Méthodes Numériques en Analyse

Examen - 1ère session

Mai 2016. Durée : 2 heures.

Les résumés de cours sont autorisés.

Exercice 1. Recherche de zéro

- 1) Montrer que la fonction $f: x \mapsto x + \ln(x)$ définie sur \mathbb{R}_+^* admet un unique zéro α dont vous préciserez un encadrement.
- 2) Pour chacune des suites récurrentes suivantes, déterminer s'il y a convergence locale vers α :

(a)
$$x_{n+1} = -\ln(x_n)$$

(b)
$$x_{n+1} = \frac{1+x_n}{2}$$

(c)
$$x_{n+1} = \exp(-x_n)$$

(d)
$$x_{n+1} = \frac{\beta x_n + \exp(-x_n)}{\beta + 1}, \ \beta > -1$$

- 3) On s'intéresse désormais à la méthode de Newton appliquée à la résolution de $f(\alpha) = 0$.
- (a) Écrire explicitement la relation de récurrence définissant les itérées de la méthode de Newton.
- (b) Pour quelles valeurs de l'initialisation $x_0 \in \mathbb{R}_+^*$ cette méthode est-elle bien définie ? A-t-on convergence locale vers α ? Avec quel ordre de convergence ?

EXERCICE 2. Polynômes orthogonaux

On considère le produit scalaire suivant sur l'ensemble des fonctions continues sur [0,1] (faisant intervenir une racine cubique $\sqrt[3]{}$):

$$\langle f, g \rangle = \int_0^1 f(x)g(x)\sqrt[3]{x} \, dx$$

- 1) Pour tout $n \in \mathbb{N}$, calculer $I_n = \int_0^1 x^{n+\frac{1}{3}} dx$.
- 2) Déterminer les deux premiers polynômes orthogonaux P_0 et P_1 pour ce produit scalaire.
- 3) Déterminer un réel a qui minimise la quantité

$$\int_0^1 (\sqrt[5]{x} - a)^2 \sqrt[3]{x} \, dx.$$

On notera que l'ensemble des réels peut être identifié avec l'ensemble des polynômes de degré zéro.

4) Déduire de la question 2) deux réels μ et z tels que la formule d'intégration numérique

$$\int_0^1 f(x) \sqrt[3]{x} \, dx \approx \mu f(z)$$

soit d'ordre maximal et donner la valeur de l'ordre alors obtenu.

EXERCICE 3. Interpolation polynômiale et polynômes de Hermite

- 1) (a) Soit $q \in \mathbb{P}_3$ tel que q(0) = q'(0) = q(1) = q'(1) = 0. Montrer que q est le polynôme nul.
- (b) Soient α_i , $i=1,\ldots,4$, quatre constantes réelles. Montrer qu'il existe un unique polynôme $p\in\mathbb{P}_3$ vérifiant les égalités :

(1)
$$p(0) = \alpha_1, \quad p'(0) = \alpha_2, \quad p(1) = \alpha_3, \quad p'(1) = \alpha_4.$$

Indication : on pourra considérer l'application de \mathbb{P}_3 sur \mathbb{R}^4 qui, à un polynôme $p \in \mathbb{P}_3$, fait correspondre (p(0), p'(0), p(1), p'(1)).

2) Calculer les quatre polynômes $p_i \in \mathbb{P}_3$, i = 1, ..., 4, vérifiant les relations (1), avec les quatre jeux de coefficients suivants :

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4)_i = (1, 0, 0, 0), \quad (0, 1, 0, 0), \quad (0, 0, 1, 0), \quad (0, 0, 0, 1).$$

Montrer que le polynôme de la question 1b) s'écrit comme une combinaison linéaire des p_i :

$$p(x) = \sum_{i=1}^{4} \alpha_i \, p_i(x).$$

3) Soit f une fonction de classe $C^4([0,1])$. On note p_f le polynôme de la question 1) avec

$$\alpha_1 = f(0), \quad \alpha_2 = f'(0), \quad \alpha_3 = f(1), \quad \alpha_4 = f'(1).$$

(a) Soit q(t) une fonction de classe C^4 telle que

$$q(0) = q'(0) = q(1) = q'(1) = q(x) = 0,$$

où x est un réel fixé dans]0,1[. Justifier qu'il existe $\alpha_x \in]0,x[$ et $\beta_x \in]x,1[$ tels que $q'(\alpha_x)=q'(\beta_x)=0.$ Montrer qu'il existe $\xi_x \in]0,1[$ tel que $q^{(4)}(\xi_x)=0.$

(b) En déduire que pour chaque $x \in]0,1[$, il existe $\xi_x \in]0,1[$ tel que

$$f(x) - p_f(x) = \frac{\omega(x)}{4!} f^{(4)}(\xi_x), \text{ avec } \omega(x) = x^2(x-1)^2.$$

Indication : on pourra considérer la fonction

$$q(t) = f(t) - p_f(t) - \omega(t) \frac{f(x) - p_f(x)}{\omega(x)}.$$

4) On approche l'intégrale d'une fonction f à l'aide de la formule de quadrature

$$\int_0^1 f(x)dx \approx \int_0^1 p_f(x)dx.$$

Montrer que cette formule de quadrature est exacte pour les polynômes de \mathbb{P}_3 . Calculer les poids $\alpha_i = \int_0^1 p_i(x) dx$ et en déduire une forme explicite de la formule de quadrature en fonction de f(0), f'(0), f(1), f'(1).

5) On note $M=\max_{x\in[0,1]}|f^{(4)}(x)|$. En utilisant la question 3b, montrer que l'erreur d'intégration $E(f)=\int_0^1 f(x)dx-\int_0^1 p_f(x)dx$ satisfait

$$|E(f)| \le \frac{M}{720}.$$