
PERVERSE NORI MOTIVES

FLORIAN IVORRA

Abstract. Let k = C be the field of complex numbers (one can also choose
a field of characteristic zero k with a fixed embedding of fields σ : k ↪→ C).
Assume that K is a field. In this work, we show that the Tannakian formalism
developed by M. Nori also applies to representations T : Q → P with values
in a K-linear Abelian category P which is Noetherian, Artinian and has fi-
nite dimensional Hom groups over K. As an application, we define a relative
version, modeled after perverse sheaves, of the Abelian category of motives
constructed by M. Nori over k.

1. Introduction

Let k = C be the field of complex numbers (one can also choose a field of
characteristic zero k with a fixed embedding of fields σ : k ↪→ C). In this work, a
k-variety will be a quasi-projective k-scheme. The reader, if he wishes, may work
also with separated k-schemes of finite type. In particular, perverse motives make
sense over such bases.

1.1. Using a Tannakian approach, Madhav Nori has defined a category of mixed
motives NMM(k) over k. Though M. Nori himself did not publish his construction,
several accounts of it are available in the literature (see e.g. [14, 24, 10]). Roughly
speaking, NMM(k) is the universal Abelian category having a faithful exact Betti
realization in the category of finite dimensional Q-vector spaces and a relative
homology theory for pairs consisting of a k-variety and a closed subscheme of it.
Being a motive in NMM(k) is the finer structure that one can put on the relative
homology of a pair of k-varieties. In particular, as the relative homology of pairs
carries a (polarizable) mixed Hodge structure, the Betti realization factors through
the Abelian category MHSpQ of polarizable mixed Q-Hodge structures i.e. one has
a faithful exact functor

NMM(k)→ MHSpQ.

1.2. Assume that K is a field. In this work, we show that the Tannakian formalism
developed by M. Nori also applies to representations T : Q → P with values
in a K-linear Abelian category P which is Noetherian, Artinian and has finite
dimensional Hom groups over K. The proof of this result is an application of Nori’s
statement and the characterization of categories of comodules over K-coalgebras
obtained by M. Takeuchi in [21].

1.3. As an application, we develop a relative version, modeled after perverse sheaves,
of the Abelian category of motives constructed by M. Nori. More precisely, for ev-
ery quasi-projective k-scheme X, we construct a Q-linear Abelian category N (X)
of “perverse motives”, with a faithful exact functor

ratN
X : N (X)→P(X)

to the category P(X) of perverse sheaves over X. The category N (Spec(k))
is the category NMM(k,Q) of M. Nori obtained by considering homology with
rational coefficients. The Betti functor ratN

X factors through the Abelian category
1
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MHM(X,Q) of mixed Hodge modules constructed by M. Saito in [18, 19] and this
provides a faithful exact functor

N (X)→ MHM(X,Q).

1.4. The category NMM(k) contains more motives, than expected a priori from its
definition: (a) M. Nori constructs a realization functor (see e.g. [14] for a sketch
of the construction)

DMgm(k)→ Db(NMM(k))
where DMgm(k) is the triangulated category of geometric motives constructed by
V. Voevodsky in [23]; (b) in [1, Theorem 3.1], D. Arapura shows that the Leray
spectral sequence for Betti cohomology associated with a projective morphism f :
X → Y of quasi-projective k-varieties is motivic in the sense of Nori i.e. is the image
of a spectral sequence in the category NMM(k) via the Betti realization functor.

In [12] we show that, for every smooth quasi-projective k-scheme X, the derived
category Db(N (X)) is the target of a realization functor

DAét
ct (X,Q)→ Db(N (X))

where DAét
ct (X,Q) is the triangulated category of étale constructible motives with

rational coefficients introduced by J. Ayoub in [3, 4]. The category DAét(X,Q)
is the Q-linear étale counterpart of the stable homotopy category of X-schemes of
F. Morel and V. Voevodsky (see [13, 16, 22]). By [5, Théorème B.1] and [15,
Theorem 14.30, Lemma 14.21]), it is known that the categories DMgm(k,Q) and
DAét

ct (k,Q) are equivalent.

1.5. Note that a higher dimensional analog of Nori’s construction, based on con-
structible sheaves rather than perverse sheaves, has been developed by D. Arapura
in [2]. The categoryM(X,Q) constructed by D. Arapura in loc.cit. is probably
related to the category N (X) that we construct in the present work. By analogy
with perverse sheaves and mixed Hodge modules, it may be possible thatM(X,Q)
is equivalent to the heart of a certain t-structure on Db(N (X)) but we do not
attempt in this work to prove such a comparison result.

2. Statement of the result and some comments

2.1. Let K be a field. Following [9, Chapitre II, §4], recall that a K-linear Abelian
category P is said to be finite if it is Noetherian and Artinian i.e. P is essentially
small and any object in P has finite length. We shall say that P is Hom finite if
for any objects P,Q in P the K-vector space P(P,Q) is finite dimensional. The
main result of this section is the following theorem:

Theorem 2.1. Let P be a K-linear Abelian category which is finite and Hom
finite, Q be a quiver1 and T : Q → P be a representation of the quiver Q with
values in P. Then, there exist a K-linear Abelian category A , a representation
R : Q → A , a K-linear faithful exact functor F : A → P and an invertible 2-
morphism α : F ◦ R → T such that for every K-linear Abelian category B, every
representation S : Q → B, every K-linear exact faithful functor G : B →P, and
every invertible 2-morphism β : G ◦ S → T the following conditions are satisfied.

• There exist a K-linear functor H : A → B and two invertible 2-morphisms

γ : H ◦R '−→ S; δ : G ◦H '−→ F

1Recall that a quiver is simply a directed graph.
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such that the square

G ◦H ◦R
G?γ //

δ?R

��

G ◦ S
β

��
F ◦R α // T

is commutative.
• If H ′ : A → B is a K-linear functor and

γ′ : H ′ ◦R '−→ S; δ′ : G ◦H ′ '−→ F

are two invertible 2-morphisms such that the square

G ◦H ′ ◦R
G?γ′ //

δ′?R

��

G ◦ S
β

��
F ◦R α // T

is commutative, then there exists a unique 2-morphism θ : H → H ′ such
that γ′ ◦ (θ ? R) = γ and δ′ ◦ (G ? θ) = δ.

For P = mod(K) the category of finite dimensional K-vector spaces, the result
is due to M. Nori. A proof of Theorem 2.1 is given in Section 5. The main tool is
Proposition 4.1 which allows to reduce the general case to the case considered by
M. Nori.

2.2. Our main motivation behind Theorem 2.1 is to apply the Tannakian formal-
ism developed by M. Nori to representations of quivers in categories of perverse
sheaves.

Example 2.2. Let k be a field of characteristic zero with an embedding σ : k ↪→ C
into the field C of complex numbers. Given a separated k-scheme X of finite type,
we consider the complex scheme Xσ obtained from X by base change along the em-
bedding σ, and the triangulated category Db

c (X,Q) of complexes, with algebraically
constructible cohomology, of sheaves of Q-vector spaces for the classical topology
on the associated analytic space Xσ(C).

If A,B are objects in Db
c (X,Q), their Hom group is given by2:

Hom(A,B) = HomDb
c (X,Q)(QX ,RH om(A,B))

= HomDb(Q)(Q,Rπ∗RH om(A,B))
= H0(Rπ∗RH om(A,B))

where RH om is the internal Hom and Rπ∗ is the direct image along the structural
morphism X/k. In particular, as RH om and Rπ∗ preserve constructibility, the
Q-vector space Hom(A,B) is finite dimensional.

Let P(X) := Perv(X,Q) be the heart of Db
c (X,Q) for the perverse t-structure.

By [6, Théorème 4.3.1.(i)], the category P(X) is Noetherian and Artinian. As it
is also Hom finite, it satisfies the assumption of Theorem 2.1.

2Note that Db
c (Spec(k),Q) is nothing but the triangulated category Db

f.d.(Q) of complexes
of Q-vector spaces with finite dimensional cohomology, and is also equivalent to the homotopy
category Kb(mod(Q)) of the Abelian category mod(Q) of finite dimensional vector spaces.
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2.3. Note that the universal property of Nori’s construction is unfortunately not
exactly stated in the available literature [14, 24, 7] as we have stated it in Theo-
rem 2.1. Formulations of the universal property that may be found in the literature
are simplified by assuming implicitly at some point that some equivalence of cate-
gories is the identity. The statement obtained with such an assumption is not cor-
rect but its formulation is simpler and more appealing to readers wishing to avoid
the cumbersome language of 2-categories. The correct formulation of the universal
property is however needed here to prove Theorem 2.1 and for sake of completeness
we have included the proof that Nori’s category does indeed satisfy the universal
property as stated in Theorem 2.1 when P = mod(K) (see Theorem 3.2).

In the rest of this section we formulate the universal property of Theorem 2.1 in
terms of 2-categories and 2-initial objects.

2.4. Let D be a strict 2-category. We will denote the composition of 1-morphisms
(resp. 2-morphisms) by the symbol ◦. Given a diagram of the form

X

f
&&

g

88�� α Y

k
&&

h

88�� β Z

we will denote by β ? α : k ◦ f → h ◦ g the so-called horizontal composition of the
2-morphisms α and β. If α = id, we will simply write f ? β = id ? β and similarly
if β = id we will write k ? α = α ? id. Given two objects X,Y ∈ D, we denote by
D(X,Y ) the category formed by the 1-morphisms from X to Y .

Definition 2.3. Let D be a strict 2-category and X be an object of D. Then X is
said to be 2-initial if for every object Y in D, the category D(X,Y ) is non empty
and every object of D(X,Y ) is initial.

This means that me may find at least a 1-morphism from X to Y and for every
two such 1-morphisms f, g, there exists one and only one 2-morphism α : f ⇒ g.
Such an object X in D is then unique up to an equivalence which is unique up to
a unique invertible 2-morphism. Indeed if X and X ′ are two objects in D that are
2-initial. Then there exists a 1-morphism f : X → X ′ and any such 1-morphism is
an equivalence. Moreover given two 1-morphisms f, g : X → X ′, there exists one
and only 2-morphism α : f ⇒ g and this 2-morphism is invertible.

Remark 2.4. If Y and Y ′ are equivalent in D, then the category D(X,Y ) and
D(X,Y ′) are equivalent. In particular if one of the category is non empty and all
its objects are initial, the same is true for the other.

2.5. Let P be a K-linear Abelian category and T : Q → P be a representation.
With this representation is associated a strict 2-category DT defined as follows.

• An object in DT is a 4-uplet (A , R, F, α) where A is a K-linear abelian
category, R : Q → A is a representation, F : A →P is a K-linear faithful
exact functor and α : F ◦R→ T is an invertible 2-morphism.

• If (A , R, F, α) and (B, S,G, β) are two objects, a 1-morphism (A , R, F, α)→
(B, S,G, β) is a triple (H, γ, δ) where H : A → B is a K-linear functor
and

γ : H ◦R '−→ S; δ : G ◦H '−→ F

are invertible 2-morphisms such that the square

G ◦H ◦R
G?γ //

δ?R

��

G ◦ S
β

��
F ◦R α // T
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is commutative.
• If (H, γ, δ) and (H ′, γ′, δ′) are 1-morphisms between the same two objects,
a 2-morphism (H, γ, δ) ⇒ (H ′, γ′, δ′) is a 2-morphism3 θ : H → H ′ such
that γ′ ◦ (θ ? R) = γ and δ′ ◦ (G ? θ) = δ.

Theorem 2.1 may be reformulated as follows: if P is aK-linear Abelian category
which is finite and Hom finite, then for every representation T : Q →P of a quiver
Q the 2-category DT has a 2-initial object. It will be convenient in the sequel to
use the following definition:

Definition 2.5. We say that the category P has the property N if, for every
quiver Q and every representation T : Q → P, the 2-category DT has a 2-initial
object.

2.6. Let us fix a quiver Q and a representation T : Q → P. Note that a 2-
morphism θ in DT is invertible in DT if and only if it is invertible as a natural
transformation. A similar result holds for 1-morphism. More precisely:

Lemma 2.6. Let (A , R, F, α) and (B, S,G, β) be two objects in DT . A 1-morphism
(H, γ, δ) : (A , R, F, α)→ (B, S,G, β)

is an equivalence in DT if and only if H is an equivalence of categories.

Proof. If (H, γ, δ) is an equivalence in DT , then it follows from the definition that
H is an equivalence of categories. Assume now that H is an equivalence. There
exist a K-linear functor H ′ : B → A , an invertible 2-morphism φ : H ◦H ′ → idB

and an invertible 2-morphism ψ : H ′ ◦ H → idA such that H ′ ? φ = ψ ? H ′

and H ? ψ = φ ? H. Consider the 2-morphisms ε, η obtained respectively by the
composition of the following sequences of 2-morphisms:

Q

G◦H◦H′◦H◦R

��

�� G?H?H
′?γ

G◦H◦H′◦S

""�� G?φ?S

==

T

�� β
G◦S //P ; Q

G◦H◦H′◦H◦R

��

�� δ?H′?H?R
F◦H′◦H◦R

""�� F?ψ?R

==

T

�� α
F◦R //P.

We have the equality ε = η. Indeed ε precomposed with G?φ−1 ?H ?R is equal to
β ◦ (G ? γ) while η precomposed with G ? H ? ψ−1 ? R is equal to α ◦ (δ ? R). The
equality follows then from the equalities α◦ (δ ?R) = β ◦ (G?γ) and φ?H = H ?ψ.
From this one deduces that

α ◦ (F ? γ′) = ε ◦ (δ−1 ? H ′ ? γ−1) = η ◦ (δ−1 ? H ′ ? γ−1) = β ◦ (δ′ ? S).
This shows that

(H ′, γ′, δ′) : (B, S,G, β)→ (A , R, F, α)
is a 1-morphism in DT . By definition of the composition in DT ,

(H ′, γ′, δ′) ◦ (H, γ, δ) = (H ′ ◦H, γ′ ◦ (H ′ ? γ), δ ◦ (δ′ ? H))
= (H ′ ◦H,ψ ? R,G ? ψ)

3i.e. a natural transformation.
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Hence ψ is a 2-morphism in DT . Similarly φ is a 2-morphism in DT . As both of
them are invertible, this shows that (H ′, γ′, δ′) is a 1-morphism in DT quasi-inverse
to (H, γ, δ). �

3. Review of Nori’s contruction

We denote by mod(K) the category of finite dimensional K-vector spaces. If V
is a finite dimensional K-vector space, then the dual of V as a K-vector space is
denoted by V ∨ := HomK(V,K). All K-coalgebras are assumed to be coassociative
and counitary.

Let Q be a quiver and
T : Q → mod(K)

be a representation of Q with values in the category of finite dimensional K-vector
spaces mod(K). We will recall the unpublished construction of M. Nori. For
detailed expositions of the work of M. Nori with complete proofs we refer to
[14, 24, 7].

3.1. Assume that Q has finitely many objects. Consider the ring of left endormor-
phisms of T . By definition, it is the subring EndK(T ) of∏

q∈Q
EndK(T (q))

formed by the elements e = (eq)q∈Q such that for every object p ∈ Q and every
morphism m ∈ Q(p, q) the square

T (p)
T (m) //

ep

��

T (q)

eq

��
T (p)

T (m) // T (q)

is commutative. The ring EndK(T ) is a K-algebra which is finite dimensional as a
K-vector space and its dual

AT := EndK(T )∨

is a K-coalgebra which is finite dimensional over K. For every object q ∈ Q, the
finite dimensional K-vector space T (q) has a natural structure of left EndK(T )-
module via the projection

EndK(T )→ EndK(T (q))

and thus a structure of left AT -comodule. This shows that the representation T
may be lifted to a representation

RT : Q → comod(AT )

by simply viewing the finite dimensional vector space T (q) as a left AT -comodule.
Nori’s abelian category A (T ) is then the category comod(AT ) of finite dimensional
AT -comodules. The representation T is then obtained as the composition of RT
and the forgetful functor

FT : comod(AT )→ mod(K)

which is K-linear exact and faithful.
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3.2. Let now Q be a quiver which may have infinitely many objects. Consider for
every finite full sub-quiver Q′ ⊆ Q, the induced representation

T ′ := T |Q′ : Q′ → mod(K)
and the associated coalgebra AT ′ . If Q′′ is a finite full subquiver of Q that contains
Q′, the inclusion Q′ ⊆ Q′′ induces by projection a morphism of K-algebras∏

q∈Q′′
EndK(T (q))→

∏
q∈Q′

EndK(T (q))

which induces a morphism of K-algebras EndK(T |Q′′) → EndK(TQ′). This pro-
vides a morphism of K-coalgebras AT |Q′ → AT |Q′′ . Nori’s K-coalgebra associated
with the representation T : Q → mod(K) is then the coalgebra obtained by taking
the colimit over all finite full sub-quivers of Q:

AT := colim
Q′⊆Q

AT |Q′

and Nori’s category is then the Abelian category
A (T ) := comod(AT )

where comod(AT ) is the category of finite dimensional left comodule over AT . For
every object q ∈ Q the finite dimensional K-vector space T (q) inherits a structure
of left AT -comodule and the representation T factors as a representation

RT : Q → comod(AT ) := A (T )
via the forgetful functor FT : comod(AT ) → mod(K) which is K-linear exact and
faithful. Note that by construction FT ◦RT = T and therefore (A (T ), RT , FT , αT )
where αT = id is an object in DT .

3.3. Now let us consider the functoriality of this construction. Let T1 : Q1 →
mod(K) and T2 : Q2 → mod(K) be two representations of quivers. Let F : Q1 →
Q2 be a morphism of quivers, and α : T2 ◦ F → T1 be an invertible 2-morphism.
Assume first that Q1 and Q2 have finitely many objects. Consider the morphism
of rings: ∏

q2∈Q2

EndK(T2(q2)) Πα−−→
∏

q1∈Q1

EndK(T1(q1)) (1)

where the map Πα is defined for every e = (eq2)q2∈Q2 by
Πα(e) = (α · eF (q1) · α−1)q1∈Q1 .

If for every object p2 ∈ Q2 and every morphism m2 ∈ Q2(p2, q2) the square

T2(p2)
T2(m2)//

ep2

��

T2(q2)

eq2

��
T2(p2)

T2(m2)// T2(q2)

is commutative, then in particular for every object p1 ∈ Q1 and every morphism
m1 ∈ Q1(p1, q1) the square

T1(q1)
T1(m1)//

Πα(e)p1
��

T1(q1)

Πα(e)q1
��

T1(p1)
T1(m1)// T1(q1)

is commutative. This shows that the morphism of rings (1) induces a morphism of
K-algebras EndK(T2)→ EndK(T1) and thus a morphism of K-coalgebras: A(F ) :
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AT1 → AT2 . If Q1 and Q2 are not finite, then for any finite sub-quivers Q′1 ⊆ Q1
and Q′2 ⊆ Q2 such that F (Q′1) ⊆ Q′2 one has a morphism of K-coalgebras

AT1|Q′1
→ AT2|Q′2

.

By taking the colimit one obtains a morphism of K-coalgebras
A(F ) : AT1 → AT2 .

This morphism induces by restriction of scalars a K-linear exact functor
A (F ) : A (T1) := comod(AT1)→ A (T2) := comod(AT2).

The invertible 2-morphism α lifts and provides an invertible 2-morphism α : RT2 ◦
F ⇒ A (F ) ◦RT1 i.e.

Q1
F //

��
�	 αRT1

��

Q2

RT2
��

A (T1)
A (F ) // A (T2).

3.4. Let us recall the main result related to these categories. For a complete proof
we refer to [24, Satz 3.28] or [11, Theorem 6.1.19].

Theorem 3.1 (M. Nori). Let A be a K-linear Abelian category and % : A →
mod(K) be an exact faithful functor. Then the representation

R% : A → A (%)
is a K-linear functor and an equivalence of categories.

As a corollary, one obtains the following result:

Theorem 3.2 (M. Nori). The K-linear Abelian category mod(K) of finite dimen-
sional K-vector spaces satisfies the property N.

Proof. Let Q be a quiver and T : Q → mod(K) be a representation of Q in mod(K).
The construction of M. Nori recalled in §3.2, provides a K-linear Abelian category
A (T ), a representation RT : Q → A (T ) and a K-linear faithful exact functor
FT : A (T ) → mod(K) such that FT ◦ RT = T . It is enough to check that the
object

(A (T ), RT , FT , αT )
where αT = id, is 2-initial in the strict 2-category DT (see Definition 2.3). Let B
be a K-linear Abelian category, S : Q → B be a representation, G : B → mod(K)
be a K-linear exact faithful functor and β : G◦S → T be an invertible 2-morphism.

By Theorem 3.1, the representation RG : B → A (G) is a K-linear exact functor
and an equivalence of categories such that

B
RG //

G
''

A (G) = comod(AG)

FG

��
mod(K)

is commutative, where FG is the forgetful functor. Note that
(RG, id, id) : (B, S,G, β)→ (A (G), RG ◦ S, FG, β)

is a 1-morphism in DT . Since RG is an equivalence, Lemma 2.6 assures that the
objects (B, S,G, β) and (A (G), RG ◦ S, FG, β) are then equivalent in DT . It is
therefore enough, by Remark 2.4, to prove that the category

DT ((A (T ), RT , FT , αT ), (A (G), RG ◦ S, FG, β))
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is non empty and that all its objects are initial. By functoriality of Nori’s con-
struction as recalled in §3.3, there is a morphism of K-coalgebras AT → AG such
that the functor

H : A (T ) := comod(AT )→ comod(AG) =: A (G)
obtained by restriction of scalars, fits into a commutative diagram

Q RT //

S

��

A (T )

H

��

FT

%%
mod(K)

B
RG

// A (G).
FG

99
5=β

Hence (H,β−1, id) is a 1-morphism from (A (T ), RT , FT , αT ) to (A (G), RG◦S, FG, β).
Let H ′ : A (T )→ A (G) be a K-linear functor and

γ′ : H ′ ◦RT
'−→ RG ◦ S; δ′ : FG ◦H ′

'−→ FT

be two invertible 2-morphisms such that the square

FG ◦H ′ ◦RT
FG?γ

′
//

δ′?RT

��

FG ◦RG ◦ S

β

��
FT ◦RT T

(2)

is commutative. Let θ : H → H ′ be a 2-morphism such that γ′ ◦ (θ ? RT ) = β−1

and δ′ ◦ (FG ? θ) = id. Then, for every V ∈ comod(AT ), the morphism θV :
H(V ) → H ′(V ) is equal to (δ′V )−1 as a morphism of K-vector spaces. Hence it is
unique. The existence follows from the fact that the commutativity of (2) implies
that every V , of the form V = RT (q) for some q ∈ Q, the morphism (δ′V )−1 is a
morphism of A-comodules4. As they generate A (T ) = comod(AT ) as an Abelian
category, the morphism θV := (δ′V )−1 is a morphism of A-comodules for any V .
The commutativity of (2) assures that γ′ ◦ (θ ?RT ) = β−1. As δ′ ◦ (FG ? θ) = id by
definition, this concludes. �

4. Finite and Hom finite K-linear Abelian categories

If A is a K-coalgebra, we denote by coMod(A) the category of left A-comodules
and by comod(A) the full subcategory of finite dimensional left A-comodules. To
obtain Theorem 2.1 from Theorem 3.2, we will need that the K-linear Abelian
categories which are finite and Hom finite are precisely the categories of finite
dimensional comodules over some K-coalgebra. More precisely:

Proposition 4.1. Let P be a K-linear Abelian category. If P is finite and Hom
finite, then there exist a K-coalgebra A and a K-linear equivalence of categories
between P and comod(A).

Note that this characterization is simply a finite dimensional variant of the result
proved by M. Takeuchi in [21], and that we actually deduce it from Takeuchi’s
result. As a preliminary we need the following basic lemma:

Lemma 4.2. Let A be K-coalgebra.

4The functoriality assures that β lifts as a morphism of A-comodules.
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(1) The category comod(A) is the full subcategory of coMod(A) formed by the
Noetherian objects of coMod(A).

(2) The category comod(A) is a finite and Hom finite K-linear abelian category.

Proof. The set of all sub-comodules of a comodule V that are finite dimensional
over K is partially ordered, filtrant, and has union V (see e.g. [8, Chapter II,
Proposition 2.3]). Hence if V is Noetherian it must be finite dimensional over K.
The reciprocal follows from the fact that the forgetful functor coMod(A)→ Mod(K)
is K-linear exact and faithful. This implies also that every object in comod(A) is
Artinian. �

Let us now prove Proposition 4.1.

Proof of Proposition 4.1. By [9, Chapitre II, Théorème 1], we may find a locally
Noetherian K-linear Abelian category L and an exact5 K-linear functor P → L
which induces an equivalence between P and the full subcategory of L formed by
the Noetherian objects of L . Since P is Artinian and Hom finite, the category L
is locally finite and, for every objects of finite length X,Y ∈ L , the K-vector space
L (X,Y ) is finite dimensional. We may thus apply [21, 5.1 Theorem, 5.8], to find
a K-coalgebra A and a K-linear exact functor

L → coMod(A)

which is an equivalence between L and the category coMod(A) of A-comodules.
The result follows then from Lemma 4.2. �

Note that Proposition 4.1 has the following corollary:

Corollary 4.3. Let P be a K-linear Abelian category. The following conditions
are equivalent:

(1) P is finite and Hom finite;
(2) there exist a K-coalgebra A and a K-linear exact equivalence of categories

between P and the category comod(A);
(3) there exists a K-linear exact and faithful functor ω : P → mod(K).

Proof. The equivalence of conditions 1, 2 and 3 is a consequence of Lemma 4.2,
Proposition 4.1 and Theorem 3.1. �

5. Proof of Theorem 2.1

We start with the following observation:

Lemma 5.1. If P1 be a K-linear Abelian category that satisfies the property N,
then every K-linear Abelian category P2 such that there exists a K-linear exact
faithful functor ω : P2 →P1 satisfies also the property N.

Proof. Let T2 : Q → P2 be a representation of the quiver Q. We may apply
the property N to the representation T1 := ω ◦ T2 : Q → P1, and find a K-
linear Abelian category A1, a representation R1 : Q → A1, a faithful exact func-
tor F1 : A1 → P1, and an invertible 2-morphism α1 : F1 ◦ R1 → T1 such that
(A1, R1, F1, α1) is 2-initial in the category DT1 . We set

R2 := R1 A2 := A1.

The representation T2 : Q →P2 and the K-linear exact faithful functor ω : P2 →
P1, provide an object (P2, T2, ω, id) in DT1 . Since (A1, R1, F1, α1) is 2-initial in

5The exactness is proved in [9, Chapitre II, Proposition 6]
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DT1 , we obtain the existence of a K-linear functor F2 : A2 →P2 and two invertible
2-morphisms

α2 : F2 ◦R2
'−→ T2; δ : ω ◦ F2

'−→ F1

such that the square

ω ◦ F2 ◦R2
ω?α2 //

δ?R2

��

ω ◦ T2

F1 ◦R1
α1 // T1

(3)

is commutative. It is enough to check that the object (A2, R2, F2, α2) of DT2 is
2-initial in DT2 . For this let B2 be a K-linear Abelian category, S2 : Q → B2
be a representation, G2 : B2 → P2 be a K-linear faithful exact functor, and β2 :
G2 ◦ S2 → T2 be an invertible 2-morphism. Let B1 := B2, S1 := S2, G1 := ω ◦G2
and β1 := ω ? β2. Since (A1, R1, F1, α1) is 2-initial in DT1 , and (B1, S1, G1, β1) is
an object in DT1 , we obtain a K-linear functor H1 : A1 → B1 and two invertible
2-morphisms

γ1 : H1 ◦R1 → S1 δ1 : G1 ◦H1 → F1

such that the square

G1 ◦H1 ◦R1 = ω ◦G2 ◦H1 ◦R1
G1?γ1=ω?G2?γ1 //

δ1?R1

��

G1 ◦ S1 = ω ? G2 ◦ S2

β1=ω?β2

��
F1 ◦R1

α1 // T1 = ω ◦ T2

(4)

is commutative. Let us set

H2 := H1 γ2 := γ1.

Using the squares (3) and (4), we may apply again the fact that (A1, R1, F1, α1) is
2-initial in DT1 to the 1-morphisms of DT1

(G2 ◦H2, β2 ◦ (G2 ◦ γ1), δ1) (F2, α2, id)

to get an invertible 2-morphism δ2 : G2 ◦H2 → F2 such that ω ? δ2 = δ1 and such
that the square

G2 ◦H2 ◦R2
G2?γ2 //

δ2?R2

��

G2 ◦ S2

β2

��
F2 ◦R2

α2 // T2

is commutative. Now let H ′2 : A2 → B2 be a K-linear functor and

γ′2 : H ′2 ◦R2 → S2 δ′2 : G2 ◦H2 → F2

be two invertible 2-morphisms such that the square

G2 ◦H2 ◦R2
G2?γ

′
2 //

δ′2?R2

��

G2 ◦ S2

β2

��
F2 ◦R2

α2 // T2

is commutative. By composing with ω, since ω ?β2 = β1, α1 = ω ?α2, G1 = ω ◦G2
and F1 = ω ◦F2, we obtain the existence of a unique 2-morphism θ : H2 → H ′2 such
that

γ′2 ◦ (θ ? R2) = γ2 ω ? (δ′2 ◦ (G2 ? θ)) = δ1.
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Since δ1 = ω ? δ2 and ω is faithful, we obtain δ′2 ◦ (G2 ? θ) = δ2 as desired. Note
that θ is the unique 2-morphism θ : H2 → H ′2 such that γ′2 ◦ (θ ? R2) = γ2 and
δ′2 ◦ (G2 ? θ) = δ2 since such a 2-morphism satisfies also

γ′2 ◦ (θ ? R2) = γ2 ω ? (δ′2 ◦ (G2 ? θ)) = ω ? δ2 = δ1.

This relation ensures the uniqueness since (A1, R1, F1, α1) is 2-initial in DT1 . This
shows the lemma. �

Proof of Theorem 2.1. Let us fix a K-linear Abelian category P which is finite and
Hom finite. By Corollary 4.3, there exists a K-linear faithful exact functor

ω : P → mod(K).

By applying Theorem 3.2 and Lemma 5.1, we obtain that P satisfies also the
property N. This concludes the proof. �

6. Remarks on functoriality

In this section, we draw some simple remarks concerning the functoriality of the
previous construction.

6.1. Let A , B and C be K-linear Abelian categories and F : A → C and G :
B → C be K-linear exact functors. We denote by A ×C B the category obtained
by glueing A and B over C . An object in this category is a 5-uplet (A,B,C, α, β)
where A ∈ A , B ∈ B, C ∈ C and α : F(A)→ C, β : G(B)→ C are isomorphisms
in C . A morphism

(A,B,C, α, β)→ (A′, B′, C ′, α′, β′)
is a triple (a, b, c) where a ∈ A (A,A′), b ∈ B(B,B′), c ∈ C (c, c′) are such that
α′ ◦ F(a) = c ◦ α and β′ ◦ G(b) = c ◦ β.

This category is K-linear and Abelian with kernel and cokernel computed com-
ponentwise, and there are projection functors

Π1 : A ×C B → A Π2 : A ×C B → B

that are K-linear and exact.

Remark 6.1. The comparison isomorphisms α−1 ◦ β, provide a canonical isomor-
phism of functors G ◦ Π2 → F ◦ Π1.

The following obvious remark will be useful:

Remark 6.2. By construction if F is exact and faithful, then so is the projection
functor Π2. Indeed assume that Π2(a, b, c) = b = 0. Then

c = β′ ◦ G(b) ◦ β−1 = 0

which implies that F(a) = α′−1 ◦ c ◦ α = 0. As F is faithful, one has also a = 0.

6.2. Let Q be a quiver, P1, P2 be K-linear Abelian categories that are finite and
Hom finite and

T1 : Q →P1, T2 : Q →P2

be representation of quivers. Let (A1,F1,R1, α1) and (A2,F2,R2, α2) be 4-uplets
obtained by applying Theorem 2.1 to the representations T1 and T2 respectively.

Proposition 6.3. Let (Φ, φ) be a pair where Φ : P1 → P2 is an exact K-linear
functor and φ : Φ ◦ T1 → T2 is an isomorphism of representations. There exist an
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exact functor Ψ : A1 → A2, an invertible natural transformation ρ : Φ◦F1 → F2◦Ψ,
and an isomorphism of representations % : Ψ ◦ R1 → R2 such that

Φ ◦ F1 ◦ R1
Φ?α1 //

ρ?R1

��

Φ ◦ T1
φ

##
T2

F2 ◦Ψ ◦ R1 F2?%
// F2 ◦ R2

α2

;;

is commutative.

Remark 6.4. Note that in Proposition 6.3 the functor Φ : P1 →P2 is not assumed
to be faithful. If Φ is faithful, then the theorem follows from Lemma 5.1 and the
functor Ψ : A1 → A2 is an equivalence. However, for applications to functoriality of
the categories of perverse motives introduced in Section 7, it is necessary to consider
the more general case where Φ is only K-linear and exact (e.g., if f : Y → X is an
étale morphism, the pullback functor f∗ : P(Y ) → P(X) between the categories
of perverse sheaves is not faithful in general).

Proof. Consider the glued category A := A2 ×P2 P1 with respect to the exact
functors F2 : A2 →P2 and Φ : P1 →P2, and denote by

Π1 : A → A2, Π2 : A →P1

the (exact) projection functors. Since F2 is exact and faithful, so is the functor Π2
(see Remark 6.2). Moreover we have a representation of quivers T : Q → A :

p ∈ Q 7→ T(p) := (R2(p),T1(p),T2(p), α2(p), φ(p));
m ∈ Q(p, q) 7→ T(m) := (R2(m),T1(m),T2(m)).

Note that Π2 ◦ T = T1 and Π1 ◦ T = R2 by definition. Apply then Theorem 2.1,
with respect to the representation T1, to the 4-uplet (A ,Π2,T, id). It yields a triple
(Υ, γ, δ) such that

Π2 ◦Υ ◦ R1
Π2?γ //

δ?R1

��

Π2 ◦ T

F1 ◦ R1
α1 // T1

is commutative, where Υ : A1 → A is an exact faithful functor, γ : Υ ◦ R1 → T is
an isomorphism of representations of quivers and δ : Π2 ◦Υ→ F1 is an isomorphism
of functors. Now define

Ψ := Π1 ◦Υ, % := Π1 ? γ.

There is a canonical isomorphism of functors ε : Φ ◦ Π2 → F2 ◦ Π1, such that
ε ? T = α−1

2 ◦ φ. Define ρ : Φ ◦ F1 → F2 ◦Ψ to be the composition

Φ ◦ F1
Φ?δ−1

−−−−→ Φ ◦ Π2 ◦Υ ε?Υ−−→ F2 ◦ Π1 ◦Υ =: F2 ◦Ψ.
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One has then the commutative diagram

Φ ◦ F1 ◦ R1

ρ?R1

��

Φ?δ−1?R1
��

Φ?α1 // Φ ◦ T1

Φ ◦ Π2 ◦Υ ◦ R1 (Φ◦Π2)?γ
//

ε?(Ψ◦R1)
��

Φ ◦ Π2 ◦ T

ε?T=α−1
2 ◦φ

��
F2 ◦Ψ ◦ R1 F2 ◦ Π1 ◦Υ ◦ R1 F2?%=(F2◦Π1)?γ

// F2 ◦ Π1 ◦ T

as desired. �

6.3. We have the following uniqueness statement.

Proposition 6.5. Let (Φ1, φ1) and (Φ2, φ2) be pairs where Φ1,Φ2 : P1 →P2 are
exact functors and φ1 : Φ1 ◦ T1 → T2, φ2 : Φ2 ◦ T1 → T2 are isomorphisms of
representations. Let θ : Φ1 → Φ2 be a natural transformation such that

φ2 ◦ (θ ? T1) = φ1.

Let (Ψ1, ρ1, %1), (Ψ2, ρ2, %2) be triples where Ψ1,Ψ2 : A1 → A2 are exact functors,
ρ1 : Φ1 ◦F1 → F2 ◦Ψ1, ρ2 : Φ2 ◦F1 → F2 ◦Ψ2 are invertible natural transformations,
%1 : Ψ1 ◦R1 → R2, %2 : Ψ2 ◦R1 → R2 are isomorphisms of representations such that

Φ1 ◦ F1 ◦ R1
Φ1?α1 //

ρ1?R1

��

Φ1 ◦ T1
φ1

##
T2

F2 ◦Ψ1 ◦ R1 F2?%1

// F2 ◦ R2

α2

;;

Φ2 ◦ F1 ◦ R1
Φ2?α1 //

ρ2?R1

��

Φ2 ◦ T1
φ2

##
T2

F2 ◦Ψ2 ◦ R1 F2?%2

// F2 ◦ R2

α2

;;

are commutative. Then there exists one and only one natural transformation ϑ :
Ψ1 → Ψ2 such that

Φ1 ◦ F1
ρ1 //

θ?F1

��

F2 ◦Ψ1

F2?ϑ

��
Φ2 ◦ F1 ρ2

// F2 ◦Ψ2

Ψ1 ◦ R1

ϑ◦R1

��

%1

##
Ψ2 ◦ R1 %2

// R2

are commutative.

6.4. There is also a variant of Proposition 6.3 where one starts with two quivers
Q1, Q2, a morphism of quivers Q : Q1 → Q2 and two representations

T1 : Q1 →P1, T2 : Q2 →P2.

Let (A1,F1,R1, α1) and (A2,F2,R2, α2) be 4-uplets obtained by applying Theo-
rem 2.1 to the representations T1 and T2 respectively.

Proposition 6.6. Let (Φ, φ) be a pair where Φ : P1 → P2 is an exact K-linear
functor and φ : Φ◦T1 → T2◦Q is an isomorphism of representations. There exist an
exact functor Ψ : A1 → A2, an invertible natural transformation ρ : Φ◦F1 → F2◦Ψ,
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and an isomorphism of representations % : Ψ ◦ R1 → R2 ◦ Q such that

Φ ◦ F1 ◦ R1
Φ?α1 //

ρ?R1

��

Φ ◦ T1
φ

&&
T2 ◦ Q

F2 ◦Ψ ◦ R1 F2?%
// F2 ◦ R2 ◦ Q

α2?Q

88

(5)

is commutative.

Proof. The proof reduces to Proposition 6.3. Indeed consider the representations
T1 : Q1 →P1 and T′2 := T2 ◦ Q : Q1 →P2 of the quiver Q1. Let (A ′2 ,F′2,R′2, α′2)
be a 4-uplet obtained by applying Theorem 2.1 to the representations T′2. By
Proposition 6.3 applied to the pair (Φ, φ), there exist an exact functor Ψ′ : A1 →
A ′2 , an invertible natural transformation ρ′ : Φ ◦F1 → F′2 ◦Ψ′, and an isomorphism
of representations %′ : Ψ′ ◦ R1 → R′2 such that

Φ ◦ F1 ◦ R1
Φ?α1 //

ρ′?R1

��

Φ ◦ T1
φ

##
T′2

F′2 ◦Ψ′ ◦ R1 F′2?%
′
// F2 ◦ R′2

α′2

<<

(6)

is commutative. Now apply Theorem 2.1, with respect to T′2, to the 4-uplet
(A2,F2,R2 ◦ Q, α2). We obtain a triple (Υ, γ, δ) such that

F2 ◦Υ ◦ R′2
F2?γ //

δ?R′2
��

F2 ◦ R2 ◦ Q

α2

��
F′2 ◦ R′2

α′2 // T′2 := T2 ◦ Q

(7)

is commutative, where Υ : A ′2 → A2 is an exact faithful functor, γ : Υ ◦ R′2 →
R2 ◦ Q is an isomorphism of representations of quivers and δ : F2 ◦ Υ → F′2 is an
isomorphism of functors. Now let Ψ = Υ ◦ Ψ′, define the natural transformation
ρ : Φ ◦ F1 → F2 ◦Ψ as the composition:

Φ ◦ F1
ρ′−→ F′2 ◦Ψ′ δ

−1?Ψ′−−−−→ F2 ◦Υ ◦Ψ′ = F2 ◦Ψ
and % : Ψ ◦ R1 → R2 ◦ Q as the composition

Ψ ◦ R1 = Υ ◦Ψ′ ◦ R1
Υ?%′−−−→ Υ ◦ R′2

γ−→ R2 ◦ Q.
The commutativity of (5) is then an immediate consequence of the commutativity
of the diagrams (6) and (7). �

The uniqueness statement in Proposition 6.5 admits then the following variant:

Proposition 6.7. Let (Φ1, φ1) and (Φ2, φ2) be pairs where Φ1,Φ2 : P1 →P2 are
exact functors and φ1 : Φ1 ◦ T1 → T2 ◦ Q, φ2 : Φ2 ◦ T1 → T2 ◦ Q are isomorphisms
of representations. Let θ : Φ1 → Φ2 be a natural transformation such that

φ2 ◦ (θ ? T1) = φ1.
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Let (Ψ1, ρ1, %1), (Ψ2, ρ2, %2) be triples where Ψ1,Ψ2 : A1 → A2 are exact functors,
ρ1 : Φ1 ◦F1 → F2 ◦Ψ1, ρ2 : Φ2 ◦F1 → F2 ◦Ψ2 are invertible natural transformations,
%1 : Ψ1 ◦ R1 → R2 ◦ Q, %2 : Ψ2 ◦ R1 → R2 ◦ Q are isomorphisms of representations
such that

Φ1 ◦ F1 ◦ R1
Φ1?α1 //

ρ1?R1

��

Φ1 ◦ T1

φ1

!!
T2 ◦ Q

F2 ◦Ψ1 ◦ R1 F2?%1

// F2 ◦ R2 ◦ Q

α2?Q

==

Φ2 ◦ F1 ◦ R1
Φ2?α1 //

ρ2?R1

��

Φ2 ◦ T1

φ2

!!
T2 ◦ Q

F2 ◦Ψ2 ◦ R1 F2?%2

// F2 ◦ R2 ◦ Q

α2?Q

==

are commutative. Then there exists one and only one natural transformation ϑ :
Ψ1 → Ψ2 such that

Φ1 ◦ F1
ρ1 //

θ?F1

��

F2 ◦Ψ1

F2?ϑ

��
Φ2 ◦ F1 ρ2

// F2 ◦Ψ2

Ψ1 ◦ R1

ϑ◦R1

��

%1

%%
Ψ2 ◦ R1 %2

// R2 ◦ Q

are commutative.

6.5. Consider two finite and Hom finite K-linear Abelian categories P and Q.
There is finally a useful consequence of Proposition 6.6 where one starts with a
quiver Q, a representation of quivers

T : Q →P

a K-linear Abelian category B, a representation S : Q → B and a faithful exact
functor G : B → Q. We consider a 4-uplet (A ,F,R, α) obtained by applying
Theorem 2.1 to the representation T.

Proposition 6.8. Let (Φ, φ) be a pair where Φ : P → Q is an exact K-linear
functor and φ : Φ ◦T→ G ◦S is an isomorphism of representations. There exist an
exact functor Ψ : A → B, an invertible natural transformation ρ : Φ ◦ F→ G ◦Ψ,
and an isomorphism of representations % : Ψ ◦ R→ S such that

Φ ◦ F ◦ R Φ?α //

ρ?R
��

Φ ◦ T
φ

��
G ◦Ψ ◦ R

G?%
// G ◦ S

is commutative.

Proof. Let Q1 := Q, P1 := P and T1 := T. Now consider the category B
as a quiver Q2 := B, and set P2 := Q, T2 := G and Q := S. The the 4-
uplet (B,G, id, id) satisfies the universal property for the representation T2. Apply
Proposition 6.6. �

The uniqueness statement in Proposition 6.7 implies then the following:

Proposition 6.9. Let (Φ1, φ1) and (Φ2, φ2) be pairs where Φ1,Φ2 : P → Q are
exact functors and φ1 : Φ1 ◦ T → G ◦ S, φ2 : Φ2 ◦ T → G ◦ S are isomorphims of
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representations. Let θ : Φ1 → Φ2 be a natural transformation such that

φ2 ◦ (θ ? T) = φ1.

Let (Ψ1, ρ1, %1), (Ψ2, ρ2, %2) be triples where Ψ1,Ψ2 : A → B are exact functors,
Φ1 ◦ F → G ◦ Ψ1, ρ2 : Φ2 ◦ F → G ◦ Ψ2 are invertible natural transformations,
%1 : Ψ1 ◦ R→ S, %2 : Ψ2 ◦ R→ S are isomorphisms of representations such that

Φ1 ◦ F ◦ R Φ1?α //

ρ1?R
��

Φ1 ◦ T

φ1

��
G ◦Ψ1 ◦ R

G?%1

// G ◦ S

Φ2 ◦ F ◦ R Φ2?α //

ρ2?R
��

Φ2 ◦ T

φ2

��
G ◦Ψ2 ◦ R

G?%2

// G ◦ S

are commutative. Then there exists one and only one natural transformation ϑ :
Ψ1 → Ψ2 such that

Φ1 ◦ F ρ1 //

θ?F
��

G ◦Ψ1

F2?ϑ

��
Φ2 ◦ F

ρ2
// G ◦Ψ2

Ψ1 ◦ R

ϑ◦R
��

%1

$$
Ψ2 ◦ R

%2
// G ◦ S

are commutative.

7. Abelian categories of Perverse motives

Recall that k = C is the field of complex numbers (one can also choose a field
of characteristic zero k with a fixed embedding of fields σ : k ↪→ C) and that by a
k-variety we mean a quasi-projective k-scheme. The reader, if he wishes, may work
also with separated k-schemes of finite type. In particular, perverse motives make
sense over such bases.

In this section we use Theorem 2.1 to construct a perverse analog over k-varieties
of the category NMM(k,Q).

7.1. Let X be a k-variety. We denote by M (X) one of the following Abelian
categories: (a) the category of perverse sheaves P(X); (b) the category of perverse
sheaves of geometric origins P(X)go introduced in [6, 6.2.4]; (c) the category of
mixed Hodge modules MHM(X,Q); (d) the category MHM(X,Q)go of mixed Hodge
modules of geometric origin (see [20, (2.6) Définition]). Recall that the derived
categories Db(M (X)), as X runs over k-varieties, are endowed with a six functors
formalism

Db(M (X))
fM
∗

// Db(M (Y ))
f∗Moo fM

! // Db(M (X)).
f !

M

oo

We denote by
HiM : Db(M (X))→M (X) i ∈ Z

the cohomological functor associated with the usual t-structure.

7.2. A relative X-triple is a triple (Y a−→ X,Z, i) where Y is a k-variety, a : Y → X
is a morphism of k-varieties, Z is a closed subscheme of Y and i ∈ Z is an integer.

Definition 7.1. Let (Y a−→ X,Z, i) be a relative X-triple. We set

TM
X (Y a−→ X,Z, i) := H−iM (aM

! (uM
∗ u
∗
Ma!

M (QM
X )))

where u : U ↪→ Y is the open immersion of the complement of Z in Y .
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Note that by definition TM
X (Y a−→ X,Z, i) is an object in M (X) which depends

only on the reduced structure of Y and Z. If there is no confusion, we will also use
the notation (Y, Z, i) to denote a relative X-triple and write TM

X (Y,Z, i) instead of
TM
X (Y a−→ X,Z, i).

7.3. Using the formalism of the six operations, it is easy to construct two different
sorts of morphisms between these objects in M (X): the functoriality morphisms
and the boundary morphisms.

Let (Y1, Z1, i) and (Y2, Z2, i) be relative X-triples. Assume that f : Y2 → Y1 is
a morphism of X-schemes, such that f(Z2) ⊆ Z1. The functoriality morphisms are
maps in M (X)

fM
T : TM

X (Y2, Z2, i)→ TM
X (Y1, Z1, i) (8)

such that if (Y3, Z3, i) is a relative X-triple, and g : Y3 → Y2 is a morphism of
X-schemes such that g(Z3) ⊆ Z2, then

fM
T ◦ gM

T = (fg)M
T .

The morphism (8) is obtained as follows. Consider the commutative diagram

f−1(U1)

�f

��

u // U2
u2 // Y2

f

��

a2

��
U1

u1 // Y1 a1
// X

in which U1 (resp. U2) is the open complement of Z1 (resp. Z2) and all arrows are
the canonical morphisms. Using Smooth Base Change and adjunction, we have a
morphism in Db(M (Y1))

fM
! (u2)M

∗ (u2)∗M (a2)!
M

// fM
! (u2)M

∗ u
M
∗ u
∗
M (u2)∗M (a2)!

M

fM
! (u2)M

∗ u
M
∗ f

!
M (u1)∗M (a1)!

M

fM
! f !

M (u1)M
∗ (u1)∗M (a1)!

M
// (u1)M

∗ (u1)∗M (a1)!
M .

Applying successively (a1)M
! and the cohomological functor H−iM to this morphism,

we obtain the morphism (8) in M (X).
Let (Y,Z, i) be a relative X-triple, and W ⊆ Z be a closed subset. Then the

boundary morphism is the map in M (X)

TM
X (Y,Z, i)→ TM

X (Z,W, i− 1) (9)

defined as follows. Consider the commutative diagram

U := Y \ Z
j //

u

''
Y \W vY // Y

a // X

V := Z \W

�

v //

zV

OO

Z

z

OO

b

@@

where v, vY , j are the open immersions, z the closed immersion and a, b the struc-
tural morphisms. The localization triangle in Db(M (Y \W ))

(zV )M
! (zV )!

M → id→ jM
∗ j∗M

+1−−→,



PERVERSE NORI MOTIVES 19

applied to (vY )!
Ma!

M (QM
X ), provides a morphism

jM
∗ u∗Ma!

M (QM
X )→ (zV )M

! v∗M b!M (QM
X )[1].

As z and zV are closed immersions, applying (vY )M
∗ , yields a morphism

uM
∗ u
∗
Ma!

M (QM
X )→ zM

! v∗v
∗
M b!M (QM

X )[1]
Applying aM

! , the cohomological functor H−iM yields the boundary map (9).

7.4. Let DNori
X be the quiver with a vertex for every relative X-triple (Y,Z, i) and

the following edges.
• Let (Y1, Z1, i) and (Y2, Z2, i) be relative X-triples. Then every morphism
of X-schemes f : Y2 → Y1 such that f(Z2) ⊆ Z1 defines and edge

(Y2, Z2, i)→ (Y1, Z1, i). (10)
• For every relative X-triple (Y,Z, i) and every closed subscheme W ⊆ Z, we
have an edge

(Y,Z, i)→ (Z,W, i− 1). (11)
The quiver DNori

X admits then a representation

TM
X : DNori

X →M (X)
where the edges (10) and (11) are maps respectively to the morphisms (8) and (9).
As the functor ratH

X : MHM(X,Q) → P(X) is compatible with the formalism of
cohomological operations, there is a canonical isomorphism of representations of
quivers

αH
X : ratH

X ◦ TH
X → TP

X .

7.5. Let X be a k-variety. Since the Abelian category of perverse sheaves P(X) is
Noetherian, Artinian and has finite dimensional Homs (see Example 2.2), we may
apply Theorem 2.1, to the representation

TP
X : DNori

X →P(X)
to obtain an Abelian category N eff(X) together with a faithful exact functor ratN

X ,
a representation TN

X :

ratN
X : N eff(X)→P(X) TN

X : DNori
X → N eff(X)

and an isomorphism of representations of quivers αNori
X : ratN

X ◦ TN
X → TP

X such
that the following theorem holds:

Theorem 7.2. For every k-variety X, the 4-uplet
(N eff(X), ratN

X ,TN
X , αN

X )
has the following properties.

• For every (A ,B,T, α) where B : A → P(X) is a faithful exact functor,
T : DNori

X → A is a representation, and α : B ◦T→ TP
X is an isomorphism

of representations of quivers, there exists a triple (R, ρ, %) where
R : N eff(X)→ A

is a faithful exact functor, ρ : B ◦ R→ ratN
X is an invertible natural trans-

formation and % : R◦TN
X → T is an isomorphism of quiver representations

such that
B ◦ R ◦ TN

X

B◦% //

ρ◦TN
X

��

B ◦ T

α

��
ratN

X ◦ TN
X

αN
X // TP

X
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is commutative.
• If (R′, %′, ρ′) is another such triple, then there exists one and only one nat-
ural transformation θ : R→ R′ such that

ρ′ ◦ (B ◦ θ) = ρ %′ ◦ (θ ◦ TN
X ) = %.

Remark 7.3. The category N eff(Spec(k)) is nothing but the category of effective
(homological) motives EHM(k) constructed by M. Nori (see [17] or [14, Definition
3.13]).

By applying Theorem 7.2 to the 4-uplet
(MHM(X,Q), ratH

X ,TH
X , αH

X )
where ratH

X : MHM(X,Q)→P(X) is the forgetful functor, one obtains a faithful
exact functor

RH
X : N eff(X)→ MHM(X,Q)

which takes its values in the full Abelian subcategory formed by the mixed Hodge
modules of geometric origin.

7.6. We now want to apply Proposition 6.6 to construct the categories of perverse
motives out of the categories of effective perverse motives.

Let A be a K-linear Abelian category and L : A → A be a K-linear exact
functor. Let us construct a category A [L−1] as follows. An object in A [L−1] is
a pair (A,n) where A is an object in A and n ∈ Z is an integer. Morphisms in
A [L−1] are given by

HomA [L−1]((A,n), (B,m)) = colim
i

HomA (L◦i+n(A), L◦i+m(B)),

where the colimit is taken over all integers i ∈ N such that i+n > 0 and i+m > 0.
There is a functor

A → A [L−1]
A 7→ (A, 0).

Lemma 7.4. The category A [L−1] is K-linear Abelian and the functor A →
A [L−1] is K-linear and exact. If L is faithful (resp. full) then A → A [L−1] is
a faithful (resp. full) functor.

Proof. We only sketch the proof as the details are straightforward. The category
A [L−1] is K-linear and admits finite direct sums given by

(A,n)⊕ (B,m) = (Li+n(A)⊕ L◦i+m(B),−i)
where i ∈ N is some integer such that i + n > 0 and i + m > 0. Let α : (A,n) →
(B,m) be a morphism in A [L−1]. Let i ∈ N an integer such that i + n > 0 and
i+m > 0 and a : L◦i+n(A)→ L◦i+m(B) a morphism in A that lifts α. The maps
Ker a→ L◦i+n and Li+m(B)→ Coker a in A define maps

(Ker a,−i)→ (A,n) (B,m)→ (Coker a,−i)
in A [L−1]. Using that L is exact, it is easy to check that these maps are respectively
a kernel and a cokernel of α in A [L−1]. Since A is an Abelian category, the
canonical map

(A,n)/Kerα = (L◦i+n(A)/Ker a,−i)→ (Im a,−i) = Imα

is an isomorphism (here Imα denotes, as usual, the kernel of the cokernel map). �

Remark 7.5. Let A ∈ A , and n ∈ Z, r ∈ N be integers. For every integer i ∈ N
such that i + n − r > 0, the identity of L◦i+n(A) = L◦i+n−r(L◦r(A)) induces an
isomorphism between (A,n) and (L◦r(A), n − r) in A [L−1]. In particular (A, r) is
isomorphic to (L◦r(A), 0) in A [L−1].
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Recall that by definition (we use the convention of §7.1)

QM
k (1) = TM

k (Gm,k, {1}, 1).

The Tate twist of an object A ∈ M (X) is then defined by A(1) := A � QM
k (1)

where � : M (X)×M (k)→M (X) is the external product.
Let X be a quasi-projective k-scheme. Consider the quivers Q1 := Q2 = DNori

X

and the representations
T1 := T2 := TM

X .

Consider the morphism of quivers Q : Q1 → Q2.

(Y,Z, i) 7→ (Gm,Y ,Gm,Z ∪ Y, i+ 1)

where Y is embedded in Gm,Y via the unit section. Denote by ΦM
X : M (X) →

M (X) the functor which maps K to its twist K(1).

Lemma 7.6. There are canonical isomorphisms of representations of quivers

φM
X : ΦM

X ◦ TM
X → TM

X ◦ Q

which are compatible via the functor ratH
X .

Proof. Let z : Z ↪→ Y be a closed immersion, and u : U ↪→ Y be its open comple-
ment. We denote by π : Gm,k → Spec(k) the projection and v : Gm,k\{1} ↪→ Gm,k

the open immersion. The open immersion in Gm,Y of the complement of Gm,Z ∪Y
is

u×k v : U ×k (Gm,k \ {1}) ↪→ Gm,Y .

Let σ : Spec(k) → Gm,k be the unit section. The triangle σM
! σ!

M → Id →
vM
∗ v!

M
+1−−→ yields the distinguished triangle

QM
k → πM

! π!
M (QM

k )→ πM
! vM
∗ v!

Mπ!
M (QM

k ) +1−−→ .

Via the canonical isomorphism πM
! π!

M (QM
k ) = QM

k ⊕QM
k (1)[1], one gets

πM
! vM
∗ v∗Mπ!

M (QM
k ) = QM

k (1)[1].

We have thus an isomorphism

(u×k v)!
M (a×k π)!

M (QM
X ) = u!

Ma!
M (QM

X )� v!π!
M (QM

k ).

The object (a×kπ)M
! (u×k v)M

∗ (u×k v)!
M (a×kπ)!

M (QM
X ) of Db(P(X)) is therefore

isomorphic to

(aM
! uM
∗ u

!
Ma!

M (QM
X ))� (πM

! vM
∗ v!

Mπ!
M (QM

k ) = aM
! uM
∗ u

!
Ma!

M (QM
X )(1)[1].

Hence for every integer i ∈ Z, we have a canonical isomorphism

TM
X (Gm,Y ,Gm,Z ∪ Y, i+ 1) = TM

X (Y,Z, i)(1).

The right hand side is TM
X (Q(Y,Z, i)) while the right hand side is ΦM

X (TM
X (X,Z, i)).

One checks easily that this defines an isomorphism of quivers as desired and this
concludes the proof. �

Note that Φ := ΦP
X is an exact functor. Hence we may apply Proposition 6.6

which yields an exact functor L : N eff(X)→ N eff(X), an invertible natural trans-
formation ρ : Φ◦ratN

X → ratN
X ◦L, and an isomorphism of representations of quivers
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% : L ◦ TN
X → TN

X ◦ Q such that

Φ ◦ ratN
X ◦ TN

X

Φ?αN
X //

ρ?TN
X

��

Φ ◦ TN
X

φP
X

''
TNori
X ◦ Q

ratN
X ◦ L ◦ TN

X ratN
X ?%

// ratN
X ◦ TN

X ◦ Q
αN
X ?Q

77

is commutative.
The category of perverse motives N (X) is then defined by

N (X) := N eff(X)[L−1].

Since the functor L is faithful, the canonical exact functor

N eff(X)→ N (X)
A 7→ (A, 0).

is also faithful. It is easy to see that the functors on the category of perverse
effective motives ratN

X and RH
X extend to compatible faithful exact functors

ratN
X : N (X)→P(X) RH

X : N (X)→ MHM(X,Q).

Remark 7.7. Note that by Proposition 6.7 the Abelian category N (X) does not
depend up to an exact equivalence of categories on the choice of the functor L (and
all other functors satisfying the above conditions are isomorphic).

Remark 7.8. The categories N eff(X) and N (X) are the Abelian categories of
perverse motives used in [12]. Note that instead of using the representation TP

X ,
we may also define Abelian categories of perverse motives out of the representation

DNori
X →P(X)

(Y a−→ X,Z, i) 7→ H−iP (aP
! uP
∗ KP

U )

where u : U ↪→ Y is the open immersion of the complement of Z in Y and
KP
U := π!

PQP
k is the dualizing complex of U (here π : U → Spec(k) is the struc-

tural morphism). For functoriality reasons, it might be simpler to work with the
categories of motives defined using dualizing complexes. If X is smooth, it is easy
to see that the two representations yield equivalent categories. This should also be
true over singular schemes.
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