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Abstract

Cathcart and El-Jahel [Journal of Fixed Income 8 (1998)] have formalized the “signaling
approach” for modeling the default risk of some risky bonds. Their pricing formula requires a
numerical method to invert the Laplace transform of the default probability. This letter rather provides
a closed form formula based on standard results of the theory of exotic barrier options. One verifies
that the original numerical method implemented by Cathcart and El-Jahel [Journal of Fixed Income
8 (1998)] does not lead to significant computational errors.
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Introduction

The signaling approach, formulated by Cathcart and El-Jahel (1998), assumes that,
for any issuer (corporate or country), there exists a signaling variable which captures the
factors that affect its default probabilityefault occurs when an hypothetical process hits
a lower constant default barrier. This seftigeneralizes the approach of Longstaff and
Schwartz (1995) whose signaling variable is the value of the firm’s assets.

The signaling approach is especially relevimmtsovereign issuers and also municipal-
ities. Indeed, in these cases, no underlying taisselearly identifiale. In fact, a similar
framework had implicitly been considered by Claessens and Pennacchi (1996) to price
Mexican Brady bonds. The signaling variable had been identified there as an hypothetical
“measure of repayment capacity” and the asstecl default threshold as zero. Hui and Lo
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(2002) also develop a signaling approach bggesting that an exchange rate could be
useful to price Korean and Brazilian Government bonds.

Cathcart and El-Jahel (1998) manage to corapuisk neutral default probability based
on a signaling variable. From a technical viewpoint, they first demonstrate that the Laplace
transform of this default probability is the solution of a particular partial differential
equation. Then, they solve it analytically. Finally, they compute numerically the default
probability by inverting the Bromwich integral with the Gaussian quadrature method of
Piessens (1969).

The present letter demonstrates that the problem admits a closed-form solution. It is
shown that the (default) probability search®dCathcart and El-Jahel (1998) is similar to
some well-known in the theory of barrier options pioneered by Merton (19V@}h an
analytical formula, one avoids the coding of a numerical procedure. One can also evaluate
the Piessens’ numerical method used by the authors. Numerical experiments reveal that this
Gaussian quadrature approach is especially relevant for the considered Laplace transform
but also that it is not necessary the case.

The rest of this paper is organized as folloBsction 2 shortly presents Cathcart and EI-
Jahel (1998) model. Section 3 provides its analytical solution and offers some arguments.
Section 3 evaluates the Piessens (1969) Gaussian quadrature technique.

1. Theoriginal model

For reader’s convenience, one shortly prese¢ine framework of Cathcart and El-Jahel
(1998) for pricing defaultable bonds. Cathcart and El-Jahel (1998) present a credit risk
model where there are two underlying state variables: the instantaneous interest rate and
the signaling variable. Following Cox et al. (1985), Cathcart and El-Jahel (1998) assume
that (1) the instantaneous interest rate governs the term structure behavior and that (2) it
follows a square-root process. The dynamics of the instantaneous interestrater the
risk neutral probability is thus described by

dr; =k, (0, — ry) dt + 0, /r AW/, (1)

whereW" = (W/'), is a Brownian motion. Hence, thaterest rate level impacts on its
volatility, it also converges instantaneously to its long-run méanvith a coefficient
speedk,. The associated conditionc®, > o2 ensures that zero is not attainable. Any
riskless bond promising an amountB®fat maturity7 is then valued at time by

pO(”t» ts T) = B ° eC(Tit)iD(Tit)rts

1 Anatural starting point for the numerical inversion of a Laplace transform is indeed the so-called Bromwich
integral. See the text below for some details andtBde (1974, Theorem 24.4, p. 257). A recent and valuable
reference is Abate et al. (1999).

2 One refers to Reiner and Rubinstein (1991a, bjafaimple exposition of barrier options. Ingersoll (2000)
highlights the key role of digital optiorfer pricing complex financial contracts.
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where

D(t) = D, oW,k 1), Cr)= <18 € )T+ 20 W@ 7]
with ”

D(a,7) = % W, kr, 1) =1~ %(c — k)D&, 7), and

t?=k?+202

t =T —t is the time to maturity.

Cathcart and El-Jahel (1998) then introduce a signaling varigbighich captures
factors affecting the probability of default. could be some macro-economic variables
such as the GDP growth rate, the long-term interest rate, or a specific foreign exchange rate.
Cathcart and El-Jahel (1998) assume that the risk neutral behavibisofvell-described
by

dX; =mX, dt +ox X, dW/, (2)

wherem is a constant drift anety a constant volatilityW X = (W,X), is a Brownian motion
whose increments(§W,),) are supposed uncorrelated with those of the instantaneous
interest rate process. Cathcart and El-Jahel (1998) argue that the constant risk neutral
drift is justified sinceX is not a value process. They also claim that the no-correlation
assumption is in line with many reduced-form models. As soon as the signaling variable
reaches a lower threshold valxa, default of the underlying issuer is declared on all its
obligations. Cathcart and El-Jahel (1998) assume thaidholdersreceive 1 — § default-
free discount bonds.” In this recovery scheme, the write dowris supposed constant and
exogenously available.

Denotingp(r, X;, t, T) the defaultable bond, Cathcart and El-Jahel (1998) have shown
that p must satisfy the fundamental partial differential equation:

ap 128p 128 ap

— X 0 —r)— X— 3

P T30 g2 T % ax2+Kr( r) + 09X ®)
subject to some appropriate boundary dtinds. Guessmg a solution of the form

p(rt7X[7ta T) :po(rt7ta T) _8170(7'[,[’ T)f(XlaT)’ (4)

where po(ry, ¢, T) is a default-free zero-coupon bonds ane: T — ¢, they demonstrate
that the default probability’ must solve

of of _of
ot X mX = 5
27X ax2 T eX T ot ®)
with f(X,0) =0, f(X1,7) = 1, f(o0,t) = 0. The Laplace transform associated ffo

(F(g) = f6’° e 1" f(X, t)dr) then verifies a partial differential equation which can be
solved analytically. The authors find that

1 X *tvoaeqtoas

F(‘])_QX—
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for some «a1,a2,23. In order to invert this Laplace transform (i.e., compute
[0°° eI"F(q)dg = f(X, 1)), they suggest to compute the so-called Bromwich integral
given by

c+ioo
1 _ 520) /o2
f(X,7) = o / eqrq—le (uty/m2+205q) /0% In(X/X1)dg, (6)
T
c—ioo

wherepy =m — %a§ andc is chosen arbitrarily but larger than any real part of the complex
singularities ofF’. They note however that Eq. (6) requires some numerical computation.

The following section proposes a closed-form formula that involves no more than the
standard Gaussian cumulative density function. The numerical computation of the above
equation may thus be avoided.

2. Theanalytical pricing formula

This section demonstrates that the risk neutral default probability is given by

IN(X/X)+ur] (X \ @k rinx/xy) —ur
X e }+(X—l) N[——Gxﬁ } 7)

where u = m — %af(. Equivalent to Eq. (6), this analytical expression of the default
probability nests components that are simpledmpute. These are key blocks of the theory
of option pricing. Some arguments are considered now.

A closer look at the underlying assumptions provides the first way to prove Eq. (7). In
presence of stochastic interest rates, the risky bond is indeed valued by

f(X,T)=N[

p(re, Xe, 1, T) = po(re, t, T) — 8po(re, t, T)QT [T < T, (8)

where the default probabilitp” (r < T) is the probability thatX reaches a threshold

(X1) before maturity under the forward neutral measure. Under the specific assumptions of

Cathcart and El-Jahel (1998), this latteopability may be further simplified for a couple

of reasons. On one hand, the risk neutral drift of the signaling process is constant and does
not depend on the interest rate behavior. On the other hand, the two Brownian motions are
assumed uncorrelated. As a result, the signaling variable (i.e., the default event process)
and the interest rates are independent. One therefore has

Q'[t <T1=Qlr <T] 9)
with Q the risk neutral probability. The dynamics o underQ is known and described
in Eq. (2). The probability thak reaches a threshold() before maturity may then be
found by standard results of stochastic calculus and the Eq. (7) above is obtained.

3 On the one hand, by using the concept of forward neutral probability, one finds

_ (T, T
EQ[e fo ”dsl{ath: X, <xq}] = Po(O, T)EQ [Yzr<1: X, <x11]1 = Po(O, T)oT[3 <T: X; < X1].
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A financial interpretation of the risk neutral default probability or equivalently of the
above partial differential equation suggests a second way to prove Eq. (7). Both describe a
financial contract that pays one unit of castyaf the underlying variableX reaches the
barrier X, beforeT'. This is exactly what the European Down-and-In Cash (at expiry)-or-
Nothing options promise, if the amount of cash at expiry is uhReaders familiar with
barrier options may also recognize one minus the (unit) rebate of a standard Down-and-In
barrier optior? The theory of barrier options is therefore relevant. It provides the analytical
Eq. (7). As a by-product of this derivation, one can evaluate any numerical method used to
compute Eq. (6).

3. Evaluating the Piessens Gaussian quadrature method

Although several methods are available for finding the inverse Laplace transfarm of
(f0°° e'F(X,q)dg = f(X,t)), Cathcart and El-Jahel (1998) recall that the best known
approach for deriving values gf(X, t) from values ofF (¢) is the numerical evaluation of
the Bromwich integral. This integral is given by

1 c+ioo
rxn=o [ e r@d.
i )
c—1loo
where ¢ is chosen so that the linBe(p) = ¢ lies to the right of all singularities of
F(q), butis otherwise arbitrary. Trying different techniques, they finally adopt a Gaussian
quadrature method of Piessens (1969) becaitsgives good results and accuracy.”

Gaussian quadrature methods approximate the integral (or a modification of it) by a finite
summation of the form

N
fX, )~ ) ocH (o), (10)

k=1
where some optimal weightsy, abscissas;, N, and the associated functidh must be
found. The Piessens’ method is just one method to compute these elements. The optimal

See Geman et al. (1995) for more details on the charagfeprobability measure. On the other hand, the
independence leads to

_ (T ind. _ T
EQe o O g cr. x, oxy)]'E EQ[e 0 S TEQ 13,1 x, <]

po0, ) Q[ < T: X; < Xql.

4 Down-and-In Cash (at expiry)-or-Nothing optioase exotic barrier contingent claims (expiring7at that
pay K unit(s) of cash atl’ if a lower threshold is touched by the underlying asset beforéand nothing
otherwise). AtT, its pay-off is alsok minus the pay-off of a Down-and-OutGh-or-Nothing option. See Reiner
and Rubinstein (1991b) for further discussion.

5 Equivalently, this is the (unit) rebate ofspecial Down-and-Out barrier option that pays one unit of cash at
T if the lower threshold is reached by the underlying aseétiie. Recall that standard rebates for Down-and-Out
options are used to be paid as the barridmiscked. See Reiner aflbinstein (1991a).
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weights, abscissas, and number of summation may be found in Piessens (1971). Piessens
(1971) informs that this approximate formula (for the inversion of the Laplace trangfprm
is exact wheneveF (¢) is a linear combination of*=*, k =0,1,...,2N — 1, with s an
arbitrary positive real number. This is however not the case in our context.

Numerical experiments are then run. All of them conclude that Piessens’ method

implemented by Cathcart and El-Jahel (1998) does not lead to significant computational
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Fig. 1. Term structures of credit spreads. Base case parameters-ad@6, oy = 20%, X/ X1 = 200%. Credit
spreads are plotted for different levels of loss given defau 25, 50, 75%) in the upper left graph, for different
creditworthiness ratiosX/ X1 = 150, 200, 250%) in the upper right graph, for different varianezﬁs:(: 4,9,
11%) in the lower left graph, and for different risk neutral drifis€ 4, 7, 10%) in the lower right graph.
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Fig. 2. Percentage of computatial errors for a classical test function. This figure plots the com-
putational errors obtained by using the Gaassiquadrature method of Piessens to invéttg) =
1/(g +0.5) + 1/g% + 1/(1+ (g + 0.2)2). The function F is known to be the Laplace transform @fr) =

e 05 4 ¢ 4 e 0% sins. Computational errors are defined as @QQr) — £(t))/ f (1)) where f is the numer-
ical approximate off5° €/ F(X, q) dg, i.e., the Piessens estimator ff

percentage
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errors. To illustrate this, Fig. 1 plots term structures of credit spreadﬂslr([l —

8.f (X, 1)]) obtained by using our formula and the value of parameters considered by
Cathcart and El-Jahel (1998). These graphs are undoubtedly similar to that of the above
authors (in their Figs. 4-7). Computation errors appear to be far less than 1%! It is
important to claim that this could have not been the case. Indeed, as suggested above, there
exist some Laplace transforms whose imegis not accurately computed by the considered
numerical method. To illustrate this, Fig. 2agrhs the percentage of computational errors

of a classical test functionF(q) = 1/(q +0.5) + 1/¢% + 1/(1+ (¢ + 0.2)%)) whose
analytical inverse is known to bg(r) = e %% + ¢ + e %% sins. One can see that the
errors can be as large as 50%.

4, Conclusion

The signaling approach, formulated by Cathcart and El-Jahel (1998) is especially
relevant for pricing risky sovereign bonds and other munies. This letter demonstrates that
there exists a closed form solution for the bond pricing formula derived by Cathcart and
El-Jahel (1998). This formula involves no more than the Gaussian cumulative density
function. Complex numerical procedures farerting Laplace trasforms can therefore
be avoided. One also verifies that the original numerical method implemented by Cathcart
and El-Jahel (1998) does not lead to significant computational errors.
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