
HABILITATION À DIRIGER DES RECHERCHES

Mention : Mathématiques
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rapides : Outils mathématiques pour la résolution
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Nos diverses activités, nos déplacements, nos colloques et soutenances ne seraient pas sans
le personnel de gestion, d’entretien des locaux ou de maintenance informatique. De grands
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réalisation (pour ma part, je réfléchis un algorithme, j’identifie des inconnues du problème
physique), dessinaient des plans (j’écris l’algorithme, ou un modèle mathématique), décidaient
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résolution appropriés) pour enfin réaliser l’ouvrage dont le résultat était tout aussi artistique
que fonctionnel (j’écris le programme de mise en œuvre de la méthode numérique, ou j’obtiens
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Introduction (version française)

La modélisation des phénomènes physiques, biologiques, chimiques, conduit souvent à des
équations mathématiques complexes. Les problèmes à N corps, la dynamique moléculaire,
la propagation d’onde en domaine extérieur, sont des applications dont la modélisation et la
discrétisation conduisent à des systèmes dont la résolution est particulièrement compliquée à
cause de leur taille ainsi que des propriétés mathématiques des opérateurs impliqués. La propa-
gation d’onde en domaine extérieur, l’application principale de ce document, est un phénomène
physique présent dans de nombreux domaines : détection radar, communication, assistance
à la conduite, imagerie, traitement médical des cancers, ... Cependant, la simulation de ce
phénomène est toujours un véritable challenge : il nécessite la prise en compte du caractère
infini du domaine de résolution vis à vis duquel de nombreuses solutions mathématiques et
numériques sont proposées et analysées. En raison des caractéristiques physiques des applica-
tions, chaque stratégie présente des avantages et des inconvénients. Il convient de s’intéresser à
chacune d’elles, de les confronter voire les combiner. Dans ce document, nous nous intéressons
essentiellement aux opérateurs intégraux surfaciques et volumiques impliqués dans deux ap-
proches différentes : les représentations intégrales dans le cadre d’approches par équations
aux dérivées partielles, ou les équations intégrales. Des caractéristiques de ces opérateurs ren-
dent leur mise en œuvre numérique difficile : ce sont des opérateurs globaux, singuliers et
généralement mal conditionnés. Pour faire face à l’aspect global, l’usage de méthodes rapides
est indispensable à haute fréquence. La méthode dite “Panel Clustering” [HN89, Sau00], la
méthode multipôle rapide [GR88, CRW93, SC95, Dar00a], la méthode “fast high order solver”
[BK01b, BK01a], les “H-matrices” et leur “Adaptive Cross Approximation” [Hac99, BGH06,
Beb08] sont développées pour rendre moins coûteuse la résolution numérique des systèmes
denses de grande taille définis par un noyau de Green. Des préconditionneurs ou des for-
mulations bien conditionnées [BC00, CN02, BET12, AD07, ABL07] sont proposées dans la
littérature. Des formules de quadrature et des formules analytiques sont élaborées pour le traite-
ment des singularités [LS12, SS11, DLS14a, DLSon, DLS14b].

Cet ouvrage concerne des concepts mathématiques élaborés pour améliorer l’efficacité et la
robustesse des méthodes numériques de résolution des problèmes denses de grande dimension,
tels que les équations intégrales pour la propagation d’onde en domaine extérieur. Quatre prin-
cipaux sujets sont abordés dans cette synthèse, contribuant tous au développement et à la mise
en œuvre d’algorithmes de résolution. Chacun correspond à un chapitre du document :

? FMM – une solution numérique pour compenser le caractère dense des opérateurs
intégraux : La méthode multipôle rapide (FMM pour “Fast Multipole Method”) a été
initialement introduite pour les problèmes à N corps [GR88, GR97] puis rapidement ap-
pliquée aux formulations intégrales de l’équation de Laplace. Par la suite, la méthode
a été adaptée aux problèmes de propagation d’onde acoustique et électromagnétique
[CJL+97, Dar00a, Dar00b, KSC99, Rah96]. La FMM est utilisée dans une opération bien
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spécifique de la résolution numérique de sorte qu’elle peut être combinée à d’autres outils
numériques tels que les préconditionneurs et s’applique à toute formulation impliquant
des opérateurs intégraux, noyaux de Green ou potentiels de Coulomb. Le chapitre 1 mon-
tre l’application de la FMM à différentes configurations : couplage à une discrétisation
microlocale pour la résolution des équations intégrales de Després [Dar02b, BDMN03] ;
couplage avec un préconditionneur analytique basé sur la stratégie dite “On Surface
Radiation Condition” (OSRC) [DDL13] ; une version régularisée de la FMM pour les
systèmes Hamiltoniens [CDF10] ; application au couplage entre éléments finis et représen-
tation intégrale [Dar08].

Résumé du chapitre 1 :
La FMM a pour action d’approcher les interactions induites par le noyau de Green en équations
intégrales et par le potentiel de Coulomb en dynamique particulaire. Dans la section 1.1,
j’écris l’approximation FMM sous une forme générique (équation 1.1). Cette méthode est
généralement utilisée pour accélérer les produits matrice-vecteur d’une résolution numérique
itérative où la matrice impliquée est définie par un noyau de Green ou un potentiel de Coulomb.
Dans ce chapitre, la FMM est adaptée à des configurations originales où elle est utilisée pour
l’assemblage d’une matrice plutôt que pour un produit matrice-vecteur (section 1.2), ou alors
combinée à un préconditionneur (section 1.3), développée sous une forme régularisée pour
l’intégration de systèmes Hamiltoniens (section 1.4), ou encore appliquée à une représentation
intégrale (section 1.5).

Dans le cadre d’un couplage avec la discrétisation microlocale [ANZ94, ANZ95, Zho95],
la FMM ne consiste pas à accélérer des produits matrice-vecteur mais bien à calculer une ma-
trice. En fait, la discrétisation microlocale prend en considération des paramètres physiques
pour relâcher l’interpolation de l’inconnue du problème. Ainsi la taille du système discret est
fortement réduite mais le coût d’évaluation de cette dernière reste prohibitif car il s’appuie
sur la discrétisation habituelle nettement plus fine. De ce fait, les calculs généralement ap-
prochés par la FMM interviennent dans l’évaluation de la matrice. Ce couplage original a été
appliqué avec succès aux équations intégrales de Després [Des97, SD99, Stu01], dans le cadre
de ma thèse à Bordeaux I, avec Alain Bachelot et Katherine Mer-Nkonga [Dar02b, BDMN03].
Les figures 1.7-1.8 donnent des résultats satisfaisants avec un coût relativement optimal et des
discrétisations où la longueur moyenne des éléments du maillage est de l’ordre de 2� au lieu du
classique �/10 (� désignant la longueur d’onde).

L’association de la FMM au préconditionneur OSRC a permis d’analyser numériquement cet
outil en 3D pour la résolution de l’équation de Helmholtz [DDL13]. Le préconditionneur OSRC
modifie l’équation par l’introduction de facteurs impliquant exclusivement des opérateurs diffé-
rentiels classiques. De ce fait, l’utilisation de la FMM pour les opérateurs intégraux n’est
pas altérée et s’applique de manière transparente à l’équation préconditionnée. Avec Ma-
rion Darbas et Yvon Lafranche, dans le cadre du projet ANR Microwave, ce couplage a per-
mis une investigation précise du spectre numérique de l’équation préconditionnée (section
1.3.1) et une résolution numérique efficace permettant de percevoir l’impact remarquable du
préconditionnement sur la vitesse de convergence des solveurs itératifs : réduction du nombre
d’itérations à la dizaine au lieu de plusieurs centaines sans préconditionnement. Des exemples
divers, pour des objets tels que le cône-sphère, un domaine à cavité sphérique, un sous-marin,
jusqu’à plusieurs centaines de milliers de degrés de liberté, sont présentés dans la section 1.3.2.

La résolution des systèmes Hamiltoniens requiert d’excellentes propriétés de préservation de
la régularité du potentiel du système. Hors, l’approximation FMM est par définition irrégulière.
Avec Philippe Chartier et Erwan Faou, lors d’un accueil en délégation INRIA dont j’ai bénéficié
au sein de l’équipe IPSO, nous avons développé une forme régularisée de la FMM [CDF10].
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Son implémentation a permis de confirmer l’impact bénéfique sur la résolution des systèmes
Hamiltoniens : dans la section 1.4, une application numérique à un problème modèle, le système
solaire, montre que la FMM régularisée permet d’assurer la conservation de l’Hamiltonien.

La résolution par équation intégrale est rendue difficile par les caractéristiques des opérateurs
intégraux. Lorsque l’on résout un problème en domaine extérieur par éléments finis avec con-
dition artificielle, la considération d’une représentation intégrale introduit ces opérateurs dans
le système éléments finis. L’utilisation de la FMM assure que le coût induit par l’ajout de ces
opérateurs dans la formulation éléments finis n’augmente pas la complexité numérique. Cela
a été scrupuleusement vérifié dans le cadre de l’utilisation d’une représentation intégrale pour
la formulation variationnelle ultra-faible [Ces96, CD03]. La formulation variationnelle ultra-
faible est une variante des éléments finis décrite précisément dans le chapitre 3. L’analyse de la
complexité est donnée dans la table 1.4 de la section 1.5 et les tests numériques de cette section
confirment ce résultat.

? Analyse mathématique et numérique des opérateurs intégraux volumiques : Même
si les opérateurs intégraux volumiques sont très utilisés par les physiciens [KM00, Lu03,
Bot06, SSVVA06, BS06, Rah00, SF11], la littérature mathématique sur ces outils est re-
lativement pauvre. Un cadre mathématique a été proposé dans [Kir07, KL09], quelques
propriétés mathématiques et spectrales figurent dans [FP84]. Nous avons récemment
contribué à compléter les résultats d’existence et d’unicité, le choix des espaces fonction-
nels, les propriétés spectrales, dans le but d’analyser mathématiquement et d’implémenter
des méthodes de résolution. Le chapitre 2 est dédié aux propriétés mathématiques et
numériques des opérateurs intégraux volumiques établies avec la participation d’El-Hadji
Koné et Hamdi Sakly dans le cadre de leurs thèses [CDK10, Kon10, CDS12, Sak14,
CDSonb, CDSona].

Résumé du chapitre 2 :
Les opérateurs intégraux volumiques étaient dans la littérature assez mal connus sur le plan
mathématique. Dans la section 2.2, les propriétés mathématiques des opérateurs intégraux sont
explorées : choix des espaces fonctionnels, existence et unicité de la solution des équations
intégrales de volume, équivalence avec des formulations mieux connues. Notamment, les
opérateurs électrique et magnétique ont des propriétés assez différentes qui peuvent facilement
conduire à des erreurs de formulation si trop peu d’attention est prêtée au choix des espaces
fonctionnels.

La section 2.3 concerne l’analyse du spectre essentiel des opérateurs volumiques électrique
et magnétique. Le résultat est établi pour des équations en domaine extérieur autour d’un ob-
jet ou bien régulier ou bien Lipschitzien. Dans le cas régulier, on trouve notamment, selon
certaines conditions sur les paramètres physiques, que les deux opérateurs ont même spectre
essentiel, {0, 1/2, 1}, mais avec des sous-espaces propres différents.

L’implémentation de l’opérateur électrique dans la librairie MÉLINA++ avec la participa-
tion d’El-Hadji Koné, a permis de vérifier numériquement quelques propriétés établies. Les
figures 2.2-2.3 offrent des exemples de résolution des équations intégrales volumiques, et la
figure 2.4 présente le spectre numérique de l’opérateur électrique.

? Analyse de la représentation intégrale comme condition au bord exacte : Afin de
résoudre le problème de propagation d’onde en domaine extérieur selon une approche
d’équations aux dérivées partielles, il est nécessaire de se ramener à un domaine borné
délimité par une frontière artificielle (figure 3.1). Une représentation intégrale permet
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de définir une condition artificielle exacte par l’implication d’opérateurs intégraux. De
ce fait, ce choix proposé dans [JL77, HL96] a succité quelque intérêt dans la littérature
[LJ01, BBFGJ05] malgré les nombreuses difficultés de mise en œuvre qu’il induit. Dans
le chapitre 3, nous analysons cette utilisation des représentations intégrales dans le con-
texte d’une approximation éléments finis [DGR14, Rai14, DGRon] ou d’une formulation
variationnelle ultra-faible [DM07, DM12].

Résumé du chapitre 3 :
Le choix d’une représentation intégrale [HL96] comme condition artificielle exacte induit des
difficultés numériques majeures : perte des propriétés classiques du système discret (ajout d’une
contribution non symétrique et dense à un système initialement creux et symétrique), introduc-
tion des opérateurs intégraux dans la formulation. L’impact numérique de l’utilisation de la
représentation intégrale pour la résolution des équations de Maxwell a été analysé dans le cadre
d’une formulation éléments finis et dans le cadre d’une formulation variationnelle ultra-faible
(UWVF pour “ultra-weak variational formulation”).

La UWVF [Ces96, CD03] est une alternative aux éléments finis qui combine des idées des
méthodes de décomposition de domaine et d’éléments finis enrichis. La méthode a inspiré
Peter Monk et co-auteurs [HMK02, HKM04, HMM07]. Avec Peter Monk, nous avons analysé
l’impact de l’application d’une représentation intégrale à la UWVF [DM07, Dar08, DM12].
La section 3.2 présente l’algorithme de résolution établi et donne des résultats numériques
permettant d’évaluer le gain engendré par l’usage de la représentation intégrale (figures 3.2 à
3.5).

L’application de la représentation intégrale dans le cadre d’une approche éléments finis est
considérée dans la section 3.3 où le modèle standard [LJ01] est justifié comme une méthode de
Schwarz avec recouvrement, ce qui inspire un préconditionneur pour l’utilisation de solveurs
itératifs de type Krylov [DGR14, Rai14, DGRon]. Avec Nabil Gmati et Rania Rais, nous avons
justifié un algorithme de résolution de type Krylov comme alternative à l’algorithme de type
point fixe proposé par [LJ01]. L’implémentation de cette approche par le développement de
nouveaux intégrands dans MÉLINA++ a permis d’illustrer numériquement la vitesse de conver-
gence superlinéaire du GMRES, un solveur de Krylov (figure 3.10).

? Traitement des singularités : Les opérateurs intégraux sont faiblement singuliers, sin-
guliers ou même fortement singuliers pour certains d’entre eux. L’évaluation de la forme
discrète de ces opérateurs requiert une attention toute particulière et correspond toujours
à une difficulté majeure de mise en œuvre numérique de la résolution des équations
intégrales. Des solutions numériques existent [SS11] mais conduisent à un coût de calcul
élevé. Des expressions analytiques sont proposées [LS12] mais sont non génériques et
difficiles à établir. Le dernier chapitre est dédié au traitement des singularités.

Résumé du chapitre 4 :
Le traitement des singularités est requis dans chacune des applications précédemment présentées
des formulations intégrales. La stratégie utilisée dans le cadre de ces applications est basée sur
des changements de variables singuliers impliquant la transformation de Duffy [Duf82]. Le
cas des opérateurs surfaciques est décrit explicitement dans la section 4.2 et est traité selon une
méthode développée par Jean Gay, ingénieur retraité du CEA-CESTA, méthode essentiellement
décrite dans des thèses de l’université de Bordeaux I ([Lec97, Lan95, Dar02a]). Le cas des
opérateurs intégraux volumiques est traité selon une méthode que j’ai élaborée sur le modèle
de celle pour le cas surfacique. La mise en œuvre numérique a été réalisée avec la participation
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d’El-Hadji Koné pendant sa thèse à l’université de Rennes 1 et les détails de la méthode sont
visibles dans [Kon10].

La méthode retenue dans nos travaux s’apparente à celle présentée dans [SS11], avec des
différences sur les cas les plus singuliers. D’autre part, des solutions analytiques sont dévelop-
pées autour de Marc Lenoir [LS12]. Dans le cadre de sa thèse avec Marc Lenoir, Nicolas Salles
m’a rendu visite à l’IRMAR à plusieurs reprises afin d’implémenter leurs expressions analy-
tiques dans la librairie éléments finis MÉLINA++ [Sal13]. De récents travaux par Francisco
Javier Sayas et co-auteurs [DLS14b, DLS14a, DLSon] offrent, dans le cas bi-dimensionnel,
des méthodes numériques très peu coûteuses. L’ensemble de ces solutions méritent d’être com-
parées ou combinées.

Ces travaux ont systématiquement été menés avec un important travail de programma-
tion numérique dans le cadre du développement de bibliothèques de calcul numérique open-
source : FastMMLib [DLnt] (une bibliothèque numérique générique de méthodes rapides),
MÉLINA++ [MDL14] (bibliothèque numérique éléments finis), XLiFE++ [KLss] (bibliothèque
numérique d’éléments finis étendue), le projet d’une bibliothèque numérique du traitement des
singularités.

Par de nombreuses applications de la méthode multipôle rapide (voir les chapitres 1 et 3)
avec différents noyaux (potentiel de Coulomb, solution fondamentale de Helmholtz, et leurs
dérivées), dans différentes configurations (dynamique moléculaire, équations intégrales, repré-
sentations intégrales), combinées ou non à d’autres outils numériques (préconditionneurs, discré-
tisation microlocale), j’ai acquis une expertise qui me permet aujourd’hui de diriger le dévelop-
pement d’une bibliothèque numérique de méthodes rapides : FastMMLib [DLnt]. L’originalité
et l’intérêt de la bibliothèque résident dans l’aspect générique selon lequel sont définies les
méthodes rapides implémentées. La bibliothèque permettra de traiter de nombreuses appli-
cations selon un canevas générique et sera utilisable par tout code de résolution d’équation
intégrale ou de résolution de problèmes denses de même catégorie.

La bibliothèque libre MÉLINA++ [MDL14], principalement développée par Daniel Martin
à l’IRMAR, Université de Rennes 1, est une bibliothèque éléments finis initialement dédiée à
la résolution des équations aux dérivées partielles elliptiques. Avec Daniel Martin, nous avons
intégré les opérateurs intégraux de surface dans la bibliothèque de sorte que MÉLINA++ puisse
résoudre les équations intégrales. Rapidement, nous avons validé ce travail par la résolution des
équations intégrales de Després [DM09] (voir la section 1.2 pour des détails sur ces équations)
et l’avons utilisé pour l’étude du préconditionneur OSRC (voir la section 1.3). Par la suite,
nous avons implémenté les opérateurs intégraux de volume (chapitre 2) dans MÉLINA++ avec
la participation d’El-Hadji Koné dans le cadre de sa thèse. L’ingrédient essentiel de la mise en
œuvre de ces opérateurs est le traitement des singularités (voir chapitre 4). Pour cela, dans le cas
volumique, nous avons adapté la stratégie implémentée dans le cas surfacique (detaillée dans le
chapitre 4) que j’avais expérimentée lors de ma première mise en œuvre des équations intégrales
de Després (résultats numériques relatifs dans la section 1.2). La plus récente contribution à
MÉLINA++ concerne l’intégration des opérateurs relatifs aux représentations intégrales comme
conditions au bord exactes pour la résolution d’équations aux dérivées partielles en domaine
extérieur. Avec le soutien de Daniel Martin et Yvon Lafranche, Rania Rais, dans le cadre de
sa thèse, et moi-même avons ajouté de nombreux intégrands dans la bibliothèque de sorte à
pouvoir résoudre les équations de Maxwell dans des configurations complexes (voir la section
3.3). La difficulté majeure consistait à valider les nombreux outils numériques combinés pour
la résolution de ces équations.
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Suite au départ à la retraite de Daniel Martin, la bibliothèque MÉLINA++ est maintenue par
Yvon Lafranche et moi-même mais nous n’y apportons plus de nouveaux développements. Un
nouveau projet, la bibliothèque libre XLiFE++ [KLss], a récemment été initié par Éric Lunéville
de l’ENSTA-ParisTech. La bibliothèque dérive de MÉLINA++ et a pour objectif principal de
permettre un élargissement des champs d’application. XLiFE++ est développée dans le cadre
d’un projet ANR avec des partenaires industriels. Yvon Lafranche et moi-même contribuons à
son développement.

Les résolutions d’équations intégrales proposées dans ce document (sections 1.2, 1.3, chapi-
tre 2) nécessitent le traitement des singularités. Comme indiqué précédemment, la méthode
numérique implémentée dans MÉLINA++ (section 4.2) a rendu possible la résolution d’équa-
tions intégrales avec cette bibliothèque mais d’autres techniques, numériques ou analytiques,
existent et méritent d’être considérées (see Section 4.3). J’ai de ce fait le projet d’une bi-
bliothèque libre de méthodes de traitement de singularités, à l’image de la bibliothèque Fast-
MMLib.



CONTENTS 15

Introduction (English version)

Integral operators, singular kernels, fast methods: Mathematical tools
for the numerical resolution of large dense problems

Physical, biological, chemical modelizations usually lead to very challenging mathematical
equations. N-body problems, molecular dynamics, wave propagation in exterior domain are
applications which are modelized by systems the resolution of which is extremely challenging
either due to the size or the sensitive mathematical properties of the involved operators. The
wave propagation in exterior domain, the leading application of this document, is a physical
phenomenon which is present in many applications: radar detection, communication, driving
assistance, imaging, medical treatments of cancers, ... However the simulation of this phe-
nomenon has always been a difficult issue: one has to deal with the unbounded character of
the domain and many different mathematical and numerical strategies have been developed and
studied. Due to the physical parameters of the applications, any strategy has its own limita-
tions and requires improvements in different directions. Combinations are often considered.
In this document, we essentially evoke surface and volume integral operators which are ingre-
dients of two different approaches: integral representation in the framework of a differential
approach or integral equations. Such operators have particularities which make difficult the
numerical resolution: they are global operators, singular and generally lead to bad conditioned
systems. To overcome the global character of integral operators, the use of fast methods is
essential at high-frequency regime. Panel Clustering [HN89, Sau00], Fast Multipole Methods
[GR88, CRW93, SC95, Dar00a], fast high order solver [BK01b, BK01a], H-matrices and Adap-
tive Cross Approximation [Hac99, BGH06, Beb08] were developed to speed up the resolution
of large-size dense systems related to Green kernels. Different preconditioners or well con-
ditioned formulations [BC00, CN02, BET12, AD07, ABL07] have been studied in literature.
Specific quadrature formulae or analytical calculation address solutions for the treatment of the
singularities [LS12, SS11, DLS14a, DLSon, DLS14b].

The work presented in this document concerns mathematical concepts elaborated in order to
improve the efficiency and robustness of the numerical strategies considered for the resolution
of large-size problems such as integral equations for wave propagation in exterior domains.
Four main subjects are tackled in this collection. All of them contributed to the development
and the implementation of new algorithms for the resolution of large dense problems. Each one
of them corresponds to a chapter of the document:

? FMM – a numerical solution to deal with the dense character of discrete integral
equations: Initially designed for the fast evaluation of Coulomb potentials in the study
of N-body problems, the Fast Multipole Method (FMM) [GR88, GR97] has quickly been
applied to the integral operators involved in integral formulations of Laplace equation.



16 CONTENTS

Then the method has been adapted to wave propagation problems [CJL+97, Dar00a,
Dar00b, KSC99, Rah96]. The FMM is used in a specific operation of the numerical
resolution. This enables one to combine the method with different tools such as precon-
ditioners and to apply the method in any formulation involving integral operators, Green
kernels or Coulomb potentials. The next chapter exhibits the application of the Fast Mul-
tipole Method in four different configurations: combination to a microlocal discretization
within the context of Després’s integral equations [Dar02b, BDMN03]; combination to
an analytical preconditioner based on On Surface Radiation Condition (OSRC) [DDL13];
a regularized version of FMM for Hamiltonian systems [CDF10]; application to integral
representation for the Ultra-Weak Variational Formulation [Dar08].

? Mathematical and numerical analysis of the volume integral operators: Even if the
volume integral operators are often used by physicists [KM00, Lu03, Bot06, SSVVA06,
BS06, Rah00, SF11], the mathematical literature on these operators is rather poor. A
mathematical framework was proposed in [Kir07, KL09], some mathematical and spec-
tral properties were investigated in [FP84]. Our contribution has complemented existence
and uniqueness results, mapping properties and spectral properties with the aim to math-
ematically analyze and implement different numerical resolution algorithms. Chapter 2 is
devoted to mathematical properties of volume integral operators derived within the PhD
theses of El-Hadji Koné and Hamdi Sakly [CDK10, Kon10, CDS12, Sak14, CDSonb,
CDSona]. We firstly present results on existence and uniqueness for the electric and mag-
netic volume integral equations. Then, spectral properties of both operators are given in
the case of wave propagation around either smooth or Lipschitz domains.

? Analysis of the integral representation as an exact artificial boundary condition: To
deal with the exterior wave propagation problem, one can choose the use of a volume
differential formulation written on a bounded domain delimited by the domain and an
artificial boundary which simulates the behavior at infinity. An integral representation
offers an exact artificial boundary condition. Such application of integral operators was
proposed in [JL77, HL96] and have aroused some interest [LJ01, BBFGJ05]. In Chap-
ter 3, we examine the consideration of such application of integral representations in
the framework of differential formulations of wave propagation problems. First of all,
the impact of this approach is evaluated with the Ultra-Weak Variational Formulation
[DM07, DM12]. A second study consists in a mathematical justification of the coupling
of integral representation and finite elements. Within the PhD thesis of Rania Rais, this
work shows the relevance of such a combination and suggests a preconditioner for the use
of Krylov solvers [DGR14, Rai14, DGRon].

? Treatment of the singularities of the integral operators: Integral equations and integral
representations involve weakly singular, singular or strongly singular operators. The eval-
uation of the discrete form of these operators require some attention and is still a difficult
issue to deal with: numerical approaches lead to costly calculus [SS11] and analytical
expressions are non generic and difficult to establish [LS12]. Last chapter is dedicated
to the treatment of the singularities: 3D numerical solutions based on Duffy transfor-
mation are well known [SS11], analytical solutions are under development [LS12], new
numerical tools are derived in 2D by Sayas et al [DLS14b, DLS14a, DLSon]. A library of
integration of singular operators would help for comparisons and development of efficient
algorithms.
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All this work has always been done with a large amount of programming activity, contribut-
ing to the development of open-source libraries: FastMMLib [DLnt] (a generic fast methods
library), MÉLINA++ [MDL14] (finite element library), XLiFE++ [KLss] (extended finite ele-
ment library), the project of a library on the treatment of the singularities of integral operators.

Through the different applications of the Fast Multipole Method (see Chapters 1, 2 and 3)
with different kernels (Coulomb potential, Helmholtz fundamental solution, and derivatives)
in different configurations (molecular dynamics, integral equations, integral representation),
by itself or combined to other numerical tools (preconditioners, microlocal discretization), I
acquired a strong expertise on the method such that I can manage the development of a library
of fast methods: FastMMLib [DLnt]. The essential and original quality of the library is the
generic form chosen to define the implemented algorithms. The library will be able to deal with
different applications using a generic framework and will be usable by any code which aims to
solve integral equations or comparable large dense problems.

The open-source library MÉLINA++ [MDL14], initiated essentially by Daniel Martin at IR-
MAR, Université de Rennes 1, is a finite element library initially oriented to the resolution of
elliptic partial derivative equations (PDE). With Daniel Martin, we integrated the surface inte-
gral operators in the library such that MÉLINA++ could solve integral equations. We quickly
validated the integration by solving Després’s integral equations (see Section 1.2 for details
on these equations) with MÉLINA++ [DM09] and used it to test the OSRC preconditioning
technique (see Section 1.3). We implemented the volume integral operators (Chapter 2) in
MÉLINA++ with the contribution of El-Hadji Koné in the context of his PhD thesis. An essen-
tial ingredient of these operators is the treatment of the singularities (see Chapter 4): for the
volume case, we adapted the strategy implemented for the surface case (detailed in Chapter 4)
that I experimented in my very first programming of Després’s integral equations (numerical
results in Section 1.2). The latest contribution to MÉLINA++ was the integration of the op-
erators related to integral representations as artificial boundaries for the resolution of PDE in
exterior domains. In the context of the PhD thesis of Rania Rais, with Daniel Martin and Yvon
Lafranche, Rania Rais and myself implemented numerous new integrands in the library in or-
der to solve Maxwell equations in complicated configurations (see Section 3.3). The inherent
difficulty was the validation of numerous numerical tools specific to Maxwell equations and put
all together.

Due to the departure of Daniel Martin after he retired, the library MÉLINA++ is maintained
by Yvon Lafranche and myself but not developed anymore toward applications not yet reachable
by the library. A new project, the open-source library XLiFE++ [KLss] was recently initiated at
ENSTA-ParisTech, by Éric Lunéville. The library is derived from MÉLINA++ and aims to be
more generic and to enlarge the range of applications. XLiFE++ is developed in the framework
of an ANR-project with industrial partners. Yvon Lafranche and myself are involved in the
development of this new library.

All the resolutions of integral equations considered in the document (Sections 1.2, 1.3,
Chapter 2) require the treatment of the singularities. As already mentioned just above, the
numerical technique which was integrated in the library MÉLINA++ (Section 4.2) was a suc-
cessful tool which made possible the resolution of integral equations with MÉLINA++ but other
techniques either numerical or analytical have to be considered (see Section 4.3). I have in mind
the project of a generic library dedicated to the treatment of the singularities.
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Chapter 1

Fast methods for integral equations and
dense linear systems

1.1 Introduction
Similar dense systems arise from the discretization of integral equations or molecular dynamics.
In the first case, the dense matrix components are essentially characterized by the Green kernel.
In molecular dynamics, the matrix components are defined by a Coulomb interaction. The Fast
Multipole Method (FMM) speeds up the calculation of matrix-vector products. The FMM strat-
egy is essentially based on a choice of an expansion of the interaction function which defines
the matrix. This is done through a distribution of the interacting particles (either finite element
degrees of freedom or molecular particles) into boxes such that the interactions between the
particles are replaced by interactions between boxes. The method was initially introduced by
Rokhlin et al (e.g. [CRW93]) for N-body problems and was adapted to integral equations of
wave propagation in the 90’s (e.g. [CJL+97], [Dar00a], [Dar00b], [KSC99], [Rah96]).

More precisely, the FMM splits partially the interactions between both the column and row
entries of the matrices. This is done thanks to a separation of variables x and y in the interac-
tion function, either a Green kernel or Coulomb potential G(x, y): the particles are contained
in boxes (called FMM boxes – see Figure 1.1), and the interaction between two particles is
replaced by a succession of translations through the centers of the boxes that contain these par-
ticles. In a single-level FMM (SLFMM), only boxes of a same size, of a same level of an oc-tree,
are considered. In a multilevel FMM (MLFMM), boxes from different levels are involved. The
FMM strategy is illustrated in Figure 1.2. The main ingredient of a FMM approximation is the
choice of the expansion of the interaction function:

G(x, y) ⇡
SX

p=1

c
p

g(p)
x,B

e
SX

p̃=1

T (p,p̃)

B,

e
B

f (p,p̃)

y,

e
B

, (1.1)

where

? S and eS are usually truncation or discretization parameters;

? c
p

depends only on p;

? f (p,p̃)

y,

e
B

does not depend on x; this quantity is named far moment;
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? T (p,p̃)

B,

e
B

does not depend on x or y but on the boxes B and eB which contain respectively x

and y; this quantity is named translation operator;

? g(p)
x,B

does not depend on y; this quantity is named local moment.

The success of the method occurs when the parameters S and eS are negligeable compared
to the number of particles in the discrete problem.

Figure 1.1. FMM boxes: a mesh or set of particles (left) and corresponding FMM boxes (right)
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Figure 1.2. (generated with Fig4TeX [Laf11]) FMM strategy: without FMM (left), with FMM
(right)

In this chapter, we consider the application of the FMM to different configurations

? In the context of my PhD work at the university of Bordeaux I and CEA-CESTA, with
Katherine Mer-Nkonga and Alain Bachelot, we combined a Microlocal Discretization
and FMM for the resolution of Després integral equation for Helmholtz and Maxwell
exterior problems. This application was quite original in the sense that the FMM was
used to compute a matrix (see Section 1.2).
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? With Marion Darbas and Yvon Lafranche, in the framework of the ANR project Mi-
crowave, we combined the FMM and an analytical preconditioner. The results obtained
for Helmholtz equation were significantly impressive and are very promising (see Sec-
tion 1.3).

? In the context of a 2-years period at INRIA-Rennes, with Philippe Chartier and Erwan
Faou, we investigated a regularized version of the FMM for the integration of Hamiltonian
systems where the regularity of the potential is of great importance (see Section 1.4).

? With Peter Monk, in the context of my postdoc position at the university of Delaware,
we implemented an integral representation and the FMM for the ultra-weak variational
formulation. This formulation is an alternative to the finite elements which combines, in
its original form, ideas of domain decomposition and plane-wave enriched finite elements.
The application of the FMM reveals the interest of such a use of integral representation
(see Section 1.5).

1.1.1 FMM expansion for the Helmholtz fundamental solution
In order to reduce the computational cost related to the integral operators, the FMM splits
partially the interactions between both the column and row entries of the matrices obtained
after discretization. In this document, the FMM that we consider is based on the Gegenbauer
series and Funk-Hecke formula ([CJL+97], [Dar00a]). For instance, let us consider the matrix
[L]

[L]
i j

=

Z

�

Z

�

G(x, y)'
j

(y)'
i

(x)d�(y)d�(x), 8i, j

where G is the Helmholtz fundamental solution, G(x, y) = e

ikkx�yk

4⇡kx�yk , k the wavenumber, and
('

i

)
i

a set of finite element basis fonctions. An efficient calculation of the matrix-vector product
[L]X can be expressed thanks to such an expansion for i far from j:
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is the translation operator from the FMM box eB to the FMM box B given by the
expression
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where w
p

, s
p

are the quadrature weights and points for the integration on the unit sphere in-
volved in the Funk-Hecke formula. The summation “

P
S

p=1

” comes from the discretization of
the Funk-Hecke formula while the summation “

P
L

`=0

” is a truncation of the Gegenbauer series.
Moreover, C

B

denotes the center of the FMM box B, h(1)

`

is the spherical Hankel function of
the first kind of degree `, and P

`

is the Legendre polynomial of degree `. The parameters L and
S are estimated thanks to the empirical formula ([KSC99]) L = kd + C(kd)3, and the choice
of the discretization of the unit sphere such that S = (L+ 1)(2L+ 1), where d is the diameter
of the FMM boxes.

1.1.2 FMM expansion for the Coulomb potential
The FMM approximation is based on the expansions given by the following results:
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a spherical harmonic. The corresponding error estimate is
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Result 2 (Conversion of a multipole expansion to a local expansion): Consider the J
source points defined for Result 1. Let us consider that the target point x
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with the translation operation
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We denote by T
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The corresponding error estimate is
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with c satisfying ⇢
st

> (c+ 1)r.
The spherical harmonics are given from the associate Legendre functions Pm

n

:

Y m

n

(✓,�) =

s
(n� |m|)!
(n+ |m|)!P

|m|
n

(cos ✓)eim�. (1.9)

The associate Legendre functions can be evaluated recursively thanks to the relations
8
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>>>>:
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8k � 0,

(l � k)P k

l

(cos ✓) = (2l � 1) cos ✓P k

l�1

(cos ✓)� (l + k � 1)P k
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(cos ✓)
8l, k / 0  k  l � 2

(1.10)

The derivation of the previous results is given in [GR88] and [GR97]. The definition of the
special functions involved in those expansions and further details about their properties can be
found in [AS72].

1.2 Combination of Fast Multipole Method and Microlocal
Discretization for Després’s integral equations

B. Després has written a well-conditioned surface integral formulation of Helmholtz and Maxwell
equations posed on the exterior domain. The formulation is initially based on a Lagrange mul-
tiplier approach ([Des97], [SD99], [Stu01]) but can be established by rather simple algebraic
combinations of more usual integral formulations [BC00]. We hereby focus on a combination
of Fast Multipole Method and Microlocal Discretization for the resolution of Després’s integral
equations. For the sake of simplicity, we present the case of Helmholtz equation [Dar02b] but
the work has been extended to the case of Maxwell equations [BDMN03].

In this study, we consider the Microlocal Discretization introduced by T. Abboud, J.-C.
Nédélec, B. Zhou [ANZ94], [ANZ95], [Zho95]. The method consists in approximating the
phase of the unknown using the geometrical optics method. Consequently, the oscillation of
the new unknown is reduced. We can then consider a numerical approximation with a number
of degrees of freedom N

d

clearly less according to the wavenumber . Indeed, in the classical
case we have N

d

⇠ 2, while N
d

⇠ 2/3 after approximation of the phase. Nevertheless, the
discretization of the geometry implies to consider O(N) elements, with N ⇠ 2, on the surface
of the obstacle. Then, the calculation of the matrices of the system needs O(N2) operations
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with N ⇠ 2, as in the classical discretizations. Thus, the authors of the method suggested the
use of the theory of the stationary phase in order to accelerate the calculation of the matrices
([ANZ95]-[Hör83]). However, this theory does not enable one to have a good estimate of the
CPU time needed for a good accuracy, and the extension to the 3-D case implies difficulties
not yet solved. In [Dar02b], we have considered the Fast Multipole Method to calculate the
reduced-size matrices of the system induced by the Microlocal Discretization in the context of
Després’s integral formulation.

�
⌦�

⌦+

Figure 1.3. (generated with Fig4TeX [Laf11]) the exterior unbounded domain ⌦+

In this section, we are concerned with the resolution of the Helmholtz equation with Robin
boundary condition (a general impedance boundary condition is considered in [Dar02b]).
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>>><

>>>:

�u+ 2u = 0 , in ⌦+ ,
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@n
|
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+ iu|
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= g , on � ,
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r!+1
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✓
@u

@r
� iu

◆
= 0 ,

(1.11)

where ⌦� is a regular bounded domain of R3, of boundary �, and ⌦+ = R3\⌦� (Fig. 1.3). g is
given as a function of the incident wave. The unit normal n is directed to the exterior domain.

Let us introduce the surface unknowns q = u|
�

, p =
@u

@n
|
�

, and the single and double layer
potentials and derivatives S, K, K 0 and D defined for all x on � by

Sp(x) =

Z

�

G(x, y) p(y) d�(y) , Dq(x) =

Z

�

@2G

@n
x

@n
y

(x, y) q(y) d�(y) ,

Kq(x) =

Z

�

@G

@n
y

(x, y) q(y) d�(y) , K 0p(x) =

Z

�

@G

@n
x

(x, y) p(y) d�(y) .

(1.12)

with G(x, y) =
ei|x�y|

4⇡|x� y| . The Després’s integral formulation uses a plit of the Green kernel

G into a regular part G
i

(x, y) =
sin(|x� y|)
4⇡|x� y| and a singular part G

r

(x, y) =
cos(|x� y|)
4⇡|x� y| .

Following this decomposition, the operators read

S = S
r

+ iS
i

, K = K
r

+ iK
i

, K 0 = K 0
r

+ iK 0
i

, D = D
r

+ iD
i

where S
r

, K
r

, K 0
r

, D
r

, S
i

, K
i

, K 0
i

and D
i

are real operators.
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Finally, we introduce the notations
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64
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
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+
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r

3

75 and M =
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
D

i

�K 0
i

�K
i
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i

3

5 ,

and the far field operator defined for all p, q in L2(�) and ŝ in S2 by
✓
A1


q
p

�◆
(ŝ) =



4⇡

Z

�

e�iy·ŝ(p(y) + i(ŝ · n
y

)q(y))d�(y) . (1.13)

Its adjoint is given for all ' in L2(S2) by
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)eiy·ŝ'(ŝ)dŝ
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eiy·ŝ'(ŝ)dŝ
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7775
, (1.14)

where
Z

S

2

.dŝ denotes the integral around the unit sphere S2, such that

M = A⇤
1A1 , (1.15)

i.e. 8p, q 2 L2(�)

Z

S

2

A1


q
p

�
· A1


q̃
p̃

�
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(M

q
p

�
) ·


q̃
p̃

�
d� . (1.16)

The Després’s integral equations are then written as follows:
⇢

X + A⇤
1A1X � K⇤Y = g̃ ,

KX + A⇤
1A1Y = 0 ,

(1.17)

where X =


q
p

�
and Y = iX the Lagrange multiplier. The theory of the inf-sup condition

enables one to check the existence and the uniqueness of X and the existence of Y . In order to
gain the uniqueness of Y , B. Després suggested the following modification (see [BC00]), i.e.
adding

��X � i�Y = 0 to the first equation
and �i�X + �Y = 0 to the second one, (1.18)

⇢
(Id� �)X + A⇤

1A1X � K⇤Y � i�Y = g̃ ,
(K � i�)X + (� + A⇤

1A1)Y = 0 .
(1.19)

A usual discretization, P
1

Lagrange finite element, would lead to the following system:
⇢
X = (D��

+A)�1(F
h

+ (K⇤ + iB
�

)Y ),
((K� iB

�

)(D��

+A)�1(K⇤+ iB
�

) + B
�

+A)Y =�(K� iB
�

)(D��

+A)�1F
h

,
(1.20)

with D��

, B
�

, A, K the matrices resulting respectively from the discretization of the operators
(1 � �)I , �I , A⇤

1A1 and K. Due to the Hermitian property of the positive definite matrix
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((K � iB
�

)(D��

+ A)�1(K⇤ + iB
�

) + B
�

+ A), one can solve the system by using a double
conjugate gradient method.

If N denotes the number of degrees of freedom, the matrices D��

, B
�

, A, K are of size
2N ⇥ 2N , and involve N ⇥N matrices of the form

[S
r

]
ij

=< S
r

'
j

,'
i

>
V

h

=

Z

�

h

Z

�

h

G
r

(x, y)'
i

(x)'
j

(y) d�(y) d�(x) . (1.21)

V
h

= Vect{'
i

; i = 1, ..., N} with '
i

, i 2 {1, ..., N} the P
1

-basis functions associated to
the finite element discretization, and �

h

is the surface defined by the finite element triangulation.

Let us now explain the combination of the Microlocal Discretization and the Fast Multipole
Method for the matrix [S

r

] defined by (1.21). The same strategy is applied to the entire system.
By looking carefully at the matrix [S

r

], one can see that the size is highly depending on the
wavenumber: N ⇥N = 4. Moreover, the matrix is dense. The resolution of systems involving
such matrices at high frequency is always a difficult issue. Here, we first use the Microlocal
Discretization in order to consider a coarser interpolation of the unknown. The idea is based
on the integration of the phase of the incident wave into the basis functions. In such a way, we
indeed solve a new problem the solution of which is a new unknown with a reduced phase. The
new unknown is strongly less oscillating and a theoretical study has shown that the interpolation
of the unknown can be done with a number of degrees of freedom of order 2/3 instead of 2

[ANZ95]. However, for the evaluation of the integral, due to the oscillating Green kernel and
new basis functions, one still has to consider the usual discretization for the evaluation of the
integrals. To this aim, we consider a coarse mesh �

c

for the interpolation of the unknown
(the basis functions are defined on the nodes of �

c

), and a fine mesh �
f

for the geometrical
approximations. Let us denote by N

f

and N
c

the number of nodes of respectively �
f

and �
c

(N
f

⇠ 2 and N
c

⇠ 2/3). In order to make the algorithm easier, the mesh �
f

is chosen to be
a refinement of the mesh �

c

. We subsequently denote by ⇡ the orthogonal projection from the
plane triangles of �

c

to the ones of �
f

(see Fig. 1.4).

Element of �
c

Elements of �
f

Figure 1.4. (generated with Fig4TeX [Laf11]) fine elements of �
f

obtained from the refinement
of a coarse element of �

c

We introduce the new basis functions e'
i

= ('
i

� ⇡�1) ei�0 where i�
0

is the phase of the
incident wave and '

i

, i 2 {1, ..., N
c

} the P
1

-basis functions associated to �
c

.
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The matrix [S
r

] is now given by
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where eV
h

= Vect{e'
i

; i = 1, ..., N
c

}.
This definition shows the term [S

r

]
ji

like a sum of interactions between triangles T
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) and T
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). For any degree of freedom i, there is a large
amount of triangles T
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satisfying T
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), about N
f

/N
c

⇠ 4/3. In the resolution of
a system involving such matrices, the difficulty is not the resolution by itself anymore but the
calculation of the matrices. In [Dar02b], the Fast Multipole Method is not used to speed up
matrix-vector products in the context of a Krylov solver, as usually, but is used to calculate the
reduced-size matrices.

Using a kernel expansion of the form (1.1), we get the following approximation of the
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(1.23)

Using a SLFMM, the new algorithm has the complexity (memory and CPU for “calculation
of the matrices + resolution with a direct solver”):

? memory: O(N
f

+N3

c

) ⇠ O(N
f

),

? CPU : O(N3/2

f

+N3

c

) ⇠ O(N3/2

f

).

Using a MLFMM, the complexity is:

? memory: O(N
f

+N3

c

) ⇠ O(N
f

),

? CPU : O(N
f

N
c

logN
f

+N3

c

) ⇠ O(N4/3

f

logN
f

).

In this configuration, the usual complexity N
f

logN
f

of the MLFMM is not reached because
the size of the usable boxes is at most the size of the coarse triangles of �

c

.

Impressive numerical results were obtained for different boundary conditions (Dirichlet,
Neumann or Robin condition on �) for the unit sphere (see [Dar02b]). In Fig. 1.8 and Fig. 1.7
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we plot the RCS obtained with a number of degrees of freedom particularly small: the average
length of the elements of the mesh is 1.6� for the Neumann and Robin cases and 2� for the
Dirichlet case, instead of the classical �/10, with � the wavelength. Fig. 1.5 gives the gain on
the CPU and memory requirements on a processor EV67 of a Compaq cluster ES40.
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Figure 1.5. CPU time (left) and memory requirements (right)
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Figure 1.6. Dirichlet case,  = 12 or 24

An industrial test-case is considered in the paper [Dar02b]. In [BDMN03], we also an-
alyzed the application of the combination to Maxwell equations. The strategy is similar and
comparable results are obtained using the MLFMM.
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Figure 1.7. Dirichlet case, D = 26�,  = 84
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Figure 1.8. Neumann case (left), Robin case (right),  = 60

1.3 Analytic preconditioner and Fast Multipole Method
In this section, we focus on the resolution of the Helmholtz equation in exterior domain ⌦+

with Neumann boundary condition on its boundary �:

8
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(1.24)

where k is the wavenumber and uinc the incident wave. The problem can be solved using a
Combined Field Integral Equation (CFIE) involving the integral operators introduced in the
previous section. A classical formulation of the CFIE is given in [MH78]. Problem (1.24) can
be solved considering the well-known CFIE: find the physical unknown ' = ��+

0

(u� uinc) 2
H1/2(�) solution to

✓
I

2
�K � ⌘D

◆
' = ��+

0

uinc � ⌘�+

1

uinc, on �, (1.25)
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with a coupling complex parameter ⌘, K and D the double layer potential and its derivative
defined in (1.12), and �+

0

, �+

1

the exterior trace operators of respective orders 0 and 1. Under
rather standard conditions on the domain (Lipschitz) and the combination parameter ⌘ (Im(⌘) 6=
0), we have existence and uniqueness results [BH05] of the CFIE (1.25) in H1/2(�) for any
wavenumber k > 0. However, the equation does not provide an interesting spectral behavior.
To expect an eigenvalue clustering and hence a fast convergence of iterative solvers, we adopt
the approach of X. Antoine and M. Darbas [AD05, AD07]: composing the operator D with a
regularizing operator, the exterior Neumann-to-Dirichlet (NtD) map

V ex : H�1/2(�) ! H1/2(�)
�+

1

u 7! �+

0

u = V ex�+

1

u.
(1.26)

The following integral relations hold: V exD = I

2

+K, on �, and I

2

�K + V exD = I, on �. In
this ideal configuration, the solution ' = ��+

0

uinc+V ex�+

1

uinc 2 H1/2(�) is computed directly.
However, as well-known, an expression of the exact NtD is not available for a general surface �.
Instead, an approximation eV of V ex is introduced to construct the OSRC-preconditioned CFIE:
find ' = ��+

0

(u� uinc) 2 H1/2(�) such that
✓
I

2
�K + eV D

◆
' = ��+

0

uinc + eV �+

1

uinc, on �. (1.27)

An efficient approximation eV is derived in [ADL06] according to On-Surface Radiation Con-
ditions (OSRC) method [Ant08, ABB99, Jon88, KTU87]

eV =
1

ik

✓
1 +

�
�

k2

"

◆�1/2

, (1.28)

where �
�

is the Laplace-Beltrami operator over the surface � and the parameter k
"

= k + i" is
complex-valued. The small damping parameter " 2 R⇤ is introduced to regularize the square-
root operator in the transition zone of grazing modes. A suitable choice of " has been determined
in [Dar04]: " = 0.4k1/3R�2/3 where R is the radius of the smallest sphere containing ⌦. We
still have existence and uniqueness of the solution of the OSRC-preconditioned CFIE (1.27) in
H1/2(�) for any wavenumber k and any damping parameter " 6= 0, under the conditions that
� is a smooth surface. The OSRC-preconditioned CFIE uses the CFIE integral operators and
in addition only some differential operators involved in the OSRC approach. The discretization
of the later gives rise to sparse matrices. However, as already mentioned, the discretization
of integral operators leads to dense matrices. The operators related to the preconditioner and
the integral operators are well separated such that a Krylov resolution of the discretized system
involves both the preconditioner and the integral operators in different steps such that

? a sparse direct solver is used to apply the OSRC preconditioner,

? a Fast Multipole Method can be used to evaluate the dense matrix-vector products related
to the integral operators.

In the paper [DDL13] we combine the OSRC preconditioner and a single-level Fast Multi-
pole Method. The application of the OSRC preconditioner requires the evaluation of a square
root. Padé approximants localize the square-root operator such that the application of the OSRC
preconditioner reduces to the resolution of Helmholtz-type sparse linear systems (we refer to
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[DDL13] for more details on this aspect). In order to evaluate efficiently the matrix-vector
products related to the discretization of the integral operators, we use the SLFMM introduced
in Section 1.1.1. For instance, an efficient calculation of the matrix-vector product with matrix
[L] defined by

[L]
i j

=

Z

�

Z

�

G(x, y)'
j

(y)'
i

(x)d�(y)d�(x), i, j = 1, · · · , N
V

,

with G the Helmholtz fundamental solution, can be expressed thanks to such an expansion for
i far from j:
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⇡
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c
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B/B\supp'
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e
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e
B\supp'

j
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T (p)

B,

e
B

f (p)

j,

e
B

,

This leads to an algorithm of complexity which is N3/2 for a single-level FMM and N log2 N
for a multilevel FMM, where N is the number of degrees of Freedom. The chosen expansion,
based on the Gegenbauer series and the Funk-Hecke formula leads to a FMM which is known to
be unstable at “low-frequency regimes”. This occurs for any frequency when the mesh density
n
�

is large compared to the usual value n
�

= 10. This comes from the translation operator
T (p)

B,

e
B

which sums Hankel functions (see eq. (1.2)). In the Gegenbauer series, the diverging
behavior of the Hankel function is controlled by the converging Bessel function, but the con-
sidered FMM expansion separates the Hankel function such that the translation operator (1.2)
becomes unstable at low-frequency regimes. In this section, we effectively meet with this issue
(cf. Section 1.3.2).

For the numerical results, we have considered several geometries generated using Gmsh
[GR09]. First, the unit sphere enables us to validate the code by comparison with the analytical
solution. Then, domains with cavity (cube with cubic cavity and sphere with spherical cavity),
a cone-sphere and a submarine (Fig. 1.9) offer trapping effects or configurations with singulari-
ties. The characteristic length of the cone-sphere and the submarine are respectively 6⇥1⇥1m
and 43⇥ 7⇥ 7m.

Z X

Y

Z X

Y

Z

X

Y

Z

X

Y Y

Z

Y

Z

XX

X

Y
ZZ
Y

X

Figure 1.9. cubic cavity, spherical cavity, cone-sphere, submarine

1.3.1 Eigenvalues investigation
The investigation of the eigenvalues behavior of the involved integral operators has been op-
erated using a code implemented with the libraries MÉLINA++ [MDL14] and ARPACK++1.

1
http://www.ime.unicamp.br/⇠chico/arpack++/

http://www.ime.unicamp.br/~chico/arpack++/
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MÉLINA++ is the finite element (FE) library developed at IRMAR by the team “Analyse
Numérique”. It provides the FE discretization of the integral operators and standard differential
operators. To compute numerical eigenvalues, ARPACK++ implements the “Implicit Restarted
Arnoldi Method” (IRAM), which combines Arnoldi factorizations with an implicitly shifted QR
method. A thourough investigation is described in the paper [DDL13]. Some of the most rele-
vant results are given below. For all the geometries, the application of the OSRC preconditioner
clearly cluster the eigenvalues around 1. For example, Fig. 1.10-1.11 show the distribution of
the eigenvalues without preconditioning (CFIE) and with preconditioning (CFIE+OSRC) for
the cone-sphere and the submarine. For the submarine, Fig. 1.13 gives the condition number
with respect to the wavenumber k for the mesh density n

�

= 10, and with respect to n
�

for
k = 1.5: for the OSRC-preconditioned CFIE, this value lies between 2.5 and 2.9 versus n

�

and
between 2.3 and 2.6 versus k. This behavior is very interesting in view of an iterative solution
and even remarkable for the considered object.
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In the case of the cube with cavity, Fig. 1.14 exhibits a resonance frequency around k = 5.2:
the OSRC-preconditioned CFIE has an isolated eigenvalue that comes very close to zero. Fig.
1.15 shows the condition number versus k where we considered numerous values of k, with
four different meshes. To differentiate the different meshes, the curves are drawn alternatively
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Figure 1.13. Submarine: condition number – left: vs. k, n
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= 10 ; right: vs. n
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, k = 1.5

using dashed and solid lines for the CFIE and using dashed and dotted lines for the OSRC-
preconditioned CFIE. Fig. 1.15 clearly indicates that the resonance effect is attenuated by
the OSRC-preconditioning. The highlighted resonance frequencies are characterized by the
presence of a small number (one or two for the cube with cavity) of eigenvalues close to zero:
when two of them are near zero, they are close enough to interpret them as one eigenvalue with
multiplicity 2.
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For the unit sphere, an interesting study of the eigenvalues behavior is observed versus the Padé
order: Fig. 1.16 gives the numerical eigenvalues and the Padé-analytical ones for different
Padé orders where the Padé-analytical eigenvalues are calculated by replacing the square-root
operator with the Padé approximants in the analytic expression of the eigenvalues.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=2

 

 

Padé−analytical
Numerical

0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=4

 

 

Padé−analytical
Numerical

0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=6

 

 

Padé−analytical
Numerical

0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=8

 

 

Padé−analytical
Numerical

0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=10

 

 

Padé−analytical
Numerical

0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

Real part

Im
a
g
in

a
ry

 p
a
rt

CFIE+OSRC ; k=10, n
!
=11.85, N

p
=12

 

 

Padé−analytical
Numerical

Figure 1.16. Unit sphere: distribution of the eigenvalues vs Padé order N
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, k = 10, n
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= 11.85

1.3.2 Some of the numerical results
Thanks to the application of a SLFMM we have run tests at significantly high frequencies on
an Intel(R) Xeon(R) CPU - E5620- 2.40GHz. The system was solved using GMRES. Fig. 1.17
to 1.23 show the bistatic Radar Cross Section (RCS ; compared to the Mie series solution for
the unit sphere) in various configurations: different wavenumbers at the standard mesh density
n
�

= 10, different mesh densities at a fixed wavenumber, using or not using preconditioning,
using or not using FMM.
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A comment should be made on the use of the FMM: The different tests performed show that
the FMM does not affect the OSRC technique as far as the accuracy of the FMM is reasonable.
When the mesh density becomes too large, the problem meets with low-frequency regimes.
This is clearly visible in Fig. 1.18 for the case n

�

= 32 where the code has converged to a
wrong solution. This is a well-known unstability of the FMM. New expansions of the Green
kernel are developed in order to overcome this issue [GHRW98, DH04, LC10].

Concerning the cone-sphere, the essential characteristic is the sharp apex toward the di-
rection (1, 0, 0) from its centroid. We then consider three incident directions: (�1, 0, 0) par-
allel to the axis of the cone, where the incident wave hits the cone-sphere on the sharp apex,
(1, 0, 0) which hits the sphere part of the cone-sphere, and (0, 0,�1) which hits the object per-
pendicularly to its axis. Table 1.1 indicates how the resolution convergence depends on the
incident direction with the code CFIE or CFIE+FMM while it is not the case for the code
CFIE+OSRC+FMM. Fig. 1.21 gives the RCS for different incident directions, wavenumbers or
mesh densities.
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Table 1.1. Number of iterations vs incident direction taking n
�

= 8, and k = 8
Incident direction CFIE CFIE+SLFMM CFIE+SLFMM+OSRC

(-1,0,0) 171 176 7
(1,0,0) 177 182 7
(0,0,-1) 230 235 7

For the submarine, the RCS is illustrated in Fig. 1.22-1.23 when the incident direction is
�(

p
3/2, 0, 1/2). For k = 2.5, Fig. 1.23-right exhibits the stability of the RCS versus the mesh

density obtained with the code CFIE+OSRC+FMM while Fig. 1.23-left indicates that the code
CFIE+FMM does not offer the same property. We can guess that this instability is related to
the very low convergence of the GMRES. On Fig. 1.23-left, the results labeled “Ref” were
obtained with the code CFIE+FMM for the mesh densities n

�

= 10 and n
�

= 16.8 and do not
really match (relative (l2,l1) differences: (0.1846, 0.4127)). On Fig. 1.23-right, the results are
obtained with the code CFIE+OSRC+FMM with mesh densities from 10 to 30 and agree to each
other (relative (l2,l1)-differences: (0.0212, 0.0679) to (0.0280, 0.1051)). A common curve is
visible in both left and right plots of Fig. 1.23: n

�

= 16.8 in solid-line style. The instability
essentially occurs in the illuminated zone which corresponds to the back of the submarine.
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Figure 1.22. Normalized RCS: various wavenumbers, n
�

= 10

The speed of the GMRES convergence versus the wavenumber or mesh density is illustrated
in Fig. 1.24-1.25-1.26 for the different geometries. The use of the OSRC preconditioner clearly
reduces the dependence of the GMRES convergence on these parameters.
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Figure 1.24. Unit sphere: convergence of GMRES
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Figure 1.25. Sphere with cavity: convergence of GMRES

GMRES residuals can be observed in Fig. 1.27: in the case of the cube with cavity, at a
resonance frequency on right. Close to the resonance frequency, the presence of small eigenval-
ues, distributed away from the cluster of eigenvalues at (1, 0), slows down convergence of the
GMRES. For k = 5.2, we can observe a plateau from iteration 7 to 12 in the GMRES residual
curve. This plateau is not present in non-resonant cases.
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Figure 1.26. Submarine: convergence of GMRES
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Figure 1.27. Cube with cavity: convergence of GMRES, residuals

In the case of the unit sphere where we can measure the RCS error in Table 1.2, we have
carefully studied the impact of the application of the OSRC preconditioner and of the SLFMM
in term of efficiency: in Table 1.3, we show the CPU costs of the different codes (with or without
SLFMM; with or without OSRC preconditioning).

Table 1.2. Relative k · k
2

and k · k1 errors on the normalized RCS (n
�

= 10)
CFIE CFIE + FMM CFIE + OSRC + FMM

k
4.76

11.85
23.7
47.4

k · k
2

k · k1
6.3e-3 7.9e-3
2.5e-3 2.9e-3

– –
– –

k · k
2

k · k1
5.5e-3 6.7e-3
3.9e-3 4.9e-3
1.67e-2 2.07e-2

– –

k · k
2

k · k1
6.8e-3 8.2e-3
2.2e-3 2.3e-3

1.02e-2 9.3e-3
2.46e-2 4.21e-2

As one can see, the application of the OSRC preconditioning technique considerably re-
duces the global cost of the resolution and does not really affect the cost per iteration. Recall
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that the operators involved in the preconditioning technique are differential operators. Then,
the cost of applying the regularizing operator eV per iteration is negligible. Thus, the cost per
iteration is essentially the one of FMM matrix-vector products. For instance, the global cost is
multiplied by 8 when the wavenumber is multiplied by 2 from 23.7 to 47.4. This is precisely the
cost of the single-level FMM (SLFMM) since its theoretical complexity is about (k2)3/2 = k3

and 8 = 23.

Table 1.3. Global costs vs k taking n
�

= 10
k Total CPU time Total CPU time Total CPU time

CFIE CFIE+SLFMM CFIE+SLFMM+OSRC
4.76 7 min 42” 13 min 47” 2 min 42”
11.85 9 h 43 min 4 h 33 min 32 min 40”
23.7 > 15 days 214 h 44 min 6 h 20 min
47.4 – – 48 h 48 min

1.4 A Regularized Fast Multipole Method for Geometric Nu-
merical Integrations of Hamiltonian Systems

1.4.1 Introduction to the Regularized Fast Multipole Method
In applications to molecular dynamics, the evaluation of the potential function involves pair-
wise interactions (the Coulomb energy) of a large number of particles (typically millions of)
and constitutes the bulk of computations. In this context, different strategies have been con-
sidered to speed up its evaluation: One of them consists in using the Fast Multipole Method
(FMM) as introduced by L. Greengard and V. Rokhlin ([GR88]). This first version was written
to deal with point charges, while in papers [WJGHG94], [WJGHG96], [SWHG01], [SSF96]
and [KS99], the FMM was extended to and developed for the case of continuous distributions
of the charges which corresponds to the charge distributions in molecular dynamics. These im-
provements led to versions of the FMM referred to as the continuous or gaussian Fast Multipole
Method (CFMM or GFMM). However, all these versions share the drawback of producing dis-
continuities which in turn, when used in combination with a symplectic time discretization of
the Hamiltonian dynamics, lead to drift in energy. In molecular dynamics however, it is crucial
that the numerical method used to compute the solution preserves the symplecticity, the vol-
ume form, the Hamiltonian, or a combination of the three (given that for smooth Hamiltonians,
symplecticity implies preservation of volume) and for these properties to show up in long-term
integration, quite a lot of smoothness is required. B. Leimkuhler’s work on smooth switches
between different symplectic integrators points toward the same direction [KL00, HLL00]. In
order to attenuate the effect of discontinuities, one may use a large (sometimes up to twenty)
number of multipoles in FMM expansions at the price of a prohibitive increase of the compu-
tational cost, despite many efforts to reduce the complexity of the FMM (see Elliot and Board
[EB96], Petersen et al [PSPS94], Scuseria et al[KS99, BSSF96a, BSSF96b, SSF96, IS07], and
[WHG96, GR97]). In this section, we propose a regularization technique for the FMM with the
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aim of recovering the usual benefits of symplectic integration: This new FMM, referred to as
the RFMM for regularized FMM in the sequel, is regular at the interface between boxes and
thus provides a smooth approximation of the potential.

The FMM aims to offer a fast algorithm for the computation of a matrix-vector product
Aq where the matrix A models the energy potential and q refers to the charges involved in the
molecular dynamics problem. Let us denote by N the number of charges. For each charge
i 2 {1, ..., N} located at x

i

, the FMM approximation of (Aq)
i

=
P

N

j=1

G(x
i

, x
j

)q
j

, with G the
energy potential function, leads to the expression

(Aq)
i

⇡ (Aq)close
i

+ (Aq)far
i

, (1.29)

where (Aq)close
i

=
P

x

j

close to x

i

G(x
i

, x
j

)q
j

and (Aq)far
i

is the FMM approximation of the con-
tribution of all the charges which are far from x

i

. The latest is given by the development
explained in Section 1.1.2 or its derivation when the energy potential is the derivative of a
Coulomb potential (see [CDF10] for more details). In this configuration, x

i

is said target point
and is located in a FMM box B

trg

, and {x
j

}
j

are said the source points located in several source
boxes B

src

. x
j

and x
i

are said far from each other when they are in FMM boxes which are not
neighbor, and they are said close to each other otherwise.

In this approximation, the interactions x
i

$ x
j

are cut into a succession of interactions
involving the centers of the boxes containing x

i

and x
j

. Such an approximation obviously
introduces discontinuities in the approximated quantity G(x

i

, x
j

) for both variables x
i

and x
j

,
whenever x

i

or x
j

crosses the interface between two boxes. Figure 1.28-a (respectively Figure
1.28-b) shows the critical situation where two target points (respectively two source points) are
very close to each other but are not in a same box.

In paper [CDF10], we proposed a regularized FMM (RFMM) where the multi-dimensional
regularization is obtained by considering a 1D regularization on each component of the multi-
dimensional variable. We perform the 1D regularization with the simple following idea: when
a point of a box is close to another box, we view it as a shared point and its contribution to each
box is calculated according to its location. This leads to a new distribution of the points. We
call boxes associated to this distribution “virtual boxes”. In 1D, the boxes are disjoint intervals.
Let [p

i

, p
i+1

], i 2 Z define the i-th geometric box of the initial FMM distribution. For all i, let
pl
i

and pr
i

be two points around p
i

. We define the i-th virtual box as the interval [pl
i

, pr
i+1

]. Now
for a given point x 2 R, we associate virtual boxes and weights depending on the position of
x with respect to these virtual boxes. For example in Figure 1.29, the point x

1

belongs to box
2 and its weight is 1; in this case, the relation (1.29) remains unchanged. Point x

2

belongs to
boxes 2 and 3, with weights respectively equal to c

2

and c
3

such that:

? c
2

+ c
3

= 1 ; obviously, c
2

> c
3

.

? c
2

and c
3

are given by a regularizing function � : [pl
3

, pr
3

] ! [0, 1],

c
2

= (1� �(x
2

)) , c
3

= �(x
2

) such that (1.29) becomes

(Aq)
x

2

⇡ (1� �(x
2

)) [(Aq)close
x

2

2 box 2

+ (Aq)far
x

2

2 box 2

]

+ �(x
2

) [(Aq)close
x

2

2 box 3

+ (Aq)far
x

2

2 box 3

]
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Figure 1.28. (generated with Fig4TeX [Laf11]) Exhibition of the discontinuity in the approx-
imation of the interaction between some couples of target and source points. (a) Two source
points x

j

1

and x
j

2

, close to each other, interact differently with the target point x
i

. (b) Two
target points, close to each other, receive differently the information from their environment.
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Figure 1.29. (generated with Fig4TeX [Laf11]) The virtual boxes for a regularized FMM: when
the geometric boxes are next to each other, the virtual boxes overlap like in the partition of unity
technique.

The choice of the function � is discussed in details in [CDF10].

The regularization could be performed for both the first and the second variables of the
kernel G(x

i

, x
j

) but in the application we have in mind, the regularization is required for the
target variable only. As an algorithm consequence, an increase of the FMM computational
cost is expected due solely to the fact that some target points belong to two boxes: it stems
from the last step of the computation of far interactions and from the computation of close
interactions. The costs of these steps are indeed multiplied by the ratio between the average
number of points in the virtual boxes and the average number of points in the geometric boxes;
nevertheless, the complexity of these steps remains the same and the complexity of the whole
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algorithm unchanged. Besides computational cost, we should mention that the FMM error
estimates (1.4) and (1.8) are still valid for the RFMM.

The regularization technique was derived in the context of the basic single-level FMM in-
troduced by Greengard et al [GR88] but it can be easily adapted to multi-level FMM or to
improved versions of the FMM as considered in [EB96, PSPS94, WHG96, GR97].

1.4.2 Velocity Verlet Scheme and Regularized Fast Multipole Method
As a toy test-case, we have chosen to apply the RFMM to the “academic” model of the Outer
Solar System as defined in [HLW06], solved by the Verlet’s method. Generally speaking and
for a separable Hamiltonian system of the form

⇢
q̇ = M�1p 2 R3N

ṗ = �rU(q) 2 R3N

(1.30)

where M = diag(m
1

IR3 , · · · ,m
N

IR3) and with Hamiltonian H(p, q) = T (p) + U(q), T (p) =
1

2

pTM�1p being the kinetic energy and U(q) the potential function, the Verlet’s method reads
(see for instance [HLW06])

8
><

>:

q
n+

1

2

= q
n

+ h

2

v
n

v
n+1

= v
n

� hrU(q
n+

1

2

)

q
n+1

= q
n+

1

2

+ h

2

v
n+1

(1.31)

where q
n

and v
n

denote approximations of q(nh) and v(nh) with v = q̇ = M�1p. It is explicit,
symplectic and symmetric, and preserves a modified energy for exponentially long time when
the potential U is smooth.

When the scheme is applied in astronomy or molecular dynamics, the bulk of computations
lies in the evaluation of rU for successive steps (order N2). It is thus natural to consider its
FMM approximation. The Outer Solar System (as defined in [HLW06]) is the Solar system
where the Sun is aggregated with the four closest planets (Mercure, Venus, Earth, Mars) and is
modeled by Hamiltonian equations with

T (p) =
1

2

5X

i=0

1

m
i

pT
i

p
i

and U(q) = ��
5X

i=1

i�1X

j=0

m
i

m
j

kq
i

� q
j

k , (1.32)

where � is the gravitational constant. Denoting G
0

(x, y) = 1

kx�yk , the k-th component of the
(R3)N -vector rU(q) is given by the formula

r
k

U(q) = ��
X

j 6=k

m
k

m
j

r
x

G
0

(q
k

, q
j

) = ��
X

j

M
k,j

(1.33)

with M
k,j

= m
k

m
j

r
x

G
0

(q
k

, q
j

) for k 6= j and M
j,j

= 0. This corresponds to a matrix-vector
product commonly computed with the FMM, on which we test the RFMM.

The numerical results are obtain from the initial values taken from [HLW06] and reminded
in [CDF10]. In the sequel, distances are expressed in astronomical units = UA (1 UA =
149,597,870 km), times in days, and � = 2.95912208286 ⇥ 10�4. The time-step is chosen
equal to 10 days. The size of the boxes should take into account the length of the trajectories
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and the displacement for one time-step. In this example, one can find that Uranus (resp. Jupiter)
requires about 30,700 days (resp. 4,300) to describe one loop around the Sun. With a time-step
equal to 10 days, the trajectory around the Sun will be described with about 3,070 locations
(resp. 430) on a curve of length about 118 UA (resp. 32) which define a characteristic time-step
length equal to 0.04 UA (resp. 0.07). Such reports give enough information to derive the choice
of the FMM boxes.

The following experiments are obtained with different values of the parameters:

? L: number of multipoles, truncation parameter in (1.4) and (1.8). As is well known, the
FMM expansion behaves like a geometric series with respect to L. A typical value for L
is around 6, whereas a value around 15 or even 20 gives a very accurate approximation.

? N
o

: order of neighborhood that defines the close and far interactions in the FMM oc-tree.

? N
L

: number of levels of the oc-tree. In this experiment, a good tradeoff is N
L

= 7.

? R
reg

: ratio of the regularization zone on each side of a geometric box to the length of
the geometric box. Example: For the 1D box [0, 1], when R

reg

= 0.25, the virtual cor-
responding box is [�0.25, 1.25] and the regularization function operates on [�0.25, 0.25]
and [0.75, 1.25].

Figure 1.30-a shows the relative error (in log-scale) on the Hamiltonian versus time, for
L = 3, N

L

= 7, N
o

= 1, R
reg

= 0.25 and illustrates the impressive improvement brought by
the regularization technique.
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Figure 1.30. Plot of the relative error on the Hamiltonian of the system, L = 3, N
L

= 7,
N

o

= 1, R
reg

= 0.25: (a) log
10

(relative error); (b) relative error.

Figure 1.31 also shows a significant qualitative improvement, as far as trajectories are con-
cerned. However, as is expected from a low-accuracy approximation of the potential, they are
still quantitatively wrong.
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(a) (b)

Figure 1.31. Trajectories of the planets around the Sun, L = 3, N
L

= 7 and N
o

= 1, using:
(a) a classical FMM, (b) the regularized FMM with R

reg

= 0.25.

Figures 1.32 and 1.33 show that when L is increased, no gain in the qualitative behavior
of the FMM is noticed. In contrast, the regularization technique enables energy preservation.
For L = 10, the RFMM leads to accuracy comparable with what is obtained with the exact
potential.
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Figure 1.32. Plot log
10

of relative error on the Hamiltonian of the system, with: (a) L = 5,
N

L

= 7, N
o

= 1, R
reg

= 0.25 ; (b) L = 6, N
L

= 7, N
o

= 1, R
reg

= 0.25.

In Figure 1.34, we plot the trajectories of the planets both for the FMM and RFMM approx-
imations, and observe a gain of stability in the regularized case with different regularization
ratio and neighborhood definition.
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Figure 1.33. (a) Plot log
10

of relative error on the Hamiltonian of the system, L = 10, N
L

= 7,
N

o

= 1, R
reg

= 0.25 ; (b) Zoom.

(a) (b)

Figure 1.34. Trajectories of the planets around the Sun, L = 3, N
L

= 7 and N
o

= 2, using:
(a) a classical FMM, (b) the regularized FMM with R

reg

= 0.45.

In terms of complexity of the algorithm, the observed overhead between FMM and RFMM
is around 20% for L = 3, 10% for L = 5 or 6 and 1% for L = 10. However, in term of
computational cost with respect to the accuracy, the RFMM leads to a significant improvement.
Indeed, for L = 10, the classical FMM only gives an accuracy around 6 . 10�3 on the Hamilto-
nian. To obtain the same order of accuracy, the RFMM only requires L = 5 where the accuracy
is somehow behaving between 10�3 and 3 . 10�3. On a theoretical point of view, the storage
requirements and parts of the calculation cost should be divided by a factor close to 4 = 22 and
other parts of the calculation cost by a factor close to 16 = 24 when the RFMM is used with
L = 5 instead of the classical FMM with L = 10. Numerically, we effectively observe that the
global CPU is divided by 9.8 for a comparable (even better) accuracy on the Hamiltonian.
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1.5 Fast Multipole Method for Ultra-Weak Variational For-
mulation

To solve the Maxwell exterior problem, the solution evoked in previous sections consisted in
the consideration of integral equations on the surface � of the scatterer, a bounded domain ⌦�.
Another solution is the consideration of finite elements in the exterior domain ⌦ limited by an
artificial boundary ⌃ which simulates the infinity. To this aim, one has to choose an artificial
boundary condition on ⌃ such that the solution of the truncated exterior domain is close enough
to the solution of the initial problem. Absorbing boundary conditions, perfectly matched layers
are solutions commonly used. An alternative consists in the consideration of an exact boundary
condition on ⌃ given by an integral representation. In this section, we consider this approach
with the use of Fast Multipole Method to speed up the evaluation related to the integral repre-
sentation, in the framework of the Ultra-Weak Variational Formulation (UWVF). The UWVF
introduced by O. Cessenat and B. Després [Ces96, CD03] is an alternative to the finite ele-
ments based on the consideration of basis functions which solve the Maxwell equations in each
volume element of the mesh discretization. The concept is explained in details in Section 3.2
and can be interpreted as a strategy combining the ideas of domain decomposition methods and
of enriched finite elements. The discretization of the problem involves plane wave enriched
basis functions: for each tetrahedron of the mesh, the number of basis functions depends on
the size of the element. Before a closer consideration of the algorithm complexity, we need to
introduce a parameter: K

0

denotes the average number of tetrahedra taken in one dimension
so that the number of tetrahedra in the entire volume ⌦ is K ⇠ K3

0

. As a volume method,
the UWVF leads to a sparse system: the number of degrees of freedom is of order K3

0

p and
the complexity of the algorithm is O(K3

0

p2) where p denotes the average number of basis func-
tions per tetrahedron which typically satisfies K

0

p ⇠  [HMM07], where  is the wavenumber.

In this section, we focus on the impact of the use of integral representation and FMM on
the algorithm complexity of the resolution of the UWVF. We consider the discretization of the
UWVF with integral representation as follows:

([A]� [C]� [ eC])X = [b]

where X is the discretized UWVF unknown, [A]� [C] is the matrix of the discretization of the
classical UWVF, and [ eC] is related to the integral representation (IR) as boundary condition on
⌃. [A] corresponds to the differential operators of the UWVF and [C] is linked to the boundary
condition on the surface � of the scatterer ⌦�. It is important to note that we never compute [ eC]
explicitly since we evaluate its action as needed by the FMM.

The integral representation aims to reduce the distance between the artificial boundary ⌃
and the scatterer ⌦� to a number of elements independent of the wavenumber . We then
have a number of elements in the mesh of order K2

0

. This reduces the complexity related to
the volume calculation. The FMM is used to control the cost of the calculation related to the
integral operators which give rise to large dense blocks in the discrete system.

A rigorous expression of the algorithm complexity involves several parameters: the size
of the mesh K ⇠ K3

0

or K2

0

, the average number of basis functions per tetrahedron p, the
wavenumber , with the correlation K

0

p ⇠ . Moreover, the integral representation involves
oscillating functions such as the Green function, and the exterior normal to the boundaries.
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Table 1.4. Complexity estimates for the various versions of the UWVF + IR
Method Number of elements Cost of the solution

UWVF K3

0

⇠ (/p)3 K3

0

p2 ⇠ K
0

2

UWVF + IR K2

0

⇠ 2 K2

0

p2 +K4

0

p2 ⇠ 2 + 4

UWVF + IR + SLFMM K2

0

⇠ 2 K2

0

p2 +K3

0

p ⇠ 2 + 3

UWVF + IR + MLFMM K2

0

⇠ 2 K2

0

p2 +K2

0

log2(K
0

) p ⇠ 2 + 2 log2 

UWVF + IR + MLFMM
with double mesh

K2

0

⇠ (/p)2 K2

0

p2 + 2 log2() p ⇠ 2 + 2 log2()p

UWVF + IR + SLFMM
without close interaction

K5/2

0

⇠ 5/2 K5/2

0

p2 +K3

0

p ⇠ 2 + 3

UWVF + IR + MLFMM
without close interaction

K2

0

⇠ 2 K2

0

p2 +K2

0

log2(K
0

) p ⇠ 2 + 2 log2 

Evaluation of these operators requires an accurate discretization of the boundary. These consid-
erations lead to different algorithms with different complexities. In Table 1.4, we give the results
developed in [Dar08] which suggest that the UWVF with MLFMM and no close interactions
should have attractive work estimates.

Let us illustrate these results with some numerical applications of the MLFMM to the cou-
pling of UWVF and integral representation (UWVF+IR+MLFMM code). More numerical re-
sults are given in Section 3.2. We consider here the scattering by a perfectly conducting unit
sphere (�) with different wavenumbers in order to investigate the  dependence of the method
and determine how well Table 1.4 reflects the practical work needed by the method. To this aim,
the exterior boundary ⌃ is taken to be a concentric sphere rather close to �. We use different
meshes S040, S025, S017, S010 and S007 defined in Table 1.5, such that the distance between �
and ⌃ linearly decreases with the wavelength � = 2⇡/. In the names “Sxxx”, “xxx” indicates
the distance between � and ⌃ in centimeters. More information on the meshes is given in Table
1.5. They have been generated optimizing the ratio between the average edge-length h and the
wavelength � to h ⇡ �/5 and are quite uniform.

Figures 1.35, 1.36 and 1.37 show the angular dependence of the radar cross section (RCS)
from our UWVF+IR+MLFMM code compared to the exact Mie series. Memory, CPU-time
(on an Apple Mac Pro with 2⇥ 3GHz quad-core Xeon processors using 16 Gb RAM), together
with quantitative error results are shown in Table 1.6 (units are seconds and Giga-bytes):

? Rel Err 2 = Relative quadratic error on RCS.

? Rel Err 1 = Relative infinity error on RCS.

? RMS error = Root mean square error on the scattering amplitude. Like in [CCCS04],

RMS error =

vuut
✓
1

n

◆
nX

i=1

(RCS(i)� Exact-RCS(i))2

is used as a classical RCS error ([CCCS04]). We have tried to keep the RMS error roughly
constant to enable comparison.



1.5. Fast Multipole Method for Ultra-Weak Variational Formulation 49

We then plot the resulting number of degrees of freedom, CPU and memory requirements
against  in Fig.1.38. We also consider reference lines to enable comparison with results pre-
dicted in Table 1.4. These curves support the theoretical results on the complexity.

Table 1.5. The meshes for the unit sphere.
Name S040 S025 S017 S010 S007
 3 4 6 10 15
Radius of ⌃ in m 1.40 1.25 1.17 1.10 1.07
Distance between � and ⌃ ⇡ �/7.5 ⇡ �/6.3 ⇡ �/6.4 ⇡ �/6.3 ⇡ �/6.6
Number of tetrahedra 5822 11008 8449 22630 44459
Number of basis functions
per tetrahedron 10 to 22 10 to 24 16 to 30 16 to 28 14 to 30
Number of DoF 101814 178146 183108 480226 989238
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Figure 1.35. The RCS computed using UWVF+IR+MLFMM with the mesh S040, with  = 3.
Left: TE-polarized RCS. Right: TM-polarized RCS.
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Figure 1.36. The RCS computed using UWVF+IR+MLFMM with the mesh S010, with  = 10.
Left: TE-polarized RCS. Right: TM-polarized RCS.
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Figure 1.37. The RCS computed using UWVF+IR+MLFMM with the mesh S007, with  = 15.
Left: TE-polarized RCS. Right: TM-polarized RCS.

Table 1.6. Computational costs comparison for UWVF+IR+MLFMM (S040 ; S025 ; S017 ;
S010 ; S007) as  changes. The RCS error is computed via the Mie series.

Case  CPU MEM. Rel Err 2 Rel Err 1 RMS error
S040 3 558 1.5 1.2 10�2 1.2 10�2 7.3 10�2

S025 4 798 1.6 1.7 10�2 1.1 10�2 1.1 10�1

S017 6 1054 2.99 6.4 10�3 4.5 10�3 4.1 10�2

S010 10 2770 8.38 5.5 10�3 4.1 10�3 3.6 10�2

S007 15 9944 17 1.3 10�2 1.1 10�2 8.5 10�2
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Figure 1.38. Number of degrees of freedom (left), CPU-time (middle) and memory require-
ments (right) with respect to the wavenumber , using a log-log scale. We show the data from
Table 1.6 marked with a symbol in each case. The best fit line is shown as a solid line, and lines
corresponding to O(), O(2) and O(3) for comparison.
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1.6 Perspectives
The consideration of FMM remains a mathematical challenge in some particular configurations
and of great importance in the application of Mathematics. Some improvements are still under
developments and combinations with current alternatives to the FMM would be pertinent.

? With Yvon Lafranche, we are currently developing a generic library of fast methods,
FastMMLib [DLnt]. The initial idea was a generic library of Fast Multipole Methods
based on the general expression of the FMM expansion (1.1). The code is in C++ and
the implemented skeleton is generic enough such that we can plan the integration of
several different fast methods in the library like the high-order solver by O. Bruno et al
[BK01b, BK01a] or the H-matrices [Hac99, BGH06, Beb08].

? The work done with Marion Darbas and Yvon Lafranche on the combination of FMM and
analytical preconditioner for Helmholtz equation can be extended to Maxwell equations
using the developments done by Marion Darbas on the preconditioning aspects [Dar04,
Dar06].

? The ultra-weak variational formulation is currently derived in 2D using Bessel and Hankel
functions alternatively to plane-wave functions [LHM12, HCWSC13, LHM13]. When
this improvement is done for the 3D case, a combination with integral representation and
FMM will certainly be worth some investigation.
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Chapter 2

Volume integral operators for wave
propagation

2.1 Introduction
The work presented in this chapter was realized with Martin Costabel in the context of the PhD
theses of El-Hadji Koné and Hamdi Sakly [Kon10, Sak14], and it was initiated by a collabo-
ration with Ronan Sauleau from IETR (Institut d’Électronique et de Télécommunications de
Rennes). The application behind these developments was the design of lens-antennas [SB06]
and it was based on volume integral formulations. If the volume integral equations are al-
ready widely used by physicists [KM00, Lu03, BS06, SF11] and numerically observed [Rah00,
Bot06, SSVVA06], the mathematical analysis of these equations has been the subject of only a
few studies [FP84, Pot01, Kir07, KL09]. With Martin Costabel, El-Hadji Koné, Hamdi Sakly,
we contribute to the analysis of existence and uniqueness of the equations, mapping properties
and spectral properties of the volume integral operators [CDK10, CDS12, CDSonb, CDSona].

The chapter is devoted to the analysis of the volume integral equation for the resolution
of Maxwell equations in exterior domain. The volume formulation involves the electric and
magnetic operators. The first section of the chapter is devoted to mathematical properties of the
electric and magnetic operators: existence and uniqueness results and mapping properties. The
second section offers the spectral properties derived from the analysis of these operators.

The physical context is defined by a bounded domain ⌦� in R3 representing a scatterer of
electric permittivity " and magnetic permeability µ. We use the notation ⌦+ = R3 \ ⌦� and
� = @⌦�. We denote by n the unit outward normal vector to ⌦�. The electric permittivity and
magnetic permeability of ⌦+ are respectively "

0

> 0 and µ
0

> 0. We will denote the relative
permittivity and permeability by "

r

=
"

"
0

and µ
r

=
µ

µ
0

. We will also use the notation ⌘ = 1�"
r

for the electric contrast and ⌫ = 1�1/µ
r

for the permeability contrast. The electric conductivity
� vanishes everywhere. With the frequency !, the wavenumber is k = !

p
"
0

µ
0

> 0 .
We aim to solve the electromagnetic problem using a volume integral equation. The analysis

involves several tools, we introduce here the functional spaces, the traces, the integral operators
which are used in this study. For well known properties of these tools, we refer to [Cos07,
CK98, Néd01, HW08, SS11].

• The functional spaces

? H(curl,⌦�) = {u 2 L2(⌦�)3; curlu 2 L2(⌦�)3},
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? H(curl, div,⌦�) = H(curl,⌦�) \H(div,⌦�),

? H
loc

(curl,⌦+) = {u 2 L2

loc

(⌦+)3; curlu 2 L2

loc

(⌦+)3},

? H
loc

(curl, div,⌦+) = H
loc

(curl,⌦+) \H
loc

(div,⌦+),

? H(div,⌦�) and H(div,⌦+) (respectively H
loc

(div, (⌦+))) are defined in the same way as
H(curl,⌦�) (respectively H

loc

(curl, (⌦+))), with curlu replaced by divu,

? H(div 0,⌦) = {u 2 H(div,⌦); divu = 0},

? H
0

(div 0,⌦) = {u 2 H(div 0,⌦);n · u = 0}.

• The trace operators for a scalar function u and a vector function u

? trace: �
0

u = u|
�

, normal derivative: �
1

u = n ·ru|
�

,

? normal trace: �
n

u = n · u|
�

, tangential trace: �⇥u = n⇥ u|
�

,

? one-sided traces: �±
0

g = g±|
�

, �±
1

g = (n · rg±)|
�

and �±
n

v = �
n

v±, with
g± = g|

⌦

± and v± = v|
⌦

± for g and v respectively scalar and vector fields defined on R3.

• The integral operators for a scalar field u defined on � and a vector field u defined on ⌦�,

? volume operators: using the notation G
k

for the Helmholtz fundamental solution,

Nu(x) =

Z

⌦

�
u(y)G

k

(x, y) dy , Mu(x) =

Z

⌦

�
r

y

G
k

(x, y) · u(y) dy , (2.1)

? surface operators:

Su(x) =
Z

�

u(y)G
k

(x, y) ds(y) ,

K 0
k

u(x) = �
1

Z

�

u(y)G
k

(x, y) ds(y) ,

M
k

u(x) =

Z

�

n(x)⇥ curl
x

(u(y)G
k

(x, y)) ds(y) ,

? scaled operators:

M
⌘

: u 7! M(⌘u) , S
⌘

: u 7! S(⌘ u) ,
N

⌧

: u 7! N (⌧ · u) , N
⌘

: u 7! N (⌘u) ,
(2.2)

with ⌧ this logarithmic gradient of "
r

: ⌧ = � 1

"
r

r"
r

,

? the electric volume integral operator A
k

A
k

u(x) = �r div

Z

⌦

G
k

(x, y)u(y) dy � k2

Z

⌦

G
k

(x, y)u(y) dy , (2.3)

? the magnetic volume integral operator B
k

B
k

u(x) = curl

Z

⌦

G
k

(x, y) curlu(y) dy . (2.4)
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2.2 Volume integral equations: mathematical framework

2.2.1 Mathematical properties of the electric volume integral equation
We first consider a configuration with no magnetic contrast (the magnetic permeability µ is
constant in R3, µ ⌘ µ

0

> 0) and a regular boundary � (at least C2). The electric permittivity "
is considered to be a function of the space variable satisfying "|

⌦

+ = "
0

; and " is discontinuous
across �, in general.

We consider a vector field F 2 H(div, ⌦+) with compact support contained in ⌦+, repre-
senting a current density that serves as source for the incident field scattered by the dielectric
body ⌦�. The physical quantity we aim to characterize is the electromagnetic field radiated by
an antenna and refracted by a dielectric lens (Fig. 2.1).

�
⌦+

⌦�

Figure 2.1. (generated with Fig4TeX [Laf11]) Combination of an antenna and a dielectric lens
⌦�.

The scattering problem (P) we want to solve can be written as follows:

Find E, H such that E
i

2 H(curl, div,⌦�),E
e

2 H
loc

(curl, div,⌦+),
H

i

2 H(curl,⌦�),H
e

2 H
loc

(curl,⌦+), with E
i

= E|
⌦

� ,H
i

= H|
⌦

� ,E
e

= E|
⌦

+ and
H

e

= H|
⌦

+ , satisfying the equations

(P)

8
>>>>>><

>>>>>>:

curlE
i

� ikH
i

= 0 and curlH
i

+ ik"
r

E
i

= 0 in ⌦�,
curlE

e

� ikH
e

= 0 and curlH
e

+ ikE
e

= F in ⌦+,

n⇥H
e

= n⇥H
i

and n ·H
e

= n ·H
i

on �,
n⇥ E

e

= n⇥ E
i

and n · E
e

= n · "
r

E
i

on �,

H
e

⇥ x

r

� E
e

= O
�

1

r

2

�
, r = |x| ! +1.

Martin Costabel and El-Hadji Koné demonstrated the equivalence of problem (P) to a coupled
surface-volume system of integral equations defined by the problem (E

1

) and a volume integral
equation defined by the problem (E

2

) as follows:

(E
1

)

8
>><

>>:

Find (E⇤, e⇤) 2 (L2(⌦�))3 ⇥H� 1

2 (�), such that
✓
1�rN

⌧

+ k2N
⌘

�rS
⌘

k2��
n

N
⌘

� ��
1

N
⌧

1� ��
1

S
⌘

◆✓
E⇤
e⇤

◆
=

✓
D

��
n

D

◆

and

(E
2

)

(
Find E� 2 (L2(⌦�))3, such that

(1�rM
⌘

+ k2N
⌘

)E� = D .
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The equivalence results are formulated through the following theorems.

Theorem 2.1. If (E,H) is a solution of the problem (P), then (E
i

, �
n

E
i

) is a solution of the
problem (E

1

).

Theorem 2.2. If (E⇤, e⇤) 2(L2(⌦�))3 ⇥H� 1

2 (�) is a solution of the problem (E
1

), then we have
a solution (E,H) of the problem (P) by defining:

E|
⌦

� = E⇤,

E|
⌦

+(x) = rS(⌘ e⇤)(x)�rN (divE⇤)(x)� k2N (⌘E⇤)(x) +D(x) ,

H|
⌦

� =
1

ik
curlE⇤ and H|

⌦

+ =
1

ik
curlE|

⌦

+ .

In Theorems 2.1 and 2.2, we showed equivalence between the scattering problem (P) and
the first integral formulation (E

1

). In this context, the right hand side had a particular form
coming from our assumption that the sources are situated in the exterior domain. The right
hand side D in the integral equation was the field generated by such a source, and was therefore
analytic on the whole domain ⌦�. In order to study mapping properties of the integral operators,
in particular the strongly singular operator appearing in (E

2

), we need to consider more general
right hand sides D. The following equivalence theorem between the two integral formulations
(E

1

) and (E
2

) holds in such a more general situation.

Theorem 2.3. Let D 2 H(div,⌦�), divD = 0.
(i) If (E⇤, e⇤) 2 L2(⌦�)3 ⇥H� 1

2 (�) is a solution of the problem (E
1

), then E⇤ is a solution of
the problem (E

2

).
(ii) If E� 2 L2(⌦�)3 is a solution of the problem (E

2

), then E� 2 H(div,⌦�) and defining
e� = �

n

E� 2 H� 1

2 (�), the pair (E�, e�) is a solution of the problem (E
1

) .

Having announced that the problems (P), (E
1

) and (E
2

) are all equivalent, we now give
mapping properties of the integral operators. Their well-posedness will imply the one for the
transmission problem, which is of course already well known [CK98]. A more important moti-
vation for the analysis of the integral operators in (E

1

) and (E
2

) is the question of their suitability
for numerical computations. The easier one is (E

1

), because it involves only weakly singular
integral operators whose mapping properties are well known:

Proposition 2.4. Let the coefficient "
r

be in C1(⌦�) with "
r

(x) 6= 0 in ⌦� and

"
r

(x) 6= �1 on � . (2.5)

Then the matrix operator of the problem (E
1

)

A =

 
1�rN

⌧

+ k2N
⌘

�rS
⌘

k2��
n

N
⌘

� ��
1

N
⌧

1� ��
1

S
⌘

!

from L2(⌦�)3 ⇥ H� 1

2 (�) to L2(⌦�)3 ⇥ H� 1

2 (�) is Fredholm of index zero. If there is a point
on � where (2.5) is not satisfied, then it is not Fredholm.
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As a consequence of the equivalence theorems, Proposition 2.4 and the known uniqueness
of the scattering problem, we obtain the following corollary:

Theorem 2.5. Under the assumptions of problem (P), the equation (E
2

) has a unique solution
depending continuously on the data.

More general questions of mapping properties of the strongly singular integral operator of
(E

2

) in L2 or in H(div), in particular its spectral theory, remain largely open. We have the
following partial result:

Proposition 2.6. Let "
r

2 C1(⌦�) and ⌘ = 1� "
r

.
(i) The operator

A⌘

k

: E 7! rM(⌘E)� k2N (⌘E)

is bounded from L2(⌦�)3 to L2(⌦�)3 and from H(div,⌦�) to H(div,⌦�).
(ii) If E 2 L2(⌦�)3 is solution of

(1�A⌘

k

)E = D

with D 2 H(div,⌦�), then E 2 H(div,⌦�).
(iii) If "

r

(x) 6= 0 in ⌦� and "
r

(x) 6= �1 on �, then the nullspace of the operator 1 � A⌘

k

in
L2(⌦�)3 is finite dimensional, and the codimension of the closure in L2(⌦�)3 of the image of
H(div,⌦�) is finite.
(iv) If "

r

(x) � "
1

for all x 2 ⌦�, where "
1

is a positive constant, then the operator 1 � A⌘

k

is
a Fredholm operator of index zero in L2(⌦�)3, and it is strongly elliptic: There is a compact
operator K

0

and c > 0 such that for all E 2 L2(⌦�)3

Z

⌦

�
E(x) · (1�A⌘

k

)E(x) dx � c kEk2
L

2

(⌦

�
)

� kK
0

Ek2
L

2

(⌦

�
)

. (2.6)

The volume integral equation (E
2

) is well-posed in L2 and satisfies a Gårding inequality.
It is suitable for numerical approximations using L2-conforming finite elements, because any
Galerkin method will lead to a stable discretization scheme.

The proofs of these results are available in [CDK10, Kon10] and require technical tools
which are all available in standard references, such as the Stratton-Chu integral representation
theorem in [CK98], the basic properties of the Sobolev spaces associated with the electromag-
netic energy in [GR96], trace theorems and mapping properties of singular integral operators be-
tween Sobolev spaces in [Néd01] and the unique continuation principle from [Lei86] or [Pro60].

With Daniel Martin and El-Hadji Koné, we implemented the volume integral operators in the
finite element library MÉLINA++ [MDL14] and numerical results were obtained for different
definitions of the relative permittivity "

r

. Figs. 2.2-2.3 show the refraction of a plane wave by
the dielectric unit ball, with wavenumber k = 5, incident direction (0, 0,�1) and polarization
(0,1,0). The figures correspond to these definitions of the electric permittivity "

r

"(1)
r

=

⇢
1.1 + 106i if x

3

 0,
0.95 if x

3

> 0,

"(2)
r

=

⇢
1.1 + 106i if |x

3

|  3/4,
0.95 if 3/4 < |x

3

|  1.
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Figure 2.2. Case of "
r

= "(1)
r

; top-left: far field; top-right: cut of the real part of the first com-
ponent; bottom-left: cut of the imaginary part of the third component; bottom-right: imaginary
part of the third component of the field on �.

Figure 2.3. Case of "
r

= "(2)
r

; left: cut of the imaginary part of the second component; right:
imaginary part of the second component of the field on �.

2.2.2 Mathematical properties of the magnetic volume integral equation

For a different hypothesis on the electric permittivity and magnetic permeability, with "
r

, µ
r

arbitrarily complex constant numbers, the system of Maxwell equations to be solved takes the
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general form:
Find E, H such that

(P
?

)

8
>>>>>><

>>>>>>:

curlE� ikµ
r

H = 0
curlH+ ik"

r

E = F

[n⇥ E]
�

= 0 , [n · µ
r

H]
�

= 0
[n⇥H]

�

= 0 , [n · "
r

E]
�

= 0

H⇥ x

r

� E = O
�

1

r

2

�
, r = |x| ! +1.

It can be shown [Kir07] that the scattering problem is equivalent to the volume integral equation
considered in H(curl,⌦�):

u(x)� ⌘A
k

u(x)� ⌫B
k

u(x) = uinc(x) (x 2 ⌦�), (2.7)

where A
k

and B
k

are the volume operators given in (2.3-2.4).

We now restrict ourselves to a configuration with no electric contrast (the electric permittiv-
ity " is constant in R3) in order to focus on the magnetic operator. Here, we focus on a crucial
mapping property which was previously ignored in the literature. With Hamdi Sakly, we stud-
ied carefully the extendability of the magnetic operator to L2(⌦�). In this configuration, the
scattering problem is equivalent to the volume integral equation:

u� ⌫B
k

u = uinc in H(curl,⌦�) . (2.8)

Andreas Kirsch and Armin Lechleiter [KL09] demonstrated that the integral operator B
k

is
bounded from H(curl,⌦�) to itself and to H(div 0,⌦�). As a next step, one could think about
the extension to L2(⌦�) as we operated for the operator A

k

. For v 2 C1
0

(⌦�), by elementary
relations on differential operators, one can show that

B
k

u = A
k

u + u .

However, for u 2 H(curl,⌦�), B
k

writes as follows:

B
k

u = eB
k

u� curl

Z

�

G
k

(x, y)u(y)⇥ n(y) ds(y) ,

where eB
k

: L2(⌦�)3 ! L2(⌦�)3 is the extended operator on L2(⌦�):

eB
k

u(x) = curl curl

Z

⌦

�
G

k

(x, y)u(y) dy .

Since the �-integral term does not have a continuous extension to L2(⌦�), we clearly deduce
that B

k

cannot be extended to L2(⌦�).
Moreover, one can interpret the problem obtained by replacing B

k

by its extension eB
k

:

u� ⌫ eB
k

u = uinc . (2.9)

The following result occurs:
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Theorem 2.7. Let eu 2 L2(R3)3 be a solution of eu� ⌫ eB
k

eu = f in R3, then eu satisfies:

1. eu 2 H(curl,⌦�) ,eu 2 H
loc

(curl,R3) and [�⇥(
1

µ

r

eu)]
�

= 0 if f 2 H(curl,R3)

2. [�
n

eu]
�

= 0 if f 2 H(div,R3)

3. 1

µ

r

eu 2 H(curl,⌦�) , 1

µ

r

eu 2 H
loc

(curl,R3) and [�⇥(
1

µ

r

curl eu)]
�

= 0 if curl f 2 H(curl,R3)

4. [�
n

( 1

µ

r

curl eu)]
�

= 0

Corollary 2.8. Solving the volume integral equation u� ⌫ eB
k

u = uinc in L2(⌦�) gives:
the Maxwell equations in R3 \ � with the transmission conditions

[ 1
µ

r

E⇥ n]
�

= 0 , [n ·H]
�

= 0 ,

[H⇥ n]
�

= 0 , [n · E]
�

= 0 .

The latter is not the initial transmission problem (P
?

) we are interested in. Solving (2.9)
instead of (2.8) leads to a solution which is different in most of the usual configurations.

2.3 Analysis of the spectrum of the volume integral equations
This section is dedicated to the analysis of the spectrum of the volume integral operators when
the electric permittivity and the magnetic permeability are considered constant in ⌦�. Most
of the results were demonstrated by Hamdi Sakly for his PhD [Sak14]. Some more details on
the proofs are given in [CDS12]. The results concerning the magnetic integral operator use the
following lemma

Lemma 2.9. Let X and Y be vector spaces and S : Y ! X and T : X ! Y linear operators.
Then for � 6= 0, T induces isomorphisms from ker(�� ST ) to ker(�� TS) and from X/(��
ST )X to Y/(��TS)Y . In particular, ��ST is Fredholm of index 0 in X if and only if ��TS
is Fredholm of index 0 in Y .

2.3.1 The essential spectrum of the electric volume integral operator
The results for the electric operator are obtained from the properties annouced in Section 2.2
and the orthogonal decomposition of L2(⌦�) :

L2(⌦) = rH1

0

(⌦�)�H(div 0,⌦�)�W

where H(div 0,⌦�) is the space of divergence-free L2 vector fields, and W is the space of
gradients of harmonic H1 vector fields. The essential spectrum of A

0

then results from

Theorem 2.10. The operator A
0

is bounded and selfadjoint on L2(⌦�) with rH1

0

(⌦�),
H(div 0,⌦�) and W as invariant subspaces. On rH1

0

(⌦�): A
0

u = u, on H(div 0,⌦�):
A

0

u = 0, and on W: �
n

A
0

= (1
2

+K 0
0

)�
n

, where K 0
0

is the operator of the normal derivative
of the harmonic single layer potential.

The well known properties of K 0
0

[Cos07] lead to the characterization of the essential spec-
trum of the volume integral operator A

k

, denoted by �
e

(A
k

).
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Corollary 2.11. The essential spectrum of A
k

is the same in L2(⌦�) and in H(curl,⌦�). There
exist 0 < �  ⇤ < 1 such that �

e

(A
k

) ⇢ {0, 1} [ [�,⇤]. If � is smooth, then � = ⇤ = 1

2

, so
that �

e

(A
k

) = {0, 1
2

, 1}.

The implementation done with El-Hadji Koné led to numerical results in the investigation
of the spectrum of A

k

when the dielectric is the unit ball (see Fig. 2.4).
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Figure 2.4. Numerical spectrum of A
k

, wavenumber k = 1; left: mesh with 512 tetrahedra;
right: mesh with 4096 tetrahedra.

2.3.2 The essential spectrum of the magnetic volume integral operator
Mapping properties show that it suffices to look at B

0

and integration by parts leads to

B
0

u(x) = u(x) +r
Z

⌦

�
g
0

(x� y) div u(y) dy �rS
0

�
n

u(x) + curlS
0

�⇥u(x) . (2.10)

By considering mapping properties of the involved operators and Lemma 2.9 with T = (�
n

, �⇥)
and S(v, w) = �rS

0

v + curlS
0

w, the result is that for � 6= 1, �
e

(B
0

) = �
e

( bB
0

), where bB
0

is
the system of boundary integral operators in the space H� 1

2 (�)⇥H� 1

2 (div>,�)

bB
0

=

✓
1

2

�K 0
0

�
n

curlS
0

��⇥rS
0

1

2

+M
0

◆
. (2.11)

Here M
0

is defined by evaluating n ⇥ curlS
0

on the boundary. The knowledge of the surface
integral operators leads to the result:

Theorem 2.12. If � is smooth, then �
e

(B
k

) = {0, 1
2

, 1}.

Note that although we have obtained �
e

(A
k

) = �
e

(B0

k

) = �
e

(B
k

) = {0, 1
2

, 1}, the corre-
sponding invariant subspaces are quite different for A

k

and for B
k

, and the commutator of A
k

and B
k

is not compact in H(curl,⌦�).
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2.3.3 The essential spectrum of the complete volume integral operator
When both the parameters ⌘ and ⌫ are not identically equal to zero, the operator of the volume
integral equation is A⌘,⌫

k

= ⌘A
k

+ ⌫B
k

on H(curl,⌦�). Repeating the arguments that led to
(2.11), we find the spectrally equivalent system of boundary integral equations

bA⌘,⌫

0

=

✓
1

2

(⌫ + ⌘) + (⌘ � ⌫)K 0
0

⌫�
n

curlS
0

(⌘ � ⌫)�⇥rS
0

⌫(1
2

+M
0

)

◆
. (2.12)

We define mappings T from Y to Z = H� 1

2 (⌦�) ⇥H
1

2 (⌦�) ⇥H� 1

2 (⌦�) and S from Z to Y
by T (v, w) = (v, V

0

div> w, V
0

curl> w), S(v, p, q) = ((⌘ + ⌫)v/2 + ⌫q, (⌫ � ⌘) curl> V
0

v �
2⌫r>V0

p + 2⌫ curl> V
0

q). Here V
0

is the boundary integral operator of the harmonic single
layer potential and curl> and curl> are the scalar and vector surface curls. Then on a smooth
boundary ST � bA⌘,⌫

0

is compact in Y, and TS acts in Z up to a compact perturbation as the
multiplication with the constant matrix

A⌘,⌫

0

=

0

@
⌘+⌫

2

0 ⌫
0 ⌫

2

0
⌫�⌘

4

0 ⌫

2

1

A .

Using Lemma 2.9, we see that �
e

( bA⌘,⌫

0

) \ {0} in Y is given by the eigenvalues of the matrix
A⌘,⌫

0

, which are {⌘

2

, ⌫
2

, ⌫}. It follows

Theorem 2.13. If � is smooth and ⌘, ⌫ 2 C, then for A⌘,⌫

k

= ⌘A
k

+ ⌫B
k

we have �
e

(A⌘,⌫

k

) =
{0, ⌘

2

, ⌘, ⌫
2

, ⌫}.

2.4 Perspectives
The explorations exposed in this chapter offer important information for the numerical reso-
lution. A new PhD-project that we aim to advise with Martin Costabel consists of numerical
improvements in the resolution of volume integral equations. The application of the Fast Mul-
tipole Method (Chapter 1) has to be studied. New and original numerical tools are considered
in literature, the discrete dipole approximation [DF94, DF08, DF12], the reduced basis method
[FHMS11, GHS12]; a thorough knowledge of their mathematical properties would be of great
interest in recent applications of electromagnetic waves (photonic fibers, microresonators, ...).
Collaborations with Stéphane Balac and other members of the institute FOTON (Fonctions
Optiques pour les Technologies de l’informatiON) give us a favorable environment for such
investigations.
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Chapter 3

Integral representation: an exact artificial
boundary condition

3.1 Introduction

The resolution of Maxwell equations in exterior domain can be realized using either finite el-
ements or ultra-weak variational formulation (UWVF) [Ces96, CD03] in a bounded domain
limited by an artificial boundary. The artificial boundary condition is a difficult issue which has
been treated with different techniques: absorbing boundary conditions (ABC) [EM77, BGT82,
ABB99], perfectly matched layers (PML) [Ber94] or integral representations [HL96]. For ex-
ample, Huttunen et al [HMK02, HKM04, HMM07] considered the UWVF with PML. In this
chapter, we analyse integral representations as exact boundary conditions for the resolution
of Maxwell equations in exterior domain either with finite elements or ultra-weak variational
formulation.

The combination of UWVF and integral representation is presented in Section 3.2 where
the integral operators are numerically considered thanks to a Fast Multipole approximation
[DM07, Dar08, DM12]. The impact of the FMM was shown in Section 1.5. Hereby, we focus
on the application of the integral representation. This work is part of developments done with
Peter Monk in the context of my postdoc position at the university of Delaware. Peter Monk’s
UWVF code is also a tool used to generate data for the Linear Sampling Method (LSM), an
inverse problems solver. With Fioralba Cakoni and David Colton, we applied the LSM to
screens [CCD03, CD05].

The second section of the chapter is devoted to a Schwarz interpretation of the combination
of finite elements and integral representation. This work was done with Rania Rais and Nabil
Gmati in the context of the PhD thesis of Rania Rais, with important developments in the finite
element library MÉLINA++ with the contribution of Daniel Martin and Yvon Lafranche. Rania
Rais first studied the case of Helmholtz equations [DGR10]. We hereby focus on the case of
Maxwell equations [Rai14, DGR14, DGRon].
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�
⌦�

⌦+

�
⌃

⌦

Figure 3.1. (generated with Fig4TeX [Laf11]) Left: the exterior unbounded domain ⌦+. Right:
the computational domain ⌦, the region outside the boundary of the impenetrable scatterer ⌦�

and inside the artificial boundary ⌃.

3.2 Ultra-Weak Variational Formulation and integral repre-
sentation

3.2.1 Combination of UWVF and integral representation
To solve the time harmonic Maxwell system in the unbounded exterior of a bounded scatterer
⌦� (assumed to have connected complement and polyhedral surface �), we introduce a polyhe-
dral artificial boundary ⌃ containing the scatterer in its interior and we denote by ⌦ the bounded
annular domain between � and ⌃ (see Fig. 3.1). Hence, we are interested in the resolution of
the time-harmonic Maxwell equations in the domain ⌦: find the electric field E and magnetic
field H such that the following equations hold:

curlE� ı!µH = m,
curlH+ ı!"E = j ,

�
in ⌦, (3.1)

where m and j are given data vector functions specifying the volume sources, " and µ are
positive piecewise constant functions of position and ! > 0 is the angular frequency of the
field. Although not required by the method, we usually assume a source free region and select
m = j = 0 (our numerical test will conform to this).

For the UWVF, it is convenient to specify the boundary condition on @⌦ = � [ ⌃ in the
following non standard form ([CD03])

� |
p
" | E⇥ n+ (| pµ | H⇥ n)⇥ n = Q(|

p
" | E⇥ n+ (| pµ | H⇥ n)⇥ n) + g , (3.2)

where n is the outward normal to ⌦, Q = 0 gives the standard low order absorbing boundary
condition on ⌃ and g is computed from the incident wave. Since we model the total field, we
choose g = 0 on � and use Q to set the boundary condition. For example choosing Q = 1 gives
the perfectly conducting boundary condition, while |Q| < 1 gives an impedance condition. The
choice Q = �1 gives a magnetic wall condition that is useful for symmetric structures. On
⌃, the choice of an integral representation corresponds to Q = 0 and g given by an integral
operator.

The UWVF is based on the decomposition of the domain ⌦ into tetrahedra {⌦
k

}
k=1,...,K

and it computes the impedance trace of the solution on the boundaries of all these tetrahedra
which can then be post processed to give the solution in the entire element. This variational
formulation is defined on the Hilbert space V =

Q
K

k=1

L2

t

(@⌦
k

) where L2

t

(@⌦
k

) is the space of
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square integrable tangential fields on @⌦
k

the boundary of ⌦
k

. For this space the scalar product
is given by

(X ,Y)
V

=
X

k

Z

@⌦

k

X|
@⌦

k

Y|
@⌦

k

.

Under the assumption that " and µ are positive constants on each element ⌦
k

, (E,H) is found
through the restriction of the field (E

k

,H
k

) to @⌦
k

, where (E
k

,H
k

) = (E,H)|
⌦

k

. The method
then solves for an unknown function X 2 V , defined element by element by the impedance
trace X|

@⌦

k

2 L2

t

(@⌦
k

) on @⌦
k

and

X|
@⌦

k

=
q
e"|

@⌦

k

(E
k

⇥ n
k

) +
q
eµ|

@⌦

k

((H
k

⇥ n
k

)⇥ n
k

) . (3.3)

where e"|
@⌦

k

and eµ|
@⌦

k

are quantities defined by the values of " and µ on each side of @⌦
k

(see
[DM07] for details), and n

k

is the exterior normal to @⌦
k

.
The UWVF involves two operators ⇧ and F defined in [CD03, Ces96]. The operator

⇧ : V ! V switches boundary traces across faces shared by two tetrahedra and involves the
boundary condition (3.2) through the function Q on faces which contribute to the boundaries ⌃
and �. More precisely if elements ⌦

j

and ⌦
k

meet at a face f
j,k

then

⇧X
j

|
f

j,k

= X
k

|
f

j,k

and on a boundary face of an element ⌦
k

, ⇧X
k

|
@⌦

= QX
k

|
@⌦

. The operator F : V ! V
is a local operator that links the outgoing and incoming impedance traces of the degrees of
freedom on the interfaces between tetrahedra. If (u, v) satisfy the Maxwell system on ⌦

k

and
X

k

=
p
e"|

@⌦

k

(u⇥n
k

)+
p
eµ|

@⌦

k

((v⇥n
k

)⇥n
k

) then F (X
k

) =
p
e"|

@⌦

k

(u⇥n
k

)�
p
eµ|

@⌦

k

((v⇥
n
k

)⇥ n
k

) .
The UWVF of Maxwell’s equations is as follows [CD03, Ces96]: find X 2 V such that

(X ,Y)
V

� (⇧X , FY)
V

= (eb,Y)
V

for all Y 2 V, (3.4)

for all Y 2 V where g̃ is the extension by zero of g to a function in V .
Thus by taking a finite dimensional subspace V

h

⇢ V and using basis functions Z
i

, i 2 J
for V

h

, a Galerkin discretization of the formulation (3.4) leads to problem of finding X
h

=P
i2J Xi

Z
i

2 V
h

such that (X
h

,Y
h

)
V

� (⇧X
h

, FY
h

)
V

= (eg,Y
h

)
V

for all Y
h

2 V
h

.
Equivalently, in matrix-vector form, we seek to compute X = [X

1

, · · · , X
card(J)

]T such that

(A� C)X = b , (3.5)

where A is the matrix with (i, j)th entry (Z
j

, Z
i

)
V

and C has (i, j)th entry given by (⇧Z
j

, FZ
i

)
V

.
The data vector b is derived from the right hand side above in the same way.

As usual for the UWVF, to facilitate calculating the action of F , on each element ⌦
k

we
use a basis generated by taking the impedance trace of p

k

plane waves satisfying the adjoint
Maxwell system on ⌦

k

(p
k

/2 directions with two polarizations for each direction). In particular
to discretize the problem, we follow [CD03] and use boundary functions given by

Y|
@⌦

k

=
q
e"|

@⌦

k

(E0
k

⇥ n
k

) +
q
eµ|

@⌦

k

((H0
k

⇥ n
k

)⇥ n
k

)
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where the fields (E0
k

,H0
k

) are taken from the span of a set of p
k

plane waves that satisfy the
adjoint Maxwell problem

⇢
curlE0

k

� ı!µ
⌦

k

H0
k

= 0 in ⌦
k

,
curlH0

k

+ ı!"
⌦

k

E0
k

= 0 in ⌦
k

.

In (3.4), eb 2 V is derived from the right hand side of (3.1) and from g given in (3.2). At least
six plane waves (and usually more) are used per element, counting polarizations.

The UWVF leads to a sparse square system of size (
P

K

k=1

p
k

). The number of plane waves
p
k

is chosen depending on the local wavelength and diameter of the element (see [HMM07]).
Compared to more classical volume methods, the UWVF enables one to reduce the number

of elements in the mesh. The complexity of the method is then linked to the number of elements
in the mesh and the number of basis functions per element. For concreteness, suppose the elec-
tromagnetic parameters of the domain are constant and define the wavenumber  = !

p
"µ. A

closer consideration of the complexity needs the introduction of another parameter: K
0

denotes
the average number of tetrahedra taken in one dimension so that K ⇠ K3

0

. As a volume method,
the UWVF method leads to a sparse system: the number of degrees of freedom is of order K3

0

p
and the complexity of the algorithm is O(K3

0

p2) where p denotes the average number of basis
functions per tetrahedron which typically satisfies K

0

p ⇠  [HMM07].

In this section, we focus on the coupling of integral representation and UVWF. To simplify
the presentation we suppose that " = µ = 1 so that the exterior domain is entirely homogeneous
and we use the perfectly conducting boundary condition on � (i.e. the scatterer is not penetrable
and the exterior medium is homogeneous). In this case we may define the integral representa-
tion from the fields on � (extensions to more general domains require to introduce another
intermediate boundary such that the domain is homogeneous between ⌃ and this intermediate
boundary). In this case the artificial boundary ⌃ can be taken very close to the boundary of the
obstacle. Following Hazard and Lenoir [HL96], the hybrid scheme consists in replacing the low
order absorbing boundary condition �E⇥ n+ (H⇥ n)⇥ n = �E

0

⇥ n+ (H
0

⇥ n)⇥ n on ⌃
by the boundary condition

�E⇥ n+ (H⇥ n)⇥ n = �Es ⇥ n+(Hs ⇥ n)⇥ n�E
0

⇥ n+(H
0

⇥ n)⇥ n ,

where (Es,Hs) are given by the Stratton-Chu formula ([CK98]) in terms of n ⇥H and n ⇥ E
on ⌃ (i.e. under our assumptions on �) via

Es(x) = curl
x

Z

�

G(x, y)n
�

(y)⇥ E(y) d�(y)

� 1

ı!
curl

x

curl
x

Z

�

G(x, y)n
�

(y)⇥H(y) d�(y) , (3.6)

Hs(x) = curl
x

Z

�

G(x, y)n
�

(y)⇥H(y) d�(y)

+
1

ı!
curl

x

curl
x

Z

�

G(x, y)n
�

(y)⇥ E(y) d�(y) , (3.7)

where n
�

is the exterior normal to the surface � and G(x, y) = exp(ı|x � y|)/(4⇡|x � y|)
is Helmholtz fundamental solution. Thanks to the structure of the unknowns of the UWVF, as
shown in [DM07], the fields in the integrands above can be computed directly from the degrees
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of freedom of the UWVF (3.3) taking into account the convention for the direction of normals,
and the boundary condition on � (3.2) where g = 0.

The system (3.5) becomes (A� C � eC)X = b where eC couples the degrees of freedom on
� and ⌃. The matrix eC can be split into different discrete integral operators eC

i

, i = 1, ..., 4 of
the form

( eC
i

X
h

)
kl

=

Z

⌃

ext

kk

c
k

S
i

(X
h

) · FY
kl

d� ,

where

· ⌃ext

kk

is the face on ⌃ of a tetrahedron intersects the exterior boundary,

· c
k

depends only on " and µ on ⌃ext

kk

,

· F is the local operator introduced in (3.4),

· S
i

is a global operator which comes from the right hand side of (3.6)-(3.7), for instance

(S
1

(X ))(x) =

✓
�
Z

�

f
Q

(y)r
y

G(x, y)⇥ X (y) d�(y)

◆
⇥ n(x) ,

where f
Q

is a function involving Q and ". The action of these integral operators can be
evaluated by the FMM.

In this work, the solution of the new system (A � C � eC)X = b is obtained by the same
method (BiCGStab) as used for the classical UWVF system (A�C)X = b, considering C+ eC
as a small perturbation of C. It is important to note that we never compute C̃ explicitly, but
evaluate its action as needed by the FMM.

The integral representation aims to reduce the distance of the absorbing boundary from the
scatterer to a number of elements independent of . We then have a number of elements in the
mesh of order K2

0

. This reduces the complexity related to the volume calculation. The FMM
is used to control the cost of the calculation related to the integral operators which give rise to
large dense blocks in the discrete system.

In the sequel, numerical results illustrate the impact of the use of an integral representation
as an exact boundary artificial condition for the UWVF. These results are for the problem of ap-
proximating scattering by a perfectly conducting unit sphere. This very simple example has the
advantage that a Mie series solution is available for comparison (other geometrical configura-
tions were considered in [DM12]). Results from four codes are presented: the classical UWVF
with a Silver-Müller type low order auxilliary boundary condition of order 0 (i.e the standard
UWVF with the boundary condition described earlier setting Q = 0), the code UWVF+IR with
integral representation but without FMM, the code UWVF+IR+SLFMM using a single-level
FMM and the code UWVF+IR+MLFMM using a multilevel FMM. All the resuts concerned by
computational costs comparisons were obtained on an Apple Mac Pro with 2⇥3GHz quad-core
Xeon processors using 16 Gb RAM.

For approximating scattering by the unit sphere, the exterior boundary ⌃ is taken to be
a concentric sphere. We have experimented with several exterior boundaries giving rise to
different meshes as defined in [DM07]. Table 3.1 describes those considered in this section.
The names “Sxxx” denote the different meshes, where “xxx” denotes the distance between
� and ⌃ in centimeters. For  = 4 the distance from the perfect conductor to the artificial
boundary ranges from 0.16� (S025) to 2.6� (S400) where � = 2⇡/ is the wavelength.
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Table 3.1. A summary of the meshes used in this study.
Name S400 S200 S100 S075 S050 S025
Radius in m 5 3 2 1.75 1.5 1.25
Distance between
� and ⌃

⇡ 2.6� ⇡ 1.3� ⇡ 2�/3 ⇡ �/2 ⇡ �/3 ⇡ �/6

Number of
tetrahedra

16179 14526 40609 30133 21083 11008

Number of basis
functions per
tetrahedron

8 to 128 8 to 72 10 to 32 10 to 30 8 to 28 10 to 24

Number of DoF 880200 508450 753616 536874 356666 178146

All the meshes have been generated using FEMLab. The meshes S400 and S200 are appro-
priate for a classical use of the UWVF. The other meshes have been generated optimizing the
ratio between the average edge-length h and the wavelength � to h ⇡ �/5. These meshes are
quite uniform (the S400 and S200 meshes are graded to give larger elements away from the
scatterer). The large number of tetrahedra in S025 might appear to be a disadvantage for the
UWVF+IR+[S/M]LFMM codes (the number of tetrahedra is comparable to S400). However
the number of degrees of freedom (DoF) is much less than for S400 because fewer plane waves
are used per element due to the smaller size of elements as shown in the bottom row of Table 3.1.

In Figs. 3.2 and 3.3, we clearly see the impact of the integral representation on the accuracy
of the result: when considering a closer and closer exterior boundary, the classical UWVF code,
as is well known, gives worse and worse results. On the other hand, with the different meshes,
the code UWVF+IR+SLFMM gives more or less identical results which fit with the Mie series
solution, even with the thin mesh S025. Similar results are obtained for the TM polarization (see
Fig. 3.4). The results obtained with the code UWVF+IR+MLFMM, in Fig. 3.5, are comparable
to those of the code UWVF+IR+SLFMM, indicating that use of the multilevel scheme does not
degrade the FMM accuracy.

The algorithm complexity is derived in details in Section 1.5. CPU-time, memory require-
ments and error measures are given in the case of the TE polarization in Table 3.2. The results
are given for the meshes S400 and S200 using the classical UWVF code and for the mesh S025
using the codes UWVF+IR+SLFMM (S025 - S) and UWVF+IR+MLFMM (S025 - M). In the
table we use the notation introduced in Section 1.5 (units are seconds and Giga-bytes).

The RCS curve obtained with S200 using the UWVF code could be acceptable, however
its accuracy is quite poor in comparison with the one obtained with S025 using the codes
UWVF+IR+SLFMM and UWVF+IR+MLFMM hence we should compare results for S400
and S025 in Table 3.2. That case shows that the UWVF+IR+MLFMM code reduces computer
time by approximately 50% and the memory needed by almost 75% for roughly the same RMS
error.
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Figure 3.2. The TE-polarized RCS as a function of polar coordinate ✓ computed using the
classical UWVF code with the meshes in Table 3.1 compared to the Mie series solution. Left:
the larger diameter meshes (S400, S200, S100). Right: the smaller diameter meshes (S025,
S050, S075). Only the meshes S400 and S200 gives results close to the Mie series.
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Figure 3.3. The TE-polarized RCS as a function of polar coordinate ✓ computed using the new
UWVF+IR+SLFMM code with meshes in Table 3.1 compared to the Mie series solution. Left:
results for the larger diameter meshes (S200, S100). Right: the smaller diameter meshes (S075,
S050, S025). All the meshes give results in good agreement with the Mie series.
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Figure 3.4. The TM-polarized RCS as a function of polar coordinate ✓ computed using the
two codes in the study. Left: results for the classical UWVF code with meshes S400, S200
and S100. Right: results for the new code with the meshes S025, S050 and S075. For the
UWVF+IR+SLFMM the results are almost independent of the distance of the auxiliary bound-
ary from the scatterer, whereas the classical UWVF requires to mesh a large region of space.
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Figure 3.5. The RCS as a function of polar coordinate ✓ computed using the three codes
in the study, with  = 4. Left: TE-polarized RCS with the codes UWVF+IR+SLFMM
and UWVF+IR+MLFMM with the mesh S025. Right: TM-polarized RCS with the code
UWVF+IR+MLFMM (dashed line) with the mesh S025 and the exact solution (solid line).

Table 3.2. Computational costs comparisons between the UWVF (S400; S200),
UWVF+IR+SLFMM (S025 - S) and UWVF+IR+MLFMM (S025 - M) for scattering by a unit
sphere at constant . For more details of the meshes see Table 3.1. The RCS error is computed
via the Mie series.

Case  CPU MEM. Rel Err 2 Rel Err 1 RMS error
S400 4 1725 6.2 1.5 10�2 1.1 10�2 9.5 10�2

S200 4 462 1.8 3.2 10�2 2.5 10�2 2 10�1

S025 - S 4 838 2.8 4.6 10�3 5.1 10�3 2.8 10�2

S025 - M 4 798 1.6 1.7 10�2 1.1 10�2 1.1 10�1

3.2.2 Linear sampling method
Peter Monk’s UWVF code is a tool used to generate data for the Linear Sampling Method
(LSM), an inverse problems solver. The LSM solves the inverse problem of determining the
shape of a body from the knowledge of the incident electromagnetic plane wave and the elec-
tric far field pattern of the scattered wave. The method was introduced by D. Colton and A.
Kirsch ([CK96]) for the Helmholtz equation with Dirichlet boundary conditions and was fur-
ther developed for more complicated boundary conditions and Maxwell equations (see e.g.
[CCM04, CC03a, CHP03]). In [CC03b], the LSM was adapted to obstacles with empty interior
by D. Colton and F. Cakoni for the case of mixed cracks in R2. In papers [CCD03, CD05],
with D. Colton and F. Cakoni, we applied the LSM to screens and mixed screens, open surfaces
in R3. The theoretical results show that the LSM is very suitable to arrive at the solution of
the inverse problem for perfectly conducting screens or for screens with mixed type bound-
ary conditions (perfectly conducting boundary condition on one side and impedance boundary
condition one the other side).

Some numerical results are illustrated in this section. Figs. 3.6, 3.7, 3.8 give the reconstruc-
tion of perfectly conducting screens and mixed screens. For more details on the method and its
use, we refer to the given references.
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Figure 3.6. The unit disc: exact and reconstructed objects. Center: the screen is a perfect
conductor. Right: the upper side of the screen satisfies an impedance boundary condition.
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Figure 3.7. Two parallel squares: exact and reconstructed objects. Center: the screen is a perfect
conductor. Right: the upper square is a perfect conductor on both sides, and the upper side of
the lower square satisfies an impedance boundary condition while the other side is perfectly
conducting.
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Figure 3.8. A L-shape object: exact and reconstructed objects. Center: the screen is a perfect
conductor. Right: the screen satisfies a perfectly conducting boundary condition on all sides
except for the inner side of the vertical square which satisfies an impedance boundary condition.
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3.3 Coupling of finite elements and integral representation
In this section, the resolution of the 3D exterior time-harmonic Maxwell equations is done by a
combination of finite elements and integral representation ([HL96]). Like in previous section,
this strategy leads to an equivalent problem on a reduced bounded domain delimited by the
surface of the scatterer and an artificial boundary with exact artificial boundary condition. No
a priori condition is required on the distance between the scatterer and the artificial boundary
but a difficult issue consists in the elaboration of a resolution strategy. A relevant idea was
suggested in [LJ01]. We propose the interpretation of this idea as an application of the Schwarz
method, following the work done in [BBFGJ05] for Helmholtz equation. Hence, the theory on
the Schwarz method justifies the use of Krylov solvers and the choice of a preconditioner.

Let us consider ⌦� a bounded scatterer in R3 with a regular boundary � and ⌦+ its un-
bounded complementary. We are concerned with the scattering of a time-harmonic electro-
magnetic wave by the perfect conductor ⌦�. Our purpose is to determine the total field E =
Es+Einc where Einc is the incident wave and Es is the scattered field, solution to the regularized
Maxwell equations with essential boundary condition on � and radiation condition at infinity.
Considering an integral representation on an artificial boundary ⌃ (see Fig. 3.1), the exterior
problem reduces to a problem on the bounded domain ⌦ delimited by � and ⌃ (see [HL96]):
Find E such that

8
<

:

curl curlE� t�1r(divE)� k2

s

E = 0 in ⌦,
E⇥ n

�

= 0, divE = 0 on �,
T
⌫

1

(E) = T
⌫

1

(Einc � I
�

(E)) and N
⌫

2

(E) = N
⌫

2

(Einc � I
�

(E)) on ⌃,
(3.8)

where n
�

is the exterior normal to � (outgoing from ⌦�); the regularization term t�1r(divE)
allows the use of a Galerkin finite element method (see [HL96]) and the regularization param-
eter t�1 depends on the permittivity and the permeability of the air; k

s

is the wavenumber; ⌫
1

and ⌫
2

are complex numbers which have a negative imaginary part. The two operators T
⌫

1

and
N

⌫

2

are defined by T
⌫

1

E = curlE ⇥ n
�

+ ⌫
1

n
�

⇥ (E ⇥ n
�

) and N
⌫

2

E = divE + ⌫
2

E · n
�

with n
�

the exterior normal to ⌃ (outgoing from ⌦). The boundary conditions on ⌃ are derived
from the integral representations satisfied by the scattered field and identified by the following
expression ([HL96]): for x 2 ⌦+,

I
�

(E)(x) = �k2

s
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Z

⌦

curlRG
t

(x, .) curlE

+t�1

Z

⌦

divRG
t

(x, .)TdivE� t�1

Z

�

div G
t

(x, .)T(E · n
�

)d�,

where G
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k2

s

Hess(G
k

s

� G
k

p

) is the outgoing Green tensor associated with the dif-

ferential operator curl curl�t�1r(div) � k2

s

I of the regularized Maxwell equation; I is the
identity matrix in R3; Hess stands for Hessian operator; k

p

=
p
tk

s

and G
k

is the fundamental
solution of Helmholtz equation; R is a linear operator that maps every regular function ' de-
fined on � into a regular function R' defined on ⌦ which satisfies R' = ' on � and R' = 0
on ⌃. The consideration of the Hilbert space

H
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,
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enables one to write a variational formulation of the problem (3.8): Find E 2 H
t

such that

(A
t

+ C
t

)E = F
t

, (3.9)

where the operators A
t

and C
t

: H
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! H
t

are defined as follows
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and F
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is given by (F
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,E0)
t

=
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(Einc) ·E0 + t�1N
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·E0))d�, where (·, ·)
t

is the

scalar product on H
t

.
The problem (3.9) is well posed as explained in [HL96] and the operator A

t

is invertible.

The question of the resolution has been tackled by J. Jin and J.-M. Liu [LJ01] who sug-
gested to solve (3.9) by considering C

t

in the right hand side. An application of the fixed point
algorithm leads to finding E

n+1

such that
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(3.10)

In papers [DGR14, DGRon], we interprete the algorithm defined by (3.10) as a Schwarz method.
This interpretation has been initially proposed for the case of Helmholtz equation in [BBFGJ05].
The strategy is designed by the Total Overlapping Schwarz Method. Indeed the overlapping area
is the total domain ⌦. We hereby extend their work to the case of Maxwell equations: it consists
in replacing equivalently the problem (3.10) by the two following subproblems. The first one is
a transmission problem:
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The second one consists in finding E
2n+2

such that
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(3.12)

The solution E
2n+1

of (3.11) has an explicit expression given by an integral representation. By
inserting this representation in the second condition of (3.12) we effectively obtain the solution
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of (3.10). At the iteration n, the Schwarz algorithm is defined by A
t

E
n+1

= �C
t

E
n

+ F
t

. Nu-
merically, we use the scheme suggested by J. Jin and J.-M. Liu and do not use the subproblems
(3.11) and (3.12). The intermediate problems (3.11) and (3.12) are used for theoretical justi-
fications. This enables one to derive convergence estimations that cannot be obtained directly
from the system (3.10).

In [Rai14], Rania Rais investigated an analytical calculation of the rate of convergence of the
Total Overlapping Schwarz method in a spherical configuration, case where ⌦� is a perfectly
conducting ball. Let us consider the scatterer to be a ball of radius R⇤. We suppose that the
artificial boundary ⌃ is a sphere concentric to � with radius R > R⇤. We first introduce
some notations: We denote by j

l

the spherical Bessel function of degree l, by h
l

the spherical
Hankel function of the first kind of degree l and H

l

(r) = h
l

(r) + rh0
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orthonormal basis for T 2(S2) := {a : S2 ! C3 / a 2 (L2(S2))3, a · n
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and L : L2(S2) ! L2(S2) two linear maps. K (resp. L) has a diagonal representation in the
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)
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of T 2(S2) (resp. Y m
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of L2(S2)). Let us denote by ⌧
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)
the eigenvalues of K (resp. L). These eigenvalues define the rate of convergence of the Total
Overlapping Schwarz method. Taking into account the boundary and transmission conditions,
we obtain:
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The convergence of the Total Overlapping Schwarz method is ensured if |⌧
i,lm

| < 1, 8i =
1, ..., 3, 8l. The reader can see that these eigenvalues are independent of the parameter m.
For R⇤ = 1, the asymptotic behavior of the spherical Bessel functions for large l leads to the
asymptotic estimation ⌧

i,lm

⇠ (1 � R2l)�1, i = 1, ..., 3. As a consequence, for small values of
R, there exists a finite number of coefficients ⌧

i,lm

outside of the unit disk, and for sufficiently
large values of R, all the coefficients ⌧

i,lm

are in the interior to the unit disk. We conclude that
the linear convergence of the Schwarz method would be reachable for R large enough. The
numerical tests illustrate this theoretical result. In Fig. 3.9, we consider R⇤ = 1 and R = R⇤+e
with different values of e: �/100, �/10 or �/5. The cases e = �/100 and e = �/10 exhibit
some coefficients larger than 1 while the maximum value of |⌧

2,lm

| is strictly lower than 1 at
the considered wavenumbers for the thickness e = �/5 but the results are strongly dependent
on the wavenumber. Similar asymptotic observations can be done on |⌧

1,lm

| and |⌧
3,lm

|. As
a consequence, a Krylov method is a relevant alternative to the algorithm defined by (3.10):
due to the properties of Krylov solvers demonstrated in [GP08], the convergence of a Krylov
method is ensured for the resolution of the problem (3.9) using A

t

as a preconditioner. In
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[Rai14, DGRon], the superlinear convergence of GMRES solver is analytically demonstrated
for the spherical configuration.
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Figure 3.9. Modulus of ⌧
2,lm

for thickness e = �/100 (left), �/10 (center) and �/5 (right).
Cases k

s

= 1, 10 or 30.

The use of A
t

as a preconditioner to solve the problem (3.9) using a Krylov solver has been
numerically tested. We hereby consider the resolution of problem (3.9) using the GMRES. After
a finite element discretization, the linear system is written under the form (A+C)[E] = F and
the preconditioned system becomes (I + A�1C)[E] = A�1F where the matrix C involves the
integral operators and the matrix A related to the differential operators involves a term resulting
from the essential condition considered by a penalization technique:

"
p

(n
�

⇥ curlE) + E⇥ n
�

= 0 on �, with "
p

> 0.

The numerical implementation were done using and developing new integrands in the li-
brary MÉLINA++ [MDL14]. The validation of the code was done by considering an intermedi-
ate problem the solution of which is known
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(3.13)

where G1

1

is the first vector component of G
1

. The scatterer is the unit sphere and the artifi-
cial boundary ⌃ is the sphere concentric to � with radius R = 1.5. Fig. 3.10-left shows the
convergence of the relative error with respect to the mesh density: the relative error is plotted
with respect to the average size of the mesh elements, for different values of the penalization
parameter "

p

, for the wavenumber k
s

= 3.
To illustrate the superlinear convergence of the GMRES applied to the preconditioned sys-

tem, we exhibit the GMRES residuals in Fig. 3.10-right for different values of the wavenumber,
with "

p

= 10�4. The considered meshes were adapted to the wavenumber such that the average
edge length is about the wavelength over ten and there are about two layers of mesh elements
between � and ⌃.
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3.4 Perspectives
The work done with Rania Rais and Nabil Gmati on the justification and the implementation
of an integral representation for 3D Maxwell equations is a significant progress which offers
several perspectives. These first developments were done in a rather simple context in term of
geometry or numerical tools used for the resolution. Next steps would consist of the consider-
ation of Nédélec finite elements for a more systematic formulation valuable for any geometry,
an efficient implementation of the essential condition, the application of a Multilevel Fast Mul-
tipole Method. Related to the last item, Rania Rais contributes to the implementation of the
library FastMMLib [DLnt].
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Chapter 4

Singularities of the integral operators

4.1 Introduction
In this chapter, we focus on the integration of singular integrands. Within the works presented
in the document, we considered a numerical strategy based on Duffy transformation which was
robust enough for the considered applications but suffers from a lack of efficiency in the most
singular cases. Alternatives are detailed in literature and should be considered for comparisons
and combinations. In next section, we express the numerical strategy as used in the works
presented in the previous chapters. The last section is devoted to perspectives of combinations
with other approaches, either numerical or analytical.

4.2 Treatment of the singularities in MÉLINA++

In this section, we explain the strategy used to deal with the singularities of the Helmholtz fun-
damental solution and derivatives involved in surface or volume integral equations. With Daniel
Martin, we implemented surface integral operators in the finite element library MÉLINA++
[MDL14]. To deal with the singularities of the Green kernel, we integrated a strategy based
on singular changes of variables involving Duffy transformation [Duf82]. Indeed, we extended
a technique developed by Jean Gay, retired engineer from CEA-CESTA, and essentially de-
scribed in PhD theses of the university of Bordeaux I ([Lec97, Lan95, Dar02a]). With El-Hadji
Koné, in the context of his PhD thesis [Kon10], we derived the evaluation of singular integrands
on tetrahedra related to volume integral operators. We, hereby, explain the strategy in the case
of surface configurations as it is implemented in the library MÉLINA++ for P

1

finite elements.
The case of volume integrands is similar and can be found in [Kon10].

The strategy is applied to kernels of the following forms
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In the following, we detail the formulae for the evaluation of the expression

I
KL

=

Z

K

Z

L

F (x, y)

|x� y|↵ '
c

(y)'
r

(x)dx dy ,

where K and L are mesh triangles sharing vertices. The evaluation of expressions involving
r

x

G(x, y) or r
x

r
y

G(x, y) is similar, taking advantage of the factor (x� y).
Let us denote X

i

and Y
i

, i = 1, ..., 3 the vertices of K and L respectively. according to
the number of shared vertices, three different configurations occur. In the library MÉLINA++,
the triangles are considered as the image of a reference triangle K̂ by a linear function. Hence,
K = F

K

(K̂) and L = F
L

(K̂), with F
K

and F
L

linear functions. The reference triangle is
defined by the vertices (1, 0), (0, 1), (0, 0). We also denote by X̂

i

, Ŷ
i

the points of K̂ satisfying
X

i

= F
K

(X̂
i

) and Y
i

= F
K

(Ŷ
i

).

4.2.1 1st case : K and L share exactly one vertex
Let us number the vertices such that X

1

= Y
1

(see Fig. 4.1).

X
1

= Y
1

X
2

X
3

Y
2

Y
3

x0
y0

⇥x ⇥y

K L

Figure 4.1. (generated with Fig4TeX [Laf11]) Two triangles sharing one vertex

The integral to be evaluated is
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A first change of variables is (see Fig. 4.1)
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ŷ0 = (1� �

y

)Ŷ
2

+ �
y

Ŷ
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This change of variables involve Duffy transformation and cancel the singularity. The integral
then reads
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and more precisely
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For (�
x

, �
y

, ⇠, ⌘), the default quadrature rule is Gauss-Legendre of degree 3 on [0, 1].

4.2.2 2nd case: K and L share exactly one edge
Let us number the vertices such that X

2

= Y
3

and X
3

= Y
2

(see Fig. 4.2).
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Figure 4.2. (generated with Fig4TeX [Laf11]) Two triangles sharing one edge

The integral to be evaluated is
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(ŷ))

|F
K

(x̂)� F
L
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Successive changes of variables (x̂ ! (�
x

, µ
x

), ŷ ! (�
y

, µ
y

); split of the unit square into two
triangles, Fig. 4.3-left, and Duffy transformation for (�

x

,�
y

) ! (u, w); split of the unit cube
into three pyramids, Fig. 4.3-right, and Duffy transformation for (µ

x

, µ
y

, w) ! (⌘, ⇣, ⇠)) lead
to the following expression
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Figure 4.3. (generated with Fig4TeX [Laf11]) integration domain splits for application of Duffy
transformation

with the following definition of the different quantities (each column corresponds to one of the
triangles in Fig. 4.3, each line corresponds to one of the pyramids in Fig. 4.3)
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x̂2 = ⇠X̂1 + (1� ⇠)x̂0
2
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). The default quadrature
rule for (⇠, ⌘, ⇣ , u) is Gauss-Legendre of degree 3 on [0, 1].

4.2.3 3rd case: K and L are identical
There is no requirement on the numbering of the vertices.

The integral to be evaluated is
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Figure 4.4. (generated with Fig4TeX [Laf11]) Auto-influence case, K = L

For this case, the principle is rather basic and non optimal: we consider a usual quadrature
rule on triangle, for the variable x̂ and we cancel the singularity by changes of variables on ŷ
considered one by one in the triangles x̂X̂

2

X̂
3

, X̂
1

x̂X̂
3

and X̂
1

X̂
2

x̂ (see Fig. 4.4). ŷ is expressed
like a combination of x̂ and a point on the opposite edge of the considered triangle. This leads
to the expression
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with the following definition of the different quantities
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For the variable x, the default quadrature rule is a misc rule of degree 5 for triangles. For the
variables (�

y

, µ
y

), the default quadrature rule is Gauss-Legendre of degree 3 on [0, 1].

4.3 Alternatives for a library on the treatment of the singu-
larities – Perspectives

Section 4.2 was dedicated to a numerical strategy developed by Jean Gay, retired engineer from
CEA-CESTA, and implemented in the library MÉLINA++ [MDL14]. In literature, one can find
two alternatives

? Stefan Sauter and Christoph Schwab describe in [SS11] another numerical approach
which is also based on Duffy transformation and rather similar. Their method is derived
for triangles and quadrangles.
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? Nicolas Salles and Marc Lenoir developed an analytic strategy to evaluate the singular
integrals in the case of triangles [LS12]. The method is based on the properties of ho-
mogeneous functions. The drawback of this approach is the fact that the developments
should be derived independently for each integrand depending on the kernel, the operator
applied to the kernel, the degree of the finite element interpolation.

? In the case of two-dimensional problems, the singular integrands are evaluated very effi-
ciently with a numerical scheme by Javier Sayas et al [DLS14b, DLS14a, DLSon]. The
strategy is based on a careful mathematical analysis which justifies a choice of quadra-
ture rules with a surprisingly low number of quadrature points. The three-dimensional
equivalent would be a wonderful result.

These works motivate the idea of a library devoted to strategies of integration of singular
integrands. The numerical methods have to be compared. They share a disadvantage: they are
efficient for the cases of non identical elements but are very costly for the auto-influence case.
The analytical approach leads to expressions which are easier to derive in the case of auto-
influence. Both approaches should be combined. One could also think about a lower-dimension
numerical integration, for example for some 1D integrals involved in the derivation of the an-
alytical expression: in some configurations, it may be better to use 1D numerical integration
schemes instead of deriving the analytical approach till the last step involving special functions
such as hyperbolic cosine. With Nicolas Salles, in the context of his PhD thesis [Sal13], we
implemented his developments for triangles in the library MÉLINA++. First tests shew the rel-
evance of a combination of numerical and analytical approaches. Marc Lenoir already wrote
the analytical expression of the auto-influence case for tetrahedra in the framework of volume
integral equations.
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[DM12] Eric Darrigrand and Peter Monk. Combining the ultra-weak variational formu-
lation and the multilevel fast multipole method. Appl. Numer. Math., 62(6):709–
719, 2012.

[Duf82] Michael G. Duffy. Quadrature over a pyramid or cube of integrands with a sin-
gularity at a vertex. SIAM J. Numer. Anal., 19(6):1260–1262, 1982.

[EB96] William D. Elliott and John A. Board. Fast Fourier transform accelerated fast
multipole algorithm. SIAM J. Sci. Comput., 17(2):398–415, 1996.

https://sourcesup.cru.fr/projects/fastmmlib/
https://sourcesup.cru.fr/projects/fastmmlib/
http://perso.univ-rennes1.fr/eric.darrigrand-lacarrieu/Publi/eid.pdf
http://perso.univ-rennes1.fr/eric.darrigrand-lacarrieu/Publi/eid.pdf


90 BIBLIOGRAPHY

[EM77] Björn Engquist and Andrew Majda. Absorbing boundary conditions for the nu-
merical simulation of waves. Math. Comp., 31(139):629–651, 1977.

[FHMS11] M’Barek Fares, Jan Hesthaven, Yvon Maday, and Benjamin Stamm. Reduced
basis method for the parametrized electric field integral equation. J. Comput.
Phys., 230(14):5532–5555, 2011.

[FP84] Mark J. Friedman and Joseph E. Pasciak. Spectral properties for the magnetiza-
tion integral operator. Math. Comp., 43(168):447–453, 1984.

[GHRW98] Leslie Greengard, Jingfang Huang, Vladimir Rokhlin, and Stephen Wandzura.
Accelerating Fast Multipole Methods for the Helmholtz Equation at Low Fre-
quency. IEEE Comp. Sci. Engineering Magazine, pages 32–38, July 1998.

[GHS12] Mahadevan Ganesh, Jan Hesthaven, and Benjamin Stamm. A reduced basis
method for multiple electromagnetic scattering in three dimensions. J. Comput.
Phys., 231(23):7756–7779, 2012.

[GP08] Nabil Gmati and Bernard Philippe. Comments on the GMRES convergence for
preconditioned systems. In Large-scale scientific computing, volume 4818 of
Lecture Notes in Comput. Sci., pages 40–51. Springer, Berlin, 2008.

[GR88] Leslie Greengard and Vladimir Rokhlin. The Rapid Evaluation of Potential Fields
in Three Dimensions. In Vortex Methods in Lecture Notes in Mathematics, 1360,
Springer Verlag, pages 121–141, 1988.

[GR96] Vivette Giraud and Pierre-Arnaud Raviart. Finite Element Methods for the
Navier-Stokes Equations, Theory and Algorithms. Springer Series in Computat.
Math. Springer-Verlag, Berlin, 1996.

[GR97] Leslie Greengard and Vladimir Rokhlin. A New Version of the Fast Multipole
Method for the Laplace Equation in Three Dimensions. Acta Numerica, 6:229–
269, 1997.

[GR09] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Internat. J. Nu-
mer. Methods Engrg., 79(11):1309–1331, 2009.

[Hac99] Wolfgang Hackbusch. A Sparse Matrix Arithmetic Based on H-Matrices. Part I:
Introduction to H-Matrices. Computing, 62:89–108, 1999.

[HCWSC13] Charlotta J. Howarth, Simon N. Chandler-Wilde, Langdon Steven, and Paul N.
Childs. Enriching a Hankel basis by ray tracing in the ultra weak variational
formulation. In 11th International Conference on Mathematical and Numerical
Aspects of Waves (Waves 2013). INRIA – ENIT, Tunis, june 2013.

[HKM04] Tomi Huttunen, Jari P. Kaipio, and Peter Monk. The perfectly matched layer for
the ultra weak variational formulation of the 3D Helmholtz equation. Internat. J.
Numer. Methods Engrg., 61(7):1072–1092, 2004.



BIBLIOGRAPHY 91

[HL96] Christophe Hazard and Marc Lenoir. On the solution of time-harmonic scattering
problems for Maxwell’s equations. SIAM J. Math. Anal., 27(6):1597–1630, 1996.

[HLL00] Yao Houndonougbo, Brian Laird, and Ben Leimkuhler. Molecular dynamics al-
gorithms for mixed hard-core/continuous potentials. Mol. Phys., 98(5):309–316,
2000.

[HLW06] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical inte-
gration, volume 31 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 2006. Structure-preserving algorithms for ordi-
nary differential equations.

[HMK02] Tomi Huttunen, Peter Monk, and Jari P. Kaipio. Computational aspects of the
ultra-weak variational formulation. J. Comput. Phys., 182(1):27–46, 2002.

[HMM07] Tomi Huttunen, Matti Malinen, and Peter Monk. Solving Maxwell’s equations
using the ultra weak variational formulation. J. Comput. Phys., 223(2):731–758,
2007.

[HN89] Wolfgang Hackbusch and Z.P. Nowak. On the Fast Matrix Multiplication in
the Boundary Element Method by Panel Clustering. Numer. Math., 54:463–491,
1989.
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[Lei86] Rolf Leis. Initial boundary value problems in mathematical physics. John Wiley,
New York, 1986.

[LHM12] Teemu Luostari, Tomi Huttunen, and Peter Monk. The ultra weak variational
formulation using Bessel basis functions. Commun. Comput. Phys., 11(2):400–
414, 2012.

[LHM13] Teemu Luostari, Tomi Huttunen, and Peter Monk. Improvements for the ultra
weak variational formulation. Internat. J. Numer. Methods Engrg., 94(6):598–
624, 2013.

http://uma.ensta-paristech.fr/soft/XLiFE++/
http://uma.ensta-paristech.fr/soft/XLiFE++/
http://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/index.html
http://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/index.html


BIBLIOGRAPHY 93

[LJ01] Jian Liu and Jian-Ming Jin. A novel hybridization of higher order finite element
and boundary integral methods for electromagnetic scattering and radiation prob-
lems. IEEE Trans. Antennas and Propagation, 49(12):1794–1806, 2001.

[LS12] Marc Lenoir and Nicolas Salles. Evaluation of 3-D singular and nearly singular
integrals in Galerkin BEM for thin layers. SIAM J. Sci. Comput., 34(6):A3057–
A3078, 2012.

[Lu03] Cai-Cheng Lu. A fast algorithm based on volume integral equation for analysis
of arbitrarily shaped dielectric radomes. IEEE Trans. on Antennas and Propag.,
51(3):606–612, 2003.

[MDL14] Daniel Martin, Eric Darrigrand, and Yvon Lafranche.
http://anum-maths.univ-rennes1.fr/melina/melina++ distrib/.
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