DEUG Sciences 1er niveau - Mentions MASS, MIAS UE 5 - MA4 Corrigé rapide du contrôle du 3 avril 1999

Question de cours (3 points)

Une fonction réelle f définie sur un intervalle I est dite convexe quand pour tous a, b de I et pour tout t de [0,1], on a

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$$

Exercice n°1 (4 points)

- 1) L'équation sans second membre est xy'+y=0 qui admet pour solution (sur tout intervalle ne contenant pas 0), $y=\frac{\lambda}{x}$. On cherche alors une solution particulière sous la forme $y(x)=\frac{\lambda(x)}{x}$ (méthode de la variation de la constante) ce qui conduit à $\lambda'(x)=e^x$ et donc à la solution particulière $y(x)=\frac{e^x}{x}$. Les solutions de (E) sur $]-\infty,0[$ sont donc les fonctions de la forme $y:x\mapsto\frac{e^x+\lambda}{x}$. Il en est de même sur $]0,+\infty[$.
- 2) Ce qui précède montre qu'une solution f sur \mathbb{R} est nécessairement donnée par $f(x) = \begin{cases} \frac{e^x + \lambda_1}{x} & \text{si } x < 0 \\ \frac{e^x + \lambda_2}{x} & \text{si } x > 0 \end{cases}$ La continuité de f en 0 impose alors $\lambda_1 = \lambda_2 = -1$ (on a en effet $\lim_{x\to 0} (e^x + \lambda_1) = 1 + \lambda_1$ donc si $\lambda_1 \neq -1$, $\lim_{x\to 0^-} f(x) = \infty$ et de même pour λ_2). On vérifie que la fonction ainsi définie est bien une solution de classe C^1 sur \mathbb{R} .

Exercice n°2 (6 points)

- 1) Il est immédiat que f est de classe C^{∞} sur \mathbb{R} . Pour tout réel x on a : $f'(x) = -2\frac{x}{a^2}e^{-(\frac{x}{a})^2}$ et $f''(x) = \frac{2}{a^2}\left(2\frac{x^2}{a^2}-1\right)e^{-(\frac{x}{a})^2} = \frac{4}{a^4}\left(x-\frac{a}{\sqrt{2}}\right)\left(x+\frac{a}{\sqrt{2}}\right)e^{-(\frac{x}{a})^2}$. La fonction f' (impaire) est donc décroissante sur $[0,\frac{a}{\sqrt{2}}]$ et croissante sur $[\frac{a}{\sqrt{2}},+\infty[$. Comme $\lim_{+\infty}f'=0$, on en déduit : $M=|f'(\frac{a}{\sqrt{2}})|=\frac{\sqrt{2}}{a}e^{-1/2}$. Or $a\geq 2,\frac{\sqrt{2}}{2}\leq 0,75$ et $e^{-1/2}=\frac{1}{\sqrt{e}}\leq \frac{1}{1,6}$ donc $M\leq \frac{0.75}{1,6}\leq \frac{1}{2}$.
- 2) On pose $u_0 = 0$ et pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - a) Soit $n \in \mathbb{N}^*$. f est continue et dérivable sur \mathbb{R} et on a $\forall x \in \mathbb{R}$, $|f'(x)| \leq \frac{1}{2}$. L'inégalité des accroissements finis donne alors $|u_{n+1} u_n| = |f(u_n) f(u_{n-1})| \leq \frac{1}{2}|u_n u_{n-1}|$. Une récurrence immédiate montre alors que $|u_{n+1} u_n| \leq (\frac{1}{2})^n |u_1 u_0|$. Le résultat en découle puisque $|u_1 u_0| = |f(0) 0| = 1$. Le résultat précédent appliqué à n = 2p montre que $\lim_{p \to +\infty} |u_{2p+1} u_{2p}| = 0$. Or $u_{2p+2} = f \circ f(u_{2p})$ et $u_{2p+3} = f \circ f(u_{2p+1})$ et $f \circ f$ est croissante sur \mathbb{R}^+ donc ces deux suites (clairement positives) sont monotones. Comme $u_0 = 0$, $u_2 \geq u_0$ et la suite $(u_{2p})_p$ est croissante. De même, $u_1 = 1$ donc $u_3 \leq u_1$ et la suite (u_{2p+1}) est décroissante. Finalement, les suites $(u_{2p})_{p \in \mathbb{N}}$ et $(u_{2p+1})_{p \in \mathbb{N}}$ sont adjacentes.
 - b) Les deux suites extraites (u_{2p}) et (u_{2p+1}) convergeant vers la mme limite, on en déduit que la suite (u_n) est convergente (cf MA2). On peut aussi bien sûr appliquer le théorème des fonctions contractantes.

Soit $f:[1,+\infty[\to\mathbb{R}]]$ une fonction continue admettant une limite finie ℓ en $+\infty$.

- ¹⁾a) Puisque $\lim_{t\to\infty} f = \ell$, on peut (choix de $\varepsilon = 1$) trouver un A > 0 tel que : $\forall x \geq A, |f(x) \ell| \leq 1$. On peut sans restriction imposer $A \geq 1$. f continue sur le segment [1,A] y est alors bornée : $\exists M \geq 0, \ \forall x \in [1,A], |f(x)| \leq M$. Or $\forall x \geq A, |f(x)| \leq 1 + |\ell| \ \text{donc} \ \forall x \geq 1, |f(x)| \leq \max(M,1+|\ell|)$ et f est bornée sur $[1,+\infty[$.
 - b) L'hypothèse s'écrit $\forall \varepsilon > 0, \exists A_{\varepsilon} > 0, \forall x \geq A_{\varepsilon}, |f(x) \ell| \leq \varepsilon$. Soit alors $\varepsilon > 0$. Posons $A = A_{\frac{\varepsilon}{2}}$.

f est uniformément continue sur [1, A] comme toute fonction continue sur un segment (Heine). Par suite,

$$\exists \delta > 0, \ \forall x, y \in [1, A], \ |x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon/2$$

Soient alors $x, y \in [1, +\infty[$ vérifiant $|x - y| \le \delta$.

- ou bien $x, y \in [1, A]$ et $|f(x) f(y)| \le \varepsilon/2 \le \varepsilon$
- ou bien $x, y \in [A, +\infty[$ et $|f(x) f(y)| \le |f(x) \ell| + |\ell f(y)| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$
- ou bien $x \in [1, A]$ et y > A (ou vice -versa). On a alors $A \in [x, y]$ et $|x A| \le |x y| \le \delta$ donc $|f(x) f(y)| \le |f(x) f(A)| + |f(A) f(y)| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$
- 2) On suppose que f est dérivable sur $]1, +\infty[$ et que $f(1) = \ell$. Soit $g: [0, 1[\to \mathbb{R}, x \mapsto f(\frac{1}{1-x})]$.
 - a) $x \mapsto 1 x$ est continue sur [0,1[et ne s'annule pas sur cet intervalle donc $x \mapsto \frac{1}{1-x}$ est continue sur [0,1[. Or l'image de [0,1[par cette dernière fonction est $[1,+\infty[$ et f est continue sur $[1,+\infty[$ donc g est continue sur [0,1[(comme composée de fonctions continues).
 - b) On a $\lim_{x\to 1^-} \frac{1}{1-x} = +\infty$ et $\lim_{t\to\infty} f = \ell$ donc $\lim_{x\to 1^-} g(x) = \ell$. On peut donc prolonger g par continuité sur [0,1] en posant $g(1)=\ell$.
 - c) g est continue sur [0,1] et dérivable sur]0,1[(comme composée) et on a $g(0)=g(1)=\ell$. Le théorème de Rolle assure alors l'existence d'un α de]0,1[tel que $g'(\alpha)=0$. Or $g'(x)=\frac{1}{(1-x)^2}f'(\frac{1}{1-x})$ donc f'(c)=0 où $c=\frac{1}{1-\alpha}\in]1,+\infty[$.