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Equity to credit pricing

The rapid growth of credit derivatives markets has highlighted the distinction between
reduced-form and firm-value models of default. Here, George Pan presents a new,
practitioner-tested version of the latter type, providing a closed-form formula linking default

probability and equity market data

n recent years, there has been much interest in linking credit risk with eq-

uity market data. This idea was originally presented by Merton (1974),

and was already suggested in the Black & Scholes (1973) article on op-
tion pricing. The simple link between credit spreads and stock prices has
been used by many practitioners over the years. But the summer 1998 cri-
sis, which saw a sharp increase in both credit spreads and equity volatility,
accentuated the need to treat equity volatility as a crucial component of cred-
it. In light of this, many financial institutions have started to complement the
traditional credit analysis and ratings with equity-based models that are now
offered by several risk management companies (KMV, Moody’s Investors
Service, etc). Regulators have also been encouraging the development and
use of internal credit models to calculate bank economic capital.

We have also witnessed the exponential growth of credit derivatives in
recent years. Initially driven by sovereign markets and balance-sheet man-
agement of bank portfolios, they have since evolved in investment-grade
and high-yield corporate markets as the instrument needed to bridge the
gap among various cash securities (bonds, loans, convertible bonds, etc) as
well as between market participants (bank portfolio managers, insurance
companies, money managers, collateralised debt obligation managers, hedge
funds, eto). This article presents a simple formula that was designed by mar-
ket practitioners and quantitative researchers at JP Morgan Chase. The use
of an approximation for the asset volatility term, as well as for the drift term,
leads to a generic closed-form solution that can approximate any sophisti-
cated model relying on similar fundamental assumptions. In addition, we
identify the standard deviation of recovery value as a parameter playing an
important role in the calculation of the probability of default and its term
structure. The closed-form formula presented here uses only observable mar-
ket data and financial data and parameters supported by many statistical
sources and studies (stock price and volatility, debt-per-share, and mean and
standard deviation of recovery value of debt).

Model description

The starting point for the model is the approach originally presented by
Black & Cox (1976), Leland (1994) and Longstaff & Schwartz (1995). Ac-
cording to this approach (called ‘asset model’ below), an event of default
occurs when the asset value of the firm crosses a predetermined barrier
(recovery value of the firm’s debt).

Based on the asset model, we derive the closed-form formula for the
probability of no default for any given time horizon t. The basic assump-
tions of our model are shown in figure 1. We introduce a random variable
V, which we call asset value although it does not necessarily coincide with
the actual asset value of the firm. We then define the default event as the
first crossing of the barrier L - D by the variable V, where D is a given debt-
per-share. L is the global recovery on the debt as a whole and is itself a
random variable.

We consider that the asset V behaves as a lognormal variable with zero
drift:

dV;
— = odW,
v t (1)

t

where W, is a standard Brownian motion and ¢ is the asset volatility.
We account for uncertainty of the recovery L by assuming it has a log-

normal distribution with mean L, and a percentage standard deviation A(A
2 0). Specifically:

2
L=E[L], A=Stdev(n()) and LD= [Dexp(XZ— %] 2)

where Z is a standard normal random variable that is independent of W,. The
introduction of A is based on extensive empirical studies of recovery rates
upon default (see Portfolio Management Data/Standard & Poor’s loss/recov-
ery database). One prevalent finding of these studies is the extreme variance
of the distribution of recoveries. In addition to some industrial sector de-
pendence, the recovery rate can be greatly affected by factors such as whether
default is triggered by financial or operational difficulties and whether the
company will be restructured or liquidated. This finding necessitates the in-
clusion of A as an important parameter in pricing credit risk.

For an initial value V, of V at time t = O, default is thus defined to occur
when:
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Define a process:
2 2
X, = oW, —az— T -2
2 2
so that X, ~ N(-1/2 A2 A%) where A% = 62t + A2 Then default may be
expressed as:
X¢ < |n[£] -2 (4)
Vo

We approximate the process X with the 1t process Y, where Y, ~ N (ut,6%)
with variance 82t = A? = 62t + A2 and drift ut = —1/2 A2 We now make
use of the distributions for first hitting time of Brownian motion. In par-
ticular, we have (Musiela, Marek & Rutkowski, 1998):

t-y 2uy +y
P(Y, >y,Vs<t)= N(HGTJ— exp(eiz)N(‘;ﬁJ 5)

By substituting 6 and W as above, and setting y = In(EDNO) — A2 we ob-
tain the closed-form formula for the probability of no default P(t) between
time O and t:
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P(t)=N{ L ln(d)} N{—i— In—(d)} 6)
2 A

where d = Voexz/ED and N[-] is the cumulative standard normal distribu-
tion.! Note that equation (6) implies a non-zero probability of default at t
= O for A > 0. Thus the introduction of a time-independent distribution
of the barrier results in a non-zero probability of instantaneous default at
time O. This property contrasts with previous asset-based models in that
they do not allow for non-zero initial default probabilities and therefore
produce short-term spreads that are too low.

It is intuitive that the closer to the barrier (the smaller Vo/ [D) and/or
the higher the asset volatility, the higher is the probability of default. In
the short end (small ©), the main driver of default probability is the uncer-
tainty, represented by A, surrounding the actual level of the barrier. The
higher A corresponds to a higher probability of default. Moreover, A be-
comes an even more important parameter as one moves higher up the
credit spectrum.

The par credit spread Sp, which is the fee of a credit default swap whose
value is zero, can be found by applying an asset-specific recovery rate R:

[z, (1)aP )+ 1- P(O)
S, ()= (1-R)~>— (7a)

(j) Z;(t)P(r)cr

where Z (1) is the risk-free discount factor.” It is important to distinguish
the asset-specific recovery R from the global recovery L. While L is the av-
erage recovery on the company’s overall outstanding debt, which is a pa-
rameter in determining the default probability, R is the recovery for a
specific debt of the company, which is a parameter in the valuation of the
credit spread for this particular bond or loan. The asset-specific recovery
R for an unsecured debt is usually lower than L as the secured debt will
have higher recovery. Define p(t) = -1/t In(P(t)) as the annualised prob-
ability of default. A simple approximate expression for the par credit spread

Uncertainty of default barrier

Traditional asset-based models generally produce short-end
spreads that are too low, as one cannot reach the barrier by pure
diffusion in a short period. Hull & White (2001) proposed to over-
come this problem by using a time-dependent default barrier that
is calibrated to the market. An alternative approach is to incorpo-
rate a jump process. Here, we simply introduce explicitly the uncer-
tainty of the default barrier, as shown by extensive empirical stud-
ies of recovery rates in the event of default. The short end of the
term structure of default probabilities is primarily driven by A, as
illustrated in the figure. &
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SP can be obtained from (7a) by assuming a constant p(t)
= 1 such that:

= p, and P(0)

S, ()=(@-R)p=-(1-R)n(P(t))/t (Th)

We have yet to link the initial asset value V,; and the asset volatility &
to market observables in order to use equation (6) to calculate the prob-
ability of no default. We accomplish this by examining the boundary con-
ditions. In particular, we focus on the long end (large 1), since the short
end (small t) is mainly driven by A. Let S be the stock price and 64 be the
stock volatility. For large t, the two regimes that become more and more
probable with time, especially for high-yield names, are away from the
barrier (S >> LD) and near default (S — 0). Consider:

1 \% V.ds (V
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which represents the distance (in a lognormal space) between the asset
value and the default barrier in terms of standard deviation. Clearly 1 plays
an important role in determining probability of no default (equation (6)).
We want to establish the boundary condition for 1. Near default (S — 0),
we have:

V= Vs O)+ Vst 0(82) LD+—S+ 0(82) 9)
where a0 = 9S/dV and Vg _ o = LD. Substituting V into equation (8), up
to the first-order approximation of S, we have:

1
=— (10)
Os
for the regime S — 0. Away from the barrier (S >> LD), we assume
S/V — 1 as a boundary condition for V. Therefore:

_1,(s
n= |n(LD) (11)

for the regime S >> LD. The simplest expression for 1 that simultane-
ously satisfies the boundary conditions (10) and (11) is:

=S+LDIn(S+LD) (12)
osS LD
Comparing (12) and (8), we have V = S + LD. Thus:

VO = So + [D (13)

for the initial value V, of V at time t = O where S is the current stock
price, and:

! In deriving equation (6), the It6 process Y, can be viewed as a process that, for A # 0,
begins in the past at— At = — N2/c? with a constant drift — 6%/2 and a constant variance
rate 62. The probability of no default thus obtained (equation (6)) implicitly includes the
possibility of Y, crossing the barrier in the period [~ At, 0]. An alternative to this
approximation is to integrate over the barrier distribution. We can then obtain a closed-
Jform solution using the cumulative bivariate normal distribution. The numerical
differences between the two approaches are marginal for practical cases. We would like to
thank an anonymous referee for pointing out this alternative approach

2 In the case of a constant risk-free rate, we can obtain a closed-form formula for the par

spread: 1_P(0)+eri((_;(t+§)— G(&))
PO)-POe "~ G+E)- 6(E)

wherer is the continuous compounded risk-free rate, § = M\*/6?, and the function G(u) is

given by Rubinstein & Reiner (1991):
In
u]+d2 N [ ()+ Ju
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Sp(t)=r(1-R)

where:
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for the asset volatility using some given share price S* and implied share

price volatility G;. Here, we limit ourselves to an assessment of the share

price volatility (5;, obtained from either historical or implied data, which

is representative for a given stock price S*. with (13) and (14), the closed-
form formula involves only market observable parameters.?

Another assumption that has been made is that the asset has zero drift
(uy = 0), which again can be validated at the boundary where S — O,
and S >> LD. Keep in mind that for pricing credit, it is not the asset drift
itself, but rather the drift of the asset relative to the default boundary that
is relevant. Near the default barrier, we have:

dv S dS S
wdt== s - Py

where r is the stock financing rate and p is the dividend yield, respective-
ly. Thus p, = 0 for S — 0. On the other hand, g, = O since the debt no-
tional should be steady when the company is near default. Away from the
barrier, it is reasonable to assume that the company would issue more debt
as the equity value grows, or pay a dividend to keep the leverage level,
DNV, steady. Thus, dV/V = dD/D, ie, u, = Wp. Therefore, the drift of the
assets relative to the default barrier would in fact become zero.

The debt-per-share D is determined based on financial data from con-
solidated statements as follows. One first calculates all the liabilities that
participate in the financial leverage of the firm. These include the princi-
pal value of all financial debts, short-term and long-term borrowings, con-
vertible bonds, as well as quasi-financial debts such as capital leases, or
underfunded pension liabilities or preferred shares depending on their fi-
nancial burden to the firm. Non-financial liabilities such as account
payables, deferred taxes, reserves, etc, are not included. Debt-per-share is
then calculated by dividing the value of the liabilities by the equivalent
number of shares. This includes the number of common shares outstand-
ing as well as any equivalent number of shares necessary to account for
other classes of shares or other instruments of the firm’s equity capital. The
financial data used in the debt-per-share calculation must be adjusted for
recent past events or future predictable events that are already priced in
by the market.

Empirical data

The mean (E) and the percentage standard deviation (A) of the global re-
covery L have been estimated using the Portfolio Management Data/Stan-
dard & Poor’s database. The database contains actual recovery data for about
300 non-financial US companies that defaulted from 1987 to 1997. Defaulted
instruments include bonds and bank loans. Based on the study of this his-
torical data, L and A are estimated to be 0.5 and 0.3, respectively. A lower
A is expected for the financial sector due to the sector-specific government
regulations. In the empirical studies below, we assume L=05and A =
0.3, and we exclude banks, brokerages and other financial firms.

We now examine statistically how well the model works for a portfolio of
names. We took a snapshot of the JP Morgan Chase closing par spreads of
three-year (the shortest tenor that is liquid) credit default swaps (CDS) as of
July 2, 2001 for 298 names, which represents all the JP Morgan Chase North
America actively traded credit derivatives, of both investment grade and high
yield, excluding banks, brokerages and other financial companies as well as
companies without public equity. We then calculated the CDS implied stock
volatilities and plotted those against the 360-day (the longest horizon avail-
able from Bloomberg) historical stock volatilities (see figure 2). The CDS im-
plied stock volatility is found by solving equation (7a) to match the CDS
market spread for a given stock price and debt-per-share of the company.
Note that the data points are scattered fairly evenly across the 45° line. This
holds even within the same industrial sector and across different credit rat-
ings.

We have compared time series of model spreads with those of market
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spreads. Figure 3 shows two examples that compare the five-year CDS
market par spreads (JP Morgan Chase closing CDS spreads) against the
model par spreads, as calculated using equation (7a). We calculate time
correlation between variation of the model spreads and that of the market
spreads over different time intervals, namely, p(u;, v), where u, = In(C"®
A/CT%, v, = In(C"*y /C™) and € and C™" are the model par spread
and the market par spread, respectively, with Ai = one day, one week, two
weeks and one month. The figure clearly shows that, even though the vari-
ations may be poorly correlated on a daily basis, they tend to catch up
with each other over a period of two weeks to a month. Note that the

3 NoteV, does not necessarily correspond to the real initial asset value, nor does G
necessarily correspond to the real asset volatility of the firm. Nevertheless, these simple
expressions are able to approximate the distance to defaultm in equation (12)
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model par spreads in figure 3 are calculated using daily closing stock prices.
However, a fixed asset volatility for the whole period is used because of
the lack of historical implied volatility. Adjusting the asset volatility along
the path according to equation (14), as one would do in practice as the
market moves, should result in higher time correlation.

Figure 4 compatres, for 39 high-yield names from various industry sectors,
the maximum and minimum model spreads against those of the CDS market
(JP Morgan Chase closing CDS spreads) from March to November 2000. The
figure also shows the comparison of the average spreads for November. The
model spreads are calculated using a fixed volatility for the whole period.
Note again that the data points are located evenly across the 45° line, indi-
cating that the difference between the model spreads and the market spreads
goes in both directions for a diversified portfolio of names. The model demon-
strates robust capabilities in difficult market conditions and over time.

Define £ = (C™Md — C™K)/C™K 35 the basis for reference name i. The
results of figures 3 and 4 suggest that for a diversified portfolio of names,
€ is fairly evenly distributed around zero. We have examined the pair-wise
correlation of the variation of basis, ie, p(A€!, Agl), where Aeik = eik 1=
g} from July 6, 2000 to February 8, 2001 between any two names in a di-
versified portfolio of 15 companies from different industry sectors, including
technology, energy, cable, airline, healthcare, chemical, auto parts and re-
tail. The basis varies partly because the credit market does not always react
in the same way and to the same degree as the equity market would react
to any given piece of information. Not surprisingly, companies from the
same or similar industry sector tend to have higher correlation for basis
variations due to the fact that, from time to time, the securities of these
companies are driven by sector-specific news. Nevertheless, the average
correlation for the diversified portfolio is reasonably low, at about 5%, with
a standard deviation of 10%. Thus, the basis risk is diversifiable.

Conclusion

We have presented a simple closed-form formula that provides a robust
relationship between default probability, equity price and volatility. The
formula involves only market observable parameters and is capable of pro-
ducing various shapes for the term structure of default probability. Back
testing using historical market data suggests that the model is not biased,
that it tracks the trends of the spread movements in a robust manner and
that the basis risk is diversifiable.

This approach allows the use of equity derivatives to hedge credit risks
on a name-by-name basis in a diversified portfolio of exposures. It can be
applied as a price discovery tool to determine a fair market price of the
credit risk for illiquid credits that have public equity, or as an arbitrage tool
to build a proprietary portfolio of relative value of debt, equities and eq-
uity derivatives. The closed-form formula of default probability can be used
as a credit rating tool that feeds off of observable parameters, and more
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Probability of no default

The probability of no default formula (Lardy, Finkelstein, Khuong-
Huu & Yang, 2000):

P(t)= N{—iJr %}— dN{— A_ 'nT(d)}

2 2 A

is expressed as a function of market observable parameters:

2 _
. * So+ LD
A%I GS*S—— t+7\.2 d= O_—e7‘2
S +LD LD

where So is the initial stock price; S is the reference stock_price;
o} is the reference stock volatility; D is the debt per share; L is the
global debt recovery; A is the percentage standard deviation of the
default barrier; and N[-] is the cumulative standard normal distrib-
ution function. &

frequently updated market data such as stock prices. In addition, the sim-
plicity and transparency of the closed-form solution makes it an ideal can-
didate to perform risk management and analysis of large portfolios of credit
exposures. The computational efficiency of such a closed-form formula
would allow a large portfolio to be recalculated daily, or even more fre-
quently during the day on a real-time basis, and allow the computation of
economic capital, value-at-risk and stress tests. l
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