Licence 1 Mathématiques 2015-2016

Algèbre et Arithmétique 2

Corrigé rapide du contrôle continu du 10 mars 2017

Questions de cours

- 1) Le théorème de Bezout s'énonce ainsi : Deux polynômes A et B de $\mathbb{K}[X]$ sont premiers entre eux si et seulement s'il existe des polynômes U et V dans $\mathbb{K}[X]$ tels que AU + BV = 1.
- 2) Puisque A et B sont premiers entre eux, on peut considérer deux polynômes U et V tels que AU+BV=1 donc ACU+BCV=C. Or A|ACU et A|BC donc A|BCV. Par suite A|ACU+BCV=C.
- 3) Soit A un polynôme de degré 1 de $\mathbb{K}[X]$. Il s'agit de montrer que A a exactement deux diviseurs unitaires. Soit donc B un tel diviseur. On peut alors écrire $A = B.A_1$ et on en déduit $1 = \deg(A) = \deg(B) + \deg(A_1)$ et donc : ou bien $\deg(B) = 0$ et alors B = 1,
 - ou bien $\deg(B) = 1$ et alors $\deg(A_1) = 0$. A_1 est alors une constante non nulle c et $B = \frac{1}{c}A$.

Exercice n°1

Si un tel polynôme B existe, il est nécessairement de degré 2. Quitte à considérer -B (qui est alors solution), on peut même le supposer de coefficient dominant positif donc de la forme $B = 2X^2 + \alpha X + \beta$. Réciproquement, si B est de cette forme alors $B^2 = 4X^4 + 4\alpha X^3 + (\alpha^2 + 4\beta)X^2 + 2\alpha\beta X + \beta^2$ et donc $A = B^2$ si

et seulement si
$$\begin{cases} a = 4\alpha \\ -11 = \alpha^2 + 4\beta \\ b = 2\alpha\beta \end{cases}$$
 ou encore
$$\begin{cases} \beta = -3 \\ \alpha = 1 \\ b = -6 \\ a = 4 \end{cases}$$
 ou $\begin{cases} \beta = -3 \\ \alpha = -1 \\ b = 6 \\ a = -4 \end{cases}$ (Le cas $\beta = 3$ conduit à $\alpha^2 = -23$ qui est impossible dans \mathbb{R} .

If y a donc finalement deux couples (a, b) solutions: (4, -6) et (-4, 6).

Exercice n°2

- ¹⁾a) D'après les propriétés du degré, $\deg(A(X^2)) = 2\deg(A)$ et $\deg((X^3+1)A(X)) = \deg((X^3+1)) + \deg(A)$ et on a donc $2\deg(A) = 3 + \deg(A)$ soit $\deg(A) = 3$.
 - b) En évaluant l'égalité polynomiale en 1, on obtient $A(1^2)=(1^3+1)A(1)$ donc A(1)=2A(1) et A(1)=0. D'autre part, on obtient par dérivation $2XA'(X^2)=3X^2A(X)+(X^3+1)A'(X)$ et, en dérivant à nouveau, $2A'(X^2)+4X^2A''(X^2)=6XA(X)+6X^2A'(X)+(X^3+1)A''(X)$. En évaluant en 0, on en déduit 0=A'(0) et 2A'(0)=A''(0) soit A''(0)=0.
 - c) Puisque A est de degré 3 (question a)), la formule de Taylor pour A en 0 s'écrit

$$A = \sum_{k=0}^{3} \frac{A^{(k)}(0)}{k!} X^{k} = A(0) + A'(0)X + \frac{A''(0)}{2} X^{2} + \frac{A^{(3)}(0)}{6} X^{3}$$

donc, compte tenu de la question précédente, $A(X) = A(0) + \frac{A^{(3)}(0)}{6}X^3$. En notant a = coefdom(A), on a $a \neq 0$ et $A^{(3)} = 6a$ (car A est de degré 3). La dernière égalité s'écrit donc $A(X) = A(0) + aX^3$ et comme A(1) = 0, A(0) = -a et $A(X) = a(X^3 - 1)$.

2) Le polynôme nul est clairement solution et la question précédente montre que toute autre solution est nécessairement de la forme $a(X^3-1)$ ($a \in \mathbb{R}^*$). Réciproquement, si $A = a(X^3-1)$ alors $A(X^2) = a(X^6-1)$ et $(X^3+1)A(X) = (X^3+1)a(X^3-1) = a(X^6-1)$. On a donc bien $A(X^2) = (X^3+1)A(X)$. En conclusion, l'ensemble des polynômes A de $\mathbb{R}[X]$ tels que $A(X^2) = (X^3+1)A(X)$ est exactement $\{a(X^3-1), a \in \mathbb{R}\}$.

Exercice n°3

1) On pose la division:

La division euclidienne de A par B s'écrit donc $A = B.(2X + 2) + (3X^2 + 3X + 3)$.

2) On poursuit alors les divisions euclidiennes (algorithme de Euclide) et on obtient

$$B = (3X^2 + 3X + 3)(\frac{1}{3}X - \frac{1}{3}) + 0$$

Dans cet algorithme le dernier reste non nul $(3X^2 + 3X + 3)$ est un pgcd de A et B. En particulier $pgcd(A, B) = X^2 + X + 1$.

On obtient un couple de coefficients de Bezout en remontant l'algorithme précédent. On obtient ici immédiatement $3X^2 + 3X + 3 = A - B(2X + 2)$ et on peut donc choisir $U_0 = \frac{1}{3}$ et $V_0 = -\frac{1}{3}(2X + 2)$.

- 3) La question 2) montre que A et B sont divisibles par X^2+X+1 . Les divisions euclidiennes donnent $A=(X^2+X+1)(2X^2+1)=2(X^2+X+1)(X^2+\frac{1}{2})$ et $B=(X^2+X+1)(X-1)$. Ce sont les décompositions en facteurs irréductibles cherchées car :
 - X-1 est irréductible (c'est un polynôme de degré 1) et unitaire,
 - $X^2 + X + 1$ et $X^2 + \frac{1}{2}$ sont irréductibles dans $\mathbb{R}[X]$ (comme polynômes de degré deux à discriminants strictement négatifs) et unitaires.
- 4) On sait que $\frac{1}{\operatorname{coefdom}(AB)}(AB) = \operatorname{pgcd}(A, B)\operatorname{ppcm}(A, B)$ et un ppcm de A et B est donc

$$(X^2 + X + 1)(X - 1)(2X^2 + 1) = 2X^5 + X^3 - 2X^2 - 1.$$

5) On pose $A_0 = 2X^2 + 1$ et $B_0 = X - 1$. Après simplification par D, l'équation AU + BV = D s'écrit $A_0U + B_0V = 1$ et (U_0, V_0) en est une solution. Si (U, V) est un autre couple solution alors $A_0U + B_0V = 1 = A_0U_0 + B_0V_0$ donc $A_0(U_0 - U) = B_0.(V - V_0)$. A_0 divise donc $B_0.(V - V_0)$. Or, A_0 est premier avec B_0 (car $D = \operatorname{pgcd}(A, B) = \operatorname{pgcd}(A_0D, B_0D) = D\operatorname{pgcd}(A_0, B_0)$) donc (lemme de Gauss) A_0 divise $V - V_0$. On peut alors écrire $V - V_0 = A_0Q$ pour un certain polynôme Q et donc, en reportant dans la dernière égalité écrite, $A_0(U_0 - U) = B_0.A_0Q$. Comme $A_0 \neq 0$, on a $U_0 - U = B_0Q$ soit $U = U_0 - B_0Q$. Réciproquement, pour tout polynôme Q, $A_0.(U_0 - B_0Q) + B_0.(V_0 + A_0Q) = A_0.U_0 + B_0.V_0 = 1$. En conclusion, l'ensemble des couples (U, V) cherchés est $\{(U_0 - B_0Q, V_0 + A_0Q), Q \in \mathbb{R}[X]\}$.