Feuille de TD nº3 Espaces de Sobolev

Exercice 1. Étude de $W^{1,p}(0,1)$

- 1. Injections de Sobolev
- (a) Soit $g \in L^1(0,1)$. On pose $w(x) = \int_0^x g(t) dt$. Montrer que $w \in C^0[0,1]$ et que sa dérivée, prise au sens des distributions, est w' = g.
- (b) Montrer que, si de plus $g \in L^p(0,1)$, et $1 \le p < +\infty$, alors $w \in C^{0,\alpha}[0,1]$ avec $\alpha = 1 1/p$. On rappelle que, pour $0 < \alpha < 1$,

$$C^{0,\alpha}[0,1] := \{ v \in C^0[0,1] \, ; \, \exists C \text{ tel que } \forall \, x,y \in [0,1], \quad |v(x) - v(y)| \leq C \, |x - y|^\alpha \}.$$

- (c) Montrer que, si $g \in L^{\infty}(0,1)$, alors $w \in C^{0,1}[0,1]$, où
 - $C^{0,1}[0,1] := \{ \text{espace des fonctions uniform\'ement lipschitziennes sur } [0,1] \}.$
- (d) En comparant u et w défini par $w(x) = \int_0^x u'(t) \, dt$, montrer que, si $u \in W^{1,p}(0,1)$, alors

$$u \in C^{0,1-1/p}[0,1]$$
, si $1 \le p < +\infty$, et $u \in C^{0,1}[0,1]$, si $p = +\infty$.

- (e) Montrer que l'injection canonique, liée à l'inclusion $W^{1,p}(0,1) \subset C^0[0,1]$, est continue
- 2. Caractérisation de $W_0^{1,p}$
 - (a) On pose $W_0 = \{v \in W^{1,p}(0,1); v(0) = v(1) = 0\}$ (l'inclusion précédente montre que v(0) et v(1) sont bien définis, puisque v est continue). Montrer que, pour $p \neq \infty$, on a $W_0^{1,p}(0,1) \subset W_0$.
 - (b) Soit $v \in W_0$ et $p \neq \infty$. Montrer qu'il existe $\varphi_n \in \mathcal{D}(]0,1[)$ vérifiant $\int_0^1 \varphi_n(x)dx = 0$ tel que l'on ait $\varphi_n \to v'$ dans $L^p(0,1)$. En déduire que $W_0^{1,p}(0,1) = W_0$.
- 3. Formule de Green et application
 - (a) Montrer que $W^{1,p}(0,1)=W^{1,p}_0(0,1)\oplus \mathbb{P}_1$. En déduire que $\mathcal{D}([0,1])$ est dense dans $W^{1,p}(0,1)$.
 - (b) Soit u et $v \in W^{1,1}(a,b)$, montrer que $uv \in W^{1,1}(a,b)$, (uv)' = u'v + uv' et que

$$\int_{a}^{b} u'(x) v(x) dx = u(b) v(b) - u(a) v(a) - \int_{a}^{b} u(x) v'(x) dx.$$

Si de plus $u\in W^{1,p}(a,b)$ et $v\in W^{1,q}(a,b),\, 1\leq p\leq q\leq +\infty,$ en déduire que $u\,v\in W^{1,p}(a,b).$

(c) Soit a < b < c. Pour $u \in L^p(a,c)$, on note $u_g = u_{|(a,b)|}$ et $u_d = u_{|(b,c)|}$. Montrer que

$$u \in W^{1,p}(a,c) \iff "u_q \in W^{1,p}(a,b), \quad u_d \in W^{1,p}(b,c), \text{et } u_q(b) = u_d(b)".$$

Exercice 2. Inégalités de Poincaré, Poincaré-Wirtinger et de Deny-Lions On suppose que Ω est un ouvert borné et régulier de \mathbb{R}^N , connexe.

1. On veut démontrer par l'absurde qu'il existe une constante C > 0 telle que

$$\forall u \in H_0^1(\Omega), \quad \|u\|_{L^2} \le C \|\nabla u\|_{L^2}.$$

Vérifier que nier cette inégalité entraı̂ne l'existence d'une suite u_n de $H^1(\Omega)$ telle que

$$\forall n \in \mathbb{N}^*$$
 $||u_n||_{L^2} = 1$, $||\nabla u_n||_{H^1} < \frac{1}{n}$.

En utilisant le théorème de Rellich, montrer qu'il existe une fonction $u \in L^2(\Omega)$ telle que $||u||_{L^2} = 1$ et telle que, après extraction d'une sous-suite (renommée u_n), on ait $u_n \to u$ dans $L^2(\Omega)$ lorsque $n \to +\infty$.

En examinant la convergence de la suite ∇u_n , montrer que u est une fonction constante appartenant à $H_0^1(\Omega)$ et établir une contradiction.

2. Pour une fonction $u \in H^1(\Omega)$, on note

$$\overline{u} = \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx,$$

où $|\Omega|=\int_\Omega dx.$ Montrer par l'absurde qu'il existe C>0 ne dépendant que de Ω telle que

$$\forall u \in H^1(\Omega), \quad \|u - \overline{u}\|_{L^2} \le C \|\nabla u\|_{L^2}.$$

3. Soit $k \in \mathbb{N}$. On note Π_k la projection orthogonale (dans $L^2(\Omega)$) sur l'ensemble \mathbb{P}_k des polynômes de degré $\leq k$. Montrer que

$$\forall u \in H^{k+1}(\Omega), \quad \|u - \Pi_k u\|_{H^{k+1}} \le C|u|_{H^{k+1}},$$

où l'on note

$$||u||_{H^{k+1}} = \left(\sum_{|\alpha| \le k+1} ||\partial^{\alpha} u||_{L^{2}}^{2}\right)^{1/2}, \qquad |u|_{H^{k+1}} = \left(\sum_{|\alpha| = k+1} ||\partial^{\alpha} u||_{L^{2}}^{2}\right)^{1/2}.$$

Les exercices suivants sont donnés en complément et ne seront pas traités en TD.

Exercice 3. Noyau de l'opérateur trace de $H^1(\Omega)$ dans $L^2(\partial\Omega)$

Soit $\Omega \subset \mathbb{R}^N$ ouvert borné de classe C^1 . On note $\partial\Omega$ la frontière de Ω et $\gamma: H^1(\Omega) \to L^2(\partial\Omega)$ l'opérateur trace. On se propose de montrer que $Ker(\gamma) = H^1_0(\Omega)$.

- 1. Montrer que $H_0^1(\Omega) \subset Ker(\gamma)$.
- 2. Soit $u \in Ker(\gamma)$. On cherche à montrer que $u \in H_0^1(\Omega)$. Pour cela, on va construire une suite de $\mathcal{D}(\Omega)$ qui converge vers u dans $H^1(\Omega)$.
 - (a) Expliquer comment, par cartes locales, on peut se ramener au cas où la fonction est dans $H^1(\mathbb{R}^n_+)$ à support compact dans $\overline{\mathbb{R}^N_+}$ et telle que $\gamma u(x',0)=0$ pour presque tout $x'\in\mathbb{R}^{N-1}$.
 - (b) On note T(u) le prolongement de u par 0 à \mathbb{R}^N . Montrer que

$$\forall i = 1, \dots, N$$
 $\frac{\partial T(u)}{\partial x_i} = T\left(\frac{\partial u}{\partial x_i}\right)$ dans $\mathcal{D}'(\mathbb{R}^N)$,

puis que $T(u) \in H^1(\mathbb{R}^N)$.

- (c) Soit $\theta \in \mathcal{D}(\mathbb{R}^N_+)$ tel que $\theta > 0$ et $\int \theta(x)dx = 1$. Pour $\varepsilon > 0$, on pose $\theta_{\varepsilon}(x) = \varepsilon^{-N}\theta(x/\varepsilon)$. Montrer que la fonction $u_{\varepsilon} = \theta_{\varepsilon} \star T(u)$ appartient à $\mathcal{D}(\mathbb{R}^N_+)$ et converge vers T(u) dans $H^1(\mathbb{R}^N)$.
- (d) Déduire des questions précédentes que $u \in H_0^1(\mathbb{R}^N_+)$.

Exercice 4. Injection de Sobolev $W^{1,p}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$.

Soit $p \in [1,N]$. On cherche à montrer l'existence de C > 0 tel que, si p^* est donné par

(1)
$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N},$$

alors

(2)
$$\forall u \in W^{1,p}(\mathbb{R}^N), \quad ||u||_{L^{p^*}} \leq C||\nabla u||_{L^p}.$$

1. Supposons l'existence de q > 0 tel que

(3)
$$\forall u \in W^{1,p}(\mathbb{R}^N), \quad ||u||_{L^q} \le C||\nabla u||_{L^p}.$$

Soit $\lambda > 0$. Ecrire (3) avec $v(x) = u(\lambda x)$, et en déduire que $q = p^*$.

2. Soient $f_1, ..., f_N$ N fonctions de $L^{N-1}(\mathbb{R}^{N-1})$. Pour $x \in \mathbb{R}^N$ on note

$$\tilde{x}_i = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N).$$

et $f(x) = f_1(\tilde{x}_1) \cdots f_N(\tilde{x}_N)$. Montrer par récurrence sur N que $f \in L^1(\mathbb{R}^N)$ et que

$$||f||_{L^1} \le ||f_1||_{L^{N-1}} ... ||f_N||_{L^{N-1}}$$

3. Soit $u \in \mathcal{D}(\mathbb{R}^N)$. On pose

$$f_i(y_1,...,y_{N-1}) = \int_{\mathbb{R}} \left| \frac{\partial u}{\partial x_i}(y_1,...,y_{i-1},t,y_i,...,y_{N-1}) \right| dt$$
.

En remarquant que

$$|u(x)|^N \leq f_1(\tilde{x}_1) \cdots f_N(\tilde{x}_N),$$

montrer l'inégalité (2) pour p=1.

4. Refaire le raisonnement précédent pour la fonction $|u|^{t-1}u$, avec $t=\frac{N-1}{N}p^*$. Conclure.