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Abstract

Cathcart and El-Jahel [Journal of Fixed Income 8 (1998)] have formalized the “sign
approach” for modeling the default risk of some risky bonds. Their pricing formula requi
numerical method to invert the Laplace transform of the default probability. This letter rather pro
a closed form formula based on standard results of the theory of exotic barrier options. One
that the original numerical method implemented by Cathcart and El-Jahel [Journal of Fixed I
8 (1998)] does not lead to significant computational errors.
 2004 Elsevier Inc. All rights reserved.
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Introduction

The signaling approach, formulated by Cathcart and El-Jahel (1998), assume
for any issuer (corporate or country), there exists a signaling variable which captur
factors that affect its default probability. Default occurs when an hypothetical process
a lower constant default barrier. This setting generalizes the approach of Longstaff a
Schwartz (1995) whose signaling variable is the value of the firm’s assets.

The signaling approach is especially relevantfor sovereign issuers and also municip
ities. Indeed, in these cases, no underlying asset is clearly identifiable. In fact, a similar
framework had implicitly been considered by Claessens and Pennacchi (1996) to
Mexican Brady bonds. The signaling variable had been identified there as an hypot
“measure of repayment capacity” and the associated default threshold as zero. Hui and
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(2002) also develop a signaling approach by suggesting that an exchange rate could
useful to price Korean and Brazilian Government bonds.

Cathcart and El-Jahel (1998) manage to compute a risk neutral default probability base
on a signaling variable. From a technical viewpoint, they first demonstrate that the La
transform of this default probability is the solution of a particular partial differen
equation. Then, they solve it analytically. Finally, they compute numerically the de
probability by inverting the Bromwich integral with the Gaussian quadrature metho
Piessens (1969).1

The present letter demonstrates that the problem admits a closed-form solutio
shown that the (default) probability searchedby Cathcart and El-Jahel (1998) is similar
some well-known in the theory of barrier options pioneered by Merton (1973).2 With an
analytical formula, one avoids the coding of a numerical procedure. One can also ev
the Piessens’ numerical method used by the authors. Numerical experiments reveal
Gaussian quadrature approach is especially relevant for the considered Laplace tra
but also that it is not necessary the case.

The rest of this paper is organized as follows. Section 2 shortly presents Cathcart and
Jahel (1998) model. Section 3 provides its analytical solution and offers some argu
Section 3 evaluates the Piessens (1969) Gaussian quadrature technique.

1. The original model

For reader’s convenience, one shortly presents the framework of Cathcart and El-Jah
(1998) for pricing defaultable bonds. Cathcart and El-Jahel (1998) present a cred
model where there are two underlying state variables: the instantaneous interest r
the signaling variable. Following Cox et al. (1985), Cathcart and El-Jahel (1998) as
that (1) the instantaneous interest rate governs the term structure behavior and th
follows a square-root process. The dynamics of the instantaneous interest rater under the
risk neutral probability is thus described by

(1)drt = κr(θr − rt )dt + σr
√

rt dWr
t ,

whereWr = (Wr
t )t is a Brownian motion. Hence, the interest rate level impacts on i

volatility, it also converges instantaneously to its long-run meanθr with a coefficient
speedκr . The associated condition 2κrθr � σ 2

r ensures that zero is not attainable. A
riskless bond promising an amount ofB at maturityT is then valued at timet by

p0(rt , t, T ) = B · eC(T −t )−D(T −t )rt ,

1 A natural starting point for the numerical inversion of a Laplace transform is indeed the so-called Bro
integral. See the text below for some details and Doetsch (1974, Theorem 24.4, p. 257). A recent and valua
reference is Abate et al. (1999).

2 One refers to Reiner and Rubinstein (1991a, b) fora simple exposition of barrier options. Ingersoll (200
highlights the key role of digital optionsfor pricing complex financial contracts.



F. Moraux / Finance Research Letters 1 (2004) 135–142 137

les
ge rate.

eous
neutral
tion
riable
its

d

own

e

be
where

D(τ) = D(ζ, τ )W−1(ζ, κr , τ ), C(τ) = −κrθr

σ 2
r

[
(ζ − κr)τ + 2 lnW(ζ, κr , τ )

]

with

D(a, τ) = 1− e−aτ

a
, W(ζ, κr , τ ) = 1− 1

2
(ζ − κr)D(ζ, τ ), and

ζ 2 = κ2
r + 2σ 2

r .

τ = T − t is the time to maturity.
Cathcart and El-Jahel (1998) then introduce a signaling variableX which captures

factors affecting the probability of default.It could be some macro-economic variab
such as the GDP growth rate, the long-term interest rate, or a specific foreign exchan
Cathcart and El-Jahel (1998) assume that the risk neutral behavior ofX is well-described
by

(2)dXt = mXt dt + σXXt dWX
t ,

wherem is a constant drift andσX a constant volatility.WX = (WX
t )t is a Brownian motion

whose increments ((dWX
t )t ) are supposed uncorrelated with those of the instantan

interest rate process. Cathcart and El-Jahel (1998) argue that the constant risk
drift is justified sinceX is not a value process. They also claim that the no-correla
assumption is in line with many reduced-form models. As soon as the signaling va
reaches a lower threshold valueX1, default of the underlying issuer is declared on all
obligations. Cathcart and El-Jahel (1998) assume that “bondholders receive 1− δ default-
free discount bonds.” In this recovery scheme, the write downδ is supposed constant an
exogenously available.

Denotingp(rt ,Xt , t, T ) the defaultable bond, Cathcart and El-Jahel (1998) have sh
thatp must satisfy the fundamental partial differential equation:

(3)rp + ∂p

∂τ
= 1

2
σ 2

r r
∂2p

∂r2
+ 1

2
σ 2

XX
∂2p

∂X2
+ κr(θr − r)

∂p

∂r
+ mX

∂p

∂X

subject to some appropriate boundary conditions. Guessing a solution of the form

(4)p(rt ,Xt , t, T ) = p0(rt , t, T ) − δp0(rt , t, T )f (Xt , τ ),

wherep0(rt , t, T ) is a default-free zero-coupon bonds andτ = T − t , they demonstrat
that the default probabilityf must solve

(5)
1

2
σ 2

XX
∂f

∂X2
+ mX

∂f

∂X
= ∂f

∂τ

with f (X,0) = 0, f (X1, τ ) = 1, f (∞, τ ) = 0. The Laplace transform associated tof

(F (q) = ∫ ∞
0 e−qτ f (X, τ)dτ ) then verifies a partial differential equation which can

solved analytically. The authors find that

F(q) = 1

q

X

X1

α1+√
α2q+α3
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for some α1, α2, α3. In order to invert this Laplace transform (i.e., comp∫ ∞
0 eqτF (q)dq ≡ f (X, τ)), they suggest to compute the so-called Bromwich inte

given by

(6)f (X, τ) = 1

2iπ

c+i∞∫
c−i∞

eqτ q−1e−(µ+
√

µ2+2σ2
Xq)/σ 2

X ln(X/X1)dq,

whereµ = m− 1
2σ 2

X andc is chosen arbitrarily but larger than any real part of the com
singularities ofF . They note however that Eq. (6) requires some numerical computa

The following section proposes a closed-form formula that involves no more tha
standard Gaussian cumulative density function. The numerical computation of the
equation may thus be avoided.

2. The analytical pricing formula

This section demonstrates that the risk neutral default probability is given by

(7)f (X, τ) = N

[
− ln(X/X1) + µτ

σX

√
τ

]
+

(
X

X1

)−(2µ)/σ 2
X

N

[
− ln(X/X1) − µτ

σX

√
τ

]
,

where µ = m − 1
2σ 2

X . Equivalent to Eq. (6), this analytical expression of the def
probability nests components that are simple tocompute. These are key blocks of the the
of option pricing. Some arguments are considered now.

A closer look at the underlying assumptions provides the first way to prove Eq. (
presence of stochastic interest rates, the risky bond is indeed valued by

(8)p(rt ,Xt , t, T ) = p0(rt , t, T ) − δp0(rt , t, T )QT [τ < T ],
where the default probabilityQT (τ < T ) is the probability thatX reaches a threshol
(X1) before maturity under the forward neutral measure. Under the specific assumpt
Cathcart and El-Jahel (1998), this latter probability may be further simplified for a coup
of reasons. On one hand, the risk neutral drift of the signaling process is constant an
not depend on the interest rate behavior. On the other hand, the two Brownian motio
assumed uncorrelated. As a result, the signaling variable (i.e., the default event p
and the interest rates are independent. One therefore has

(9)QT [τ < T ] = Q[τ < T ]
with Q the risk neutral probability.3 The dynamics ofX underQ is known and describe
in Eq. (2). The probability thatX reaches a threshold (X1) before maturity may then b
found by standard results of stochastic calculus and the Eq. (7) above is obtained.

3 On the one hand, by using the concept of forward neutral probability, one finds

EQ
[
e− ∫ T

0 rs ds1{∃t�T : Xt <X }
] = p0(0, T )EQT [1{∃t�T : Xt�X }] = p0(0, T )QT [∃t � T : Xt � X1].
1 1
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A financial interpretation of the risk neutral default probability or equivalently of
above partial differential equation suggests a second way to prove Eq. (7). Both des
financial contract that pays one unit of cash atT if the underlying variableX reaches the
barrierX1 beforeT . This is exactly what the European Down-and-In Cash (at expiry
Nothing options promise, if the amount of cash at expiry is unity.4 Readers familiar with
barrier options may also recognize one minus the (unit) rebate of a standard Down-
barrier option.5 The theory of barrier options is therefore relevant. It provides the analy
Eq. (7). As a by-product of this derivation, one can evaluate any numerical method u
compute Eq. (6).

3. Evaluating the Piessens Gaussian quadrature method

Although several methods are available for finding the inverse Laplace transformF

(
∫ ∞

0 eqtF (X,q)dq = f (X, t)), Cathcart and El-Jahel (1998) recall that the best kn
approach for deriving values off (X, t) from values ofF(q) is the numerical evaluation o
the Bromwich integral. This integral is given by

f (X, τ) = 1

2iπ

c+i∞∫
c−i∞

eqτF (q)dq,

where c is chosen so that the lineRe(p) = c lies to the right of all singularities o
F(q), but is otherwise arbitrary. Trying different techniques, they finally adopt a Gau
quadrature method of Piessens (1969) because “it gives good results and accuracy.”
Gaussian quadrature methods approximate the integral (or a modification of it) by a
summation of the form

(10)f (X, τ) ≈
N∑

k=1

ωkH(αk),

where some optimal weightsωk , abscissasαk , N , and the associated functionH must be
found. The Piessens’ method is just one method to compute these elements. The

See Geman et al. (1995) for more details on the changes of probability measure. On the other hand,
independence leads to

EQ
[
e− ∫ T

0 rs ds1{∃t�T : Xt <X1}
] ind.= EQ

[
e− ∫ T

0 rs ds ]EQ[1{∃t�T : Xt�X1}]
= p0(0, T )Q[∃t � T : Xt � X1].

4 Down-and-In Cash (at expiry)-or-Nothing optionsare exotic barrier contingent claims (expiring atT ) that
pay K unit(s) of cash atT if a lower threshold is touched by the underlying asset beforeT (and nothing
otherwise). AtT , its pay-off is alsoK minus the pay-off of a Down-and-Out Cash-or-Nothing option. See Rein
and Rubinstein (1991b) for further discussion.

5 Equivalently, this is the (unit) rebate of aspecial Down-and-Out barrier option that pays one unit of cash
T if the lower threshold is reached by the underlying asset before. Recall that standard rebates for Down-and-
options are used to be paid as the barrier isknocked. See Reiner andRubinstein (1991a).
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weights, abscissas, and number of summation may be found in Piessens (1971). P
(1971) informs that this approximate formula (for the inversion of the Laplace transforF )
is exact wheneverF(q) is a linear combination ofqk−s , k = 0,1, . . . ,2N − 1, with s an
arbitrary positive real number. This is however not the case in our context.

Numerical experiments are then run. All of them conclude that Piessens’ m
implemented by Cathcart and El-Jahel (1998) does not lead to significant comput

Fig. 1. Term structures of credit spreads. Base case parameters areα = 4%, σX = 20%,X/X1 = 200%. Credit
spreads are plotted for different levels of loss given default (δ = 25, 50, 75%) in the upper left graph, for differe
creditworthiness ratios (X/X1 = 150, 200, 250%) in the upper right graph, for different variances (σ2

X
= 4, 9,

11%) in the lower left graph, and for different risk neutral drifts (m = 4, 7, 10%) in the lower right graph.

Fig. 2. Percentage of computational errors for a classical test function. This figure plots the c
putational errors obtained by using the Gaussian quadrature method of Piessens to invertF(q) =
1/(q + 0.5) + 1/q2 + 1/(1+ (q + 0.2)2). The functionF is known to be the Laplace transform off (t) =
e−0.5t + t + e−0.2t sint . Computational errors are defined as 100((f̃ (t) − f (t))/f (t)) wheref̃ is the numer-
ical approximate of

∫ ∞
0 eqt F (X,q)dq, i.e., the Piessens estimator off .
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errors. To illustrate this, Fig. 1 plots term structures of credit spreads (− 1
τ

ln[1 −
δ.f (X, τ)]) obtained by using our formula and the value of parameters considere
Cathcart and El-Jahel (1998). These graphs are undoubtedly similar to that of the
authors (in their Figs. 4–7). Computation errors appear to be far less than 1%
important to claim that this could have not been the case. Indeed, as suggested abo
exist some Laplace transforms whose inverse is not accurately computed by the conside
numerical method. To illustrate this, Fig. 2 graphs the percentage of computational err
of a classical test function (F(q) = 1/(q + 0.5) + 1/q2 + 1/(1+ (q + 0.2)2)) whose
analytical inverse is known to bef (t) = e−0.5t + t + e−0.2t sint . One can see that th
errors can be as large as 50%.

4. Conclusion

The signaling approach, formulated by Cathcart and El-Jahel (1998) is espe
relevant for pricing risky sovereign bonds and other munies. This letter demonstrat
there exists a closed form solution for the bond pricing formula derived by Cathca
El-Jahel (1998). This formula involves no more than the Gaussian cumulative d
function. Complex numerical procedures for inverting Laplace transforms can therefor
be avoided. One also verifies that the original numerical method implemented by Ca
and El-Jahel (1998) does not lead to significant computational errors.
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