
Identification of the Thermophysical Properties
of the Soil by Inverse Problem

Salwa Mansour
PhD student, INRIA

Campus de Beaulieu, Rennes (FR)
Email: salwa.mansour@inria.fr
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This paper introduces a numerical strategy to estimate the
thermophysical properties of a saturated porous medium
(volumetric heat capacity (ρC)s, thermal conductivity λs and
porosity φ) where a phase change problem (liquid/vapor) ap-
pears due strong heating. The estimation of these properties
is done by inverse problem knowing the heating curves at
selected points of the medium. To solve the inverse problem,
we use both the Damped Gauss Newton and the Levenberg
Marquardt methods to deal with high nonlinearity of the
system and to tackle the problem with large residuals. We
use the method of lines, where time and space discretizations
are considered separately. Special attention has been paid
to the choice of the regularization parameter of the Apparent
Heat Capacity method which may prevent the convergence
of the inverse problem.
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1 Introduction
The work presented in this paper is motivated by the

studies of agricultural and archaeological soils. A system-
atic application of numerical modeling in a particular field of
agriculture and archaeology which is the study of seed ger-
mination and archaeological hearths is presented. The au-
thors introduce a numerical strategy in 1D to estimate the
thermophysical properties of the soil (volumetric heat capac-
ity (ρC)s, thermal conductivity λs and porosity φ) of a sat-
urated porous medium where a phase change problem (liq-
uid/vapor) appears due to intense heating from above. Usu-
ally φ is the true porosity, however when the soil is not sat-
urated (which should concern most cases), φ may be taken
equal to the part of water in the pores. This is of course an
approximation which is correct for the energy balance but
which neglects the capillary forces and the migration flow of
the liquid inside the porous media; a complete model of such

an unsaturated model is out of the scope of this paper.
The investigation of the thermal properties of the soil can
have significant practical consequences such as evaluation of
optimum conditions for plant growth and development and
can be utilized for the control of thermal-moisture regime
of soil in the field [1]. These properties influence how en-
ergy is partitioned in the soil profile so the ability to mon-
itor them is a tool to manage the soil temperature regime
that affects seed germination and growth. It can also pro-
vide information about the use of fire by ancient civilizations
whether for cooking or heating. The inverse problem, pre-
sented in this paper, consists of the estimation of thermo-
physical properties of the soil knowing the heating history
curves at selected points of the altered soil [2]. In general,
the mathematical formulation of inverse problems leads to
models that are typically ill-posed [3]. In such problems,
we usually minimize a discrepancy between some experi-
mental data and some model data [4]. In our problem, we
use the least square criterion in which the sensitivity coeffi-
cients appear and where we try to minimize the discrepancy
function which is expressed as the norm of the difference be-
tween the experimental temperature and the numerical data
obtained by our approximated model [5]. The system com-
posed of the energy equation together with three boundary
initial problems resulting from differentiating the basic en-
ergy equation with respect to the three unknown parameters
must be solved [6].
At the stage of numerical computations, the Damped Gauss
Newton method is used to minimize the least square crite-
rion; that requires the solution of a system of four highly non-
linear ordinary differential equations. We propose a global
approach similar to that presented by [2] using also the ap-
parent heat capacity method to deal with the phase change
problem. It is important to note that in our new configura-
tion, the solution is reached after taking into consideration
the temperature history at selected points of the domain and
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at different time steps which was not the case in [2] where
the authors reached the solution by taking the temperature
history at the final time only and at all the points in the com-
putational domain. This approach is based on the method
of lines, where time and space discretizations are considered
separately. The space discretization is done using a vertex-
centered finite volume method; the discretization in time is
done via an ODE solver that uses a BDF scheme and a mod-
ified Newton method to deal with the high nonlinearity. The
code validation stage is based on the comparison between the
numerical results and the synthetic data. The advantage of
our configuration to that presented by [2] is that we propose
a model which is more realistic and closer to the experimen-
tal setup i.e. our synthetic data consists of the calculation of
the temperature at few sensors (around 5) during the whole
heating duration.

2 Forward problem
The physical problem consists of heating the soil by a

fire. To model this problem, we replace the soil by a perfect
porous medium in 1D finite domain of length l = 10 cm with
constant and uniform properties heated from above by a con-
stant temperature Tc (temperature of the fire between 300 ◦C
and 700 ◦C). Tc must be greater than Tv (the evaporation or
phase change temperature which is normally 100 ◦C). In the
numerical examples presented in this work Tc = 300 ◦C. In
order to model the heat conduction transfer in the soil, we use
the energy equation and we neglect the convection term so
that the energy conservation equation for the unknown tem-
perature T is expressed as:

(ρC)e
∂T
∂t

= div(λe ∇T ) (1)

with the following initial and boundary conditions:
T (x,0) = T0 in Ω

At x = 0 : T (x, t) = Tc for t ∈ (0, tend ] (Dirichlet)

At x = l :
∂T
∂x

= 0 for t ∈ (0, tend ] (Neumann)

where T represents the temperature, T0 is the initial temper-
ature at t0 = 0 (T0 = 20 ◦C), Tc is the fire temperature; ρ is
the density, C is the specific heat capacity, λ is the thermal
conductivity, φ is the porosity (φ = 0.2 in all what follows),
the subscripts e, f and s indicate the equivalent parameters of
the medium, the properties of the fluid and the porous matrix
properties respectively. Note that the thermophysical prop-
erties of the fluid are temperature dependent and that is why
the problem is highly nonlinear.
The effective volumetric heat capacity and the effective con-
ductivity are defined by the equations:

(ρC)e = φ(ρC) f +(1−φ)(ρC)s (2)

1
λe

=
φ

λ f
+

1−φ

λs
(3)

Note that (ρC) f = ρ fC f where ρ f and C f are defined as in
equations 8 and 6 respectively. (ρC)s = ρsCs where the ther-
mophysical properties of the solid matrix are that of the clay
(ρs = 1500 kg/m3, Cs = 1300 J/kgK and λs = 0.756 J/kg).
The effective conductivity in equation (3) is calculated using
the harmonic mean to test the algorithm. In real situations,
the harmonic mean should be replaced by some other mod-
els.
To avoid the tracking of the interface of the phase change
problem (liquid/vapor) which appears when the water exist-
ing in the soil turns into gas, the Apparent Heat Capacity
(AHC) method is used because it allows a continuous treat-
ment of a system involving phase transfer. The AHC method
is explained in [7], where the authors showed how the sin-
gularity presented in the formulation of the thermo-physical
properties defined by [8] can be treated as mentioned in [9].
The Dirac delta function, representing the equivalent heat ca-
pacity, can be approximated by the normal distribution:

dσ

dT
=

ε√
π

exp
[
−ε

2(T −Tv)
2] (4)

where ε =
√

2
∆T and Tv is the phase change temperature. ∆T

is the phase change temperature interval and its choice has
a strong effect on the accuracy of the AHC method. The
integration of equation (4) yields the error function approxi-
mations for the initial phase fraction.

σ(T ) =
1
2
[1+ er f (ε(T −Tv))] (5)

The functions defined by equations (4) and (5) are used in
the smoothing of the thermo-physical properties as shown in
equations (6), (7) and (8).

C f =Cl +(Cv−Cl)σ+L
dσ

dT
(6)

λ f = λl +(λv−λl)σ (7)

ρ f = ρl +(ρv−ρl)σ (8)

where L is the latent heat of evaporation of liquid water
(L = 2.256× 106 J/kg) and the subscripts l and v indicate
respectively the properties of the liquid water and that of the
water vapor at 100◦C (ρl = 1000 kg/m3, Cl = 4000 J/kgK,
λl = 0.6 J/kg, ρv = 0.8 kg/m3, Cv = 2000 J/kgK and λv =
2.5×10−2 J/kg).

2.1 Choice of ∆T
As previously mentioned, the choice of the value of the

phase change temperature interval ∆T has a big influence
on the accuracy of the solution of the heat equation. The
temperature history over two sensors is shown in figure 1.
The reference solution is obtained by running the forward
problem with 6000 mesh cells. It seems reasonable to state
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Fig. 1. Temperature history for ∆T = ∆Toptimum and for 160 mesh
cells. Comparison between numerical and reference solutions.

Fig. 2. The zoom of temperature history near the phase change
recorded at a depth x = 1 cm for three different values of ∆T .

that ∆T is proportional to h [7] (∆T = kh) where h is the
mesh size and k is a constant chosen in a way to obtain good
accuracy with fewer fluctuations in the temperature profile.
The value of ∆T that insure accuracy of the solution with
few fluctuations is called ∆Toptimum. The choice of the value
of ∆Toptimum is heuristic and was based on numerical trials
(∆Toptimum = 1000 h).
Figure 2 which represents the zoom of temperature profile
close to the phase change region for 3 different values of ∆T
shows that a smaller value of ∆T ( ∆T

∆Toptimum
= 1

4 ) leads to sig-

nificant fluctuations while an average value ( ∆T
∆Toptimum

= 1)
will lead to moderate fluctuations whereas for a relatively
large value of ∆T ( ∆T

∆Toptimum
= 4), the fluctuations disappear

but the numerical solution obtained is far from the reference
solution. The value of ∆T and its effect on the convergence
problem is studied in section 3.8.

2.2 Numerical strategy
We need to solve the heat diffusion equation (PDE) so

we choose the method of lines which is a way of approx-
imating PDEs by ODEs where space and time discretiza-
tions are considered separately. The spatial discretization is
performed using the vertex-centered finite volume method
which conserves the mass locally and preserves continuity
of fluxes. To apply the spatial discretization, the computa-
tional domain is divided into a finite volume grid or mesh
with equal length h = ∆x.
In fact, the spatial variable is discretized into N discretization
points and each state variable T is transformed into N vari-
ables corresponding to its value at each discretization point.

It is important to mention that the end points of each inter-
val (xi− 1

2
and xi+ 1

2
) are computed as exactly the middle of

two consecutive nodes, i.e. xi+ 1
2
= 1

2 (xi + xi+1) The spatial
derivatives are approximated by using a finite volume for-
mula on three points so we end up with a semi-discrete sys-
tem of ODEs which can be written in the form:

dT
dt

= B(T )T (9)

The ODE coefficient matrix B(T ) has a tridiagonal structure
due to the 1-D Laplacian discretization. Some tries showed
that our ODE system becomes more and more stiff as h be-
comes smaller. The difficulty with stiff problems is the pro-
hibitive amount of computer time required for their solution
by classical ODE solution methods, such as the popular ex-
plicit Runge-Kutta and Adams methods. The reason is the
excessively small step sizes that these methods must use to
satisfy stability requirements due to the high non-linearity
of the apparent capacity of the fluid C f (equation (6)). For
this reason, we use an implicit ODE solver (Backward Dif-
ferentiation Formula) which possesses the property of stabil-
ity and therefore does not suffer from the stability step size
constraint. The BDF implicit scheme requires the calcula-
tion of a Jacobian matrix which is calculated and generated
by a Computer Algebra System (Maple or Maxima) and then
stored in a sparse format. Note that the numerical calculation
is performed with ddebdf routine of the SLATEC Fortran
library which was modified to use the UMFPACK sparse lin-
ear solver. The ODE solver performs time integration by
adjusting automatically the time step in the BDF scheme
and all these primary libraries are grouped in the easy-to-use
MUESLI library [10].

3 Inverse problem
In order to solve the parametric inverse problem consist-

ing of finding the volumetric heat capacity (ρC)s, the con-
ductivity λs and the porosity φ of the saturated soil, it is
necessary to know the values of temperature T f

gi at selected
points (sensors) of the porous medium domain for times t f :
T f

gi = Tg(xi, t f ) where i = 1,2, ...,M and f = 1,2, ...,F . M
and F are the total number of sensors and time steps respec-
tively. We use the least squares criterion to solve this inverse
problem so we try to find the soil parameters that minimize
the error function which is defined by:

S((ρC)s,φ,λs) =
1
2
‖T f

i −T f
gi‖

2
2 (10)

where T f
i = T (xi, t f ) are the temperatures being the solution

of the direct problem for the assumed set of parameters at the
point xi, i = 1,2, ...,M for the time t f , f = 1,2, ...,F and T f

gi

is the measured temperature at the same point xi for time t f .
It is important to mention that the authors in [2] calculated
the temperature at the final time only and at all the points of
the domain.
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3.1 Parameter scaling
In [2], the authors mentioned that the heat equation is

not sensitive to the heat capacity in comparison to the other
parameters and that it stagnate at its initial guess. In reality,
it is due to the fact that the parameters we are investigating
are of very different magnitudes so it is necessary to perform
parameter scaling or otherwise many searches would not
converge. Gradient search techniques generally require
parameter scaling to obtain efficient search convergence [4].

The first basic rule of scaling is that the variables of the
scaled problem should be of similar magnitude and of order
unity in the region of interest. If typical values of the vari-
ables are known, a problem can be transformed so that the
variables are all of the same order of magnitude. The most
commonly used transformation is of the form :

p = Dp̃ (11)

where p is the vector of original variables p j, p̃ is the vector
of scaled variables p̃ j and D is a constant diagonal matrix
whose diagonal elements are set to be equal to the order of
magnitude of its corresponding variable. We have to keep in
mind that when the variables are scaled then the derivatives
of the objective function are also scaled [4].

3.2 Method of resolution
To illustrate the method of resolution, we define the fol-

lowing vectors:

Tg =



T 1
g1
...
T F

g1
...

T 1
gM
...

T F
gM


g(p(k)) =



T 1,(k)
1
...

T F,(k)
1
...

T 1,(k)
M
...

T F,(k)
M


p(k) =

 (ρC)
(k)
s

λ
(k)
s

φ(k)



and

r(p(k)) = g(p(k))−Tg

where r(p(k)) is the residual vector at the iteration k and
N = M × F . In [2], the authors used the Gauss-Newton
method to solve the nonlinear least square problem which
fails to converge in our case when the temperature is cal-
culated at few sensors only but for the whole simulation
time due to some lack of information. Moreover, Gauss-
Newton method is not locally convergent on problems that
are very non-linear or have very large residuals which is the
case in our problem. Since the performance of the Gauss-
Newton method is strongly dependent on the residual size,
we adopted the use of the Damped Gauss Newton method
which is an improved version of the Gauss-Newton algo-
rithm [4]. Damped Gauss-Newton method is known to be

locally convergent on almost all nonlinear least squares prob-
lems including large residual or very nonlinear problems [5].

The cost function S((ρC)s,φ,λs) defined by equation
(10) can be re-written as:

S(p(k)) =
1
2

r(p(k))T r(p(k)) (12)

Such necessary condition for the minimization of S(p(k)) can
be represented in equation (13):

∇S(pk) = JT (pk)r(pk) = 0 (13)

where J(pk)i, j =
∂ri(pk)

∂pk
j

, i = 1,2, ...,N and j = 1,2,3.

The sensitivity matrix, J(pk) is defined by:

J(p(k)) =



W 1,(k)
1 R1,(k)

1 Z1,(k)
1

... ... ...

W F,(k)
1 RF,(k)

1 ZF,(k)
1

... ... ...

W 1,(k)
M R1,(k)

M Z1,(k)
M

... ... ...

W F,(k)
M RF,(k)

M ZF,(k)
M


(14)

The elements of the sensitivity matrix are called the Sen-
sitivity Coefficients. The sensitivity coefficient J f

i, j is thus
defined as the first derivative of the estimated temperature at
position i and time f with respect to the unknown parameter
p j [11], that is,

J f
i, j =

∂T f
i

∂p j
(15)

where W f ,(k)
i =

∂T f
i

∂(ρC)s
|
(ρC)s=(ρC)

(k)
s

, R f ,(k)
i =

∂T f
i

∂φ
|
φ=φ(k) and

Z f ,(k)
i =

∂T f
i

∂λs
|
λs=λ

(k)
s

. The Damped Gauss Newton algorithm

iteratively finds the minimum of S. Starting with an initial
guess p(0) for the minimum, the method proceeds by the it-
erations:

p(k+1) = p(k)+m(k) (16)

m(k) is called the increment vector and is defined by:

m(k) =−αk

[
J(p(k))

T
J(p(k))

]−1
J(p(k))

T
r(pk) (17)

αk is the damping parameter (0 < αk ≤ 1). An optimal value
of αk could be obtained using a line search algorithm [4]; in
our case, we used trial and error to find a suitable constant
damping parameter.
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3.3 Governing Equations
In the following, we present the heat equation together

with the three sensitivity equations resulting from the differ-
entiation of the heat diffusion equation (1) with respect to the
soil parameters p j in 1D coordinate system.

∂

∂p j

[
(ρC)e

∂T
∂t

]
= div

(
∂

∂p j
[λe ∇T ]

)
(18)

which leads to the general sensitivity equation below:

(ρC)e(T )
∂U j(x, t)

∂t
+

d(ρC)e(T )
d p j

∂T (x, t)
∂t

=

div(λe (T )∇U j(x, t))+div
(

dλe(T )
d p j

∇T (x, t)
)

(19)

where U j = ∂T/∂p j. The general sensitivity equation is ac-
companied with the following boundary and initial condi-
tions:

At t = 0 : U j(x,0) =U j0 = 0 in Ω

At x = 0 : U j(x, t) = 0 for t ∈ (0, tend ] (Dirichlet)

At x = l :
∂U j(x, t)

∂x
= 0 for t ∈ (0, tend ] (Neumann)

3.3.1 Elimination of the approximation used by [2]
In order to determine the sensitivity coefficients

(W, R and Z) appearing in the sensitivity matrix, we must
solve the three sensitivity equations without using the ap-
proximation:

div(λe ∇T )≈ λe div(∇T ) (20)

used by [2] and which allowed the authors to write:

(ρC)e

λe

∂T
∂t

= div(∇T ) (21)

This approximation leads to an approximated sensitivity ma-
trix (Jacobian) and thus the problem needs more iterations
to reach the required solution. Differentiating (in 1D) with
respect to (ρC)s, φ and λs respectively:

∂W
∂t

+
1

(ρC)e

[
φρ f

[
(Cv−Cl)

dσ

dT
+L

d2σ

dT 2

]
W

+ φC f (ρv−ρl)
dσ

dT
W +(1−φ)

]
∂T
∂t
− 1

(ρC)e

∂

∂x

(
λe

∂W
∂x

)
− 1

(ρC)e

∂

∂x

[
φλ2

s
dλ f
dT

(φλs +(1−φ)λ f )2 W
∂T
∂x

]
= 0

(22)

∂R
∂t

+
1

(ρC)e

[
(ρC) f − (ρC)s

+ φρ f

[
(Cv−Cl)

dσ

dT
+L

d2σ

dT 2

]
R

+ φC f (ρv−ρl)
dσ

dT
R
]

∂T
∂t
− 1

(ρC)e

∂

∂x

(
λe

∂R
∂x

)
− 1

(ρC)e

∂

∂x

[
E

(φλs +(1−φ)λ f )2
∂T
∂x

]
= 0 (23)

where

E =

(
λs

dλ f

dT
dT
dφ

)
(φλs +(1−φ)λ f )

−
(

λs−λ f +(1−φ)
dλ f

∂T
∂T
dφ

)
λ f λs

∂Z
∂t

+
1

(ρC)e

[
φρ f

[
(Cv−Cl)

dσ

dT
+L

d2σ

dT 2

]
Z

+ φC f (ρv−ρl)
dσ

dT
Z
]

∂T
∂t
− 1

(ρC)e

∂

∂x

(
λe

∂Z
∂x

)
− 1

(ρC)e

∂

∂x

(
F

[φλs +(1−φ)λ f ]2
∂T
∂x

)
= 0 (24)

where F =

[
λs

dλ f

dT
dT
dλs

+λ f

]
[φλs +(1−φ)λ f ]

−
[

φ+(1−φ)
dλ f

dT
∂T
∂λs

]
λ f λs

These three sensitivity equations (22), (23) and (24) are com-
pleted with adequate initial and boundary conditions. W , R
and Z are the unknowns of the sensitivity equations and T is
the temperature.

3.4 Numerical strategy
The obtained system of coupled equations (heat diffu-

sion equation + 3 sensitivity equations) is a nonlinear system
of partial differential equations. To solve this system, we
use the same numerical strategy used in the forward problem
(method of lines + finite volume method). After spatial dis-
cretization, the system of coupled equations can be written
in the form:

F(t,Y,Y ′) = 0 with Y (t0) = Y0 (25)

where Y = (T W R Z)T . The system in equation (25) can be
solved by an ODE solver as in the forward problem.

3.5 Algorithm
The aim of the inverse problem is the calculation of the

vector parameters p that minimizes the cost function S pre-
sented in equation (10). The Damped Gauss Newton (DGN)
algorithm that we chose to apply to our nonlinear least square
problem is as follows:
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1- Choose a constant damping parameter α (0 < α≤ 1).
2- Choose an initial value p(0); initialize the iteration k = 0
3- Perform the parameters’ scaling to obtain p̃;
4- Solve the system (heat equation with phase change +

sensitivity equations) using p̃(k) to define the parameters
of the soil. The equivalent parameters of the system are
calculated by the apparent heat capacity method (AHC);
• deduce T f ,(k)

i , W̃ f ,(k)
i , R̃ f ,(k)

i and Z̃ f ,(k)
i for i = 1, ...,M

and f = 1, ...,F
5- Calculate r(k) and the Sensitivity matrix J̃

knowing that J̃ = J.D
6- Solve the linear system J̃(p̃(k))T J̃(p̃(k))p̃(k+1) =

J̃(p̃(k))T J̃(p̃(k))p̃(k)−α.J̃(p̃(k))T r(k) for p̃(k+1).
7- If the criteria of convergence are reached, end.

Calculate the original parameters’ vector p(k+1) =
D.p̃(k+1).
If not, iterate:
p̃(k)← p̃(k+1) and go to 4.

3.6 Stopping criteria
Classically, there are three convergence tests used in the

algorithms for nonlinear least square problems. We chose to
apply only two of them. The first test is the X-convergence
which is based on an estimate of the distance between the
current approximation x and the previous solution x* of the
problem. If D is the current scaling matrix, then this conver-
gence test attempts to guarantee that:

‖D(x− x∗)‖ ≤ XTOL.‖D x∗‖ (26)

where XTOL is a user supplied tolerance (we used XTOL =
10−6). The second test, the main convergence test, is based
on an estimate of the distance between the Euclidean norm
‖F(x)‖ of the residuals at the current approximation x and
the previous value ‖F(x∗)‖ at the previous solution x* of the
problem. This convergence test (F-convergence) attempts to
guarantee that:

‖F(x)‖ ≤ (1+FTOL).‖F(x∗)‖ (27)

where FTOL is another user-supplied tolerance (we used
FTOL = 10−6).

3.7 Code validation
The code validation is based on choosing a plausible ex-

ample where the soil parameters {(ρC)s,φ,λs} are given con-
stant values. These values are used by the forward problem
to calculate the temperature at 5 different positions of the do-
main (5 sensors at the depths x = 1 cm, x = 2 cm, x = 3 cm,
x = 4 cm and x = 5 cm respectively). These temperatures are
recorded every 24 seconds for 4 hours. In tables 1 and 2,
we used the same number of mesh cells in the forward prob-
lem (to create the synthetic data) and in the inverse problem.
In both tables, we removed the approximation (see equation
(20)). In table 1, we did not use the scaling technique while
we used it in table 2. The results presented in the two tables

prove that scaling is an important factor to obtain the desir-
able results.

On the other hand, if we use scaling together with the ap-

Table 1. Physical properties of the soil obtained by inverse problem
without scaling (19 iterations).

(ρC)s (J/m3K) λs (W/m.K) φ

exact 1.95×106 0.756 0.20

initial guess 2×106 0.8 0.18

calculated 2×106 0.7696 0.1979

Table 2. Physical properties of the soil obtained by inverse problem
with scaling (31 iterations).

(ρC)s (J/m3K) λs (W/m.K) φ

exact 1.95×106 0.756 0.20

initial guess 2×106 0.8 0.18

calculated 1.9497×106 0.7559 0.2000

proximation (20) then we will obtain approximately the same
results as those in table 2 but the number of iterations is very
large (see figure 3). The figures that represent the remaining
parameters are similar to figure 3. The target of our work is
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Fig. 3. Variation of λs as function of iteration number (using scaling
and approximation 20). The red line represents the exact value of λs.

to perform a numerical simulation that is the closest possible
to the real experimental case. For this reason, we generate
the synthetic data using a very large number of mesh cells
(around 6000) to obtain accurate results. Thereafter, these
data play the role of the experimental data in the inverse
problem which is run using small number of mesh cells (40,
80, 120, 160 ...). Figure 4 represents the variation of the final
residue as function of the number of mesh cells. We can eas-
ily notice that the residue decrease as number of mesh cells
increase which assures the consistency of our method. Fig-
ure 5 represents the convergence of the conductivity for 120
mesh cells in the inverse problem (the figures representing
the convergence of the volumetric heat capacity and poros-
ity are similar). We notice that convergence is achieved after
few tens of iterations (37 in this case).
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Fig. 4. Variation of residue as function of number of mesh cells. The
method is consistent (the error decreases as number of mesh cells
increase).
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Fig. 5. Variation of the conductivity as function of iteration number.
The red line represents the exact value of λs.

3.8 Role of ∆T
As we have seen earlier (figures 1 and 2), the choice

of the phase change temperature interval ∆T in the AHC
method affects the temperature profile. Recall that ∆T is
proportional to h [7] (∆T = kh) where h is the mesh size
and k is a constant chosen in a way to obtain good accuracy
with fewer fluctuations in the temperature profile. As a
consequence, the value of ∆T plays an important role in
the results of the inverse problem. If the initial values of
parameters are far from the exact solution then the damped
Gauss Newton method might not converge using the optimal
value of ∆T (see subsection 2.1). To study the effect of this
important parameter, we chose the example chosen earlier
{(ρC)s = 1.95× 106, φ = 0.2, λs = 0.756} and we run the
inverse problem using different values of ∆T with 120 as
number of mesh cells. We notice that the inverse program
fails to converge for ∆T

kh = 1 or 2 and when ∆T
kh ≥ 11 whereas

it converges for 3 ≤ ∆T
kh ≤ 10. We notice that the values

of (ρC)s, φ and λs recede from the exact solution and the
value of residue increases from 9.588 to 26.7198 as the
value ∆T increases from 3× ∆Toptimum to 10× ∆Toptimum
(see table 3). The results in table 3 are obtained by using
(ρC)s = 3× 106, λs = 0.4 and φ = 0.12 as initial guesses.
If the results obtained in the first row (∆T = 3×∆Toptimum)
are used as initial guesses then the inverse problem will

Table 3. Values of soil parameters and residue obtained by varying
∆T
kh . Results become less accurate as ∆T

kh increases.
XXXXXXXXXX

∆T
kh

Soil parameter
(ρC)s λs φ residue

3 1.149×106 0.5362 0.2319 9.5889

4 8.654×105 0.4748 0.2436 11.5282

5 6.42×105 0.4306 0.2526 13.5174

7 3.351×105 0.3770 0.2640 18.0604

10 6.159×104 0.3400 0.2724 26.7198

converge to the exact values using ∆Toptimum if we use the
same mesh size in both the forward and inverse problems
and toward acceptable values if we use huge mesh size to
generate the synthetic data and 120 mesh cells in the inverse
problem (check table 4).

We call this technique of solving the inverse problem us-
ing different values of ∆T over two or more steps, the tech-
nique of chaining the inverse problem. This technique works
well due to the fact that the fluctuations disappear when we
increase the value of ∆T .

Table 4. Physical properties of the soil obtained by inverse problem
using ∆T = ∆Toptimum using the calculated values in table 3 as
initial guesses (40 iterations).

(ρC)s (J/m3K) λs (W/m.K) φ

exact 1.95×106 0.756 0.20

initial guess 1.1493×106 0.5362 0.2319

calculated 1.9387×106 0.7328 0.2001

4 Levenberg Marquardt Algorithm
In section 3, we explained that our inverse problem can

be viewed as a nonlinear least square minimization problem
which is solved by the Damped Gauss Newton Algorithm.
In this section, we present a more robust algorithm to solve
the nonlinear least square minimization problem known as
Levenberg Marquardt Algorithm (LMA). LMA is the most
widely used optimization algorithm for the solution of non-
linear least square problems. It outperforms simple gradient
descent and other conjugate gradient methods in a wide va-
riety of problems. It is a blend of original gradient descent
and Damped Gauss Newton iteration.

4.1 Introduction to LMA
Levenberg and Marquardt proposed a very elegant algo-

rithm for the numerical solution of equation (10). However,
most implementations are either not robust, or do not have a
solid theoretical justification. Moré [12] presented a robust
and efficient implementation of a version of the Levenberg-
Marquardt and show that it has strong convergence proper-
ties. In addition to robustness, the main features of this im-
plementation are the proper use of implicitly scaled variables
and the choice of the Levenberg-Marquardt parameter. The
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implementation of LMA by Moré that is contained in Min-
pack has proven to be very successful in practice. Several
factors make LMA preferable to DGN: first is that LMA pos-
sesses an embedded scaling technique, second it is well de-
fined even when J doesn’t have full column rank and finally
is that when the Gauss-Newton step is too long, the Leven-
berg Marquardt step is close to being in the steepest-descent
direction −JT r and is often superior to the DGN step. We
use the LMDER1 Minpack subroutine for numerical solu-
tion of nonlinear least square problems. LMDER1 is based
on Moré’s LMA version where the user must provide a sub-
routine to calculate the functions r1, r2, ... rm and the Jaco-
bian matrix ∂ri(p)

∂p j
. LMDER1 follows the convergence criteria

mentioned in section 3.6.

4.2 Applying LMA on our Inverse Problem: Results
Using the LMDER1 Minpack subroutine (which is em-

bedded in the easy-to-use MUESLI library [10]) and provid-
ing the Jacobian matrix, we obtain the results summarized in
tables 5 and 6 which corresponds to different initial guesses.
The Jacobian matrix is calculated using Maple.

Table 5. Physical properties of the soil obtained by inverse problem
using LMA. Scaling is used implicitly and approximation (20) is re-
moved. Same number of mesh cells is used in both the forward and
inverse problems.

(ρC)s (J/m3K) λs (W/m.K) φ

exact 1.95×106 0.756 0.20

initial guess 2.0×106 0.8 0.18

calculated(11 iterations) 1.957×106 0.758 0.1996

Table 6. Same legend as table 5.

(ρC)s (J/m3K) λs (W/m.K) φ

exact 1.95×106 0.756 0.20

initial guess 2.5×106 0.4 0.16

calculated (10 iterations) 1.958×106 0.758 0.1996

We notice that even if the initial values are changed the
parameters converge to the same exact values.

In figures 6, 7, 8 and 9 which correspond to table 5, we
notice that the calculated values of the parameters are very
close to the exact ones and that the residue approaches zero
due to the fact that we used same number of mesh cells in
both direct and inverse problems.

4.3 Sensitivity Analysis
Sensitivity analysis can split model parameters in two

sets: sensitive and insensitive parameters. To study the sensi-
tivity of the parameters in our model, we use the method dis-
cussed in [13] where the authors use singular value decompo-
sition of the sensitivity matrix J followed by QR factorization
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Fig. 6. Variation of the volumetric heat capacity as function of iter-
ation number using LMA (Same number of mesh cells in both the
forward and inverse problems). The red line represents the exact
value of (ρC)s.
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Fig. 7. Variation of the porosity as function of iteration number using
LMA (Same number of mesh cells in both the forward and inverse
problems). The red line represents the exact value of φ.
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Fig. 8. Variation of the conductivity as function of iteration number
using LMA (Same number of mesh cells in both the forward and in-
verse problems). The red line represents the exact value of λs.

to determine whether the parameters are sensitive or not and
the order od sensitivity. For example, in the study analyzed
here we used an ODE solver with an absolute error tolerance
of 10−6 , i.e., the error of the numerical model solution is of
order 10−6 and the error in the Jacobian matrix is approx-
imately

√
10−6 = 10−3. Consequently, for an identifiable

HT-14-1585 Mansour 8

COPY



1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

Iteration Number

R
e

s
id

u
e

Fig. 9. Variation of the residue as function of iteration number using
LMA (Same number of mesh cells in both the forward and inverse
problems).

parameter, the singular value must be greater than 10−3. The
singular values of our sensitivity matrix are σ1 = 4.86×103,
σ2 = 4.24× 102 and σ3 = 26.79. This means that the 3 pa-
rameters are identifiable. Applying a QR decomposition with
column pivoting, we deduce that φ is the most identifiable
parameter then λs and finally (ρC)s.

5 Conclusion
The idea of this paper was the enhancement of the in-

verse problem presented in [2] using a more realistic ap-
proach where we estimate the thermophysical properties of
the soil knowing the temperature history at selected points
of the domain (few sensors). In order to solve this inverse
problem, we used the least square criterion where we try to
minimize the error function between synthetic measures and
calculated ones. The coupled system composed of the en-
ergy equation together with the three sensitivity boundary
initial value problems resulting from differentiating the ba-
sic energy equation with respect to the soil properties must
be solved. To overcome the stiffness of our problem (due to
the use of AHC method), the high nonlinearity of the cou-
pled system and the problem of large residuals we used the
Damped Gauss Newton and Levenberg-Marquardt methods.
Our model is strongly similar to the experimental setup in
laboratory so real experimental data could replace the syn-
thetic data but to obtain accurate results a relatively small
mesh size must be used which will lead to a high numerical
cost. In addition, our configuration has the advantage that all
soil parameters including the volumetric heat capacity con-
verges to the required exact solution which was not the case
in any previous work since we adopted a variable-scaling
technique and we removed the approximation (see equation
(20)) which leads to an exact sensitivity matrix (Jacobian)
and thus reducing the number of iterations till convergence.
Moreover, we emphasized on the importance of the choice of
∆T where for a certain initial guess the inverse problem fails
to converge. We overcome this problem by chaining the in-
verse problems using different values of ∆T and parameters’
set. The method presented in this paper can be easily applied
to 2D and 3D configurations.
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[12] Moré, J. J., 1978. “The Levenberg-Marquardt algo-
rithm: implementation and theory”. Numerical Anal-
ysis, Lecture Notes in Mathematics, Springer, Berlin,
630.

[13] Pope, S. R., Ellwein, L. M., Zapata, C. L., Novak,
V., Kelley, C. T., and Olufsen, M. S., 2009. “Estima-
tion and identification of parameters in a lumped cere-
brovascular model”. Mathematical Biosciences and
Engineering, 6(1), pp. 93–115.

HT-14-1585 Mansour 9

COPY


