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Abstract. — Let k be a field of characteristic zero, R = k[[t]] the ring of formal
power series and K = k((t)) its fraction field. Let X be a finite type R-scheme with
smooth generic fiber. Let X be the t-adic completion of X and Xη the generic fiber
of X . Let Z ⊂ Xσ be a locally closed subset of the special fiber of X. In this article,
we establish a relation between the rigid motive of ]Z[ (the tube of Z in Xη) and the
restriction to Z of the nearby motivic sheaf associated with the R-scheme X. Our
main result, Theorem 7.1, can be interpreted as a motivic analog of a theorem of
Berkovich.

As an application, given a rational point x ∈ Xσ , we obtain an equality, in a
suitable Grothendieck ring of motives, between the motivic Milnor fiber of Denef–
Loeser at x and the class of the rigid motive of the analytic Milnor fiber at x.
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1. Introduction

1.1. Let k be a field of characteristic zero, R = k[[t]] be the ring of formal power series
and K = k((t)) be its fraction field. Let Λ be a commutative ring (that we call the ring
of coefficients). While the main body of the article is written in a greater generality,
we restrict ourselves in the introduction to the categories of motives without transfers
DA(k,Λ) and its rigid analytic version RigDA(K,Λ). These categories are related
by triangulated functors

RigDA(K,Λ) R−→ QUDA(k,Λ) 1∗−→ DA(k,Λ),
where QUDA(k,Λ) is the full triangulated subcategory of DA(Gm,k,Λ) whose ob-
jects are the quasi-unipotent motives; the functor R is an equivalence of categories
(see [2, Scholie 1.3.26]) and 1∗ is the pullback functor along the unit section. For a
quick recollection on motives and rigid motives, the reader is referred to §3.

1.2. Let X be a finite type R-scheme and denote by f : X → Spec(R) its structural
morphism. We denote by Xη and Xσ the generic and special fibers of X.

By [4, Chapitre 3] (see also [2, §A.1]), one has the nearby motivic sheaf Ψf (ΛXη )
associated with f ; this is an object of DA(Xσ,Λ). It realizes to the classical complexes
of nearby cycles by [5, Théorème 4.9] (for the Betti realization and when X is the
base-change of a finite type k[t]-scheme) and [6, Théorème 10.11] (for the `-adic
realizations).

Consider the t-adic completion f̂ : X → Spf(R) of f and denote by Xη the generic
fiber of X . Given a locally closed subset Z ⊂ Xσ, denote by ]Z[ its tube; this is an
open rigid analytic subvariety of Xη.

Assume that the rigid analytic variety Xη is smooth over K; this is the case for
instance if the scheme Xη is smooth over K. Let M∨rig(]Z[) be the cohomological
motive of ]Z[; this is an object of RigDA(K,Λ). The main theorem of this article is
the following (see Theorem 7.1 for a more general statement):

Theorem. — Denote by z : Z ↪→ Xσ the inclusion. Then, there is a canonical
isomorphism

1∗ ◦R(M∨rig(]Z[)) ' (fσ)∗z∗z∗Ψf (ΛXη ) (1)
in the category of motives DA(k,Λ).

Taking Z = Xσ, one gets that the cohomological motive M∨rig(Xη) is related to the
nearby motivic sheaf by a canonical isomorphism

1∗ ◦R(M∨rig(Xη)) ' (fσ)∗Ψf (ΛXη )

in DA(k,Λ). In fact, we first prove this particular case of our main theorem (see
Theorem 4.11 and Corollary 4.12) and then use it, with other ingredients, to derive
the general case.

As a by-product of this work, we show that the rigid motives of tubes are com-
pact (see proposition 5.9), and we extend to stable homotopy the computation of
nearby motivic sheaf obtained previously by Ayoub in the context of étale motives
(see theorem 6.1).
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1.3. Our main theorem is a motivic analog of a theorem of Berkovich that we explain
now. Let K be the completion of an algebraic closure of the valued field K and let
k be its residue field. Set Z = Z ×k k and ]Z[ =]Z[×̂KK. In [10, 11], Berkovich
constructed canonical isomorphisms of étale hypercohomology groups

Hi
ét(]Z[,Q`) ' Hiét(Z,RΨf̂ (Q`,Xη

)|Z) ' Hiét(Z,RΨf (Q`,Xη )|Z). (2)

(Here the tube ]Z[ has to be considered as a Berkovich space in order to take its non-
archimedean étale cohomology [9].) The first isomorphism is shown in [11, Corollary
3.5]; the second one follows from [10, Corollary 5.3].

We expect that the isomorphism (1) realizes to the composition of the isomorphisms
in (2). However, we do not make any attempt to check this in this article. It is worth
noting that Berkovich theorem holds over general non-archimedean fields whereas, for
the very statement of our theorem, we need to assume that K has equal characteristic
zero. Indeed, this is required for [2, Scholie 1.3.26] which ensures the existence of the
equivalence R.

1.4. Let x ∈ Xσ be a rational point. In [15, Définition 4.2.1], Denef and Loeser
have introduced the motivic Milnor fiber ψf,x ∈Mk as the limit of the motivic zeta
function associated with f ; in [29], Nicaise and Sebag have defined the analytic
Milnor fiber at x to be Fx =]x[. The present work and [22] show that (stable)
motivic homotopy is a natural framework to relate and study these different notions
of Milnor fiber. A particular case of our main theorem (see Theorem 8.7) gives an
isomorphism of motives

1∗ ◦R(M∨rig(Fx)) ' x∗Ψf (ΛXη ).

Theorem 6.1 shows that [22, Theorem 1.2] remain valid in a more general setting, and
we deduce the following formula in the Grothendieck group of constructible motives

[1∗ ◦R(M∨rig(Fx))] = χk,c(ψf,x). (3)

Here, we denote by χk,c : Mk → K0(DAct(k,Λ)) the motivic Euler characteristic [22,
Lemma 2.1].

The formula (3) expresses the fact that the motivic Milnor fiber of Denef–Loeser, at
least as a class in the Grothendieck ring of constructible motives, is determined by the
rigid motive of the analytic Milnor fiber. A formula of a similar nature, comparing
the motivic Milnor fiber of Denef–Loeser to the analytic Milnor fiber, appears in
[21, Corollary 8.4.2]. (See Remarks 8.12 and 8.13 for an attempt to relate the two
formulas.)

Notations, conventions

1.5. Although this is not really necessary, all schemes, formal schemes and rigid
varieties will be assumed to be separated. Schemes and formal schemes will be also
assumed to be quasi-compact.

When there is no risk of confusion, a scheme S will be identified with its maxi-
mal reduced subscheme that we denote by Sred. Also, a locally closed subset of a
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scheme will be automatically endowed with its reduced subscheme structure. The
same applies for rigid analytic varieties.

We fix a ground field k of characteristic zero and an indeterminate t. We set
A1
k = Spec(k[t]) and Gm,k = Spec(k[t, t−1]). We also set R = k[[t]] and K = k((t)).

Up to isomorphism, K is the unique non-archimedean field with discrete valuation
ring and having k as residue field.

Unless otherwise stated, formal R-schemes will always be t-adic. We denote by
R{T1, . . . , Tn} the t-adic ring of strictly convergent power series. If X is a separated
formal R-scheme topologically of finite type, we denote by Xσ its special fiber, that
is a finite type k-scheme, and by Xη its generic fiber (in the sense of Raynaud), that
is a quasi-compact rigid analytic variety over K.

1.6. Let X be a finite type R-scheme and f : X → Spec(R) be its structural mor-
phism. We form the usual commutative diagram with cartesian squares

Xη

fη

��

j //

�

X

f

��

Xσ

fσ

��

ioo

�

η = Spec(K) j // Spec(R) Spec(k) =: σ,ioo

where i is the inclusion of the special point of Spec(R) and j is the inclusion of its
generic point.

1.7. We fix a ring of coefficients Λ. (The main examples we are interested in are
Z and Q.) More generally, we fix a category of coefficients M in the sense of [2,
Définition 1.2.31]. The reader may assume, without a real loss of generality, that M is
the category Compl(Λ) of complexes of Λ-modules or the category SpectΣ

S1(∆opSet•)
of symmetric S1-spectra.

2. Formal schemes and semi-stability

In this section we recall some basic facts concerning formal schemes, completions
and rigid analytic varieties. We also make precise the definition of semi-stability
used in this article. (For details on formal schemes, rigid analytic varieties, see, for
example, [18, §10], [1, 30, 13] or [2, §1.1].)

2.1. Formal completion. — LetX be a finite typeR-scheme and f : X → Spec(R)
its structural morphism. By the completion of f we mean the morphism of formal
schemes f̂ : X → Spf(R) obtained from f by taking the t-adic completion. By con-
struction, the formal R-scheme X is topologically of finite type.

Locally, one has the following description: if X is given as the spectrum of a finitely
generated R-algebra A = R[T1, . . . , Tn]/I, then X = Spf(R{T1, . . . , Tn}/I).

Lemma 2.1. — Let X be a finite type R-scheme and f : X → Spec(R) its structural
morphism. We have the following properties:

1. if f is flat, so is the morphism of formal schemes f̂ ;
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2. if X is regular, so is the formal scheme X ;
3. if Xη is smooth, so is the generic fiber Xη.

Proof. — Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

To prove the first two statements, note that, for every x ∈ Xσ, the canonical
morphism of local rings OX,x → OX ,x induces, by mx-completion, an isomorphism
of complete local rings

ÔX,x → ÔX ,x.

This said, the second statement follows directly from [26, Theorem 22.4]. Similarly,
the third statement follows directly from [25, Proposition 4.2.26].

The last statement is clear since Xη is isomorphic to an open analytic subvariety
of (Xη)an.

An important construction in formal geometry is that of admissible blow-ups (see
for example [14, §2] or [1, §3.1]). In the following statement, we compare properties
of blow-ups in algebraic and formal settings with respect to completion.

Lemma 2.2. — Let X be a finite type R-scheme and f : X → Spec(R) its structural
morphism. Let h : X ′ → X be a blow-up with center a closed subscheme Z such that
Zred ⊂ (Xσ)red. Denote f̂ ◦ ĥ : X ′ → Spf(R) the completion of f ◦h and ĥ : X ′ →X
the induced morphism of formal R-schemes. We have the following properties:

1. if f is flat, so is the morphism f ◦ h : X ′ → Spec(R);
2. the morphism ĥ is canonically isomorphic to the admissible blow-up of X with

center Z;
3. the morphism ĥη : X ′

η →Xη is an isomorphism.

Proof. — Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

The first statement follows from [25, Proposition 4.3.9]. The second statement
is a direct consequence of the definition of blow-ups for formal schemes. The last
statement follows from [14, Lemma 2.2].

2.2. Semi-stable reduction. — Remember that our base field k has characteristic
zero. We will use the following terminology.

Definition 2.3. — A topologically finite type formal R-scheme X (resp. a finite
type R-scheme X) is called semi-stable if it is flat over R and satisfies the following
condition. For every x ∈ Xσ (resp. x ∈ Xσ), there exists a regular open formal
subscheme U ⊂ X (resp. a regular open subscheme U ⊂ X) containing x and
elements u, t1, . . . , tn ∈ O(U ) (resp. ∈ O(U)) verifying the following properties:

1. u is invertible and there are integers a1, . . . , an ∈ N \ {0} such that t =
uta1

1 · · · tann ;
2. for every non empty subset I ⊂ {1, . . . , n}, the subscheme DI ⊂ Uσ (resp.
DI ⊂ Uσ) defined by the equations ti = 0, for i ∈ I, is smooth over k, has
codimension #(I)− 1 in Uσ (resp. Uσ) and contains x.
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We say that a semi-stable formal R-scheme (resp. R-scheme) is strictly semi-stable,
if its special fiber is a reduced k-scheme (i.e., the integers ai are always equal to 1).

Remark 2.4. — We warn the reader that our notion of semi-stability differs from
the classical one. Classically, a semi-stable (formal) R-scheme is étale locally strictly
semi-stable in the sense of Definition 2.3. Note also that our definition coincides with
the definition of global semi-stable reduction of [2, Définition 1.1.57] and [4, Définition
3.3.33].

Proposition 2.5. — Let X be a finite type R-scheme and f : X → Spec(R) its struc-
tural morphism.

1. X is semi-stable if and only if its t-adic completion X is semi-stable.
2. If X is regular and (Xσ)red is a simple normal crossing divisor in X, then X is

semi-stable.
3. Conversely, if X is semi-stable, there exists a neighborhood of Xσ in X which

is regular and in which (Xσ)red is a simple normal crossing divisor.

Proof. — Everything in the statement is standard and well-known. We only explain
the second assertion.

Let x ∈ Xσ and let U ⊂ X be an affine neighborhood of x such that each component
of the divisor (Uσ)red = (Xσ)red ∩ U is principal, i.e., defined by a single equation.
Shrinking U , we may assume furthermore that all the components of Uσ contain x.

Let D1, . . . , Dn be the irreducible components of (Uσ)red and, for 1 6 i 6 n, let
ti ∈ O(U) be a generator of the ideal defining Di. If ai is the multiplicity of Di in
Uσ, then ta1

1 · · · tann is a generator of the ideal defining Uσ. This ideal is also generated
by t (and more precisely by the image of t by the morphism R→ O(U)). Therefore,
there should be an invertible element u ∈ O(U)× such that t = uta1

1 · · · tann .

Remark 2.6. — We will use Proposition 2.5 in the following way. Let X be a finite
type R-scheme and f : X → Spec(R) its structural morphism. Assume that f is flat
and that the rigid variety Xη is smooth. Then Xσ admits an open neighborhood
U ⊂ X such that Uη is smooth. Furthermore, by resolution of singularities, one can
find a morphism h : X ′ → U satisfying the following properties:

– h is a blow-up of U with center a closed subscheme Z such that Zred ⊂ (Xσ)red;
– X ′ is regular and (X ′σ)red is a simple normal crossing divisor.

It follows that X ′
η ' Xη and X ′ is a formal R-scheme with semi-stable reduction.

Moreover, the morphism ĥ : X ′ →X is an admissible blow-up.

Example 2.7. — We recall here the definition of standard semi-stable (formal) R-
schemes. For later use, we give actually a more general construction.

Let X (resp. X , X ) be an R-scheme (resp. a formal R-scheme, a rigid analytic
variety over K). Let a = (a1, . . . , an) ∈ (N×)n, let v ∈ O(X) (resp. v ∈ O(X ),
v ∈ O(X )). The standard space of length n associated with the triple (X, v, a) (resp.
(X , v, a), (X , v, a)) is the R-scheme (resp. formal R-scheme, rigid analytic variety
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over K) given by:
StvX,a = SpecOX [T1, . . . , Tn]/(T a1

1 · · ·T ann − v)
(resp. StvX ,a = SpfOX {T1, . . . , Tn}/(T a1

1 · · ·T ann − v),
StvX ,a = SpmOX {T1, . . . , Tn}/(T a1

1 · · ·T ann − v)).

If the R-scheme X is of finite type with t-adic completion X , then StvX ,a is the t-adic
completion of StvX,a. If the formal R-scheme X is of topologically of finite type, then
StvXη,a is the generic fiber of StvX ,a.

If X (resp. X ) is a smooth R-scheme of finite type (resp. a smooth formal R-
scheme topologically of finite), and if v ∈ tOX(X)× (resp. v ∈ tO(X )×), then the
associated standard space StvX,a (resp. StvX ,a) is semi-stable. General semi-stable
R-schemes (resp. formal R-schemes) are locally, for the Zariski topology, related to
standard ones by [4, Proposition 3.3.39] (resp. [2, Proposition 1.1.60]).

Without necessarily assuming X (resp. X ) smooth over R, the subscheme Di ⊂
(StvX,a)σ (resp. Di ⊂ (StvX ,a)σ) defined by the equation Ti = 0 is called a branch of
the standard scheme StvX,a (resp. formal scheme StvX ,a).

3. Motivic sheaves and rigid motives

In this section, we recall some elements of the theory of motives and rigid motives
that are used in this article.

3.1. Recollections on motivic sheaves. — For a scheme S, we denote by
SHM(S) the category of motivic sheaves over S (for the Nisnevich topology and with
coefficients in M). This category appears in [4, Définition 4.5.21] under the name
SHT

M(S), where T stands for a projective replacement of the presheaf
Gm,S ⊗ 1

1S ⊗ 1
.

(The choice of T will not play any role in this article.) Also, for the construction of
SHM(S), one has to choose the Nisnevich topology (instead of the étale topology) at
the beginning of [4, §4.5].

Example 3.1. —
1. When M = SpectΣ

S1(∆opSet•), it is customary to denote by SH(S) this cate-
gory. This is the stable homotopy category of S-schemes of Morel–Voevodsky
(see [23, 27, 33]).

2. When M = Compl(Λ), it is customary to denote by DA(S,Λ) this category.
This is the Λ-linear counterpart of the stable homotopy category of S-schemes
of Morel–Voevodsky.

Remark 3.2. — The theory developed in [3, 4] provides the categories SHM(−)
with the Grothendieck six operations and the formalism of vanishing cycles.

Actually, in loc. cit., operations are only considered for quasi-projective morphisms
as, by definition, a stable homotopic 2-functor is only assumed to be defined over
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quasi-projective schemes over a base S; however, SHM(−) makes sense for any scheme
and the operations f∗, f∗ make sense for any morphism of schemes. The same holds
true for the functors Ψf : their construction makes sense for any morphism of schemes
f : X → A1

k.

Definition 3.3. — Let p : X → S be a morphism of finite type k-schemes. We
define the cohomological motive of the S-scheme X by(1)

M∨S(X) = p∗p
∗1S = p∗1X .

(Here and later, 1S denotes the unit object of the monoidal category SHM(S).) When
p is smooth, we may also consider the homological motive MS(X) = p]1X , also given
by the Tate spectrum Sus0

T (X ⊗ 1). It is related to the cohomological motive by a
canonical isomorphism M∨S(X) ' Hom(MS(X),1S).

When the base scheme S is understood, we write simply M∨(X) and M(X) instead
of M∨S(X) and MS(X).

The motives introduced in Definition 3.3 are constructible motives, i.e., objects of
SHM,ct(S). The latter is defined as the smallest triangulated subcategory of SHM(S)
stable by direct factors and containing the homological motives of smooth quasi-
projective S-schemes.

3.2. Nearby motivic sheaves. — Let X be a finite type R-scheme and denote by
f : X → Spec(R) its structural morphism. Using [4, §3.5] (see also [2, §A.1]), one has
the nearby motivic sheaf functor Ψt◦f : SHM(Xη) → SHM(Xσ) associated with the
morphism t ◦ f : X → A1

k. (Of course, t : Spec(S) → A1
k is the obvious morphism.)

For convenience, we will (abusively) denote this functor by
Ψf : SHM(Xη)→ SHM(Xσ). (4)

When X varies in the category of quasi-projective R-schemes, the functors (4) form
a specialization system in the sense of [4, Définition 3.1.1]. Moreover all the results
from [4, §3.5] apply to them.

The object Ψf (1Xη ) ∈ SHM(Xσ) will be called the nearby motivic sheaf (2) asso-
ciated with the morphism f (or with the R-scheme X). For later use, we record the
following result (see [6, Théorème 10.6]):

Proposition 3.4. — Let X be a finite type R-scheme and denote by f : X →
Spec(R) its structural morphism. We assume that X is regular and that D = (Xσ)red
is a smooth k-scheme. We also assume that D is a principal divisor and we fix
g ∈ O(X) a generator of its ideal of definition. Finally, we assume that there are
u ∈ O(X)× and m ∈ N× such that t = ugm. (In particular, the R-scheme X is
semi-stable and Xσ is an irreducible divisor with multiplicity m.)

Now, consider the finite étale cover
rm : Dm = Spec(OD[S]/(Sm − u0))→ D

(1)In [22] the motive M∨
S(X) is denoted by MS(X).

(2)This object was called nearby motive in [22].
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where u0 is the restriction of u to D. Then, for every object M ∈ SHM(K), there is
a canonical isomorphism

Ψff
∗
η (M) ' (rm)∗(ΨId(em)∗ηM)|Dm

where em : Spec(k[[t]])→ Spec(k[[t]]) is the morphism given by t 7→ tm. In particular,
taking M to be the unit object, one gets:

Ψf (1Xη ) ' (rm)∗1Dm .

Proof. — We only give a sketch of the proof since it is very similar to the proof of
[6, Théorème 10.6].

We start by fixing some notations. Let fm : Xm = X ⊗R,em R → Spec(R) be the
base-change of f along em and let eXm : Xm → X be the projection to the first factor.
By [4, Proposition 3.5.9] we have a natural isomorphism

Ψf ' Ψfm(eXm)∗η.

Now, let X̃m be the normalization of the scheme Xm = Spec(OX [Tm]/(Tm − t)) and
denote by hm : X̃m → Xm the canonical morphism. Using that Tm = ugm in OX ,
one gets that

X̃m = Spec(OX [S]/(Sm − u)).

In particular, the R-scheme X̃m, with structure morphism f̃m = fm ◦ hm, is smooth
with special fiber Dm. Using property (SPE2) of [4, Définition 3.1.1], this shows
that

Ψf̃m
(f̃m)∗η ' (f̃m)∗σΨId.

By putting these facts together, we obtain a sequence of isomorphisms

Ψff
∗
η (M) ' Ψfm(eXm)∗ηf∗η (M) ' Ψfm(fm)∗η(em)∗η(M) ' (rm)∗Ψf̃m

(f̃m)∗η(em)∗η(M)
' (rm)∗(ΨId(em)∗η(M))|Dm .

The third isomorphism above uses the fact that hm is finite, and hence projective,
that (hm)η is the identity and that (hm)σ is equal to rm up to nilradicals.

3.3. Recollections on rigid motives. — In this subsection, we overview some
constructions from [2] around the notion of rigid motives.

In [2] (see also [7, §2.2]), Ayoub developed a theory of motives in the context of
rigid analytic geometry. In particular, one has a triangulated category of rigid motives
RigSHM(K). (See [2, Définition 1.3.19] and more generally [2, §1.3.1 and §1.3.3] for
the construction.)

Example 3.5. — Again, if M = SpectΣ
S1(∆opSet•), this category is simply denoted

by RigSH(K). If M = Compl(Λ), this category is denoted by RigDA(K,Λ).

Definition 3.6. — Let X be a smooth rigid variety over K. We denote by Mrig(X)
the homological motive associated with X, i.e., the T an-spectrum Sus0

T an(X ⊗ 1)
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considered as an object of RigSHM(K). (Here T an is the image of T by the ana-
lytification functor.) We will denote by M∨rig(X) the cohomological motive associated
with X given by the dual of Mrig(X). More precisely, we set

M∨rig(X) = Hom(Mrig(X),1Spm(K)).
(Compare with Definition 3.3.)

One of the main results of [2] gives a comparison between the category of rigid
motives overK and a category of (algebraic) motives. More precisely, let QUSHM(k)
be the full triangulated subcategory of SHM(Gm,k) whose objects are the quasi-
unipotent motives. Then, the composition of the three functors

QUSHM(k) ↪→ SHM(Gm,k) t∗→ SHM(K) Rig∗−→ RigSHM(K)
is an equivalence of categories (see [2, Scholie 1.3.26]). The third functor above
extends the functor that takes the homological motive M(X) of a smooth K-scheme
X to the homological motive Mrig(Xan) of the associated rigid analytic variety Xan.

We fix a quasi-inverse to the above composition
R : RigSHM(K) ∼→ QUSHM(k).

We will be interested in the composite functor
1∗ ◦R : RigSHM(K)→ SHM(k)

where 1 : Spec(k)→ Gm,k is the unit section.

4. Rigid motives of generic fibers of formal schemes

The goal of this section is to establish Theorem 4.11, wich is the particular case
Z = Xσ of our main theorem. Theorem 4.11 will be obtained as a formal consequence
of Theorem 4.1.

4.1. Statement of preliminary results. — We start by introducing some nota-
tions. Let A be a smooth affinoid K-algebra. Consider the commutative diagram
with cartesian squares

Spec(A) j //

fη

��
�

Spec(A◦)

f

��
�

Spec(Ã)

fσ

��

ioo

Spec(K) j // Spec(R) Spec(k).ioo

Here, as usual, A◦ = {a ∈ A; |a|∞ 6 1}, A◦◦ = {a ∈ A; |a|∞ < 1} and Ã = A◦/A◦◦,
where | · |∞ is the infinity norm (aka., spectral norm) on A. (Compare this with §1.6.)

Theorem 4.1. — Let M be an object of SHM(K). Then, there is a canonical iso-
morphism in SHM(k):

1∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M))) ' (fσ)∗Ψff
∗
η (M). (5)

Taking M to be the unit object of SHM(K), one gets the following:
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Corollary 4.2. — There is a canonical isomorphism in SHM(k):

1∗ ◦R(M∨rig(Spm(A))) ' (fσ)∗Ψf (1Spec(A)).

Remark 4.3. — The statement of Theorem 4.1 makes use of the generalization of
the theory of nearby motivic sheaves explained in [2, Appendice 1.A]. See also [6,
§10].

Remark 4.4. — The statement of Theorem 4.1 can be made functorial as follows.
Let (Spm(A), I) be a diagram of smooth K-affinoids. This means that I is a small
category and A is a contravariant functor from I to the category of smooth affinoid
K-algebras. Consider the following commutative diagram of diagrams of schemes

(Spec(A), I) //

(fη,pI )

��

�

(Spec(A◦), I)

(f,pI)

��

�

(Spec(Ã), I)

(fσ,pI)

��

oo

fσ

''
(Spec(k), I).

pI

ww
Spec(K) // Spec(R) Spec(k).oo

Then, there is a canonical isomorphism in SHM(k, I):

1∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M))) ' (fσ)∗Ψ(f,pI)(fη, pI)∗(M). (6)

The proof is an easy adaptation of the proof for a single smooth K-affinoid. We leave
the details to the reader.

Finally, we warn the reader that the “Hom” in (6) is not an “internal hom” in the
category of RigSHM(K, I). It is rather an “external hom” in the sense of [17, §3]
going from RigSHM(K, Iop) to RigSHM(K, I). More precisely,

Hom(Mrig(Spm(A)),Rig∗(M))

is the diagram of rigid motives given, for i ∈ I, by Hom(Mrig(Spm(A(i))),Rig∗(M)).

To prove Theorem 4.1, we first need to establish a variant where Ψf is replaced by
the specialization system χf = i∗j∗. (Recall that, for a base scheme S, Sm/S denotes
the category of smooth S-schemes.)

Theorem 4.5. — Let M be an object of SHM(K). Then, there is a canonical iso-
morphism in SHM(k):

q∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M))) ' (fσ)∗χff∗η (M).

4.2. Proof of Theorem 4.5. — Before we state our first lemma, we need to recall
some notations from [2]. Given a k-variety X, we denote by Qrig(X) the generic fiber
of the t-adic completion of the R-scheme X ⊗k R. Note that, if X is the spectrum of
a k-algebra E, then Qrig(X) = Spm(E[[t]][t−1]). This gives a functor

Qrig : Sm/k → SmRig/K
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which is continuous for the Nisnevich topology. (As in [2], SmRig/K denotes the
category of smooth rigid analytic varieties over K.)

Using standard constructions, the functor Qrig induces a pair of adjoint functors

((Qrig)∗, Qrig
∗ ) : SHM(k)→ RigSHM(K).

The functor (Qrig)∗ takes the homological motive of a smooth k-scheme X to the
homological motive of the rigid analytic variety Qrig(X).

We will be mainly interested in the functor Qrig
∗ . We have the following result

which is a variant of [7, Théorème 2.24]. However, the proof here is much easier as
everything is derived.

Lemma 4.6. — There is a canonical invertible natural transformation of functors
from RigSHM(K) to SHM(k)

q∗ ◦R ' Qrig
∗ .

Proof. — Recall that R is a quasi-inverse to the following composition

F : QUSHM(k) ↪→ SHM(Gm,k) t∗→ SHM(K) Rig∗−→ RigSHM(K) (7)

which is an equivalence of categories by [2, Scholie 1.3.26]. Therefore, to prove the
lemma, it is enough to construct an isomorphism

(Qrig)∗ ' F ◦ q∗.

Now, let Qan : Sm/k → SmRig/K be the functor that takes a k-variety X to the
rigid analytic variety (X ⊗k K)an. It induces a functor

(Qan)∗ : SHM(k)→ RigSHM(K)

which is nothing but F ◦ q∗. On the other hand, there is a natural transformation
Qrig → Qan. It induces a natural transformation (Qrig)∗ → (Qan)∗ which is an
isomorphism by [2, Théorème 1.3.11].

Therefore, to prove Theorem 4.5, it is enough to establish the following proposition.

Proposition 4.7. — Keep the notation as for Theorem 4.5. There is a canonical
isomorphism

Qrig
∗ Hom(Mrig(Spm(A)),Rig∗(M)) ' (fσ)∗χff∗η (M).

Remark 4.8. — The proof of this proposition uses similar ideas and techniques as
those exposed in [2, §1.3.4] and especially in the proof of [2, Scholie 1.3.26]. The
reader who finds our proof below a bit sketchy is advised to read [2, §1.3.4] where he
can find enough material to complement the arguments.

To prove Proposition 4.7, we need to recall the construction of the (B1,Nis)-
localization of the T an-spectrum Rig∗(M) given in [2, §1.3.4, Théorèmes 1.3.37 et
1.3.38]. We start by recalling the necessary notation. Let

D : SmAfnd/K → Sch/R
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be the functor from the category SmAfnd/K of smooth K-affinoids to the category
Sch/R of R-schemes (not necessarily of finite type) that takes a K-affinoid X to the
R-scheme

D(X) = Spec(O(X)◦).
We will think about D as a diagram of R-schemes. There are two other related
diagrams Dη and Dσ defined on SmAfnd/K, and with values in Sch/K and Sch/k
respectively. These are given by

Dη(X) = Spec(O(X)) and Dσ(X) = Spec(O(X )̃ ).
Thus, we have a diagram of diagrams of schemes (see [2, (1.86)]):

Dη
j //

uη

��
�

D

u

��
�

Dσ
ioo

uσ

��
Spec(K) j // Spec(R) Spec(k).ioo

There is an obvious diagonal functor
diag : SmAfnd/K → Sm/D .

(For the definition of “Sm/a diagram of schemes”, see the beginning of [4, §4.5.1].)
It takes an object Spm(B) of SmAfnd/K to the couple

(Spm(B), IdSpec(B◦)).
Composing with diag yields a functor

diag∗ : PreShv(Sm/D ,M)→ PreShv(SmAfnd/K,M).
This functor extends to T -spectra and can be derived into a functor

Rdiag∗ : SHM(D)→ Ho(SpectΣ
diag∗(T )(PreShv(SmAfnd/K,M))).

(In fact, it is shown in [2, §1.3.4] that diag∗(T ) is weakly equivalent to T an.) With
these notations, we can state [2, Théorèmes 1.3.37 et 1.3.38] as follows:

Theorem 4.9. — Let M be an object of SHM(K). Then the symmetric diag∗T -
spectrum

diag∗i∗i∗j∗u∗ηM
is a stably (B1,Nis)-local object of

Ho(SpectΣ
diag∗(T )(PreShv(SmAfnd/K,M))).

Moreover, there is a canonical (B1,Nis)-equivalence
r∗Rig∗(M)→ diag∗i∗i∗j∗u∗ηM.

In the statement of Theorem 4.9, r : SmAfnd/K ↪→ SmRig/K is the inclusion of
the subcategory of smooth affinoid varieties over K and r∗ is the functor induced by
composition with r. Similarly, we denote by r : SmAf/k ↪→ Sm/k the inclusion of the
subcategory of smooth affine k-schemes and r∗ the functor induced by composition
with r.
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Using Theorem 4.9 and going back to the construction of the different functors, we
obtain canonical isomorphisms

r∗Qrig
∗ Hom(Mrig(Spm(A)),Rig∗(M)) = Qrig

∗ Hom(Mrig(Spm(A)), r∗Rig∗(M))

' Qrig
∗ Hom(Mrig(Spm(A)),diag∗i∗i∗j∗u∗ηM) = δ∗Ai∗i

∗j∗u
∗
ηM

in HoA1−Nis(SpectΣ
T (PreShv(SmAf/k,M))) ' SHM(k). The second and third Qrig

above stand for the functor Qrig : SmAf/k → SmAfnd/K; the functor
δA : SmAf/k → Sm/D

takes a smooth affine scheme U = Spec(E) to the couple(
Spm(A)×̂KQrig(U) = Spm(A⊗̂KE[[t]][t−1]) , IdSpec(A◦⊗̂RE[[t]])

)
;

and δ∗A is the functor induced by composition with δA.
Consider now the diagram of schemes FA : SmAf/k → Sch/R that takes a smooth

affine k-scheme Spec(E) to Spec(A◦⊗̂RE[[t]]). Similarly, let FA,η : SmAf/k → Sch/K
and FA,σ : SmAf/k → Sch/k be the diagrams of schemes that takes Spec(E) to
Spec(A⊗̂KE[[t]]) and Spec(Ã⊗k E) respectively. One has a commutative diagram of
diagrams of schemes:

FA,η
j //

fη

��
�

FA

f

��
�

FA,σ
ioo

fσ

��
Spec(K) j // Spec(R) Spec(k).ioo

Moreover, there is an obvious morphism of diagrams of schemes FA → D induced by
the functor on the indexing categories SmAf/k → SmAfnd/K that takes Spec(E) to
Spm(A⊗̂KE[[t]][t−1]).

Let diagA : SmAf/k → Sm/FA be the diagonal functor given by diagA(Spec(E)) =
(Spec(E), IdSpec(A◦⊗̂RE[[t]])). Using the following commutative triangle

SmAf/k
diagA //

δA %%

Sm/FA

��
Sm/D ,

we get canonical isomorphisms
δ∗Ai∗i

∗j∗u
∗
ηM ' diag∗Ai∗i∗j∗f∗ηM ' diag∗A,σi∗j∗f∗ηM

where diagA,σ is the diagonal functor that takes Spec(E) to (Spec(E), IdSpec(Ã⊗kE)).
Finally, one has a commutative diagram of diagrams of schemes:

FA,η
j //

aη

��
�

FA

a

��
�

FA,σ
ioo

aσ

��
Spec(A) j // Spec(A◦) Spec(Ã),ioo
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with regular vertical maps. By [2, Corollaire 1.A.4], this gives a canonical isomor-
phism

i∗j∗f
∗
ηM ' a∗σi

∗j∗M |Spec(A).

Now, it is obvious that diag∗A,σ ◦ a∗σ = (fσ)∗. This finishes the proof of Proposition
4.7 and hence of Theorem 4.5.

4.3. Proof of Theorem 4.1. — We have to recall the definition of the nearby
motivic sheaf functor. Let ∆ be the category of finite ordinals n = {0 < 1 < · · · < n},
for n ∈ N, and N× = N \ {0} ordered by the opposite of the division relation. In
[4, Définition 3.5.3], Ayoub introduced a diagram of k-schemes (R,∆ ×N×) with a
morphism

(θR, p∆×N×) : (R,∆×N×)→ Gm,k.

Let (θR
f , p∆×N×) : (Rf , p∆×N×) → Spec(A) be the morphism of diagrams obtained

by base-change along the morphism Spec(A) → Gm,k (given by the composition of
f : Spec(A)→ Spec(K) and t : Spec(K)→ Gm,k). The nearby motivic sheaf functor
is then given by

Ψf (−) = (p∆×N×)] ◦ χf,p∆×N×
◦ (θR

f )∗ ◦ (θR
f )∗ ◦ (p∆×N×)∗(−)

' χf ◦ (p∆×N×)] ◦ (θR
f )∗ ◦ (θR

f )∗ ◦ (p∆×N×)∗(−).
The isomorphism above is a consequence of the fact that inverse and direct images
commute with homotopy colimits in the case of SHM(−). Moreover, after composing
with f∗η , one has further isomorphisms as follows:

Ψff
∗
η (−) ' χf ◦ (p∆×N×)] ◦ (θR

f )∗ ◦ (θR
f )∗ ◦ (p∆×N×)∗ ◦ f∗η (−)

' χf ◦ f∗η ◦ (p∆×N×)] ◦ (θR
t )∗ ◦ (θR

t )∗ ◦ (p∆×N×)∗(−)

' χf ◦ f∗η ((−)⊗ t∗U)

where U = (p∆×N×)](θR)∗1(R,∆×N×) and t : Spec(K) → Gm,k. Applying Theorem
4.5 with M ⊗ t∗U instead of M , we get an isomorphism

(fσ)∗Ψff
∗
ηM ' q∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M ⊗ t∗U)).

Therefore, it is enough to show that
q∗◦R(Hom(Mrig(Spm(A)),Rig∗(M⊗t∗U))) ' 1∗◦R(Hom(Mrig(Spm(A)),Rig∗(M))).
Let us recall the following lemma that is a consequence of results in [2]:

Lemma 4.10. — Every compact object of RigSHM(K) is strongly dualizable.

Proof. — By [2, Théorème 1.3.22] and [3, Proposition 2.1.24], it is enough to show
that, for every smooth k-scheme X, every p ∈ N, r ∈ N \ {0} and every g ∈ O(X)×,
the objects SuspT an(Qrig

r (X, g) ⊗ 1) are strongly dualizable (see [2, Notation 1.3.10]).
By [2, Lemma 1.3.12], the map

SuspT an(Qrig
r (X, g)⊗ 1)→ SuspT an(Qan

r (X, g)⊗ 1) = Rig∗(SuspT (Qgeo
r (X, g)⊗ 1))
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is an isomorphism in RigSHM(K). As the functor Rig∗ is symmetric monoidal
and unitary, it suffices to check that SuspT (Qgeo

r (X, g) ⊗ 1) is strongly dualizable in
SHM(K). This follows from [31] (see also [2, Lemme 1.3.29]).

By [2, Proposition 1.2.34], Mrig(Spm(A)) is a compact object in RigSHM(K),
hence strongly dualizable by Lemma 4.10. Therefore, using that Rig∗ is monoidal,
one has a canonical isomorphism

Hom(Mrig(Spm(A)),Rig∗(M ⊗ t∗U)) ' Hom(Mrig(Spm(A)),Rig∗(M))⊗ Rig∗t∗U .

Now, U is an object of QUSHM(k) (see [2, Définition 1.3.25]). Therefore, we can
write

Rig∗t∗U = F(U).
By putting these facts together, we are left to show that

q∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M))⊗ F(U))

' 1∗ ◦R(Hom(Mrig(Spm(A)),Rig∗(M))).
Now, as R is a monoidal equivalence of categories, one has a projection formula:

R((−)⊗ F(U)) ' R(−)⊗ U .

At the end, we are left to construct an invertible natural transformation

q∗(−⊗ U) ' 1∗(−)

between functors from QUSHM(k) to SHM(k). In [2, (1.112)], an isomorphism of
functors

(p∆×N×)]q∗
(
(p∆×N×)∗(−)⊗ (θR)∗1(R,∆×N×)

)
=: Ψqu → 1∗(−)

is constructed. Using that (p∆×N×)]q∗ ' q∗(p∆×N×)] and projection formula, it is
easy to see that Ψqu is canonically isomorphic to q∗(− ⊗ U). This finishes the proof
of Theorem 4.1.

4.4. A particular case of the main theorem. — Here we prove the case Z = Xσ

of our main theorem. This is done using the functorial version of Theorem 4.1 (see
Remark 4.4).

Let X be a finite type R-scheme and let f : X → Spec(R) be its structural
morphism. Assume that Xη is smooth over K and consider the t-adic completion X
of X.

Theorem 4.11. — Let M be an object of SHM(K). Then, there is a canonical
isomorphism in SHM(k):

1∗ ◦R(Hom(Mrig(Xη),Rig∗(M))) ' (fσ)∗Ψff
∗
η (M). (8)

Taking M to be the unit object of SHM(K), one gets the following:

Corollary 4.12. — There is a canonical isomorphism in SHM(k):

1∗ ◦R(M∨rig(Xη)) ' (fσ)∗Ψf (1Xη ).
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Proof. — As we already said, the proof relies on the functorial version of Theorem
4.1 described in Remark 4.4.

Let (Ui)i∈I be a finite covering of X by open affine subschemes. Let P∗(I) be the
set of non-empty subsets of I ordered by reverse inclusion. We have a diagram of
schemes (U,P∗(I)) that takes J ∈ P∗(I) to UJ = ∩j∈JUj .

Let (u, p) : (U,P∗(I)) → X be the canonical morphism. (We wrote p instead of
pP∗(I) to ease the notation.) Using Zariski descent and the property (SPE2) of [4,
Définition 3.2.1], we see that the canonical maps

Ψff
∗
η (M)→ (uσ, p)∗(uσ, p)∗Ψff

∗
η (M)→ (uσ, p)∗Ψ(f◦u,p)(fη ◦ uη, p)∗(M)

are isomorphisms in SHM(Xσ). Applying (fσ)∗, we get a canonical isomorphism

(fσ)∗Ψff
∗
η (M) ' p∗((f ◦ u)σ)∗Ψ(f◦u,p)((f ◦ u)η, p)∗(M)

in SHM(k).
Now, consider the diagram of formal schemes (U ,P∗(I)) obtained as the comple-

tion of U . As every UJ is affine, one can also form the diagram of schemes (V,P∗(I))
where VJ = Spec(O(UJ)). Now, one has a regular morphism of diagrams of R-schemes

r : (V,P∗(I))→ (U,P∗(I))

inducing the identity between the special fibers. It follows from [2, Proposition 1.A.6]
that

Ψ(f◦u,p)((f ◦ u)η, p)∗(M) ' Ψ(f◦u◦r,p)((f ◦ u ◦ r)η, p)∗(M)
in SHM(Uσ,P∗(I)). On the other hand, the functorial version of Theorem 4.1 (see
Remark 4.4) provides an isomorphism

((f ◦ u)σ)∗Ψ(f◦u◦r,p)((f ◦ u ◦ r)η, p)∗(M) ' 1∗ ◦R(Hom(Mrig(Uη),Rig∗(M))).

We therefore have an isomorphism

(fσ)∗Ψff
∗
η (M) ' p∗ ◦ 1∗ ◦R(Hom(Mrig(Uη),Rig∗(M)))

and it remains to check that

p∗ ◦ 1∗ ◦R(Hom(Mrig(Uη),Rig∗(M))) ' 1∗ ◦R(Hom(Mrig(Xη),Rig∗(M))).

Using [8, Proposition 1.15], we get an isomorphism

p∗ ◦ 1∗ ◦R ' 1∗ ◦R ◦ p∗.

Therefore, it is enough to check that one has an isomorphism

p∗Hom(Mrig(Uη),Rig∗(M)) ' Hom(Mrig(Xη),Rig∗(M))

in RigSHM(K). Now the left hand side is canonically isomorphic to

Hom(p]Mrig(Uη),Rig∗(M)).

Thus, we are left to check that p]Mrig(Uη) → Mrig(Xη) is an isomorphism. This
follows by Zariski descent.
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5. Rigid motives of tubes in a semi-stable situation

The goal of this section is to prove some preparatory results about rigid motives
of tubes in a semi-stable situation. A striking consequence of these results is that the
rigid motive of a tube (in a quasi-compact rigid analytic variety) is always a compact
motive.

5.1. Tubes in rigid analytic geometry. — Let X be a formal R-scheme topo-
logically of finite type. Let Z ⊂Xσ be a locally closed subset. The tube of Z, denoted
by ]Z[, is the inverse image of Z under the specialization map sp: Xη → Xσ. This
is an admissible open rigid analytic subvariety of Xη, which is not quasi-compact in
general.

If U ⊂Xσ is an open subset and U ⊂X is the formal open subscheme such that
Uσ = U , then ]U [= Uη; in this case, the tube is quasi-compact. For more details
concerning tubes, see, for example, [12] or [24, §2.1.2].

5.2. Statement of the results. — Assume that X is a semi-stable formal R-
scheme. Let us denote by (Di)i∈I the irreducible components of (Xσ)red. Given a
subset J ⊂ I, denote by DJ and D(J) the reduced closed subschemes of Xσ given by

DJ = ∩i∈JDi and D(J) = ∪i∈JDi

with the convention that D∅ = (Xσ)red and D(∅) = ∅.
Fix a subset J ⊂ I and let Z be a closed subscheme of D(J). For I ′ ⊂ I \ J , we

set
Z◦I′ = Z \D(I ′).

When I ′ = I \ J , we simply write Z◦ for Z◦I\J .

Theorem 5.1. — Keep the notation as before. Assume that Z is a union of closed
subsets of the form DJ′ , for some ∅ 6= J ′ ⊂ J . Then, for I ′ ⊂ I ′′ ⊂ I \J , the inclusion
]Z◦I′′ [↪→]Z◦I′ [ induces an isomorphism in RigSHM(K):

Mrig(]Z◦I′′ [) ' Mrig(]Z◦I′ [).

At the end, we are only concerned with the following particular case.

Corollary 5.2. — Keep the notation as before. The inclusion ]D(J)◦[↪→]D(J)[ in-
duces an isomorphism in RigSHM(K):

Mrig(]D(J)◦[) ' Mrig(]D(J)[).

5.3. Reductions. — We start the proof of Theorem 5.1 by proving the following
lemma.

Lemma 5.3. — It is enough to prove Theorem 5.1 when Z = DJ , J 6= ∅, I ′ = ∅
and #(I ′′) = 1.
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Proof. — Let us assume this particular case proven and suppose that Z, I ′ and I ′′
are as in the statement of Theorem 5.1. When Z = ∅, there is nothing to be proven;
so we can assume that Z 6= ∅. (This forces that J 6= ∅.) We can write

Z = DJ1 ∪ · · · ∪DJn

for some integer n > 1, with ∅ 6= Ji ⊂ J for 1 6 i 6 n. We argue by induction on the
integer n.

First, let us assume that n = 1. This means that Z = DJ1 for some J1 ⊂ J . As I ′
and I ′′ are also subsets of I \ J1, we may actually assume that J1 = J . Also, by an
easy induction we may assume that #(I ′′ \ I ′) = 1.

Now, consider the open formal subscheme X ′ ⊂ X given by X \ D(I ′). Then
X ′ is a semi-stable formal R-scheme and (X ′

σ)red = ∪i∈I\I′D′i with D′i = Di \D(I ′).
Moreover, letting Z ′ = Z ∩X ′

σ, one has (with the notations of §5.2):

Z ′◦∅ = Z◦I′ and Z ′◦I′′\I′ = Z◦I′′ .

Therefore, the map Mrig(]Z◦I′′ [)→ Mrig(]Z◦I′ [) identifies with

Mrig(]Z ′◦I′′\I′ [)→ Mrig(]Z ′◦∅ [)

which is an isomorphism by the assumption of the lemma.
Next, assume that n > 2. We may then write Z = Z1 ∪ Z2 where

Z1 = DJ1 ∪ · · · ∪DJn−1 and Z2 = DJn .

Set W = Z1 ∩ Z2. We therefore have admissible open coverings:

]Z◦I′ [ = ](Z1)◦I′ [ ∪ ](Z2)◦I′ [ and ]Z◦I′′ [ = ](Z1)◦I′′ [ ∪ ](Z2)◦I′′ [.

Moreover, we have:

](Z1)◦I′ [ ∩ ](Z2)◦I′ [ = ]W ◦I′ [ and ](Z1)◦I′′ [ ∩ ](Z2)◦I′′ [ = ]W ◦I′′ [.

Using Mayer–Vietoris distinguished triangles, we are left to treat the cases of Z1, Z2
and W . These cases follow by induction.

We prove a further reduction.

Lemma 5.4. — It is enough to prove Theorem 5.1 when #(J) = 1 (and hence Z is
an irreducible component of Xσ), I ′ = ∅ and #(I ′′) = 1.

Proof. — By the previous lemma, we may assume that Z = DJ (for J non-empty
and not necessarily a singleton) I ′ = ∅ and #(I ′′) = 1. Let h : X ′ → X be
the admissible blow-up of X at Z and E ⊂ X ′

σ its exceptional divisor. Then the
morphism Mrig(]Z \D(I ′′)[)→ Mrig(]Z[) identifies with

Mrig(]E \ h−1(D(I ′′))[)→ Mrig(]E[).

But, if I ′′ = {i}, then h−1(Di) is simply the strict transform of Di and hence is an
irreducible divisor of X ′

σ. This enables us to conclude.
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By Lemmas 5.3 and 5.4, we may assume that I = {1, . . . , n}, J = {1}, I ′ = ∅ and
I ′′ = {2}. We are thus left to show that

Mrig(]D1 \D2[) = Mrig(]D1 \D1,2[)→ Mrig(]D1[)
is an isomorphism in RigSHM(K). (Recall that D1,2 = D1 ∩D2.) From now on, we
argue by induction on the integer n. We use this to obtain the following reduction.

Lemma 5.5. — To prove Theorem 5.1, it is enough to show that
Mrig(]D1 \DI [)→ Mrig(]D1[) (9)

is an isomorphism in RigSHM(K).

Proof. — Assume that (9) is an isomorphism. Thus, by the previous discussion, we
are left to check that

Mrig(]D1 \D1,2[)→ Mrig(]D1 \DI [)
is an isomorphism. Note that (X \Di)16i6n is an open covering of the formal scheme
X \DI . This induces admissible open coverings

(]D1 \ (D1,2 ∪Di)[)26i6n and (]D1 \Di[)26i6n

of ]D1 \ D1,2[ and ]D1 \ DI [ respectively, where D1,2 = D1 ∩ D2. Hence, thanks to
Mayer–Vietoris distinguished triangles, it is enough to show that, for every integer i,
2 6 i 6 n, the morphism

Mrig(]D1 \ (D1,2 ∪Di)[)→ Mrig(]D1 \Di[)
is invertible in RigSHM(K). As the special fiber of X \ Di has n − 1 irreducible
components, we may use induction to conclude when i > 3.

Before we give our final reduction, we note the following fact (where X is not
necessarily the semi-stable formal R-scheme of Theorem 5.1).

Lemma 5.6. — Let X be a formal R-scheme topologically of finite type and assume
that Xη is smooth. Let e : X ′ →X be an étale morphism of formal R-schemes. Let
H and Z be closed subschemes of the special fiber Xσ. Assume that the induced mor-
phism e−1(Z)→ Z is an isomorphism. Then, the following assertions are equivalent:

1. the morphism Mrig(]H \ Z[)→ Mrig(]H[) is an isomorphism;
2. the morphism Mrig(]e−1(H \ Z)[)→ Mrig(]e−1(H)[) is an isomorphism.

Proof. — Let U = X \ Z and U ′ = X ′ \ e−1(Z). Consider the commutative cube
of rigid analytic varieties over K:

]e−1(H \ Z)[ //

��

''

]e−1(H)[

��

%%
U ′η //

��

X ′
η

eη

��

]H \ Z[

''

// ]H[
v

&&
Uη

// Xη.
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All the faces of this cube are cartesian squares, and the frontal face is, by [2, Proposi-
tion 1.2.23], a distinguished Nisnevich square of quasi-compact rigid analytic varieties
over K (in the sense of [2, Définition 1.2.20]).

One has a morphism of distinguished triangles in RigSHM(Xη):

MXη,rig(U ′η ) //

��

MXη,rig(X ′
η ) //

��

MXη,rig(X ′
η/U

′
η ) +1 //

∼
��

MXη,rig(Uη) // MXη,rig(Xη) // MXη,rig(Xη/Uη) +1 //

where the third vertical arrow is an isomorphism thanks to [2, Corollaire 1.2.27].
Denote q : ]H[ → Spm(K) the structural morphism. Applying the functor

q]v
∗, and using [2, Lemme 1.4.32], we get a morphism of distinguished triangles in

RigSHM(K):

Mrig
(
]e−1(H \ Z)[

)
//

��

Mrig
(
]e−1(H)[

)
//

��

Mrig
(
]e−1(H)[ / ]e−1(H \ Z)[

) +1 //

∼
��

Mrig (]H \ Z[) // Mrig (]H[) // Mrig (]H[ / ]H \ Z[) +1 // .

That concludes the proof.

Now using Lemma 5.6 and [2, Proposition 1.1.60], which relates general semi-stable
formal R-schemes to standard semi-stable formal R-schemes (as in Example 2.7), we
obtain the following final reduction.

Lemma 5.7. — To prove Theorem 5.1, we may assume that X = StvY ,a where Y

is a smooth formal R-scheme, v ∈ tO(Y )× and a = (a1, . . . , an) ∈ (N×)n. Moreover,
it is enough to show, in this case, that

Mrig(]D1 \DI [)→ Mrig(]D1[)

is an isomorphism in RigSHM(K). (Recall that I = {1, . . . , n}.)

Proof. — Note that the morphism Mrig(]D1 \ DI [) → Mrig(]D1[) is a direct sum-
mand of the corresponding morphism for the formal R-scheme X {T, T−1}. Using
[2, Proposition 1.1.60] and Mayer–Vietoris distinguished triangles, we may therefore
assume that there exists an étale morphism of formal R-schemes

e : X → StUtSpf(R{U,U−1}),a{S1, . . . , Sr},

where a = (a1, . . . , an) ∈ (N×)n and U, S1, . . . , Sr are independent variables. We
denote by S the target of the morphism e; recall (from Example 2.7) that this formal
R-scheme is given by

S = Spf
(
R{U,U−1, T1, . . . , Tn, S1, . . . , Sr}/(T a1

1 · · ·T ann − Ut)
)
.

The formal R-scheme S is semi-stable and the irreducible components of Sσ are
defined by the equations Ti = 0, for 1 6 i 6 n. We denote by C their intersection,
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i.e., the subscheme of Sσ given by the ideal (T1, . . . , Tn). Clearly, we have C =
Spec(k[U,U−1, S1, . . . , Sr]).

After reordering the irreducible components of Xσ, we may assume that Di ⊂Xσ

is given by the equation Ti ◦ e = 0. The morphism e induces an étale morphism
e0 : DI → C. In fact, one has a cartesian square of formal R-schemes:

DI
//

e0

��
�

X

e

��
C // S .

As in [2, Notation 1.2.35], we denote by Qfor(C) the formal R-scheme given by
the t-adic completion of the R-scheme C ⊗k R. The morphism e0 induces an étale
morphism of formal R-schemes

Qfor(e0) : Qfor(DI)→ Qfor(C) = Spf(R{U,U−1, S1, . . . , Sr}).

This induces an étale morphism of standard schemes

e′ : X ′ = StUtQfor(DI),a → S = StUtSpf(R{U,U−1,S1,...,Sr}),a.

Moreover, by construction, one has a cartesian square of formal R-schemes:

DI
//

e0

��
�

X ′

e′

��
C // S .

Now, consider the fiber product X ×̂S X ′. By construction, one has

(X ×̂S X ′)×S C ' DI ×C DI .

As e0 : DI → C is étale, the diagonal embedding DI ↪→ DI ×C DI is an open and
closed immersion and hence induces a decomposition DI ×C DI ' DI t F . We set

X ′′ = (X ×̂S X ′) \ F.

By construction, one has étale morphisms

f : X ′′ →X and f ′ : X ′′ →X ′

inducing isomorphisms f−1(DI)
∼→ DI and f ′−1(DI)

∼→ DI . Therefore, we can apply
Lemma 5.6 twice:

– for X ′′ →X with H = D1 and Z = DI , and
– for X ′′ →X ′ with H ⊂X ′

σ given by the equation T1 = 0 and Z = DI .
This shows that to prove the property stated in Lemma 5.5 for X , it is enough to
prove it for X ′. As the latter is a standard semi-stable formal R-scheme, we are
done.
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5.4. The case of a standard semi-stable formal R-scheme. — Here, we finish
the proof of Theorem 5.1 by showing the property stated in Lemma 5.7. This property
is obtained as a consequence of the following statement which is slightly more general
than what is needed. Indeed, we are only concerned with the case where Y is smooth
over R and v ∈ tO(Y )×. However, the extra generality in the following statement
gives a flexibility that we use in its proof.

Proposition 5.8. — Let Y be a formal R-scheme topologically of finite type with
smooth generic fiber. Let v ∈

√
tO(Y ) dividing a power of t. Let a = (a1, . . . , an)

be an n-tuple of strictly positive integers. Let X = StvY ,a be the associated standard
formal scheme. Let D be a branch of Xσ and D◦ the complement in D of the union
of the remaining branches. Then the canonical morphism

Mrig(]D◦[)→ Mrig(]D[)

is an isomorphism in RigSHM(K).

Proof. — The condition that v divides a power of t ensures that Xη is a smooth rigid
analytic variety over K. Therefore, the statement of the proposition makes sense.

We may assume that D = D1, i.e., the branch of Xσ defined by the equation
T1 = 0 (see Example 2.7). When n = 1, there is nothing to prove. Thus, we may
assume that n > 2. We split the proof in three parts.
Step 1. The case n = 2. — In this case, we have:

X = Spf OY {T1, T2}
(T a1

1 T a2
2 − v) ' Spf OY {w, T1, T2}

(we − v, T a1/e
1 T

a2/e
2 − w)

with e the greatest common divisor of a1 and a2. Replacing Y by Spf(OY {w}/we−v)
and v by w, we may assume that a1 and a2 are coprime.

We fix a Bézout relation
a1d1 + a2d2 = −1

where d1 > 0 and d2 < 0 are relative integers. The equation T a1
1 T a2

2 = v in O(Xη)
can be written as

(T−d2
1 T d1

2 )a2 = T1v
d1 .

This shows in particular that

|T−d2
1 T d1

2 |∞ 6 |v|d1/a1
∞ 6 1.

(Here, | · |∞ is the infinity norm computed on Xη.) Using this, we may construct an
isomorphism of rigid analytic varieties over Yη:

Xη
∼→ Spm

OYη{T,U, V }
(T a1U − v−d2 , vd1V − T a2)

given, on the structural sheaves of functions, by T 7→ T−d2
1 T d1

2 , U 7→ T2 and V 7→ T1.
Compositing this isomorphism with the obvious open immersion

Spm
OYη{T,U, V }

(T a1U − v−d2 , vd1V − T a2) ↪→ Spm(OYη{T}),
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yields an open immersion
j : Xη ↪→ B1

Yη

which identifies Xη with the relative annulus (aka., relative corona)

CrYη (o, |v|−d2/a1
∞ , |v|d1/a2

∞ )

inside the relative ball B1
Yη

. (Here, we are using the notation as in [2, Exemple
1.1.14].)

Now, by definition, ]D1[ = {x ∈ Xη ; |T1(x)|∞ < 1}. Using that T a2 = vd1T1, we
get an identification

]D1[ =
⋃

R→1−
CrYη (o, |v|−d2/a1

∞ , R · |v|d1/a2
∞ ).

On the other hand, we have ]D◦1 [ = {x ∈ Xη ; |T2(x)|∞ = 1}. Using that T a1T2 =
v−d2 , we get an identification

]D◦1 [ = ∂B1
Yη (o, |v|−d2/a1

∞ ).

Thus, it is enough to show that the inclusion

∂B1
Yη (o, |v|−d2/a1

∞ ) ↪→ CrYη (o, |v|−d2/a1
∞ , R|v|d1/a2

∞ )

induces an isomorphism in RigSHM(K) for R close enough to 1. This is done in [2,
Proposition 1.3.4].
Step 2. The case where a2 = · · · = an = d. — Here we treat the case of the standard
scheme

X = StvY ,(a1,dn−1) = Spf OY {T1, . . . , Tn}
(T a1

1 T d2 · · ·T dn − v)
and its branch D1 defined by the equation T1 = 0. (Above, dn−1 denotes the constant
(n− 1)-tuple with value d ∈ N×.)

We argue by induction on the integer n. By the previous step, we may assume
that n > 3. Consider the standard formal R-scheme

Z = StvY {Tn},(a1,dn−2) = Spf OY {Tn}{T1, . . . , Tn−1}
(T a1

1 T d2 · · ·T dn−1 − v)

and its admissible blow-up Z ′ at the ideal (Tn−1, Tn). The formal R-scheme Z ′ has
an open covering given by the following two open formal subschemes:

Spf(OZ {Sn−1}/(Tn−1Sn−1 − Tn)) = Spf OY {Sn−1}{T1, . . . , Tn−1}
(T a1

1 T d2 · · ·T dn−1 − v)
' Z

and

Spf(OZ {Sn}/(TnSn − Tn−1)) = Spf OY {T1, . . . , Tn−2, Sn, Tn}
(T a1

1 T d2 · · ·T dn−2S
d
nT

d
n − v)

'X .

Their intersection is given by

W = Spf
OY {Sn−1, S

−1
n−1}{T1, . . . , Tn−1}

(T a1
1 T d2 · · ·T dn−1 − v)

.
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Let’s denote by ]D1[Zη
(resp. ]D1[Xη

, etc) the tube, taken in Zη (resp. Xη, etc),
of the branch D1 defined by the equation T1 = 0. We use similar notations with D◦1
instead of D1. We then have

]D1[Z ′η= ]D1[Zη
∪ ]D1[Xη

and ]D1[Wη
= ]D1[Zη

∩ ]D1[Xη
,

and similarly
]D◦1 [Z ′η= ]D◦1 [Zη

∪ ]D◦1 [Xη
and ]D◦1 [Wη

= ]D◦1 [Zη
∩ ]D◦1 [Xη

.

Now, by the induction hypothesis, the conclusion of the proposition holds for the
standard formal schemes Z and W and their branches D1. On the other hand,
the blow-up morphism Z ′ → Z induces isomorphism ]D1[Z ′η' ]D1[Zη

and ]D◦1 [Z ′η'
]D◦1 [Zη

. Using Mayer–Vietoris distinguished triangles, the conclusion of the proposi-
tion follows now for X and its branch D1.
Step 3. The general case. — We will use the same trick as in the proof of [2, Lemme
1.2.38]. Namely, we blow-up intersections of two components to increase the multi-
plicities and reduce the general case to the one treated in Step 2. We will argue by
induction on the n-tuple a.

By the previous step, we may assume that (a2, . . . , an) is not constant. Let i, j ∈
{2, . . . , n} such that ai 6= aj . We may assume that ai > aj . Let b = (b1, . . . , bn) be
the n-tuple given by br = ar for r 6= i and bi = ai − aj . Also, let a′ be the n-tuple
given by a′r = ar for r 6∈ {i, j}, a′i = ai − aj and a′j = ai.

Consider the standard formal R-scheme

Z = StvY ,b = Spf OY {T1, . . . , Tn}
(T b11 · · ·T

bn
n − v)

and its admissible blow-up Z ′ at the ideal (Ti, Tj). The formal R-scheme Z ′ has an
open covering given by the following two open formal subschemes:

Spf(OZ {Sj}/(TiSj − Tj)) ' StvY ,a and Spf(OZ {Si}/(TjSi − Ti)) ' StvY ,a′ .

We identify X with the first open formal subscheme and we denote by V the second
one. The intersection W = X ∩ V is given by

Spf
OY {Sj , S−1

j }{T1, . . . , Tj−1, Tj+1, . . . , Tn}
(T a1

1 · · ·T
aj−1
j−1 T

aj+1
j+1 · · ·T

an
n − vS−ajj )

.

Hence, W is a standard formal R-scheme of length n− 1.
Now, using the same notation as in Step 2, we have

]D1[Z ′η= ]D1[Xη∪ ]D1[Vη and ]D1[Wη= ]D1[Xη∩ ]D1[Vη ,
and similarly

]D◦1 [Z ′η= ]D◦1 [Xη
∪ ]D◦1 [Vη and ]D◦1 [Wη

= ]D◦1 [Xη
∩ ]D◦1 [Vη .

Moreover, the blow-up morphism Z ′ → Z induces isomorphisms ]D1[Z ′η' ]D1[Zη

and ]D◦1 [Z ′η' ]D◦1 [Zη . Using Mayer–Vietoris distinguished triangles and induction,
one gets that

Mrig(]D◦1 [Xη
)⊕Mrig(]D◦1 [Vη )→ Mrig(]D1[Xη

)⊕Mrig(]D1[Vη )
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is an isomorphism. This finishes the proof.

We finish this subsection by indicating how to deduce the property stated in Lemma
5.7 from Proposition 5.8.

Let Y be a smooth formal R-scheme, v ∈ tO(Y )× and a = (a1, . . . , an) ∈ (N×)n.
Let X = StvY ,a be the associated standard formal R-scheme. Let DI , with I =
{1, . . . , n}, be the intersection of all branches in X and let D = D1 be the branch
given by the equation T1 = 0. We need to show that ]D \ DI [ ↪→ ]D[ induces and
isomorphism in RigSHM(K).

By Proposition 5.8, one has an isomorphism in RigSHM(K):

Mrig(]D◦[) ∼→ Mrig(]D[). (10)

On the other hand, for every 2 6 i 6 n, the formal R-scheme X \Di is isomorphic
to standard formal R-scheme of length n− 1. Applying Proposition 5.8 to it and its
branch D1 \Di, yields an isomorphism in RigSHM(K):

Mrig(]D◦[) ∼→ Mrig(]D \Di[). (11)

Using induction and Mayer–Vietoris distinguished triangles, the isomorphisms (11)
can be “glued” to produce an isomorphism in RigSHM(K):

Mrig(]D◦[) ∼→ Mrig(]D \ ∩ni=2Di[) = Mrig(]D \DI [).

Combining this with the isomorphism (10) gives the required isomorphism. This
finishes the proof of Theorem 5.1.

5.5. A consequence on motives of tube. — We finish this section with the
following application.

Proposition 5.9. — Let X be a formal R-scheme topologically of finite type and
let Z ⊂ Xσ be a locally closed subset. Assume that Xη is smooth over K. Then, the
rigid motive Mrig(]Z[) is a compact object of RigSHM(K).

Proof. — By resolution of singularities, we may find an admissible blow-up e : X ′ →
X with X ′ a semi-stable formal R-scheme and such that Z ′ = e−1(Z) is a union
of irreducible components of (X ′

σ)red. As e induces an isomorphism of rigid analytic
varieties ]Z ′[ ' ]Z[, we may assume from the beginning that X is a semi-stable formal
R-scheme and Z is a union of irreducible components of (Xσ)red.

Denote (Di)i∈I the irreducible components of (Xσ)red and let J ⊂ I be the subset
such that Z = D(J) = ∪j∈JDj . By Corollary 5.2, the obvious inclusion D(J)◦ ↪→
D(J) induces an isomorphism in RigSHM(K):

Mrig(]D(J)◦[) ∼→ Mrig(]D(J)[).

Now, D(J)◦ = (Xσ)red \ D(I \ J) is an open subset of (Xσ)red and hence its tube
]D(J)◦[ is quasi-compact. Therefore, the rigid motive of ]D(J)◦[ is a compact object.
This finishes the proof.
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6. Nearby motivic sheaves in a semi-stable situation

The goal of this section is to prove Theorem 6.1 that is the analog of Theorem 5.1
for nearby motivic sheaves. The proofs of both theorems share some similarities but
differ at a crucial point, namely, at the treatment of the case of a standard space of
length 2. For Theorem 6.1, this case will be treated using Theorem 4.1.

6.1. Statement of the results. — Let X be a semi-stable R-scheme. We denote
by (Di)i∈I the irreducible components of (Xσ)red. Given a subset J ⊂ I, denote by
DJ and D(J) the reduced closed subschemes of Xσ given by

DJ = ∩i∈JDi and D(J) = ∪i∈JDi

with the convention that D∅ = (Xσ)red and D(∅) = ∅.
Fix a subset J ⊂ I and let Z be a closed subscheme of D(J). For I ′ ⊂ I \ J , we

set
Z◦I′ = Z \D(I ′)

and denote by vZ,I′ : Z◦I′ ↪→ Z the obvious inclusion. When I ′ = I \ J , we simply
write Z◦ and vZ instead of Z◦I\J and vZ,I\J .

Theorem 6.1. — Keep the notation as before. Assume that Z is a union of closed
subschemes of the form DJ′ , for some ∅ 6= J ′ ⊂ J . Let M be an object of SHM(K).
Then, for I ′ ⊂ I \ J , the canonical morphism

(Ψff
∗
η (M))|Z → (vZ,I′)∗(vZ,I′)∗(Ψff

∗
η (M))|Z (12)

is an isomorphism in SHM(Z).

Later, we only need the following particular case of Theorem 6.1.

Corollary 6.2. — Keep the notation as before. Let M be an object of SHM(K).
The canonical morphism

(Ψff
∗
η (M))|D(J) → (vD(J))∗(vD(J))∗(Ψff

∗
η (M))|D(J)

is an isomorphism in SHM(D(J)).

The scheme D(J) being a union of irreducible components of the special fiber, it is
rather natural, so as to prove the corollary, to try to use the Mayer–Vietoris triangles
associated with this closed covering. However Corollary 6.2 is not the right statement
to do so. This is exactly where actually proving Theorem 6.1 instead becomes handy.

Remark 6.3. — Note that Theorem 6.1 is a generalization of [4, Théorème 3.3.44],
inspired by [8, Proposition 1.20]. Also, at least for the stable homotopical 2-functor
SHM(−) and the specialization system Ψ, it shows that the hypothesis of Q-linearity
and separatedness are not needed for the conclusion of [4, Théorème 3.3.44]. This
answers affirmatively the question raised in [4, Remarque 3.3.26], at least for SHM(−)
and Ψ, and over some special bases.
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6.2. Reductions. — We start with the following simple reduction.

Lemma 6.4. — If the conclusion of Theorem 6.1 holds for I \ J , then it holds for
every I ′ ⊂ I \ J .

Proof. — Let u : Z◦ = Z◦I\J ↪→ Z◦I′ be the obvious inclusion. Then, vZ = vZ,I\J =
vZ,I′ ◦ u. We are assuming that there is an isomorphism

(Ψf (M |Xη ))|Z ' (vZ)∗(vZ)∗(Ψf (M |Xη ))|Z .

Therefore, to show that the canonical morphism

(Ψf (M |Xη ))|Z → (vZ,I′)∗(vZ,I′)∗(Ψf (M |Xη ))|Z
is invertible, it is enough to show that the natural transformation

(vZ)∗ → (vZ,I′)∗(vZ,I′)∗(vZ)∗
is invertible, which is obvious.

Lemma 6.5. — It is enough to prove Theorem 6.1 when #(J) = 1 (and hence Z is
an irreducible component of Xσ) and I ′ = I \ J .

Proof. — We assume that the case #(J) = 1 and I ′ = I \J is settled and we explain
how to prove the general case of Theorem 6.1. This will be done in two steps. We
first deal with an intersection of components using a blow-up as in [22].
Step1. Assume Z = DJ and I ′ = I \ J . — We will prove the assertion by induction
on the cardinal of J . The case #(J) = 1 being settled by assumption, we may assume
#(J) > 2. Consider h : Y → X the blow-up of X with center Z and let E be its
exceptional divisor. The reduced special fiber (Yσ)red of the R-scheme Y is again a
simple normal crossings divisor in Y , whose irreducible components are the closed
subscheme E and the strict transforms of the Di’s, for i ∈ I (e.g., see [25, Lemma
8.1.2]). In accordance with the notation in §6.1, we denote by E◦ the open subscheme
of E defined as the complement in E of all the strict transforms of the Di’s. We have
the following commutative diagram

E◦
v //

q

��

E
e //

p

��
�

Yσ

hσ

��
D◦J

vDJ // DJ
z // Xσ,

(13)

with a cartesian square on the right (but not on the left).
By our assumption (applied to the R-scheme Y and the component E), the canon-

ical morphism
e∗Ψf◦h(M |Yη )→ v∗v

∗e∗Ψf◦h(M |Yη ) (14)
is an isomorphism in SHM(E). By applying the property (SPE2) of [4, Définition
3.1.1] to the projective morphism h, we see that the morphism

Ψf (M |Xη )→ (hσ)∗Ψf◦h(M |Yη ) (15)
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is an isomorphism in SHM(Xσ). Using these isomorphisms and the base-change for
projective morphism [3, Corollaire 1.7.18] applied to the cartesian square (i.e., the
right square) in (13), we obtain the following chain of canonical isomorphisms:

z∗Ψf (M |Xη ) ' z∗(hσ)∗Ψf◦h(M |Yη ) ' p∗e∗Ψf◦h(M |Yη ) ' p∗v∗v∗e∗Ψf◦h(M |Yη )
' (vDJ )∗q∗v∗e∗Ψf◦h(M |Yη ).

Therefore, to show our claim, it is enough to check that the canonical morphism

(vDJ )∗M → (vDJ )∗(vDJ )∗(vDJ )∗M

is invertible for M = q∗v
∗e∗Ψf◦h(M |Yη ). But, this is obviously true for any M ∈

SHM(D◦J).
Step 2. End of the proof. — We consider now the general case. If Z = ∅, there is
nothing to be proven. Hence, we may assume that Z 6= ∅ (which forces that J 6= ∅).

The closed subscheme Z is then of the form Z = DJ1 ∪ · · · ∪DJn for some integer
n > 1 where ∅ 6= Ji ⊂ J for 1 6 i 6 n. For n = 1, the result follows from the first
step and Lemma 6.4. Let us prove the result by induction on n. If n > 2, we may
then write Z = Z1 ∪ Z2 where

Z1 = DJ1 ∪ · · · ∪DJn−1 and Z2 = DJn .

Let i1 : Z1 ↪→ Z, i2 : Z2 ↪→ Z be the obvious inclusions and denote by i : W ↪→ Z the
inclusion of the intersection W = Z1 ∩ Z2. Using the Mayer–Vietoris distinguished
triangle, associated with the closed covering Z = Z1 ∪ Z2, we obtain a morphism of
distinguished triangles:

(Ψf (M |Xη ))|Z
(12) //

��

(vZ,I′)∗(vZ,I′)∗(Ψf (M |Xη ))|Z

��
(i1)∗(i1)∗(Ψf (M |Xη ))|Z

⊕
(i2)∗(i2)∗(Ψf (M |Xη ))|Z

//

��

(vZ,I′)∗(vZ,I′)∗(i1)∗(i1)∗(Ψf (M |Xη ))|Z
⊕

(vZ,I′)∗(vZ,I′)∗(i2)∗(i2)∗(Ψf (M |Xη ))|Z

��
i∗i
∗(Ψf (M |Xη ))|Z

+1
��

// (vZ,I′)∗(vZ,I′)∗i∗i∗(Ψf (M |Xη ))|Z .

+1
��

Note thatW is also a union of n−1 subschemes of the form DJ′ for some ∅ 6= J ′ ⊂ J .
Therefore one sees that (12) is an isomorphism by induction on n using the following
remark.

Remark 6.6. — Let Z ′ ⊂ Z be a closed subscheme and assume that the canonical
morphism

(Ψf (M |Xη ))|Z′ → (vZ′,I′)∗(vZ′,I′)∗(Ψf (M |Xη ))|Z′ (16)
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is an isomorphism in SHM(Z ′). Then the canonical morphism

i∗i
∗(Ψf (M |Xη ))|Z → (vZ,I′)∗(vZ,I′)∗i∗i∗(Ψf (M |Xη ))|Z (17)

is also an isomorphism in SHM(Z) with i : Z ′ ↪→ Z is the obvious inclusion. This
follows immediately using base-change for projective morphisms (in fact closed im-
mersions) applied to the cartesian square

(Z ′)◦I′

i◦
I′

��

vZ′,I′ //

�

Z ′

i

��
Z◦I′

vZ,I′ // Z.

(18)

Now using [4, Proposition 3.3.39] that relates semi-stable R-schemes to standard
semi-stable R-schemes (as in Example 2.7), we obtain the following further reduction.

Lemma 6.7. — To prove Theorem 6.1, we may assume that X is the standard semi-
stable R-scheme

StUtR[U,U−1],a = Spec R[U,U−1, T1, . . . , Tn]
(T a1

1 · · ·T
an
n − Ut)

where a = (a1, . . . , an) ∈ (N×)n. Moreover, in this case, it is enough to show that

Ψf (M |Xη )|D1 → (vD1)∗(vD1)∗Ψf (M |Xη )|D1 (19)

is an isomorphism in SHM(D1).

Proof. — The problem is local for the Zariski topology and we may replace X by the
R-scheme X[T, T−1]. Using [4, Proposition 3.3.39], we can assume that there exists
a smooth morphism of R-schemes

h : X → S = StUtR[U,U−1],a,

for some a = (a1, . . . , an) ∈ (N×)n. Using base-change by a smooth morphism and
the property (SPE2) of [4, Définition 3.1.1], one sees easily that the morphism

Ψf (M |Xη )|D1 → (vD1)∗(vD1)∗Ψf (M |Xη )|D1

identifies with the inverse image along hσ of the corresponding morphism for the
R-scheme StUtR[U,U−1],a. This finishes the proof.

Our final reduction is the following.

Lemma 6.8. — To prove Theorem 6.1 it is enough to show the case n = 2 of the
property stated in Lemma 6.7. More precisely, it suffices to show that (19) is an
isomorphism for the standard semi-stable R-scheme of length 2:

StUtR[U,U−1],a1,a2
= Spec R[U,U−1, T1, T2]

(T a1
1 T a2

2 − Ut)

where a1, a2 ∈ N×.
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Proof. — We need to prove the property stated in Lemma 6.7 assuming that it holds
for n = 2. We argue by induction on n > 3. We split the proof in two steps. (These
steps correspond to Step 2 and 3 of the proof of Proposition 5.8.)
Step 1. The case where a2 = · · · = an = d. — Using the same method as in the proof
of [4, Théorème 3.3.10], we will treat in this step the case of the standard semi-stable
R-scheme

X = StUtR[U,U−1],(a1,dn−1) = Spec R[U,U−1, T1, . . . , Tn]
(T a1

1 T d2 · · ·T dn − Ut)
.

(Above, dn−1 denotes the constant (n− 1)-tuple with value d ∈ N×.) Recall that D1
is the branch defined by the equation T1 = 0. We denote by f : X → Spec(R) the
structural morphism.

As n > 3, we may consider the standard semi-stable R-scheme

Z = StUtR[U,U−1,Tn],(a1,dn−2) = Spec R[U,U−1, T1, . . . , Tn]
(T a1

1 T d2 · · ·T dn−1 − Ut)

and its admissible blow-up Z ′ at the ideal (Tn−1, Tn). The R-scheme Z ′ has an open
covering given by the following two open subschemes:

Spec(OZ{Sn−1}/(Tn−1Sn−1 − Tn)) = Spec R[U,U−1, Sn−1, T1, . . . , Tn−1]
(T a1

1 T d2 · · ·T dn−1 − Ut)
' Z

and

Spec(OZ{Sn}/(TnSn − Tn−1)) = Spec R[U,U−1, T1, . . . , Tn−2, Sn, Tn]
(T a1

1 T d2 · · ·T dn−2S
d
nT

d
n − v)

' X.

In particular, one has an open immersion X ↪→ Z ′.
Let E′1 ⊂ (Z ′σ)red be the irreducible component defined by the equation T1 = 0 and

let E′◦1 be the complement in E′1 of the union of the remaining irreducible components.
Denote KZ′ the cone of the morphism

(Ψg′(M |Z′η ))|E′1 → (vE′1)∗(vE′1)∗(Ψg′(M |Z′η ))|E′1

(where g′ : Z ′ → Spec(R) is the structural morphism). Also let KX be the similar
cone where g′, Z ′ and E′1 are replaced by f , X and D1

We need to prove that KX = 0. As KX is isomorphic to the restriction of KZ′ to
the open subset D1 ⊂ E′1, it is enough to show that KZ′ = 0.

Let C be the intersection of all branches in X, i.e., the closed subset of Xσ defined
by the ideal (T1, . . . , Tn). Denote also by C its image along the inclusion X ↪→ Z ′.
This is also a closed subset of Z ′σ. Moreover, Z ′ \ C can be covered by standard
semi-stable R-schemes of length at most n− 1. This shows that (KZ′)|E′1\C = 0, i.e.,
KZ ∈ SHM(E′1) is supported on C.
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Now, let h : Z ′ → Z be the blow-up morphism. We have a commutative diagram
with cartesian squares:

E′◦1

vE′1 //

h◦1
��

�

E′1 //

h1

��
�

Z ′σ
i //

hσ

��
�

Z ′

h

��
E◦1

vE1 // E1 // Zσ
i // Z.

(20)

(Again, E1 is the irreducible component of Zσ defined by the equation T1 = 0 and E◦1
is complement in E1 of the union of the remaining irreducible components.) It is easy
to see that hσ induces an isomorphism C ' hσ(C). Therefore, as KZ′ is supported
over C, it is enough to show that (h1)∗KZ′ = 0. Equivalently, we will show that

(h1)∗(Ψg′(M |Z′η ))|E′1 → (h1)∗(vE′1)∗(vE′1)∗(Ψg′(M |Z′η ))|E′1
is an isomorphism. Using base-change for projective morphisms [3, Corollaire 1.7.18]
and the property (SPE2) of [4, Définition 3.1.1], one easily sees that the above
morphism identifies with

(Ψg(M |Zη ))|E1 → (vE1)∗(vE1)∗(Ψg(M |Zη ))|E1 .

As Z is a standard semi-stable R-scheme with n− 1 branches, we may use induction
to conclude.
Step 2. The general case. — The argument below is based on a trick used in the
proofs of [4, Théorèmes 3.3.4 et 3.3.6]. It consists of blowing-up intersections of
two components to increase the multiplicities and reduce the general case to the one
treated in Step 1. We will argue by induction on |a| = a1 + · · ·+ an.

By the previous step, we may assume that (a2, . . . , an) is not constant. Let i, j ∈
{2, . . . , n} such that ai 6= aj . We may assume that ai > aj . Let b = (b1, . . . , bn) be
the n-tuple given by br = ar for r 6= i and bi = ai − aj . Also, let a′ be the n-tuple
given by a′r = ar for r 6∈ {i, j}, a′i = ai − aj and a′j = ai.

Consider the standard semi-stable R-scheme

Z = StUtR[U,U−1],b = Spec R[U,U−1, T1, . . . , Tn]
(T b11 · · ·T

bn
n − Ut)

.

As |b| < |a|, we may assume by induction that the result is known for Z. Let Z ′ be
the blow-up of Z at the ideal (Ti, Tj). The R-scheme Z ′ has an open covering given
by the following two open formal subschemes:

Spec(OZ{Sj}/(TiSj − Tj)) ' StUtR[U,U−1],a

and Spec(OZ{Si}/(TjSi − Ti)) ' StUtR[U,U−1],a′ .

We identify X with the first open subscheme and we denote by V the second one.
Let E′1, E′◦1 and KZ′ be as in Step 1. Again, the restriction of KZ′ to D1 (viewed

as an open subscheme of E′1 thanks to the inclusion X ↪→ Z ′) is isomorphic to KX .
Therefore, it is enough to show that KZ′ = 0.
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Let CX ⊂ (Xσ)red (resp. CV ⊂ (Vσ)red) be the intersection of the n irreducible
components of (Xσ)red (resp. of (Vσ)red). Then the map X t V → Z ′ identifies
C = CX t CV with a closed subset of Z ′σ. Moreover, Z \ C can be covered by
standard semi-stable R-schemes of length at most n− 1. Therefore, by induction on
n, one gets that (KZ′)|E′1\C = 0, i.e., KZ′ is supported at C.

Now, the blow-up morphism h : Z ′ → Z induces isomorphisms CX ' hσ(C) and
CV ' hσ(C). Therefore, it is enough to prove that (h1)∗KZ′ = 0, with h1 : E′1 → E1
the morphism induced by h. Finally, note that one also has a commutative diagram
with cartesian squares as in (20). Using this, one can conclude exactly as we did in
the last part of Step 1.

6.3. The case of a standard semi-stable R-scheme of length 2. — In this
subsection we finish the proof of Theorem 6.1 by showing the property stated in
Lemma 6.8. We start with the following key observation.

Lemma 6.9. — Let Y be a finite type R-scheme with smooth generic fiber. Let
v ∈

√
tO(Y ) dividing a power of t. Let X = StvY,a1,a2

be the associated standard
R-scheme of length 2. Let f : X → Spec(R) and q1 : D◦1 → Spec(k) be the structural
morphisms. Then the canonical morphism

(fσ)∗Ψf (M |Xη )→ (q1)∗(Ψf (M |Xη )|D◦1 )
is an isomorphism in SHM(k). (As usual, D1 is the branch given by the equation
T1 = 0 and D◦1 = D1 \D2 where D2 is the branch given by the equation T2 = 0.)

Proof. — The proof of this lemma makes use of Theorem 4.11.
As in Step 1 of the proof of Proposition 5.8, we may assume that a1 and a2 are

coprime. (This will be needed later in the proof.) Let X be the t-adic completion
of X and U the t-adic completion of X \D2. Then U is an open formal subscheme
of X , and Xσ = Xσ and Uσ = D◦1 . Using Theorem 4.11, the morphism we are
interested in can be written as

1∗ ◦R(Hom(Mrig(Xη),Rig∗(M)))→ 1∗ ◦R(Hom(Mrig(Uη),Rig∗(M))).
Therefore, it suffices to show that

Mrig(Uη)→ Mrig(Xη)
is an isomorphism in RigSHM(K).

Let Y be the t-adic completion of the R-scheme Y . Then X is the standard semi-
stable formal R-scheme StvY ,a1,a2

. Now, the rigid analytic varieties Uη and Xη were
identified in Step 1 of the proof of Proposition 5.8 with the following relative annulus
and boundary of relative ball:

CrYη (o, |v|−d2/a1
∞ , |v|d1/a2

∞ ) and ∂B1
Yη (o, |v|−d2/a1

∞ ).
Thus, it is enough to show that the inclusion

∂B1
Yη (o, |v|−d2/a1

∞ ) ↪→ CrYη (o, |v|−d2/a1
∞ , |v|d1/a2

∞ )
induces an isomorphism in RigSHM(K). This is done in [2, Proposition 1.3.4].

From Lemma 6.9, we deduce the following variant of what is needed.
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Corollary 6.10. — Let a1, a2 ∈ N× and v ∈ R a uniformizing element (i.e., v ∈
tR×). Let X = StvR,a1,a2

and denote by f : X → Spec(R) the structural morphism.
Then, the morphism

(Ψf (M |Xη ))|D1 → (vD1)∗(vD1)∗(Ψf (M |Xη ))|D1

is an isomorphism.

Proof. — We split the proof in two steps.
Step 1.— For i ∈ {1, 2}, denote by zDi : Di ↪→ Xσ the obvious inclusion. Consider
the following morphism of distinguished triangles in SHM(Xσ):

N //

��

Ψf (M |Xη ) // (zD1)∗(zD1)∗Ψf (M |Xη ) +1 //

��
N ′ // Ψf (M |Xη ) // (zD1)∗(vD1)∗(vD1)∗(zD1)∗Ψf (M |Xη ) +1 //

where the objects N and N ′ are defined (up to isomorphism) as the homotopy fibers
(aka., shifted cone) of the horizontal arrows in the middle.

It is enough to show that N → N ′ is an isomorphism. Let C = D1∩D2. The third
vertical arrow in the previous diagram is an isomorphism after restriction to Xσ \C.
Thus, it is also the case for N → N ′. In other words, Cone(N → N ′) is supported
over C. As C ' Spec(k), we see that it suffices to show that

(fσ)∗(N)→ (fσ)∗(N ′)

is an isomorphism in SHM(k). Now, by Lemma 6.9, we have (fσ)∗(N ′) = 0. Hence,
to finish the proof, we are left to show that (fσ)∗(N) = 0. This will be done in the
second step.
Step 2.— Using the localization triangle associated with the closed subset D1 ⊂ Xσ

and its complement D◦2 , one gets that:

N ' (zD2)∗(vD2)!(Ψf (M |Xη ))|D◦2 .

Therefore, one has:

(fσ)∗(N) ' (p2)∗(vD2)!(Ψf (M |Xη ))|D◦2
with p2 : D2 → Spec(k) the structural morphism.

Now, Ψf (M |Xη )|D◦2 can be computed explicitly using Proposition 3.4. To state
the result, we need some notations. Assume that v = ut, with u ∈ R×. Note that
D2 = Spec(k[T1]) and D◦2 = Spec(k[T1, T

×
1 ]). Consider the following finite étale cover

of D◦2 :

r◦2 : E◦2 = Spec(k[T1, T
−1
1 ][S]/(Sa2 − u0T

−a1
1 ))→ D◦2 = Spec(k[T1, T

−1
1 ])

(where u0 is the residue class of u). With these notations, one has

Ψf (M |Xη )|D◦2 ' (r◦2)∗(A|E◦2 )
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with A = ΨId((ea2)∗ηM) where, for m ∈ N×, em : Spec(k[[t]]) → Spec(k[[t]]) is given
by t 7→ tm.

Now, let E2 be the normal finite D2-scheme extending E◦2 . If e is the greatest
common divisor of a1 and a2, a1d1 + a2d2 = e a Bézout relation, and l = k[w]/(we −
u0), then

E2 ' Spec(l[T1, S
′]/(S′a2/e − w−d1T1)) ' A1

l .

(The first isomorphism above is induced by the substitution S′ = S−d1T d2
1 .) We have

a cartesian square

E◦2 ' Gm,l

vE2 //

r◦2
��

E2 ' A1
l

r2

��
D◦2

vD2 // D2.

This gives canonical isomorphisms
(vD2)!Ψf (M |Xη )|D◦2 ' (vD2)!(r◦2)∗(A|E◦2 ) ' (r2)∗(vE2)!(A|E◦2 ).

Therefore, to finish the proof it remains to show that p∗j!q∗ ' 0 where j : Gm,l ↪→ A1
l ,

p : A1
l → Spec(l) and q : Gm,l → Spec(l) are the obvious morphisms. This is an easy

exercise. Indeed, by localization, one has a distinguished 2-triangle

p∗j!j
∗p∗ → p∗p

∗ → p∗i∗i
∗p∗

+1−→
where i : Spec(l) → A1

l is the zero section. Now, clearly, p∗j!j∗p∗ ' p∗j!q
∗ and

p∗i∗i
∗p∗ ' Id as p ◦ i = IdSpec(l). Also, we have p∗p∗ ' Id by homotopy invariance.

This finishes the proof.

We are now ready to prove the following statement, and thus complete the proof
of Theorem 6.1 (see Lemma 6.8).

Proposition 6.11. — Let a1, a2 ∈ N× and let

X = StUtR[U,U−1],a1,a2
= Spec R[U,U−1, T1, T2]

(T a1
1 T a2

2 − Ut)
.

Denote f : X → Spec(R) the structural morphism. Then, the morphism
(Ψf (M |Xη ))|D1 → (vD1)∗(vD1)∗(Ψf (M |Xη ))|D1 (21)

is an isomorphism.

Proof. — We start as in the proof of Corollary 6.10 from which we keep the notations.
As there, we must show that N → N ′ is an isomorphism. The difficulty we need to
overcome here is caused by the fact that C = D1∩D2, on which L = Cone(N → N ′) is
supported, is now a 1-dimensional scheme (isomorphic to Spec(k[U,U−1])). Therefore,
it is no longer sufficient to check that (fσ)∗(L) = 0.

However, it would suffice to check that (fσ)∗(L) = 0 if we knew that L was sup-
ported on a 0-dimensional closed subset of C. This is what we will prove in Step 1
below. In Step 2, we complete the proof by checking that (fσ)∗(L) = 0 using the
same method as in the proof of Corollary 6.10.
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Before starting with Step 1, we note that we may assume that M is compact, i.e.,
M ∈ SHM,ct(K). Indeed, all the operations in (21) commute with infinite sums and
are triangulated. As SHM(K) is a compactly generated triangulated category with
infinite sums (see [4, Théorème 4.5.67]), we may indeed assume that M is compact.
The compactness of M will be useful in Step 1.
Step 1. M is supported on a 0-dimensional subset of C. — As M is assumed to
be compact, it follows from [3, Scholie 2.2.34] and [4, Théorème 3.5.14] that L is a
compact object of SHM(Xσ).

Let ηC ' Spec(k(U)) the generic point of C. We also denote by ηC its inclusion
in Xσ. As L is compact and supported in C, [2, Corollaire 1.A.3] shows that L is
supported on a 0-dimensional closed subset of C if and only if (ηC)∗(L) = 0.

Now in order to prove that (ηC)∗(L) = 0, we introduce some notations. Let
k̃ = k(U), R̃ = k̃[[t]] and K̃ = R̃[t−1]. There is a morphism of R-scheme

s : Y = StUtR̃,a1,a2
→ X = StUtR[U,U−1],a1,a2

which is regular. Indeed, we have Y = X⊗k[[t]][U,U−1]k(U)[[t]] and k(U)[[t]] is a regular
k[[t]][U,U−1]-algebra. Let g : Y → Spec(R) be the structural morphism. Using [2,
Corollaire 1.A.4] and the definition of the nearby motivic sheaf functors, we deduce
that the canonical morphism

(sσ)∗Ψf (M |Xη )→ Ψg(M |Yη )

is an isomorphism. Also, note that Ψg(M |Yη ) = Ψg̃(M |Yη ) where g̃ : Y → Spec(R̃),
i.e., the nearby motivic sheaf for Y can be computed equally using its structure of an
R-scheme or an R̃-scheme.

The morphism sσ : (Yσ)red → (Xσ)red is the pro-open immersion

Spec(k(U)[T1, T2]/(T1T2)) ↪→ Spec(k[U,U−1, T1, T2]/(T1T2)).

Let E1 ⊂ Yσ be the irreducible component defined by the equation T1 = 0. We
have E1 = Spec(k(U)[T2]) and the morphism E1 → D1, induced by sσ, is simply the
pro-open immersion Spec(k(U)[T2]) ↪→ Spec(k[U,U−1, T2]).

The inverse image of (21) along the pro-open immersion E1 ↪→ D1 identifies with
the morphism

(Ψg(M |Yη ))|E1 → (vE1)∗(vE1)∗(Ψg(M |Yη ))|E1 .

The latter is an isomorphism by Corollary 6.10. Therefore, the inverse image of
N → N ′ along the pro-open immersion sσ : Yσ → Xσ is an isomorphism. This shows
that (sσ)∗(L) = 0. Now, the inclusion of the point ηC in Xσ factors through sσ. This
gives that (ηC)∗(L) = 0 as claimed.
Step 2. End of the proof. — Thanks to Step 1, it remains to show that (fσ)∗(L) = 0.
This is equivalent to showing that

(fσ)∗(N)→ (fσ)∗(N ′)

is an isomorphism in SHM(k). Now, by Lemma 6.9, we have (fσ)∗(N ′) = 0. Hence,
to finish the proof, we are left to show that (fσ)∗(N) = 0.
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The rest of the proof is identical to Step 2 of the proof of Corollary 6.10. As there,
we have:

(fσ)∗(N) ' (p2)∗(vD2)!(Ψf (M |Xη ))|D◦2 .
Here also, Ψf (M |Xη )|D◦2 can be computed explicitly using Proposition 3.4: Note that

D2 = Spec(k[U,U−1, T1]) and D◦2 = Spec(k[U,U−1, T1, T
×
1 ]).

Consider the following finite étale cover of D◦2 :

r◦2 : E◦2 = Spec(k[T1, T
−1
1 ][S]/(Sa2 − UT−a1

1 ))→ D◦2 = Spec(k[T1, T
−1
1 ])

With these notations, we have

Ψf (M |Xη )|D◦2 ' (r◦2)∗(A|E◦2 )

with A = ΨId((ea2)∗ηM) where, for m ∈ N×, em : Spec(k[[t]]) → Spec(k[[t]]) is given
by t 7→ tm.

Now, let E2 be the normal finite D2-scheme extending E◦2 . If e is the great-
est common divisor of a1 and a2, a1d1 + a2d2 = e a Bézout relation, and P =
Spec(k[w]/(we − U)), then

E2 ' Spec(OP [T1, S
′]/(S′a2/e − w−d1T1)) ' A1

P .

(The first isomorphism above is induced by the substitution S′ = S−d1T d2
1 .) We have

a cartesian square

E◦2 ' Gm,P

vE2 //

r◦2
��

E2 ' A1
P

r2

��
D◦2

vD2 // D2.

This gives isomorphisms

(vD2)!Ψf (M |Xη )|D◦2 ' (vD2)!(r◦2)∗(A|E◦2 ) ' (r2)∗(vE2)!(A|E◦2 ).

We conclude using that p∗j!q∗ ' 0 for j : Gm,P ↪→ A1
P , p : A1

P → P and q : Gm,P →
P the obvious morphisms.

7. Nearby motivic sheaves and rigid motives of tubes

In this section, we prove the main result of this article (see Theorem 7.1) that
extends Theorem 4.11 to motives of tubes of locally closed subsets of the special
fiber.

7.1. Statement of the main theorem. — Let X be a finite type R-scheme and
let f : X → Spec(R) be its structural morphism. Assume that Xη is smooth over K
and consider the t-adic completion X of X.

The following statement is our main theorem.
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Theorem 7.1. — Let Z ⊂ Xσ be a locally closed subset and denote by z : Z ↪→ Xσ

its inclusion. Consider the tube ]Z[ of Z in Xη. Let M be an object of SHM(K).
Then, there exists a canonical isomorphism in SHM(k):

1∗ ◦R(Hom(Mrig(]Z[),Rig∗(M))) ' (fσ ◦ z)∗(Ψf (M |Xη )|Z).

Taking M to be the unit object of SHM(K), one gets the following:

Corollary 7.2. — With the notation of Theorem 7.1, there is a canonical isomor-
phism in SHM(k):

1∗ ◦R(M∨rig(]Z[)) ' (fσ ◦ z)∗(Ψf (1Xη ))|Z .

7.2. The proof of Theorem 7.1. — The proof consists of using Corollary 5.2 and
Corollary 6.2 to deduce Theorem 7.1 from its particular case obtained in Theorem
4.11. We split the proof in three steps.
Step 1. Reduction to the case where Z is closed. — Let U ⊂ X be an open neighbor-
hood of Z in which Z is closed. Let fU : U → Spec(R) be the structural morphism of
U , U its t-adic completion and zU : Z ↪→ Uσ the obvious inclusion. Clearly, the tube
of Z in Xη is also the tube of Z in Uη (see [24, Proposition 2.2.2]). On the other
hand, we have

(fσ ◦ z)∗(Ψf (M |Xη ))|Z ' ((fU )σ ◦ zU )∗(ΨfU (M |Uη ))|Z .
Therefore, we may replace X by U and assume that Z is closed.
Step 2. Reduction to the case where X is semi-stable and Z is a subdivisor. — Let
h : X ′ → X be a projective morphism such that X ′ is a semi-stable R-scheme, hη is
an isomorphism and ((hσ)−1(Z))red is a union of irreducible components of (X ′σ)red.
(Such a morphism exists by Hironaka’s resolution of singularities.)

By [24, Corollary 2.2.7], we have ]Z[ = ]h−1(Z)[ as admissible open rigid subvari-
eties of Xη which we identifies with X ′

η . On the other hand, using property (SPE2)
of [4, Définition 3.1.1] and the base-change theorem for projective morphisms [3,
Corollaire 1.7.18], we have canonical isomorphisms

(fσ)∗z∗z∗Ψf (M |Xη ) ' (fσ)∗z∗z∗(hσ)∗Ψf◦h(M |X′η ) ' (fσ ◦ hσ)∗z′∗z′∗Ψf◦h(M |X′η )

where z′ : h−1(Z) ↪→ X ′ is the obvious inclusion. Therefore, it is enough to show
that there is an isomorphism

1∗ ◦R(Hom(Mrig(]h−1(Z)[),Rig∗(M))) ' (f ′σ ◦ z′)∗(Ψf◦h(M |X′η )|h−1(Z)).
In other words, we may assume that the R-scheme X is semi-stable and that Z is a
union of irreducible components of (Xσ)red.
Step 3. End of the proof. — Here, we assume that the R-scheme X is semi-stable
and we denote by (Di)i∈I the irreducible components of (Xσ)red. We also assume
that Z = D(J) = ∪j∈JDj for a subset J ⊂ I. Recall that D(J)◦ = D(J) \ ∪i∈I\JDi;
this is an open subset of Xσ.

Now, by Corollary 5.2, we have a canonical isomorphism
1∗ ◦R(Hom(Mrig(]D(J)[),Rig∗(M))) ∼→ 1∗ ◦R(Hom(Mrig(]D(J)◦[),Rig∗(M))).
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On the other hand, by Corollary 6.2, we have canonical isomorphisms

(fσ)∗(zD(J))∗(zD(J))∗Ψf (M |Xη ) ∼→ (fσ)∗(zD(J))∗(vD(J))∗(vD(J))∗(zD(J))∗Ψf (M |Xη )
' (fσ)∗(zD(J)◦)∗(zD(J)◦)∗Ψf (M |Xη )

where zD(J) : D(J) ↪→ Xσ, zD(J)◦ : D(J)◦ ↪→ Xσ and vD(J) : D(J)◦ ↪→ D(J) are
the obvious inclusions. Therefore, it is enough to prove Theorem 7.1 for D(J)◦. As
D(J)◦ is an open subset, we may apply Theorem 4.11 to the R-scheme X \∪j∈I\JDj

to get the result.

8. Applications and remarks

In this section, we use Theorem 7.1 and [22, Theorem 5.1] to establish a link
between the motivic Milnor fiber of Denef–Loeser [15, Définition 4.2.1] and the rigid
motive of the analytic Milnor fiber of Nicaise–Sebag [29].

8.1. Two definitions. — Let X be a finite type R-scheme and denote by f : X →
Spec(R) its structural morphism. Assume that Xη is smooth.

Remark 8.1. — Although it is unnecessary, the reader may want to assume through-
out this section that the morphism f : X → Spec(R) is the base-change by Spec(R)→
A1
k of a morphism f̃ : X̃ → A1

k with X̃ a smooth k-scheme of finite type; this as-
sumption is sometimes necessary to quote results from the existing literature, word
for word.

For the reader who wants to keep the degree of generality that was adopted so far
in this article, we mention that the rationality of the motivic zeta function for finite
type R-schemes with smooth generic fiber has been verified in [32] and [29, Corollary
7.7].

Definition 8.2. — Let x ∈ Xσ(k) be a rational point. Following Nicaise–Sebag
[29], we define the analytic Milnor fiber of f at x to be the tube ]x[ ⊂ Xη of the
closed point x. This is a rigid analytic variety over K which is denoted by Fx.(3)

Given a base-scheme S, let K0(VarS) be the Grothendieck group of S-schemes.
This group is the quotient of the free abelian group on isomorphism classes of quasi-
projective S-schemes by the scissor relation [Y ] = [Y \ Z] + [Z] (where Y is a quasi-
projective S-scheme and Z ⊂ Y is a closed subscheme). Fiber product over S endows
K0(VarS) with a ring structure. One sets

MS = K0(VarS)[L−1]

where L = [A1
S ].

(3)In [29], the analytic Milnor fiber is considered as a Berkovich space. In this article, we prefer to
consider it as a rigid analytic variety in the sense of Tate.



40 JOSEPH AYOUB, FLORIAN IVORRA & JULIEN SEBAG

Going back to our setting, one has by Denef–Loeser [15] the motivic zeta function
associated with the R-scheme X (or, more precisely, to the morphism f̃ : X̃ → A1

k):

Zf (T ) =
∑
n>1

Z1
nT

n ∈ MXσ [[T ]],

with Z1
n = L−nd[{φ ∈ Ln(X), f ◦ φ = tn + O(tn+1)}] ∈ MXσ where Ln(X) is the

n-jets space of X and d the dimension of X (that we may assume constant). For
x ∈ Xσ(k), one gets by applying the natural ring homomorphism x∗ : MXσ → Mk,
[Y ] 7→ [Y ×Xσ x], the local motivic zeta function at x denoted by Zf,x(T ).

By Denef–Loeser [15], one knows that Zf (T ) is a rational function and that the
limit

ψf = −
(

lim
T→∞

Zf (T )
)

exists in MXσ .

Definition 8.3. — For x ∈ Xσ(k), the image of ψf by x∗ : MXσ → Mk is called
the motivic Milnor fiber at x and is denoted by ψf,x.

8.2. Recollection from Ivorra–Sebag [22]. — Here we recall the main results
of [22] and explain how to obtain variants which are more suitable for our purposes.
Roughly speaking, we claim that everything in [22] still hold when DAét(−,Q), the
category of étale motivic sheaves with rational coefficients, is replaced by SHM(−).
This is rendered possible primarily thanks to Theorem 6.1 showing that the conclusion
of [4, Théorème 3.3.44] holds for SHM(−) even though the latter is not Q-linear nor
separated (cf. Remark 6.3).

First, note the following:

Lemma 8.4 ([22], Lemma 2.1). — Let S be a base-scheme. Then, there exists a
ring homomorphism

χS,c : MS → K0(SHM,ct(S)),
which is uniquely determined by the formula

χS,c([Y ]) = [MS,c(Y )]
where Y is a quasi-projective S-scheme and MS,c(Y ) is its motive with compact sup-
port defined to be (pY )!(pY )∗1S with pY : Y → S the structural morphism.

Proof. — The proof given in [22] extends word for word to the case of SHM(−). (We
warn the reader that there is a misprint in the proof of [22, Lemma 2.1]: the image
of L by χS,c is [1S(−1)] instead of [1S(1)].) Note that (pY )!(pY )∗1S is a compact
object of SHM(S) by [4, Scholie 2.2.34 B].

Theorem 8.5 ([22], Theorem 3.1). — Let X be a semi-stable R-scheme and recall
the notations from §6.1. For ∅ 6= J ⊂ I, let ρJ : D̃◦J → D◦J be the étale finite cover
defined as in [22, §3.1.3]. Then, one has the formula

[Ψf (1Xη )] =
∑
∅6=J⊂I

(−1)|J|−1
[
MXσ,c(D̃◦J ×k G|J|−1

m,k )
]

in K0(SHM,ct(Xσ)).
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Proof. — The proof given [22, §4] extends with very few modifications: there are
only two points where new ingredients are needed. More precisely, in the proof of
[22, Proposition 4.4], the reference to [4, Théorème 3.3.44] is no longer sufficient for
SHM(−) which is not Q-linear nor separated. Happily, we now can use Theorem
6.1 to overcome this difficulty. Also, the reference to [6, Théorème 10.6] needs to be
changed: one can use Proposition 3.4 instead.

The rest of the proof, i.e., [22, Lemmas 4.1, 4.2 and 4.3], [22, Proposition 4.5]
and [22, §4.3], extend with no modification. Note also that the extension of the
argument in [22, §4.3] (which is based on Verdier duality and its compatibility with
the nearby motivic sheaf functors) is indeed possible because we are working over a
field of characteristic zero.

Finally, note that due to the lack of orientability in SHM(−), Thom equivalences
are not always trivial. Hence, if M is a locally free OS-module of rank r on a
scheme S, then Th(M)(−) can be different from the Tate twist (−)(r)[2r]. However,
these two functors will agree locally for the Zariski topology on S which shows that
[Th(M)(A)] = [A(r)[2r]] in K0(SHM,ct(S)) for any A ∈ SHM,ct(S).

As in [22] one gets the following statement as a consequence of Theorem 8.5 and
known formulas for ψf in a semi-stable situation.

Corollary 8.6 ([22], Theorem 5.1). — Let X be a finite type R-scheme with
smooth generic fiber and denote by f : X → Spec(R) its structural morphism. We
have the equality

[Ψf (1Xη )] = χXσ,c(ψf )
in K0(SHM,ct(Xσ)). Also, for every x ∈ Xσ(k), we have the equality

[x∗Ψf (1Xη )] = χk,c(ψf,x)

in K0(SHM,ct(k)).

8.3. An application. — We are now ready to give our application. Let X be a
finite type R-scheme with smooth generic fiber and denote by f : X → Spec(R) its
structural morphism. Also, fix a rational point x ∈ Xσ(k).

Theorem 8.7. — There is a canonical isomorphism in SHM(k):

1∗ ◦R(M∨rig(Fx)) ' x∗Ψ(1Xη ).

Proof. — This is a particular case of Theorem 7.1.

Corollary 8.8. — The following equality holds in K0(SHM,ct(k)):

[1∗ ◦R(M∨rig(Fx))] = χk,c(ψf,x). (22)

Proof. — This result follows directly from Theorem 8.7 and Corollary 8.6.

Remark 8.9. — Corollary 8.8 shows that the motivic Milnor fiber of Denef–Loeser,
viewed as a class in K0(SHM,ct(k)) via the morphism χk,c, depends only on the rigid
motive of the analytic Milnor fiber.
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8.4. Some remarks. — We gather here some remarks that a reader familiar with
the literature on “motivic integration” might find useful.

Let X be a finite type R-scheme with smooth generic fiber and denote by f : X →
Spec(R) its structural morphism.

Remark 8.10. — Theorem 7.1 and Corollary 8.6 give a positive answer to the ques-
tion asked in [29, page 163]. Indeed, by [29, Theorem 9.13], the motivic volume
S(Xη; K̂s) is equal to ψf up to a twist by a power of L.

Remark 8.11. — Assume that k contains all roots of unity. The trace formula of
Denef–Loeser [16, Theorem 1.1] links the Lefschetz numbers of the monodromy action
on the Milnor fiber with the Euler characteristic of the coefficients of the local zeta
function. In [29, Theorem 5.4] and [28, Theorem 6.4] this trace formula has been
extended in different directions. In particular, given a locally closed subset Z ⊂ Xσ,
one has for all d ∈ N×

Tr(ϕd | Hét(]Z[,Q`)) = χ`,c(SZ(Xd)). (23)

In this formula, ϕ is a topological generator of the Galois group µ̂ of the extension
∪d∈N×k((t1/d)) of K = k((t)), SZ(Xd) is the motivic Serre invariant with support in Z
associated with the t1/d-adic completion of Xd = X ⊗k[[t]] k[[t1/d]], and χ`,c : Mk → Z
is the `-adic Euler characteristic with compact supports.

Using corollary 7.2, one can formulate this trace formula in a more motivic way. In-
deed, the group µ̂ acts by natural transformations on the functor 1∗ : QUSHM(k)→
SHM(k). In particular, one has an action of µ̂ on 1∗ ◦ R(M∨rig(]Z[)). Moreover, af-
ter semi-simplification, the action of µ̂ on the étale realization of 1∗ ◦ R(M∨rig(]Z[))
agrees with its action on Hét(]Z[,Q`). In particular, the left hand side of (23) can
be written as Tr(ϕd | 1∗ ◦R(M∨rig(]Z[))). (Note that the object 1∗ ◦R(M∨rig(]Z[)) is
strongly dualizable thanks to Lemma 4.10 and Proposition 5.9. Hence, the trace of an
endomorphism of this object makes sense.) Therefore, we may reformulate the trace
formula as follows:

Tr(ϕd | 1∗ ◦R(M∨rig(]Z[))) = χ`,c(SZ(Xd)).

This shows that the monodromy zeta function of A’Campo only depends on the motive
of the analytic Milnor fiber.

Remark 8.12. — In [19, 20], Hrushovski and Kazhdan introduced Grothendieck
rings associated with the theory ACVF(0, 0) of algebraically closed valued fields of
equi-characteristic zero. From loc. cit. and [21], one has the following ring homomor-
phisms:

K0(volVFK)
Θ̃◦Υ◦

∫
// Kµ̂

0 (Vark)[[A1
k]−1] f // K0(Vark)[[A1

k]−1] = Mk.

The group K0(volVFK) is the Grothendieck group of definable subsets of VFn over
K with volume form. The group Kµ̂

0 (Vark) is the Grothendieck ring of k-schemes
endowed with a continuous action of the profinite group µ̂ = limn∈N× µn(k) (k is
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assumed to have all roots of unity). The morphism f is induced by the forgetful
functor. For the definitions of the morphisms Θ̃, Υ and

∫
, we refer the reader to [21].

The analytic Milnor fiber Fx is a definable subset in ACVF(0, 0) and hence admits
a class [Fx] in the ring K0(volVFK). With the previous notation, [21, Corollary 8.4.2]
gives the following formula:

ψf,x = f ◦ Θ̃ ◦Υ ◦
∫

([Fx]) . (24)

In the same spirit as Corollary 8.8, this formula shows that the motivic Milnor fiber of
Denef–Loeser depends only on the class of the analytic Milnor fiber in K0(volVFK).

Remark 8.13. — We keep the notation as in the previous remark. Combin-
ing the formula (24) with the formula (22) of Corollary 8.8 gives an equality in
K0(SHM,ct(k)):

χk,c ◦ f ◦ Θ̃ ◦Υ ◦
∫

([Fx]) = [1∗ ◦R(M∨rig(Fx))].

It is therefore tempting to speculate the existence of a ring homomorphism(4)

† : K0(volVFK)→ K0(SHM,ct(k))

sending the class [V ] ∈ K0(volVFK) of a definable smooth rigid analytic variety V
to the class [M∨rig(V )] ∈ K0(SHM,ct(k)) of its associated cohomological rigid motive
M∨rig(V ). Moreover, there should be a commutative diagram

K0(volVFK)
θ̃◦Υ◦

∫
//

†
��

Kµ̂
0 (Vark)[[A1

k]−1] f //

χk,c

��

K0(Vark)[[A1
k]−1]

χk,c

��
K0(RigSHM,ct(K)) R

∼
// K0(QUSHM,ct(k)) 1∗ // K0(SHM,ct(k)).

If such a homomorphism † exists, our formula (22) would then follows from the formula
of Hrushovski–Loeser [21, Corollary 8.4.2].
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