Aperçu général	RFMM OO	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives

Opérateurs intégraux et méthodes rapides pour la résolution numérique de problèmes denses et de grande dimension

Éric DARRIGRAND

IRMAR, Université de Rennes 1

le 28 novembre 2014

en vue d'obtenir l'habilitation à diriger des recherches

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

- Aperçu général
- Systèmes Hamiltoniens et FMM régularisée
- **3** UWVF et représentation intégrale
- Éléments finis et représentation intégrale
- 5 Opérateurs intégraux de volume
- **6** FMM et préconditionneur OSRC

Perspectives

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

Aperçu général

- Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
- 4 Éléments finis et représentation intégrale
- Opérateurs intégraux de volume
- 6 FMM et préconditionneur OSRC

Perspectives

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives
Contexte						

Problèmes denses de grande dimension

Problèmes à N-corps

Trajectories of the planets - classical fmm 3p7b 2NeiMaxTr

Systèmes Hamiltoniens

Interactions de Coulomb

Dynamique moléculaire

• Problèmes en domaine extérieur

Propagation d'onde

Helmholtz, Maxwell

Aperçu général ○●	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Contributions						
Contribu	itions					

- Systèmes Hamiltoniens : régularisation de la FMM (RFMM)
- Éléments finis ou UWVF en domaine extérieur :
 - représentation intégrale (RI) condition artificielle exacte
 - application d'une méthode rapide
- Opérateurs intégraux de volume (VIE) :
 - équivalence au problème initial
 - caractère bien-posé analyse spectrale
- Opérateurs intégraux de surface :
 - préconditionnements analytiques (EID, OSRC)
 - méthodes rapides (FMM)
- Développements numériques :
 - équations intégrales pour MÉLINA++ et XLiFE++
 - une bibliothèque FMM générique : FastMMLib
 - traitement des singularités du noyau

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

Aperçu général

- Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
- 4 Éléments finis et représentation intégrale
- Opérateurs intégraux de volume
- 6 FMM et préconditionneur OSRC

Perspectives

Aperçu général	RFMM ●○	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Concept de la FMM régularise	ée					
FMM régu	larisée					

Philippe Chartier, ED, and Erwan Faou. A regular fast multipole method for geometric numerical integrations of Hamiltonian systems. *BIT*, 50(1) : 23–40, 2010.

Irrégularité de la FMM à l'interface entre les boîtes multipolaires (tant au niveau "source" qu'au niveau "cible")

00 00 000 000 000 000 Concept de la FMM régularisée	
Concept de la FMM régularisée	
rimimi regularisee	

Philippe Chartier, ED, and Erwan Faou. A regular fast multipole method for geometric numerical integrations of Hamiltonian systems. *BIT*, 50(1) : 23–40, 2010.

Régularisation par élargissement et superposition des boîtes et fonction de régularisation, χ , sur la zone de superposition

 $\operatorname{RFMM}(\boldsymbol{Aq})_{x_2} = (1 - \chi(x_2)) \operatorname{FMM}(\boldsymbol{Aq})_{x_2 \in B_2} + \chi(x_2) \operatorname{FMM}(\boldsymbol{Aq})_{x_2 \in B_3}$

Aperçu général	RFMM ○●	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Illustration						

Application au système solaire

Philippe Chartier, ED, and Erwan Faou. A regular fast multipole method for geometric numerical integrations of Hamiltonian systems. BIT, 50(1): 23-40, 2010.

Aperçu général	RFMM ○●	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Illustration						

Application au système solaire

Philippe Chartier, ED, and Erwan Faou. A regular fast multipole method for geometric numerical integrations of Hamiltonian systems. BIT, 50(1) : 23–40, 2010.

Trajectories of the planets - classical fmm 3p7b 2NeiMaxTr

Aperçu général	RFMM ○●	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Illustration						

Application au système solaire

Philippe Chartier, ED, and Erwan Faou. A regular fast multipole method for geometric numerical integrations of Hamiltonian systems. *BIT*, 50(1) : 23–40, 2010.

Trajectories of the planets - regular fmm 3p7b 2NeiMaxTr

Aperçu général	RFMM 00	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

- Aperçu général
- Systèmes Hamiltoniens et FMM régularisée
- **3** UWVF et représentation intégrale
 - Éléments finis et représentation intégrale
- Opérateurs intégraux de volume
- 6 FMM et préconditionneur OSRC

7 Perspectives

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives
		•0				
UWVF et représentation intég	rale					

Formulation variationnelle ultra-faible (UWVF)

ED and Peter Monk. Combining the ultra-weak variational formulation and the multilevel fast multipole method. *Appl. Numer. Math.*, 62(6) : 709–719, 2012.

- équations de Maxwell 3D en domaine extérieur
- UWVF : une alternative aux éléments finis
- introduction d'un bord artificiel Σ

• condition au bord sur Σ : ABC, PML ou représentation intégrale (RI)

 Aperçu général
 RFMM
 UWVF+RI
 CEFRI
 VIE
 FMM+OSRC
 Perspectives

 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

SER : UWVF sans/avec RI

ED and Peter Monk. Combining the ultra-weak variational formulation and the multilevel fast multipole method. *Appl. Numer. Math.*, 62(6) : 709–719, 2012.

RCS Sphere EM with classic UWVF - a

 Aperçu général
 RFMM
 UWVF+RI
 CEFRI
 VIE
 FMM+0SRC
 Perspectives

 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

SER : UWVF sans/avec RI

ED and Peter Monk. Combining the ultra-weak variational formulation and the multilevel fast multipole method. *Appl. Numer. Math.*, 62(6) : 709–719, 2012.

RCS Sphere EM with UWVF+IR+FMM - b

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

- Aperçu général
- 2) Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
- Éléments finis et représentation intégrale
- Opérateurs intégraux de volume
- 6 FMM et préconditionneur OSRC

7 Perspectives

Aperçu général	F	RFMM	UWVF+RI 00	C	EFRI	VIE 000	FMM+OSR(000000	C Persp	ectives
Contexte									
1									

Éléments finis et représentation intégrale

ED, Nabil Gmati, and Rania Rais. Schwarz method justification of a coupling between finite elements and integral representation for Maxwell exterior problem. *C. R. Math. Acad. Sci. Paris*, 352 : 311–315, 2014.

- équations de Maxwell 3D en domaine extérieur
- méthode CEFRI [HAZARD, LENOIR 96] : éléments finis + représentation intégrale sur Σ
- analyse de convergence de résolutions itératives

Aperçu général	RFMM 00	UWVF+RI OO	CEFRI OOO	VIE 000	FMM+OSRC	Perspectives
Analyse de convergence						

CEFRI et solveurs itératifs

- ED, Nabil Gmati, and Rania Rais. Schwarz method justification of a coupling between finite elements and integral representation for Maxwell exterior problem. *C. R. Math. Acad. Sci. Paris*, 352 : 311–315, 2014.
- Formulation variationnelle discrète de la forme (A + C)E = F,
 - $A \longleftrightarrow$ matrice éléments finis sur Ω , symétrique creuse,
 - $C \longleftrightarrow$ représentation intégrale sur Σ , bloc extradiagonal dense.
- Résolution itérative de type point fixe [JIN, LIU 2001] :

$$AE_{n+1} = -\frac{CE_n}{F} + F$$

Théorème [ED, N. Gmati, R. Rais]

Dans le cas sphérique, la convergence de l'algorithme de Jin et Liu est conditionnée par la distance de Γ à Σ .

Justification basée sur une interprétation de type méthode de décomposition de Schwarz.

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI OOO	VIE 000	FMM+OSRC 00000000	Perspectives
Analyse de convergence						

CEFRI et solveurs itératifs

- ED, Nabil Gmati, and Rania Rais. Schwarz method justification of a coupling between finite elements and integral representation for Maxwell exterior problem. *C. R. Math. Acad. Sci. Paris*, 352 : 311–315, 2014.
- Application de solveurs de type Krylov à $(I + A^{-1}C)E = A^{-1}F$, [F. BEN BELGACEM, N. GMATI, F. JELASSI 09] [N. GMATI, B. PHILIPPE 08]

Il s'agit d'une résolution du système

(A + C)E = F

préconditionnée par A dit "préconditionnement de Schwarz".

Théorème [ED, N. Gmati, R. Rais]

Dans le cas sphérique, la convergence des solveurs de type Krylov avec préconditionnement de Schwarz est superlinéaire et inconditionnelle.

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives		
			000					
Développements numériques								

MÉLINA++ et validation numérique

- ajout de nombreux intégrands dans MÉLINA++ (avec Rania Rais, Daniel Martin, Yvon Lafranche)
- important travail de validation numérique (nouveaux intégrands, régularisation, pénalisation, réglage des solveurs)
- illustration de la convergence superlinéaire du GMRES

ED, Nabil Gmati, and Rania Rais. Convergence of Krylov subspace solvers with Schwarz' preconditioner for Maxwell exterior problem. *in preparation*.

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives
Plan						

- Aperçu général
- 2 Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
 - 4 Éléments finis et représentation intégrale
- 5 Opérateurs intégraux de volume
 - 6 FMM et préconditionneur OSRC

Perspectives

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE ●○○	FMM+OSRC 00000000	Perspectives
Contexte						
Équations	intégra	les de vo	lume (V	/IE)		

• Étude initiée avec Ronan Sauleau de l'IETR et Martin Costabel, avec la participation de El-Hadji Koné et Hamdi Sakly, sur le thème de l'optimisation de forme des antennes-lentilles

- Très peu de travaux mathématiques antérieurs ([FRIEDMAN, PASCIAK 84], [POTTHAST 01], [KIRSCH et al 09])
- Équations largement utilisées par les physiciens ([KOTTMANN et al 00], [BUDKO et al 06], [SANCER et al 06], ...)
- Des études numériques avec des interprétations parfois excessives ([RAHOLA 00], [SAMOKHIN 11])

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE ○●○	FMM+OSRC 00000000	Perspectives
Cas diélectrique						
VIE : cas o	diélectri	que				

Martin Costabel, Eric Darrigrand, and El-Hadji Koné. Volume and surface integral equations for electromagnetic scattering by a dielectric body. *J. Comput. Appl. Math.*, 234(6) : 1817–1825, 2010.

Dans le cas d'un contraste de perméabilité magnétique nul :

- Identification de cadres fonctionnels assurant l'équivalence entre plusieurs formulations :
 - équations de Maxwell avec conditions de transmission sur Γ et condition de radiation à l'infini
 - équations intégrales de surface (Γ) et de volume (Ω⁻)
 - équations intégrales de volume (Ω⁻)
- Vérification du caractère bien posé.
- Analyse spectrale de l'opérateur électrique.

Aperçu general OO O	00	00	000	000	00000000	00
	liálootri					

VIE : cas diélectrique

Martin Costabel, Eric Darrigrand, and El-Hadji Koné. Volume and surface integral equations for electromagnetic scattering by a dielectric body. *J. Comput. Appl. Math.*, 234(6) : 1817–1825, 2010.

- Validations numériques avec MÉLINA++
 - ajout d'intégrands dans MÉLINA++ avec Daniel Martin et El-Hadji Koné
 - traitement des singularités des opérateurs intégraux de volume

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE ○○●	FMM+OSRC 00000000	Perspectives		
Cas général								
VIE · cas général								

- Identification des cadres fonctionnels appropriés à l'opérateur intégral volumique magnétique
- Analyse spectrale de l'opérateur intégral volumique sous des hypothèses très générales

Théorème [M. Costabel, ED, H. Sakly]

Si Γ est régulière, et les contrastes électrique η et magnétique ν constants,

- le spectre essentiel de l'opérateur électrique est $\{0, \frac{\eta}{2}, \eta\}$;
- le spectre essentiel de l'opérateur magnétique est $\{0, \frac{\nu}{2}, \nu\}$;
- le spectre essentiel de l'opérateur électromagnétique est $\{0, \frac{\eta}{2}, \eta, \frac{\nu}{2}, \nu\}$.
- Martin Costabel, Eric Darrigrand, and Hamdi Sakly. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. C. R. Math. Acad. Sci. Paris, 350(3–4): 193–197, 2012.

Aperçu général	RFMM 00	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Plan						

- Aperçu général
- 2) Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
- 4 Éléments finis et représentation intégrale
- 5 Opérateurs intégraux de volume
- **6** FMM et préconditionneur OSRC
 - **Perspectives**

Aperçu général	RFMM OO	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Contexte						
Équations	intégra	les de si	irface			

Objectif : définir une stratégie efficace de résolution des équations intégrales (méthodes rapides et préconditionneurs OSRC)

avec Marion Darbas (Amiens), Yvon Lafranche (Rennes 1)

projet ANR Microwave

Marion Darbas, ED, and Yvon Lafranche. Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation. *J. Comput. Phys.*, 236 : 289–316, 2013.

Aperçu général	RFMM OO	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Contexte						

Une formulation intégrale équivalente

Équation intégrale CFIE [KRESS 83] : Chercher $\varphi = -\gamma_0^+(u - u^{\text{inc}}) \in H^{1/2}(\Gamma)$ solution de

$$\left(rac{I}{2}-\mathcal{K}-\eta D
ight)arphi=-\gamma_0^+u^{\mathrm{inc}}-\eta\gamma_1^+u^{\mathrm{inc}}~~\mathrm{sur}~\Gamma\,.$$

avec $\eta \in \mathbb{C}^*$ un paramètre de couplage et les opérateurs intégraux

Deux difficultés majeures

- opérateurs globaux —> coût élevé de la résolution numérique
- mauvaises propriétés spectrales —> problèmes de convergence des solveurs itératifs

_		/				
Contributions						
					0000000	
Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives

Formulation préconditionnée par OSRC

<u>L'idée</u>

L'opérateur NtD, noté V^{ex} , satisfait la relation $\frac{l}{2} - K + V^{\text{ex}}D = I \text{ sur } \Gamma$

L'équation préconditionnée : $\varphi = -\gamma_0^+(u - u^{\rm inc}) \in H^{1/2}(\Gamma)$ tel que

$$\left(rac{1}{2} - \mathcal{K} + \widetilde{\mathcal{V}}D
ight) arphi = -\gamma_0^+ u^{
m inc} + \widetilde{\mathcal{V}}\gamma_1^+ u^{
m inc}$$
 sur Γ

avec \widetilde{V} approximation OSRC de V^{ex} [ANTOINE et al 2005]

$$\widetilde{V} = \frac{1}{ik} \left(I + \frac{\Delta_{\Gamma}}{k_{\varepsilon}^2} \right)^{-1/2}, \quad \text{où } k_{\varepsilon} = k + i\varepsilon, \quad \varepsilon \neq 0.$$

Remarques essentielles

- V évalué par approximation de Padé,
- V implique seulement des opérateurs différentiels,
- propriétés spectrales fortement améliorées dans le cas convexe,
- l'équation implique toujours les opérateurs intégraux K and D.

Aperçu général	RFMM OO	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Contributions						

La méthode multipôle rapide (FMM)

[GREENGARD, ROKHLIN, CHEW, DARVE, ...]

Objectif : Évaluation rapide des produits matrice-vecteur avec la matrice

$$[L]_{ij} = \int_{\Gamma} \int_{\Gamma} G(x, y) \varphi_j(y) \varphi_i(x) d\gamma(y) d\gamma(x), \qquad \forall i, j$$

Outils : Série de Gegenbauer et formule de Funk-Hecke.

Aperçu général	RFMM OO	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Contributions						
E DADA						

FMM – Helmholtz 3D

Détail du développement :

$$\begin{split} c_{p} &= \frac{ik}{(4\pi)^{2}} w_{p}, \qquad f_{j,\widetilde{B}}^{(p)} = \int_{\widetilde{B} \cap \operatorname{supp} \varphi_{j}} e^{-ik \langle s_{p}, y - C_{\widetilde{B}} \rangle} \varphi_{j}(y) d\gamma(y), \\ g_{i,B}^{(p)} &= \int_{B \cap \operatorname{supp} \varphi_{i}} e^{ik \langle s_{p}, x - C_{B} \rangle} \varphi_{i}(x) d\gamma(x), \\ \mathcal{T}_{B,\widetilde{B}}^{(p)} &= \sum_{\ell=1}^{L} (-i)^{\ell} (2\ell+1) h_{\ell}^{(1)}(k|C_{B} - C_{\widetilde{B}}|) P_{\ell}(\cos(s_{p}, C_{B} - C_{\widetilde{B}})), \end{split}$$

 $h_{\ell}^{(1)}$ fonction de Hankel sphérique ; P_{ℓ} polynôme de Legendre ; C_B centre de B ;

 $(w_p, s_p)_p \quad \longleftrightarrow \quad \text{formule de quadrature sur la sphère unité ;}$ $\sum_{p=1}^{S} \quad \longleftrightarrow \quad \text{intégration sur la sphère unité } (S = (L + 1)(2L + 1));$ $\sum_{\ell=1}^{L} \quad \longleftrightarrow \quad \text{Série de Gegenbauer } (L = kd + C(kd)^3).$

Aperçu général	RFMM OO	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Contributions						

FMM – schématiquement

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives			
Illustrations numériques									
Illustratio	ons nu	mériaues	;						

• Considération de différents cas tests :

- Sphère : validation avec la solution analytique
- Objets à cavité cubique ou sphérique
- Sous-marin et cône-sphère : des objets moins académiques

• Utilisation des bibliothèques :

- GMSH pour les maillages
- MÉLINA++, ARPACK++ pour le calcul des valeurs propres
- MUMPs pour une application efficace du préconditionneur
- Utilisation d'une SLFMM (FMM à 1 niveau)

Initiation de FastMMLib

- Bibliothèque FMM générique
- Développement en cours avec Yvon Lafranche

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives		
					000000000			
Illustrations numériques : sphère								

Distribution des valeurs propres, k = 11.85, $n_{\lambda} = 10$

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Illustrations numériques : sp	nère					

Valeurs propres numériques vs. ordre de Padé, $k = 10, n_{\lambda} = 11.85$

Aperçu général	RFMM 00	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Illustrations numériques : sp	hère					

Valeurs propres analytiques vs. ordre de Padé, $k = 10, n_{\lambda} = 11.85$

Aperçu général	RFMM 00	UWVF+RI OO	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Illustrations numériques : sp	hère					

Conditionnement

Sphère – Surface Équivalente Radar (SER)

CFIE+OSRC+FMM – densité de discrétisation fixée $n_{\lambda} = 10$

Sphère – Surface Équivalente Radar (SER)

Sphère – convergence du GMRES

 Aperçu général
 RFMM
 UWVF+RI
 CEFRI
 VIE
 FMM+OSRC
 Perspectives

 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Sphère – complexité algorithmique

Coûts CPU

- Comportement asymptotique de la SLFMM
- Coût relatif à l'opérateur OSRC << coût relatif aux opérateurs intégraux

 Aperçu général
 RFMM
 UWVF+RI
 CEFRI
 VIE
 FMM+OSRC
 Perspectives

 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Cavité rectangulaire ou sphérique

Cube $[-1, 1]^3$ avec la cavité rectangulaire $[0, 1] \times [-\frac{\pi}{10}, \frac{\pi}{10}] \times [-\frac{\pi}{10}, \frac{\pi}{10}]$

Sphère avec cavité sphérique

avec la direction d'incidence $(\sqrt{3}/2, 0, 1/2)$.

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC ○○○○○●○	Perspectives
Illustrations numériques :	cavités					

Cube avec cavité : fréquences de résonance

 Aperçu général
 RFMM
 UWVF+RI
 CEFRI
 VIE
 FMM+OSRC
 Perspectives

 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Cube avec cavité : une fréquence de résonance

Autour de k = 5.2

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives	
00	00	00	000	000	0000000	00	
Illustrations numériques : cavités							

Cavité sphérique – convergence et conditionnement

Convergence du GMRES

Nbre d'itérations vs n_{λ}

Conditionnement

Nbre d'itérations vs k

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives		
00	00	00	000	000	0000000	00		
Illustrations numériques : cône-sphère et sous-marin								
~ ^								

Cône-sphère et sous-marin

Cône-sphère : directions d'incidence (-1, 0, 0); (1, 0, 0); (0, 0, -1). Sous-marin : direction d'incidence $(\sqrt{3}/2, 0, 1/2)$.

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives		
					0000000			
Illustrations numériques : côns.enhère et cous.marin								

Cône-sphère – SER et convergence du GMRES

Dépendance à la direction d'incidence ((-1,0,0) ; (1,0,0) ; (0,0,-1)) :

Code	CFIE	CFIE+SLFMM	CFIE+SLFMM+OSRC
Nbre d'itérations	171 / 177 / <mark>230</mark>	176 / 182 / <mark>235</mark>	7/7/7

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC	Perspectives
Plan						

- Aperçu général
- 2) Systèmes Hamiltoniens et FMM régularisée
- 3 UWVF et représentation intégrale
- 4 Éléments finis et représentation intégrale
- Opérateurs intégraux de volume
- 6 FMM et préconditionneur OSRC

Perspectives

Aperçu général	RFMM 00	UWVF+RI 00	CEFRI 000	VIE 000	FMM+OSRC 00000000	Perspectives ● ○
Aspects mathématiques						
Perspecti	ves m	athémati	ques			

• UWVF et représentation intégrale

nouveaux choix de fontions de base pour la UWVF

• Opérateurs intégraux de volume

- analyse des formulations discrètes
- mise en œuvre numérique avec Adrien Calvez.

• Équations intégrales de surface et préconditionneurs

- améliorations de la discrétisation de l'OSRC
- application à Maxwell [DARBAS 06], [PERNET 10]
- "Discrete Dipole Approximation" [DRAINE, FLATAU 94]
 - méthode rapide pour les équations intégrales de volume
 - une stratégie adaptée à la parallélisation massive (?)

Aperçu général	RFMM	UWVF+RI	CEFRI	VIE	FMM+OSRC	Perspectives	
						0	
Aspects développements numériques							

Perspectives de développements numériques

- Bibliothèque de méthodes rapides : FastMMLib
 - une bibliothèque générique orientée objet (C++)
 - identification de 3 entités (noyau de Green, géométrie, objet FMM)
 - pas seulement FMM

• Bibliothèque de traitement des singularités

- méthodes numériques (transformation de Duffy) [SAUTER ET AL 11]
- méthodes analytiques [LENOIR ET AL 12]
- stratégie semi-numérique [SAYAS ET AL 14]
- combinaison des différentes stratégies
- Contributions à XLiFE++ (éléments finis) et BEM++ ("boundary elements")
 - opérateurs intégraux
 - préconditionneurs analytiques
 - méthodes rapides