
[
〈A〉(X) ∂Eϕ(H0) + 〈B〉(X) ∂2

EEϕ(H0)
]
ζ(t) dX dt = 0.

The co-area formula next provides∫
R
h0(E)F (0, E)ϕ(E) ζ(0) dE +

∫ ∞

0

∫
R
h0(E)F (t, E)ϕ(E) ζ ′(t) dt dE

+
∫ ∞

0

∫
R
h0(E)F (t, E)

[
a(E)∂Eϕ(E) + b(E)∂2

EEϕ(E)
]
ζ(t) dE dt = 0, (2.15)

where

a(E) := Π 〈A〉 (E), b(E) := Π 〈B〉 (E).

Note that both coefficients a and b are well-defined and belong to L∞(R) since the two functions 〈A〉 and 〈B〉
belong to L∞(R2d). Note also that equation (2.15) is the weak formulation of the second order equation

∂t

[
h0(E)F (t, E)

]
+ ∂E

[
a(E)h0(E)F (t, E)

]
− ∂2

E,E

[
b(E)h0(E)F (t, E)

]
= 0. (2.16)

There remains to establish the properties of the coefficients a(E) and b(E). This is done in the next step.

Second step: properties of the effective coefficients
The proof we give now establishes the claimed formula h0a = ∂E(h0b). It also sheds some light on the

connection between the present setting and the case when the potential V is assumed (quasi-)periodic in time.
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As a preliminary, let h ∈ L∞loc(R× R2d). We associate to any such function the quantity

χh(t,X) :=
∫ ∞

0

h
(
t+ s,X(s,X)

)
e−γs ds,

which obviously also belongs to L∞loc(R × R2d). An immediate computation shows χh satisfies the backward
transport equation (or: adjoint equation) −∂tχh −

{
H0, χh

}
+ γχh = h, with vanishing initial datum. With

this notation, we may introduce the profile χ = χ(t,X) given by

χ := χ{V , H0}.

The profile χ allows to express the coefficients a and b in the following way

a(E) = Π
[
−
∫ ∞

0

{
V (τ) , χ(τ)

}
dτ

]
(E), b(E) = Π

[
−
∫ ∞

0

{
V (τ) , H0

}
χ(τ) dτ

]
(E),

where −
∫ ∞

0

· · · stands for the weak limit in L∞loc − ? as T → ∞ of
1
T

∫ T

0

· · · This observation allows to

both prove the non-negativity of b and the relation h0a = ∂E(h0b). Indeed, we may write, on the one hand

−
∫ ∞

0

{
V (τ) , H0

}
χ(τ) dτ = lim

T→∞

1
T

∫ T

0

−
(
∂τχ(τ) +

{
H0 , χ(τ)

}
− γχ(τ)

)
χ(τ) dτ

= lim
T→∞

(
χ2(0)− χ2(T )

2T
− 1
T

∫ T

0

{
H0 , χ

2/2
}
dτ +

γ

T

∫ T

0

χ2(τ) dτ

)

= lim
T→∞

(
− 1
T

∫ T

0

{
H0 , χ

2/2
}
dτ +

γ

T

∫ T

0

χ2(τ) dτ

)
,

from which it follows, using Lemma 1.2, that

P −
∫ ∞

0

{
V (τ) , H0

}
χ(τ) dτ = P

(
lim

T→∞

γ

T

∫ T

0

χ2(τ) dτ

)
≥ 0.

Hence b(E) ≥ 0. On the other hand, using the co-area formula and integration by parts, we have, for any trial
function ψ ∈ C∞c (R),∫

R
h0a ψ dE =

∫
R2d

−
∫ ∞

0

{
V, χ

}
ψ(H0(X)) dX dτ = −

∫
R2d

−
∫ ∞

0

χ
{
V, ψ(H0(X))

}
dX dτ

= −
∫

R2d

−
∫ ∞

0

χ
{
V,H0(X)

}
(∂Eψ)(H0(X)) dX dτ = −

∫
R
h0b ∂Eψ dE,

which proves h0a = ∂E(h0b).
This ends the proof of our main Theorem.
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