
Reference Manual

Fortran implementation

Release 2.22.1

Édouard Canot*

May 19, 2025

*IPR/CNRS, Rennes, France

MUESLI Reference Manual (index) Contents

Contents

Introduction 3

1 FML: Numerical Library 4
1.1 Core Routines . 6
1.2 File Input/Output . 108
1.3 Data Analysis Functions . 120
1.4 Operators . 160
1.5 Elementary Math Functions . 202
1.6 Specialized Math Functions . 256
1.7 Elementary Matrix Manipulation Functions . 276
1.8 Matrix Functions . 323
1.9 Polynomial Functions . 374
1.10 Optimization and Function Functions . 417
1.11 Sparse Matrices . 451

2 FGL: Graphical Library 473
2.1 Global graphic settings . 474
2.2 Window’s and figure’s management . 488
2.3 Figure properties . 500
2.4 Figure annotation – Low level graphic object’s manipulation 531
2.5 High level plotting routines - 2D . 540
2.6 Interactive routines . 574

Index 592

2

MUESLI Reference Manual (index) Introduction

Introduction

This document describes in details the MUESLI Fortran library routines.

MUESLI is freely available at the following address:
https://perso.univ-rennes1.fr/edouard.canot/muesli

More information can be found in the following documents:

− MUESLI Installation Guide

− MUESLI User’s Guide

− MUESLI Inside

The source code of MUESLI comes with many examples which can also give some help.

MUESLI is split in two parts, which correspond to the following Fortran modules:

− Basically, FML (Fortran Muesli Library) contains all necessary materials to numerically work with
a dynamic array (dynamic in size, type and structure), called mfArray; all available routines are
described in the first section of this guide.
To work with FML, your Fortran source code must include the statement:

use fml

− FGL (Fortran Graphics Library) contains graphic routines which use the mfArray objects; these
routines are described in the second section of this guide.
To work with FGL, your Fortran source code must include the statements:

use fml

use fgl

Copyright © 2003-2024, Édouard Canot, IPR/CNRS, Rennes, France.

Bugs reports or comments: mailto:Edouard.Canot@univ-rennes.fr

Typographic convention

In this guide, the colored brackets (’[’ and ’]’) indicate some optional arguments or other things; similarly,
the colored pipe (’|’) specifies alternates in a choice. These symbols are used only in interface definition
of the routines.

Coloring is also used to differentiate source code and execution output. Lines from source code will be
always displayed in this color, whereas input/output in a terminal will be always displayed in this color.

For sake of clarity, array constructors use black brackets ‘[’ and ‘]’ (Fortran 2003) instead of ‘(/’ and
‘/)’ (Fortran 95).

About the name

Muesli: loose mixture of mainly rolled oats and often also wheat flakes, together with various pieces of
dried fruit, nuts, and seeds. There are many varieties, some of which also contain honey powder, spices,
or chocolate. (from https://en.wikipedia.org/wiki/Muesli)

Credits

Cover photograph: the photo on the cover is copyrighted by Beata Wojciechowska. It can be used under
a Limited Royalty Free License (see http://www.dreamstime.com/breakfast-imagefree545439).

3

https://perso.univ-rennes1.fr/edouard.canot/muesli
mailto:Edouard.Canot@univ-rennes.fr
https://en.wikipedia.org/wiki/Muesli
http://www.dreamstime.com/breakfast-imagefree545439

MUESLI Reference Manual (index) FML: Numerical Library

1 FML: Numerical Library

FML contains all routines to work with matrices and to do some linear algebra.

Routines beginning with ‘mf’ are functions, whereas those beginning with ‘ms’ are subroutines. Functions
are used to return only one object (e. g. one mfArray); subroutines can also return many objects, but
always via the mfOut facility.

FML also defines some new derived types: mfArray, mfUnit, mf Out, mfMatFactor, mfTriConnect,
mfTetraConnect, mf DE Options, mf NL Options.

Besides, FML defines public constant entities:

− an integer parameter:

MF_DOUBLE

which defines the working precision in MUESLI. In the current version, it stores the kind of double
precision reals. In all this document, when Fortran numerical kind is not specified, real and
complex stands for real(kind=MF DOUBLE) and complex(kind=MF DOUBLE), respectively.

− some mfArray parameters:

MF EMPTY, MF COLON (and its alias MF ALL), MF END, MF NO ARG

which are, respectively, an empty mfArray, the ‘:’ pseudo-operator (as in Fortran 90 or MATLAB,
but specific to FML), an automatic index for pointing to the end of a dimension of an mfArray

and a pseudo-keyword to tell that an argument is not present in mfOut.

− some real(kind=MF DOUBLE) parameters:

MF_PI

MF_EPS

MF_INF

MF_NAN

MF_E

MF_REALMAX

MF_REALMIN

and some useful mathematical auxiliairy constants:

MF_BESSEL_J0_ROOTS(:)

MF_BESSEL_J1_ROOTS(:)

(30 first non-zero roots for both Bessel functions J0 and J1, stored in increasing order)

− one complex(kind=MF DOUBLE) parameter:

MF_I

− and the character parameters:

MF_MUESLI_VERSION

MF_COMPILER_VERSION

which store, respectively, the MUESLI library version and the compiler vendor and version. The
boolean mfIsVersion routine must be used in order to compare each of these parameters with a
given version number. Besides, other character functions may be used to retrieve additional infor-
mation: MF LAPACK VERSION() (the Blas/Lapack library version) and MF COMPILATION CONFIG()

(the configuration used to compile the whole Muesli library: Debug or Optim).

MF INF and MF NAN contain special IEEE values (resp. Infinity and Not-a-Number).

4

MUESLI Reference Manual (index) FML: Numerical Library

FML also defines the following global variables:

− integer variables:

STDERR

STDIN

STDOUT

which can be modified either directly by the user, or via the msSetStdIO routine.

− logical variables: MF NUMERICAL CHECK which allows the user to tell Muesli to do additional
checks.

The available routines have been arranged into sub-parts:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices.

5

MUESLI Reference Manual (index) FML: Core Routines

1.1 Core Routines

mfArray automatic and dynamic array (derived type)
mf mfArray conversion
=, msAssign mfArray assignment
msSet, mfGet mfArray data modification and extraction
mfCount true values count
msDisplay mfArray pretty print
mfDisplayColumns columns used in pretty print
msFormat mfArray printing format
msRelease MUESLI objects deallocation
msAutoRelease mfArray conditional deallocation
mfOut groups output arguments
mf Out set of output arguments (derived type)
msPointer, msFreePointer smart pointer between f90 array and mfArray
mfNbPointers nb of f90 pointers pointing to an mfArray
msEquiv smart pointer between mfArray and f90 array

mf Int List list of integers (derived type)
mf Real List list of reals (derived type)

mfIsEmpty mfArray empty test
mfIsEqual, mfIsNotEqual mfArray equality test
mfIsLogical mfArray boolean test
mfIsReal mfArray real test
mfIsComplex mfArray complex test
mfIsNumeric mfArray numeric test
mfIsDense mfArray dense storage test
mfIsSparse mfArray sparsity test
mfIsScalar, mfIsVector, mfIsMatrix mfArray scalar, vector and matrix test
mfIsRow, mfIsColumn mfArray kind of vector test
mfIsPerm mfArray permutation vector test

All, Any test on boolean mfArray
Shape, mfShape shape of an mfArray
Size, mfSize size of an mfArray
mfInt scalar integer conversion
mfDble scalar real conversion
mfCmplx scalar complex conversion

mfGetMsgLevel, msSetMsgLevel message level tuning
mfGetTrbLevel, msSetTrbLevel error traceback tuning
msSetColoredMsg colorize Muesli messages on terminal
msPrintColoredMsg print a colored user message on terminal
msSetTermColor set color for printing on terminal

msMuesliTrace helper for debugging purpose
msGetStdIO, msSetStdIO usual logical unit inquiry and modification
msFlush I/O flush
msPause user pause or timing pause
msSetTermWidth, mfGetTermWidth set and get terminal character width
msSetAutoFilling, mfGetAutoFilling set and get out-of-range filling by msSet
msInitArgs, msFreeArgs mfArray arguments’ protection and release
msSetAsParameter data protection
msReturnArray, mfIsTempoArray mark and check temporary mfArray

msFlops, mfFlops nb of floating-point operations
mfIsFlopsOk inquire if flops is available

6

MUESLI Reference Manual (index) FML: Core Routines

mfGetAutoComplex, msSetAutoComplex conversion to complex
msEnableFPE, msDisableFPE run-time floating-point exceptions trapping
mfGetRoundingMode, msSetRoundingMode floating-point rounding mode

MF NUMERICAL CHECK debugging additional checks

mfUnit physical unit (derived type)
msUsePhysUnits Physical units activation
msSetPhysDim set physical unit
msSetPhysUnitAbbrev set user physical unit abbrevation
mfHasNoPhysDim dimensionless test
mfHaveSamePhysDim dimension equality test

msPrepHashes hashes print preparation
msPrintHashes hashes print
msPostHashes hashes print conclusion
msPrepProgress percent progress preparation
msPrintProgress percent progress
msPostProgress percent progress conclusion

mfReadLine read a line from terminal with editing and history facilities
msReadHistoryFile read a ’readline’ history file
msWriteHistoryFile write the ’readline’ history in a file
msClearHistory clear the ’readline’ history
msAddEntryInHistory add an entry in the ’readline’ history
msRemoveLastEntryInHistory remove last entry in the ’readline’ history

mfToLower lowering string’s case
mfToUpper uppering string’s case
msFindIOUnit automatically find a free IO unit number

mfIsVersion test on version strings
msRequMuesliVer check for a minimum Muesli version

MF MUESLI VERSION MUESLI version
MF COMPILER VERSION COMPILER version
MF COMPILATION CONFIG Configuration used to compile MUESLI

See also:

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

7

MUESLI Reference Manual (index) FML: Core Routines

mfArray automatic and dynamic array (derived type)

Description:

This is the fundamental derived type in MUESLI. Declaration must be made as follows:

type(mfArray) :: A

This derived type may contain real or complex numerical values, using a dense or sparse storage. All
numerical values are stored in double precision, i. e. use 8 bytes of memory.

Special data types are:

− permutation vector (integer vector)

− boolean values (in dense storage only)

All possible data types are sumarized in figure 1.

permutation vector integer column vector

boolean logical matrix

numeric

complex

real

dense sparse

dense complex matrix

dense real matrix

sparse complex matrix

sparse real matrix

Figure 1: mfArray data types

The data type stored in a mfArray may be retrieved by the following inquiring functions: mfIsReal,
mfIsComplex, mfIsDense, mfIsSparse, mfIsNumeric, mfIsPerm, mfIsLogical.

See also: mf, msRelease, msPointer, msEquiv, msSaveAscii

8

MUESLI Reference Manual (index) FML: Core Routines

mf mfArray conversion

Description:

This function initializes and returns a temporary mfArray from some common Fortran types: integer,
real (single or double), complex (single or double), of rank 0 to 2 (scalar, vector or matrix).

For example:

mf([1, 3, 5, 7, 11])

mf([1.3, 2.05, -5.1e-3])

Whatever the argument type of mf (integer, single precision real, double precision real), all numerical
numbers are stored in mfArrays as double precision.

By default, this function creates row vectors, so use the following syntax if you want a column vector
(avoiding an unnecessary copy):

mf([1, 3, 5, 7, 11], transpose=.true.)

This latter optional transposition works also for matrices. By default, the transposition is not used (see
examples below).

See also: mfArray

Example(s):

real(kind=MF_DOUBLE) :: tab(2,4)

tab(:,:) = reshape([(1.5d0*i,i=1,8)], [2,4])

A = mf(tab)

call msDisplay(A, "A")

At = mf(tab, transpose=.true.)

call msDisplay(At, "At")

output:

A =

1.5000 4.5000 7.5000 10.5000

3.0000 6.0000 9.0000 12.0000

At =

1.5000 3.0000

4.5000 6.0000

7.5000 9.0000

10.5000 12.0000

9

MUESLI Reference Manual (index) FML: Core Routines

= mfArray assignment

This Fortran operator has been overloaded in MUESLI to make working with mfArray easy.

For example, you can assign any numerical object to A, as simply as:

A = [1, 2, 3, 4, 5]

The right hand side (RHS) can be of type boolean, integer, real (single or double) or complex (single or
double), of rank 0 to 2 (scalar, vector or matrix), or of course mfArray.

As the allocation of data is automatic during assignment, you should free each mfArray as soon as
possible (via the msRelease routine), in order to decrease the memory usage.

Sometimes, you could be warned that an assignment is inefficient, when the RHS is a temporary mfArray.
In such a case, you could use the msAssign routine instead.

Besides, MUESLI allows to assign a dense mfArray A to a boolean, an integer, a real or a complex. So,
a statement like:

f90_obj = A

is valid under the following assumptions:

− shapes (of LHS and RHS) must match;

− types must be consistent (i. e. numeric mfArrays can be assigned to integer or real f90 arrays
whereas boolean mfArrays must be assigned to logical f90 arrays — mfArrays data types are
defined in figure 1).

See also: msPointer, msEquiv

10

MUESLI Reference Manual (index) FML: Core Routines

msAssign more efficient mfArray assignment

Interface:

subroutine msAssign(dest, source)

type(mfArray), intent(in) :: source

type(mfArray) :: dest

Description:

Ordinarily, you should use the simple = form of assignment. The msAssign routine is intended to make
it efficiently, when the RHS is a temporary mfArray.

For example, you should write:

call msAssign(C, A + B)

which avoids a copy of the data contained in A + B (an internal pointer is used instead). In comparison,
the statement:

C = A + B

involves such a copy.

See also: =

11

MUESLI Reference Manual (index) FML: Core Routines

msSet mfArray data modification

Generic Calling syntax:

call msSet(data, x, a1 [, a2])

Description:

This routine is used to modify some elements of the mfArray x. The indices of these elements are
specified by a1 and a2 for array sections, or only by a1 for scattered elements in the whole array (in this
case, a1 is a long-column-index vector).

If a2 is not present, the mfArray x may be a vector, because only one index is given to specify which
elements have to be changed. Note that if the index a1 (or a2) is out of range, the shape of x is modified
accordingly, i. e. the array is extended (see the remarks at the end of this section).

If a1 (or a2) is a vector, more than one element can be modified; moreover, this vector doesn’t need to
contain consecutive indices.

If the modification affects more than one element, and if data contains only one value, this latter value
is spread across all the target elements.

data may be of type real, complex or mfArray. It doesn’t need to be of same data type as x. A
conversion is then made, and concerns either data or x, according to the type.

Usually a1 and a2 are integers (scalar or vector), but they may be of type mfArray (in this latter case,
they cannot be matrices).

In the special case where a1 (or a2) is MF COLON (or its alias MF ALL), then all the specified row(s) (or
column(s)) are simultaneously modified. If data is empty (i. e. equal to MF EMPTY, but only for a dense
mfArray x), then the specified row(s) or column(s) are deleted.

a1 and/or a2 may be also special integer sequences, written under the form

i1 .to. i2 [.by. i3]

or i1 .by. i3 .to. i2

[(i, i = i1, i2 [, i3])]

(The operator named ‘.step.’ is an alias for ‘.by.’)

These special integer sequences can be combined as

int_seq .and. int_seq

or int_seq .but. i1

The step i3 is taken equal to 1 if it is not present. Note that a1, a2, i1 and i2 may also be replaced by an
expression using MF END (e. g. MF END-1) which is an automatic alias for the end value of the corresponding
dimension. Be aware that arithmetic involving MF END can use only addition or substraction.

Finally, the mfArray x cannot be temporary.

. . ./ . . .

12

MUESLI Reference Manual (index) FML: Core Routines

Remarks:

− to initialize a whole mfArray with 0 or 1, the following routines are available: mfZeros and mfOnes.

− when the mfArray x has a sparse structure, data may be a scalar or a vector (dense or sparse). In
such a case, only whole columns of x may be modified. Modifying one element is however allowed,
in so far as indices of this element are not out of range (see below, however).

− when the mfArray x has a dense structure, data cannot be sparse.

− not all combinaisons for the types of a1 and a2 are valid. Use preferently the same type for these
two arguments.

− out-of-range indices are accepted, except when a long-column index is used. For the dense storage,
the mfArray is reallocated to the right shape. A message of kind “info” is however emitted (see
msSetMsgLevel). During the reallocation, the new elements not targeted are initialized by a
predefined value (see below). For the sparse storage, the assignment is done only if the value of
nzmax is sufficient (see msSpReAlloc), and, of course, no new elements are added, apart those
explicitly targeted by the command.

− the predefined value used to fill the out-of-range indices is by default the NaN (special IEEE
number), but this can be changed by use of the msSetAutoFilling routine.

See also:

mfGet

13

MUESLI Reference Manual (index) FML: Core Routines

mfGet mfArray data extraction

Generic Calling syntax:

mfGet(x, a1 [, a2])

Description:

This routine extracts some elements (described by the indices a1 and a2, or — when x is a matrix —
only by the long-column index a1) of the mfArray x and returns them in an mfArray. Note that if the
index a1 (or a2) is out of range, an error results and an empty mfArray is returned.

If a1 (or a2) is a vector, more than one element are extracted; moreover, this vector doesn’t need to
contain consecutive indices.

Usually a1 and a2 are integers (scalar or vector), but they may be of type real or boolean mfArray.

In the special case where a1 (resp. a2) is MF COLON (or its alias MF ALL), then all the specified columns
(resp. rows) are extracted.

a1 and/or a2 may be special integer sequences, written under the form

i1 .to. i2 [.by. i3]

or i1 .by. i3 .to. i2

[(i, i = i1, i2 [, i3])]

(The operator named ‘.step.’ is an alias for ‘.by.’)

These special integer sequences can be combined as

int_seq .and. int_seq

or int_seq .but. i1

The step i3 is taken equal to 1 if it is not present. Note that a1, a2, i1 and i2 may also be replaced by an
expression using MF END (e. g. MF END-1) which is an automatic alias for the end value of the corresponding
dimension. Be aware that arithmetic involving MF END can use only addition or substraction.

Remarks: Sparse mfArrays are partially supported:

− this routine can extract a scalar value, a row or a column, or a submatrix; in this latter case, the
submatrix must be contiguous;

− when extracting rows, the indices for these rows must be contiguous (this limitation doesn’t hold
when extracting columns);

− the above mentioned special integer sequences (built via the .to. and .by. operators) cannot be
used (not yet) for indices a1 or a2;

− when extracting a single row or a single column, resulted mfArray has a dense structure.

See also: msSet

14

MUESLI Reference Manual (index) FML: Core Routines

mfCount true values count

Interface:

function mfCount(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Returns the number of true values in the columns (or rows) of a boolean mfArray (dense or sparse).

If dim is present, A is always considered as a matrix, and the routine processes each column (if dim = 1)
or each row (if dim = 2).

If dim is not present, it returns the number of true values in the whole array.

When out is a vector, it is dense.

The behavior of this routine is similar to the count Fortran 90 intrinsic function.

Example(s):

x = mfMagic(3)

call msDisplay(x, "x")

call msDisplay(mfCount(x>5.0d0), "mfCount(x > 5.0d0)")

call msDisplay(mfCount(x>4.0d0,dim=1), "mfCount(x > 4.0d0, dim=1)")

call msDisplay(mfCount(x>4.0d0,dim=2), "mfCount(x > 4.0d0, dim=2)")

output:

x =

8 3 4

1 5 9

6 7 2

mfCount(x > 5.0d0) =

4

mfCount(x > 5.0d0, dim=1) =

2 1 1

mfCount(x > 4.0d0, dim=2) =

1

2

2

15

MUESLI Reference Manual (index) FML: Core Routines

msDisplay mfArray pretty print

First calling syntax:

call msDisplay(x1 [, string1, x2, string2, ...] &

[, unit] [, head] [, tail])

This routine displays an mfArray object (and other object types, as described below) on the screen or
terminal, in a pretty form which is column oriented. Not all the decimal digits are printed: their number
depends on the format used.

The object x may also be: a Fortran type, integer, real (single or double), complex (single or double), of
rank 0 to 2 (scalar, vector or matrix); a MUESLI derived type, mfUnit and mf Int List.

Only for mfArrays:

− up to four pairs (x, string) can be simultaneously displayed.

− if the optional integer argument head (resp. tail) is present, then only the first (resp. last) rows
will be printed. These two arguments can be both present. This convenience is useful to see the
begin and the end of a very long column vector. For the case of a long row vector, it will display
the head first values, followed by the tail last values, but only if the width of your terminal is
sufficient. Internal tests are made about consistency between head, tail and the shape of the
array.

For mfArrays (not boolean) and mfUnits, the optional argument unit allows the user to specify another
consistent (i. e. of same physical dimension) unit for printing. For example, a length registered in meter
(S.I. unit) may be printed in millimeter. The use of the constant parameter SI unit enforces the routine
to display, if possible, the appropriate S.I. unit.

Only for mf Int Lists and vectors of mf Int List:

− only one pair (x, string) can be displayed at a time.

− an additional optional boolean argument (compact) may be used to print the integers rows more
compactly.

Second calling syntax:

call msDisplay(x, string, legend1 [, legend2, ..., legend9])

This latter syntax enables the insertion of legends at the head of each column. Note the maximum
number possible, 9, and also that it is restricted to real data in the x mfArray.

N.B.: When displaying an object having a great number of columns, this routine will print first the
number of columns adapted to the width of your terminal. If the output is redirected to a file, you
may want to change this width: then use the MF COLUMNS environment variable (it is the terminal
character width, like in the UNIX command resize, and not the matrix column’s number).

See also: msFormat, mfDisplayColumns

Example(s): Many outputs from this routine are shown as examples in the MUESLI User Guide.

16

MUESLI Reference Manual (index) FML: Core Routines

mfDisplayColumns columns used in pretty print

Interface:

function mfDisplayColumns(A, unit) result(out)

type(mfArray), intent(in) :: A

type(mfUnit), intent(in), optional :: unit

type(mfArray) :: out

Description:

mfDisplayColumns returns the number of elements printed by the routine msDisplay on each row.

See also: msDisplay

17

MUESLI Reference Manual (index) FML: Core Routines

msFormat mfArray printing format

Calling syntax:

call msFormat([mantissa, exponent])

The optional argument mantissa may be "short" (5 digits printed), "long" (15 digits printed) or "hex"
(hexadecimal output). By default, the short format is used.

The optional argument exponent may be:

− "auto" (automatic format: fixed or exponential format);

− "sci" (scientific format: exponent is always printed);

− "eng" (engineer format: if the mfArray to be displayed is not a scalar, a scale factor is always used
and its exponent is moreover a multiple of three).

By default, the automatic format is used.

In the case where this routine is called without any argument, default values for both keywords are used.

See also: msDisplay

Example(s):

x = .t. mfSqrt(mf([2, 3, 5]))

call msDisplay(x, "x (short format)")

call msFormat("long")

call msDisplay(x, "x (long format)")

output:

x (short format) =

1.4142

1.7321

2.2361

x (long format) =

1.41421356237310

1.73205080756888

2.23606797749979

x = [1.5, 2.6E1, 3.7E2, 4.8E4]

call msFormat(exponent="sci")

call msDisplay(x, "x (scientific format)")

call msFormat(exponent="eng")

call msDisplay(x, "x (engineer format)")

output:

x (scientific format) =

1.5000E+00 2.6000E+01 3.7000E+02 4.8000E+04

x (engineer format) =

1.0E+03 *

0.0015 0.0260 0.3700 48.0000

18

MUESLI Reference Manual (index) FML: Core Routines

msRelease MUESLI objects deallocation

When you have finished to work with an mfArray, you may deallocate its internal array by using:

call msRelease(x1 [, x2, x3, x4, x5, x6, x7])

Up to seven mfArrays can be simultaneously released.

Remark: After execution of your program, some compilers or tools may report a warning about some
memory leaks. Use of this routine for all of the automatic variables (described below) avoids such
warnings.

This routine can be used to free the following derived types: mfArray, mfMatFactor, mfTriConnect,
mfTetraConnect, mf Int List, mf NL Options and mf DE Options (only one variable may be freed at a
time, except for an mfArray object).

See also: msAutoRelease, msSetAsParameter, msExitFgl

19

MUESLI Reference Manual (index) FML: Core Routines

msAutoRelease mfArray conditional deallocation

This routine is similar to msRelease:

call msAutoRelease(x1 [, x2, x3, x4, x5, x6, x7])

but the deallocation is done only if the mfArray is temporary.

Is is used only in the context of a user-routine which takes arguments of type mfArray which can be
temporary objects.

See also: msRelease

20

MUESLI Reference Manual (index) FML: Core Routines

mfOut group output arguments

This function is used to group output arguments in calls of some MUESLI subroutines. For example:

call msLU(mfOut(L,U,p), A)

This facility is only intended to clearly identify the output arguments from the input ones. It is remi-
niscent of the Matlab syntax:

[L,U,p] = lu(A)

Arguments of mfOut match always the following MUESLI derived types: mfArray or mfMatFactor.

Case of optional arguments: If some of these arguments are optional, they must be called in order, not
by use of keyword as in Fortran 90 syntax. Moreover, for multiple optional arguments, one of them can
be omitted by using the special mfArray MF NO ARG, as in the following example:

call msOdeSolve(mfOut(y, status, tolout, MF_NO_ARG, solve_log), &

deriv, t_span, y_0)

Indeed, refering to the msOdeSolve routine, the yp and solve log are both optional, and if the user
wants to retrieve only the second one, he has to use MF NO ARG instead of yp.

Remarks: actually, the mfOut function returns an object of type mf Out. You don’t need to use this
latter derived type unless you want to define yourself new routines which use mfOut to group output
arguments.

See also: mfArray, mfMatFactor, mf Out

21

MUESLI Reference Manual (index) FML: Core Routines

mf Out set of output arguments (derived type)

Description:

This is a derived type in MUESLI. You need to employ this type only if you wish to define yourself
subroutines whose output arguments are grouped with the mfOut function.

See also: mfArray, mfOut

22

MUESLI Reference Manual (index) FML: Core Routines

msPointer smart pointer between f90 array and mfArray

Generic Interface:

subroutine msPointer(A, f90_ptr)

type(mfArray) :: A

real(kind=MF_DOUBLE), pointer :: f90_ptr(:[,:])

or complex(kind=MF_DOUBLE), pointer :: f90_ptr(:[,:])

Description:

This routine is approximately equivalent to:

f90_ptr => A

and then, you can access the internal data of A via a classical Fortran array. This association is not
always possible, because the types of A and f90 ptr must match. Ranks however doesn’t need to match:
you may have a rank-1 array pointing to a rank-2 array; in this latter case, we could see f90 ptr as a
“long column pointer”.

A cannot be temporary, because at any time it can be deleted, and then f90 ptr would become hangling.

Warning:

During all the time when f90 ptr points to A, some internal properties of A are locked. So, it is strongly
recommended to use the routine msFreePointer: (i) to nullify the pointer f90 ptr and (ii) to unlock
properties of A. Be aware that

f90_ptr => null()

is not sufficient (this way will not unlock the internal mfArray properties of A).

See also: mfNbPointers, msFreePointer, msEquiv

23

MUESLI Reference Manual (index) FML: Core Routines

msFreePointer smart pointer release

Generic Interface:

subroutine msFreePointer(A, f90_ptr)

type(mfArray) :: A

real(kind=MF_DOUBLE), pointer :: f90_ptr(:[,:])

or complex(kind=MF_DOUBLE), pointer :: f90_ptr(:[,:])

Description:

This routine releases the link made by msPointer, and unlocks the internal properties of A.

See also: mfNbPointers, msPointer

24

MUESLI Reference Manual (index) FML: Core Routines

mfNbPointers nb of f90 pointers pointing to an mfArray

Generic Interface:

function mfNbPointers(A) result(n)

type(mfArray) :: A

integer :: n

Description:

This routine returns the number of Fortran 90 pointers pointing to A.

See also: msPointer, msFreePointer

25

MUESLI Reference Manual (index) FML: Core Routines

msEquiv smart pointer between mfArray and f90 array

Generic Interface:

subroutine msEquiv(f90_array, A)

real(kind=MF_DOUBLE), target :: f90_array(:[,:])

or complex(kind=MF_DOUBLE), target :: f90_array(:[,:])

type(mfArray) :: A

Description:

This routine is approximately equivalent to

A => f90_array

but the mfArray A becomes restricted, in the sense that you can modify the data but not the shape of
your f90 array, nor its allocation status. As a consequence, you can use most of (but not all) MUESLI
routines to work with your f90 array, via the mfArray A.

When f90 array is a rank-1 array (here, renamed as f90 vector), the mfArray A is by default a column
vector. Use the optional argument new shape to specify the new virtual dimensions of A, as follows:

call msEquiv(f90_vector, A, new_shape=[n1,n2])

Of course, you must have consistance, i. e. the product n1 n2 must be equal to the number of elements
of f90 vector.

Remark:

To release the link between A and f90 array, you must use the msRelease routine. Don’t write

A => null()

because usually A is not a pointer, it is just a derived type, i. e. a structure which includes the numerical
data in a manner that is hidden to the user. Even if A has been declared as a pointer to an mfArray,
this is not the good way to release properly A). If you forget to release this link, you could obtain an
error when trying an assignment with A.

See also: msPointer

26

MUESLI Reference Manual (index) FML: Core Routines

mf Int List list of integers (derived type)

Description:

This is a derived type in MUESLI. You may employ it for storing a list of integers of arbitrary length.
It’s definition is:

type :: mf_Int_List

integer, allocatable :: list(:)

end type mf_Int_List

You must allocate yourself the internal component list, which is an ordinary Fortran array of integers.
Also, you may declare and use an array of mf Int List, which is useful to work with a set of varying
length lists (see the second example below).

msDisplay and msRelease routines may be used to, respectively, print and free this derived type. These
two routines can be also used with an array of mf Int List.

Example(s):

! type(mf_Int_List) :: int_list

allocate(int_list%list(7))

int_list%list(:) = [(i, i = 1, 7)]

call msDisplay(int_list, "int_list")

! call msRelease(int_list)

output:

int_list =

1 2 3 4 5 6 7

! type(mf_Int_List) :: int_list_vec(5)

n = 6

allocate(int_list_vec(1)%list(n))

int_list_vec(1)%list(:) = [(i, i = 1, n)]

n = 15

allocate(int_list_vec(3)%list(n))

int_list_vec(3)%list(:) = [(i, i = 100+1, 100+n)]

n = 9

allocate(int_list_vec(5)%list(n))

int_list_vec(5)%list(:) = [(i, i = 100000+1, 100000+n)]

call msDisplay(int_list_vec, "int_list_vec")

! call msRelease(int_list_vec)

output:

int_list_vec =

1 2 3 4 5 6

<EMPTY>

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

<EMPTY>

100001 100002 100003 100004 100005 100006 100007 100008 100009

27

MUESLI Reference Manual (index) FML: Core Routines

mf Real List list of reals (derived type)

Description:

This is a derived type in MUESLI. You may employ it for storing a list of reals of arbitrary length. It’s
definition is:

type :: mf_Real_List

integer, allocatable :: list(:)

end type mf_Real_List

You must allocate yourself the internal component list, which is an ordinary Fortran array of reals.
Also, you may declare and use an array of mf Real List, which is useful to work with a set of varying
length lists (see the second example below).

msDisplay and msRelease routines may be used to, respectively, print and free this derived type. These
two routines can be also used with an array of mf Real List.

Example(s):

! type(mf_Real_List) :: real_list

allocate(real_list%list(7))

real_list%list(:) = [(i+0.5d0, i = 1, 7)]

call msDisplay(real_list, "real_list")

! call msRelease(real_list)

output:

int_list =

1.500 2.500 3.500 4.500 5.500 6.500 7.500

! type(mf_Real_List) :: int_real_vec(5)

n = 6

allocate(real_list_vec(1)%list(n))

real_list_vec(1)%list(:) = [(i+0.5d0, i = 1, n)]

n = 11

allocate(real_list_vec(3)%list(n))

real_list_vec(3)%list(:) = [(i+0.5d0, i = 10+1, 10+n)]

n = 9

allocate(real_list_vec(5)%list(n))

real_list_vec(5)%list(:) = [(i+0.5d0, i = 100+1, 100+n)]

call msDisplay(real_list_vec, "int_list_vec")

! call msRelease(real_list_vec)

output:

int_list_vec =

1.500 2.500 3.500 4.500 5.500 6.500

<EMPTY>

11.500 12.500 13.500 14.500 15.500 16.500 17.500 18.500 19.500 20.500 21.500

<EMPTY>

101.500 102.500 103.500 104.500 105.500 106.500 107.500 108.500 109.500

28

MUESLI Reference Manual (index) FML: Core Routines

mfIsEmpty mfArray empty test

Interface:

function mfIsEmpty(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Tests if the mfArray A is empty, i. e. has a null size (number of rows multiplied by nupmber of columns).

Note that an sparse matrix (non empty) may have a number of nonzero elements (see mfNnz) that is
zero.

See also: Shape, Size

29

MUESLI Reference Manual (index) FML: Core Routines

mfIsEqual mfArray equality test

Interface:

function mfIsEqual(A1, A2) result(bool)

type(mfArray), intent(in) :: A1, A2

logical :: bool

Description:

Tests if two mfArrays are numerically equal, whatever the structure is (i. e. sparse or dense, real or
complex). The shapes can even mismatch, and can take the zero value.

Comparison between boolean mfArray are excluded: All combined with ‘.eqv.’ should be used instead.

Remarks: This function returns a scalar logical, whereas ‘==’ returns a boolean mfArray.

For example:

mfIsEqual(A1, A2)

is equivalent to:

All(A1 == A2)

but the former statement is much more efficient for sparse mfArrays.

See also: ==, All, mfAll, .eqv.

30

MUESLI Reference Manual (index) FML: Core Routines

mfIsNotEqual mfArray equality test

Interface:

function mfIsNotEqual(A1, A2) result(bool)

type(mfArray), intent(in) :: A1, A2

logical :: bool

Description:

Returns the negation of mfIsEqual(A1,A2).

See also: mfIsEqual

31

MUESLI Reference Manual (index) FML: Core Routines

mfIsLogical mfArray boolean test

Interface:

function mfIsLogical(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if the mfArray A is boolean, i. e. if A results from any boolean operation (‘==’, ‘>’,
etc.) on mfArrays.

See also: ==

32

MUESLI Reference Manual (index) FML: Core Routines

mfIsReal mfArray real test

Interface:

function mfIsReal(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if the mfArray A is numeric, but not complex. The internal structure of A may be
dense or sparse.

See also: mfIsNumeric, mfIsComplex

33

MUESLI Reference Manual (index) FML: Core Routines

mfIsComplex mfArray complex test

Interface:

function mfIsComplex(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if the mfArray A is numeric and complex. The internal structure of A may be dense
or sparse.

See also: mfIsNumeric, mfIsReal

34

MUESLI Reference Manual (index) FML: Core Routines

mfIsNumeric mfArray numeric test

Interface:

function mfIsNumeric(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if the mfArray A is numeric (real or complex). The internal structure of A may be
dense or sparse.

See also: mfIsReal, mfIsComplex

35

MUESLI Reference Manual (index) FML: Core Routines

mfIsDense mfArray dense storage test

Interface:

function mfIsDense(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if internal structure of A is dense. The data may be boolean, real or complex.

See also: mfIsSparse

36

MUESLI Reference Manual (index) FML: Core Routines

mfIsSparse mfArray sparsity test

Interface:

function mfIsSparse(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if internal structure of A is sparse. The data may be real or complex.

See also: mfIsDense

37

MUESLI Reference Manual (index) FML: Core Routines

mfIsScalar mfArray scalar test

Interface:

function mfIsScalar(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a scalar.

See also: mfIsVector, mfIsMatrix

38

MUESLI Reference Manual (index) FML: Core Routines

mfIsVector mfArray vector test

Interface:

function mfIsVector(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a vector.

Remark: A scalar is not a vector, neither a matrix.

See also: mfIsScalar, mfIsMatrix, mfIsRow, mfIsColumn

39

MUESLI Reference Manual (index) FML: Core Routines

mfIsMatrix mfArray vector test

Interface:

function mfIsMatrix(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a matrix.

Remark: A vector is not a matrix.

See also: mfIsScalar, mfIsVector

40

MUESLI Reference Manual (index) FML: Core Routines

mfIsRow mfArray kind of vector test

Interface:

function mfIsRow(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a row vector.

See also: mfIsVector, mfIsColumn

41

MUESLI Reference Manual (index) FML: Core Routines

mfIsColumn mfArray kind of vector test

Interface:

function mfIsColumn(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a column vector.

See also: mfIsVector, mfIsRow

42

MUESLI Reference Manual (index) FML: Core Routines

mfIsPerm mfArray permutation vector test

Interface:

function mfIsPerm(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A has the type “permutation vector”.

To make a real checking for a valid permutation, use mfCheckPerm.

See also: mfIsLogical, mfIsNumeric

43

MUESLI Reference Manual (index) FML: Core Routines

All test on boolean mfArray

Interface:

function All(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if all elements of the mfArray A are TRUE (therefore, A must be a boolean mfArray).

See also: mfAll, Any

44

MUESLI Reference Manual (index) FML: Core Routines

Any test on boolean mfArray

Interface:

function Any(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if at least one element of the mfArray A is TRUE (therefore, A must be a boolean
mfArray).

See also: mfAny, All

45

MUESLI Reference Manual (index) FML: Core Routines

Shape, mfShape shape of an mfArray

First interface:

function Shape(A) result(out)

type(mfArray), intent(in) :: A

integer :: out(2)

Description:

Returns the shape of the mfArray A (dense or sparse); the returned integer array is always of rank 2,
because A is a matrix.

Other interface:

function Shape(Qhouse) result(out)

type(mfMatFactor), intent(in) :: Qhouse

integer :: out(2)

Description:

Returns the shape of the mfMatFactor Qhouse, which comes from the QR decomposition of a sparse
matrix; the returned integer array is always of rank 2, because an A is a matrix.

Remark: the mfShape routine is similar, but returns an mfArray instead.

See also: Size, mfMatFactor

46

MUESLI Reference Manual (index) FML: Core Routines

Size, mfSize size of an mfArray

First interface:

function Size(A, idim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: idim

integer :: out

Description:

If idim is not present, returns the total number of elements of the mfArray A (dense or sparse).

If idim is present (1 or 2), returns the specified dimension.

Other interface:

function Size(A, idim) result(out)

type(mfMatFactor), intent(in) :: A

integer, intent(in), optional :: idim

integer :: out

Description:

If idim is not present, returns the total number of elements of the mfMatFactor A (which comes from
some decomposition of a sparse matrix).

If idim is present (1 or 2), returns the specified dimension.

Remarks:

– the mfSize routine is similar, but returns an mfArray instead;

– for a sparse matrix, the size returned includes the zero elements: it is the logical size, not the
physical size; so, for any storage kind, the size is always the product of the two dimensions returned
by shape. Use the mfNnz routine to get the number of non zeros.

See also: Shape

47

MUESLI Reference Manual (index) FML: Core Routines

mfInt scalar integer conversion

Interface:

function mfInt(A) result(out)

type(mfArray), intent(in) :: A

integer :: out

Description:

This routine is a facility to convert a scalar mfArray A in an ordinary f90 integer.

A warning is emitted during conversion, in case of loss of precision.

See also: mfDble, mfCmplx

48

MUESLI Reference Manual (index) FML: Core Routines

mfDble scalar real conversion

Interface:

function mfDble(A) result(out)

type(mfArray), intent(in) :: A

real(kind=MF_DOUBLE) :: out

Description:

This routine is a facility to convert a scalar mfArray A in an ordinary f90 real.

If A is complex, returns only the real part.

See also: mfInt, mfCmplx

49

MUESLI Reference Manual (index) FML: Core Routines

mfCmplx scalar complex conversion

Interface:

function mfCmplx(A) result(out)

type(mfArray), intent(in) :: A

complex(kind=MF_DOUBLE) :: out

Description:

This routine is a facility to convert a scalar mfArray A in a complex.

See also: mfInt, mfDble

50

MUESLI Reference Manual (index) FML: Core Routines

mfGetMsgLevel message level tuning

Calling syntax:

level = mfGetMsgLevel()

returns an integer, ranged from 0 to 3, which is the current message level. See the msSetMsgLevel

routine for a description of the message level.

See also: mfGetTrbLevel, msSetTrbLevel, msMuesliTrace

51

MUESLI Reference Manual (index) FML: Core Routines

msSetMsgLevel message level tuning

Calling syntax:

call msSetMsgLevel(level)

where level is an integer, ranged from 0 to 3, which specifies the message level, described as follows:

− message level = 3: all messages are printed (verbose mode)

− message level = 2: messages of kind ’ERROR’ and ’Warning’ are printed [default]

− message level = 1: only messages of kind ’ERROR’ are printed

− message level = 0: nothing is printed (quiet mode)

There exists three kinds of messages emitted by the MUESLI library; they are tagged as “info”, “Warn-
ing” and “ERROR”. Only the last kind (the most important) stops temporarily the run-time execution
via a “pause” statement, which requires the action of the user to resume the execution. The cause of
these errors are generally due to a programming fault; this is the reason why the program stops.

As usual for IEEE-754 arithmetic, floating-point exceptions give Inf and NaN values which quietly
propagate. See msEnableFPE to change this default behavior.

N.B.: when message level is equal to 0, programming errors (of kind “ERROR”) kill the program. This
may be useful when the executable must be launched via a batch system.

See also: mfGetMsgLevel, mfGetTrbLevel, msSetTrbLevel, msMuesliTrace

52

MUESLI Reference Manual (index) FML: Core Routines

mfGetTrbLevel error traceback tuning

Calling syntax:

when = mfGetTrbLevel()

returns a character(len=4), which is the current error traceback policy. See the msSetTrbLevel routine
for a description of the error traceback policy.

See also: mfGetMsgLevel, msSetMsgLevel, msMuesliTrace

53

MUESLI Reference Manual (index) FML: Core Routines

msSetTrbLevel error traceback tuning

Calling syntax:

call msSetTrbLevel(when | level)

where when is a character(len=4) which specifies the error traceback policy, described as follows:

− when = "all": error traceback is produced for all kind of messages (i. e. ERRORS, Warnings and
infos)

− when = "auto": error traceback is produced only for ERRORS [default]

− when = "none": no error traceback

An alternative is to use the integer level argument, which can be equal to 0, 1, 2 or 3. An message
level which is greater than or equal to level triggers the traceback. For example, when level is used
with the value 2, only messages of kind ’ERROR’ and ’Warning’ produce a traceback.

N.B.: not all compilers are able to produce an error traceback on demand. See the MUESLI Inside
document for more information.

See also: mfGetTrbLevel, mfGetMsgLevel, msSetMsgLevel, msMuesliTrace

54

MUESLI Reference Manual (index) FML: Core Routines

msSetColoredMsg colorize messages on terminal

Calling syntax:

call msSetColoredMsg("on" | "off")

Description:

Colorizes all the Muesli messages written on the terminal. Four colours are used:

− red for the ERRORS;

− orange for the Warnings;

− yellow for the infos;

− grey-italic for the traceback.

Disabling the colors are useful before redirecting the program output to a file. Default is "on".

See also: mfGetMsgLevel, msSetMsgLevel, msMuesliTrace

55

MUESLI Reference Manual (index) FML: Core Routines

msPrintColoredMsg print a colored user message on terminal

Interface:

subroutine msPrintColoredMsg(fmt, msg, color)

character(len=*), intent(in) :: fmt, msg, color

Description:

Prints the string msg in this color and using format fmt.

Colors are limited to the following ones: "green", "red", "orange", "yellow" and "grey".

See also: msSetTermColor

56

MUESLI Reference Manual (index) FML: Core Routines

msSetTermColor set color for printing on terminal

Interface:

subroutine msSetTermColor(color)

character(len=*), intent(in) :: color

Description:

Sets the color for printing user message with msPrintColoredMsg.

Colors are limited to the following ones: "green", "red", "orange", "yellow" and "grey".

To revert to the default color, set color to "normal".

57

MUESLI Reference Manual (index) FML: Core Routines

msGetStdIO usual logical unit inquiry

Interface:

subroutine msGetStdIO(stdin, stdout, stderr)

integer, intent(out), optional :: stdin, stdout, stderr

Description:

Gets the Fortran unit for stdin (usually 5), stdout (usually 6) and stderr (usually 0).

See also: msSetStdIO

58

MUESLI Reference Manual (index) FML: Core Routines

msSetStdIO usual logical unit modification

Interface:

subroutine msSetStdIO(stdin, stdout, stderr)

integer, intent(in), optional :: stdin, stdout, stderr

Description:

Used to change the Fortran units.

See also: msGetStdIO

59

MUESLI Reference Manual (index) FML: Core Routines

msFlush I/O flush

Interface:

subroutine msFlush(unit)

integer, intent(in) :: unit

Description:

Flushes the I/O unit unit.

60

MUESLI Reference Manual (index) FML: Core Routines

msPause user pause or timing pause

Calling syntax:

call msPause([message] [, indent] [, duration])

If the optional argument message is present (character(len=*)), this routine prints the message and
waits for a [RETURN] from the user.

The optional argument indent (a positive integer) allows the user to indent the prompt string

[Return] to continue . . .

in order to align the beginning of this prompt with other strings printed elsewhere.

If the optional argument duration is present (real), this routine sleeps for the specified number of
seconds.

The two arguments indent and duration cannot be used together.

61

MUESLI Reference Manual (index) FML: Core Routines

msSetTermWidth set terminal character width

Syntax:

call msSetTermWidth(width | "auto")

Description:

Set manually the character width of the terminal, for pretty print with the msDisplay routine. The
argument width must be an integer greater than 40.

If the character string "auto" is used as argument, then the character width of the terminal will be
determined automatically, either from the MF COLUMNS environment variable, or from the actual
value (using the ’resize’ shell command).

See also: mfGetTermWidth, msDisplay, mfDisplayColumns

62

MUESLI Reference Manual (index) FML: Core Routines

mfGetTermWidth get terminal character width

Interface:

function mfGetTermWidth() result (out)

integer :: out

Description:

Get the character width of the terminal. The returned value is actually an internal value used for pretty
print in the msDisplay routine. This last value is obtained from:

− first, the value set manually via the msSetTermWidth routine;

− then, from the MF COLUMNS environment variable;

− last, via the ‘resize’ Unix command; if this latter command is not available on your system, an
information message is displayed and the default value 80 is used.

See also: msSetTermWidth, msDisplay, mfDisplayColumns

63

MUESLI Reference Manual (index) FML: Core Routines

msSetAutoFilling set out-of-range filling by msSet

Syntax:

call msSetAutoFilling(r)

Description:

Set manually the value of the real used to fill the elements of an mfArray by msSet when the indices are
out-of-range.

Default value is the special IEEE number NaN, which means Not-a-Number.

See also: mfGetAutoFilling

64

MUESLI Reference Manual (index) FML: Core Routines

mfGetAutoFilling get out-of-range filling by msSet

Interface:

function mfGetAutoFilling() result (r)

real(kind=MF_DOUBLE) :: r

Description:

Get the value of the real used to fill the elements of an mfArray by msSet when the indices are out-of-
range.

Default value is the special IEEE number NaN, which means Not-a-Number, but this number may be
changed by use of msSetAutoFilling.

65

MUESLI Reference Manual (index) FML: Core Routines

msInitArgs mfArray arguments’ protection

Interface:

subroutine msInitArgs(x1, &

x2, x3, x4, x5, x6, x7)

type(mfArray) :: x1

type(mfArray), optional :: x2, x3, x4, x5, x6, x7

Description:

Inside a user-defined routine, this routine protects some mfArray arguments against a (library) deallo-
cation, in case where they are temporary.

This routine should always be paired with the other routine msFreeArgs.

66

MUESLI Reference Manual (index) FML: Core Routines

msFreeArgs mfArray arguments’ release

Interface:

subroutine msFreeArgs(x1, &

x2, x3, x4, x5, x6, x7)

type(mfArray) :: x1

type(mfArray), optional :: x2, x3, x4, x5, x6, x7

Description:

Inside a user-defined routine, this routine ends the argument’s protection set by msInitArgs.

This routine should always be paired with the other routine msInitArgs.

67

MUESLI Reference Manual (index) FML: Core Routines

msSetAsParameter data protection

Interface:

subroutine msSetAsParameter(x1, x2, x3, x4, x5, x6, x7, param)

type(mfArray) :: x1

type(mfArray), optional :: x2, x3, x4, x5, x6, x7

logical :: param

Description:

When used with “param=.true.”, protects the data (and type) inside each mfArrays. Lets the user
creating pseudo parameters mfArrays, because the Fortran attribute parameter cannot be used in any
circumstances.

Up to seven mfArrays can be simultaneously set.

Before freeing an mfArray via the msRelease routine, the user must apply msSetAsParameter with
“param=.false.”.

Of course, by default, an mfArray is not data-protected.

68

MUESLI Reference Manual (index) FML: Core Routines

msReturnArray temporary mfArray mark

Interface:

subroutine msReturnArray(A)

type(mfArray) :: A

Description:

At the end of a user-defined function returning an mfArray, marks this object as temporary.

Avoids memory leaks during the execution of your program.

See also: msInitArgs, msFreeArgs, mfIsTempoArray

69

MUESLI Reference Manual (index) FML: Core Routines

mfIsTempoArray temporary mfArray check

Interface:

function mfIsTempoArray(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Check if the mfArray A is marked as temporary.

See also: msInitArgs, msFreeArgs, msReturnArray

70

MUESLI Reference Manual (index) FML: Core Routines

msFlops nb of floating-point operations

Interface:

subroutine msFlops(count)

integer*8, intent(out) :: count

Description:

Returns the number of floating-point operations made by the processor, since the last initialization.

Initialization must be made by:

call msFlops(init=0)

The other call:

call msFlops(count)

returns the flops count since the initialization.

count ≥ 0, except if the program has been linked with the dummy version of PAPI (dummy papi.o), or
if the OS doesn’t support hardware counting (e. g. the linux kernel has not been patched for use of the
PERFCTR library); in the latter case, msFlops always returns the value −1.

Remarks: requires a specific version of the PAPI library (cf. in papi/version)

See also: mfFlops, mfIsFlopsOk

71

MUESLI Reference Manual (index) FML: Core Routines

mfFlops nb of floating-point operations

Calling syntax:

count = mfFlops()

Description:

Returns the number of floating-point operations made by the processor, since the last initialization, in
the mfArray count.

Initialization must be made by:

call msFlops(init=0)

count ≥ 0, except if the program has been linked with the dummy version of PAPI (dummy papi.o), or
if the OS doesn’t support hardware counting (e. g. the linux kernel has not been patched for use of the
PERFCTR library); in the latter case, mfFlops always returns the value −1.

Remarks: requires a specific version of the PAPI library (cf. in papi/version)

See also: msFlops, mfIsFlopsOk

72

MUESLI Reference Manual (index) FML: Core Routines

mfIsFlopsOk inquire if flops is available

Calling syntax:

bool = mfIsFlopsOk()

Description:

Returns a logical revealing the availability of the mfFlops routine.

See also: mfFlops, msFlops

73

MUESLI Reference Manual (index) FML: Core Routines

msSetAutoComplex set auto conversion to complex

Syntax:

call msSetAutoComplex(.true. | .false.)

Description:

By default, real mfArrays are automatically converted in complex when operation like
√
−1 are made.

When calling this routine with argument equal to .false., conversion to complex is not done, then
resulting to a special IEEE value (Inf or NaN, according to the operation used).

See also: mfGetAutoComplex

74

MUESLI Reference Manual (index) FML: Core Routines

mfGetAutoComplex get auto conversion to complex

Interface:

function mfGetAutoComplex() result(bool)

logical, intent(in) :: bool

Description:

Returns a boolean specifying whether MUESLI convert real to complex for some operation (like
√
−1).

See also: msSetAutoComplex

75

MUESLI Reference Manual (index) FML: Core Routines

msEnableFPE run-time floating-point exceptions trapping

Interface:

subroutine msEnableFPE(exception, full_trapping)

character(len=*), intent(in) :: exception

logical, intent(in), optional :: full_trapping

Description:

Enables, at run-time, the trapping for a given floating-point exception, i. e. the program stops when the
specified exception(s) is (are) encountered.

exception may be one of: "overflow", "zero divide", "invalid", "underflow" or
"usual exceptions".

"usual exceptions" is a shortcut for the main three traditional exceptions: "overflow",
"zero divide", "invalid".

full trapping is an optional argument which allows the trapping inside the MUESLI library sources
(default is .false.). Note that this features is usually reserved to the MUESLI developpers.

Remark: The call may be located anywhere is the program. Usually, it is added at the beginning of the
program. However, exceptions’ trapping may be added or removed later on.

See also: msDisableFPE

76

MUESLI Reference Manual (index) FML: Core Routines

msDisableFPE run-time floating-point exceptions trapping

Interface:

subroutine msDisableFPE(exception)

character(len=*), intent(in) :: exception

Description:

Disables, at run-time, the trapping for a given floating-point exception, i. e. the program doesn’t stop
when the specified exception(s) is (are) encountered, but produces accordingly Inf s and NaN s.

exception may be one of: "overflow", "zero divide", "invalid", "underflow" or
"usual exceptions".

"usual exceptions" is a shortcut for the main three traditional exceptions: "overflow",
"zero divide", "invalid".

See also: msEnableFPE

77

MUESLI Reference Manual (index) FML: Core Routines

mfGetRoundingMode floating-point rounding mode

Calling syntax:

rounding_mode = mfGetRoundingMode()

Description:

Returns the floating-point rounding mode in a character string. The IEEE-754 rounding mode may be
equal to:

− "to zero": IEEE-754 rounding to zero

− "nearest": IEEE-754 rounding to nearest

− "up": IEEE-754 rounding to pos. infinity

− "down": IEEE-754 rounding to neg. infinity

See also: msSetRoundingMode

78

MUESLI Reference Manual (index) FML: Core Routines

msSetRoundingMode floating-point rounding mode

Interface:

subroutine msSetRoundingMode(rounding_mode)

character(len=*) :: rounding_mode

Description:

Set the floating-point rounding mode to the specified mode. The IEEE-754 rounding mode may be equal
to:

− "to zero": IEEE-754 rounding to zero

− "nearest": IEEE-754 rounding to nearest

− "up": IEEE-754 rounding to pos. infinity

− "down": IEEE-754 rounding to neg. infinity

Warning: The ISO/IEC TR 15580:1998(E) Technical Report, concerning the behavior of Fortran pro-
grams, specifies (Section 2.4): “In a procedure, the processor ensures that the flags for rounding have
the same values on return as on entry.” In the current MUESLI implementation, the rounding mode is
set via a C routine, and can violate the preceding requirement; then the use of the msSetRoundingMode
routine is left to the programmer responsability.

See also: mfGetRoundingMode

79

MUESLI Reference Manual (index) FML: Core Routines

MF NUMERICAL CHECK debugging additional checks

Interface:

logical :: MF_NUMERICAL_CHECK

Description:

This logical global variable is used by the library to do additional checks (validity of certain results,
presence of NaN and, if required, precision of the jacobian matrix provided by the user, ...).

When Muesli is compiled in DEBUG mode (usually by the developpers of Muesli), this variable is initially
set to TRUE. Otherwise, for ordinary users of the library (which certainly compile it in OPTIM mode),
it is initially set to FALSE.

For debugging purpose, you can set its value temporarily to TRUE, especially when using the ODE/DAE
solvers (msOdesolve, msDaesolve), or the minimization routines (mf/msLsqNonLin).

See also: mf DE Options

80

MUESLI Reference Manual (index) FML: Core Routines

mfUnit physical unit (derived type)

Description:

The Fortran derived type mfUnit (hidden) contains some usual physical units and constants. It can be
used to initialize the physical unit of an mfArray, via the operators ‘*’ and ‘=’.

No declarations has to be done. Instead, the program may refer to some predefined mfUnits, as e. g.:

y = 0.25d0*u_kg

v = 0.10d0*c_speed_of_light

Remarks:

− see the MUESLI User Guide document for a complete list of the available physical units, physical
constants and multipliers.

− physical units begin with ‘u ’, multipliers begin with ‘m ’, whereas physical constants begin with
‘c ’.

See also: *, =, msUsePhysUnits, msSetPhysDim, mfHasNoPhysDim, mfHaveSamePhysDim

81

MUESLI Reference Manual (index) FML: Core Routines

msUsePhysUnits Physical units activation

Interface:

subroutine msUsePhysUnits(mode)

character(len=*), intent(in) :: mode

Description:

Activates or de-activates the computation of physical units; mode must be "on" or "off".

Default is "off".

See also: mfUnit, msSetPhysDim

82

MUESLI Reference Manual (index) FML: Core Routines

msSetPhysDim set physical unit

The first interface:

subroutine msSetPhysDim(A, &

Mass, Length, Time, &

Temp, Electr_Intens, Mole, Lumin_Intens, &

no_dim)

type(mfArray), intent(in out) :: A

real(kind=MF_DOUBLE), intent(in), optional :: Mass, &

Length, &

Time, &

Temp, &

Electr_Intens, &

Mole, &

Lumin_Intens

logical, intent(in), optional :: no_dim

is used for setting the physical unit of the mfArray A, from some basic physical dimensions.
no dim=.true. is used to set A as a non-dimensional quantity.

The second interface:

subroutine msSetPhysDim(A, B)

type(mfArray), intent(in out) :: A

type(mfArray), intent(in) :: B

allows the user to set the physical unit of the mfArray A, by copying that of the mfArray B.

See the MUESLI User Guide document for some examples.

See also: mfUnit, msUsePhysUnits, mfHasNoPhysDim, mfHaveSamePhysDim

83

MUESLI Reference Manual (index) FML: Core Routines

msSetPhysUnitAbbrev set user physical unit abbrevation

Interface:

subroutine msSetPhysUnitAbbrev(user_unit, abbrev)

type(mfUnit) :: user_unit

character(len=*) :: abbrev

is used for setting the abbrevation of a user physical unit.

abbrev is an input string limited to 12 characters.

See also: mfUnit, msUsePhysUnits

84

MUESLI Reference Manual (index) FML: Core Routines

mfHasNoPhysDim dimensionless test

Interface:

function mfHasNoPhysDim(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Tests if the mfArray A is dimensionless.

See also: mfUnit, msUsePhysUnits, msSetPhysDim, mfHaveSamePhysDim

85

MUESLI Reference Manual (index) FML: Core Routines

mfHaveSamePhysDim dimension equality test

Interface:

function mfHaveSamePhysDim(A, B) result(bool)

type(mfArray), intent(in) :: A, B

logical :: bool

Description:

Tests if the mfArrays A and B have the same physical dimensions.

See also: mfUnit, msUsePhysUnits, msSetPhysDim, mfHasNoPhysDim

86

MUESLI Reference Manual (index) FML: Core Routines

msPrepHashes hashes print preparation

Calling syntax:

call msPrepHashes(start, end)

Description:

Prepares data before calls to msPrintHashes.

start and end are numerical values used to monitor the progress bar. They must be both of integer or
real (double) type.

See also: msPrintHashes, msPostHashes

87

MUESLI Reference Manual (index) FML: Core Routines

msPrintHashes hashes print

Calling syntax:

call msPrintHashes(val)

Description:

Makes on the terminal a progress bar by printing hashes (#).

Usually, the call is located inside a loop; val is the numerical value (either integer or real double) moni-
toring the progression. It’s numerical extremum values have to be passed as arguments of msPrepHashes.

See also: msPostHashes, msPrintProgress

Example(s):

integer :: i_start, i_end, i

...

call msPrepHashes(i_start, i_end)

do i = i_start, i_end

...

<some computation>

...

call msPrintHashes(i)

end do

call msPostHashes()

or:

double precision :: time_start, time_end, time

...

call msPrepHashes(time_start, time_end)

time = time_start

do while(time <= time_end)

...

<some computation>

...

call msPrintHashes(time)

time = <new value of time, increasing but may be not linear with iterations>

end do

call msPostHashes()

88

MUESLI Reference Manual (index) FML: Core Routines

msPostHashes hashes print conclusion

Calling syntax:

subroutine msPostHashes()

Description:

Should be added after the loop containing the call to msPrintHashes.

See also: msPrepHashes, msPrintHashes

89

MUESLI Reference Manual (index) FML: Core Routines

msPrepProgress percent progress preparation

Calling syntax:

call msPrepProgress(start, end [, disp_times, estimator])

Description:

Prepares data before calls to msPrintProgress.

start and end are numerical values used to monitor the progress bar. They must be both of integer or
real (double) type.

If the logical optional argument disp times is set to .false., time values (left time and estimated
remaining time – wall clock time is used, not CPU time) are not displayed (default is TRUE).

The string optional argument estimator prescribes the method to be used to estimate the remaining
time. Default is "GLE" (Global Linear Estimator), which corresponds to a fast method but with the
assumption of a linear behavior of the cost along all the iterations. The other available method is "LPE"
(Local Power Estimator), which involves a Least Square problem, and assumes that the behavior of the
cost is under a power form; this latter method is more expensive but should work well with a larger class
of problems than "GLE".

See also: msPrintProgress, msPostProgress

90

MUESLI Reference Manual (index) FML: Core Routines

msPrintProgress percent progress

Calling syntax:

call msPrintProgress(val)

Description:

Print on STDOUT the percentage of the work already done. According to the setting used during
initialization via msPrepProgress, the estimated remaining time may also be displayed.

Usually, the call is located inside a loop (at the end); val is the numerical value (either integer or real
double) monitoring the progression. It’s numerical extremum values have to be passed as arguments of
msPrepProgress.

See also: msPostProgress, msPrintHashes

Example(s):

integer :: i_start, i_end, i

...

call msPrepProgress(i_start, i_end)

do i = i_start, i_end

...

<some computation>

...

call msPrintProgress(i)

end do

call msPostProgress()

or:

double precision :: time_start, time_end, time

...

call msPrepProgress(time_start, time_end)

time = time_start

do while(time <= time_end)

...

<some computation>

...

call msPrintProgress(time)

time = <new value of time, increasing but may be not linear with iterations>

end do

call msPostProgress()

91

MUESLI Reference Manual (index) FML: Core Routines

msPostProgress percent progress conclusion

Interface:

subroutine msPostProgress()

Description:

Should be added after the loop containing the call to msPrintProgress.

See also: msPrepProgress, msPrintProgress

92

MUESLI Reference Manual (index) FML: Core Routines

mfToLower lowering string’s case

Calling syntax:

s2 = mfToLower(s1)

Description:

Returns the input strings s1 with each letter converted to lower case.

See also: mfToUpper

93

MUESLI Reference Manual (index) FML: Core Routines

mfToUpper uppering string’s case

Calling syntax:

s2 = mfToUpper(s1)

Description:

Returns the input strings s1 with each letter converted to upper case.

See also: mfToLower

94

MUESLI Reference Manual (index) FML: Core Routines

msFindIOUnit automatically find a free IO unit number

Interface:

subroutine msFindIOUnit(unit)

integer, intent(out) :: unit

Description:

Returns an integer IO unit which can be used for opening a file.

95

MUESLI Reference Manual (index) FML: Core Routines

mfIsVersion test on version strings

Calling syntax:

bool = mfIsVersion(v_1, op, v_2)

Description:

Compares the two version strings v 1 and v 2 with the operator op ("==", ">", ">=", "<", "<="). The
version string is a character string, of size at most 8, matching the rule a.b.c, where a, b and c are
integers ranged from 0 to 99.

This function returns a logical and is usually applied to strings as MF MUESLI VERSION or
MF LAPACK VERSION.

See also: msRequMuesliVer

96

MUESLI Reference Manual (index) FML: Core Routines

msRequMuesliVer check for a minimum Muesli version

Interface:

subroutine msRequMuesliVer(version)

character(len=*) :: version

Description:

Checks that the current Muesli version used at run-time is at least equal to that provided in the
"version" argument. This argument must be a string of the form a.b.c, where a, b and c are in-
tegers ranged from 0 to 99.

See also: MF MUESLI VERSION, mfIsVersion

97

MUESLI Reference Manual (index) FML: Core Routines

MF COMPILER VERSION compiler vendor and version

Calling syntax:

string = MF_COMPILER_VERSION

returns the compiler vendor and version used during the compilation of the MUESLI library.

See also: MF MUESLI VERSION, MF COMPILATION CONFIG, MF LAPACK VERSION

98

MUESLI Reference Manual (index) FML: Core Routines

MF COMPILATION CONFIG Configuration used to compile MUESLI

Calling syntax:

string = MF_COMPILATION_CONFIG()

returns either ”Debug” or ”Optim”.

Note the parenthesis used after the name of the variable, because it is implemented as a function.

See also: MF MUESLI VERSION, MF COMPILER VERSION, MF LAPACK VERSION

99

MUESLI Reference Manual (index) FML: Core Routines

MF MUESLI VERSION MUESLI version

Calling syntax:

string = MF_MUESLI_VERSION

returns the MUESLI version used during the link of the executable.

The returned string may be used by the mfIsVersion boolean function.

See also: MF COMPILER VERSION, MF COMPILATION CONFIG, MF LAPACK VERSION

100

MUESLI Reference Manual (index) FML: Core Routines

msMuesliTrace helper for debugging purpose

Interface:

subroutine msMuesliTrace(pause)

character(len=*), intent(in) :: pause

Description: Basically, this subroutine helps the user by printing, if available, a traceback of the program;
optionally, it can make a pause (only if the pause argument is equal to "yes").

Contrary to the internal traceback routine, the behavior of this routine depends only on the value of the
message level global MUESLI property.

Remark: In order to be useful, the use of this routine requires that the Muesli library has been compiled
with debugging turned On. This is the case if the library is used in the DEBUG mode. On the contrary,
it suffices that the user adds the appropriate option (e. g. -g for most of compilers) for its own source
files.

See also: mfGetMsgLevel, msSetMsgLevel

101

MUESLI Reference Manual (index) FML: Core Routines

mfReadLine reads a line from terminal with editing and history facilities

Interface:

function mfReadLine(prompt) result(string)

character(len=*), intent(in), optional :: prompt

character(len=1024) :: res

Description: This function prompts the string prompt and waits the user to input a character string,
using the readline library. As a result, the user can navigate in an history, recall any previous input and
modify it.

It returns the string string, which is automatically added in the history only if it differs from the last
entry.

The history can be saved with the use of the msWriteHistoryFile routine.

A small example of call can be found in the Muesli User’s Guide.

See also: msReadHistoryFile, msClearHistory, msAddEntryInHistory,
msRemoveLastEntryInHistory

102

MUESLI Reference Manual (index) FML: Core Routines

msReadHistoryFile read a ’readline’ history file

Interface:

subroutine msReadHistoryFile(filename)

character(len=*), intent(in), optional :: filename

Description: Reads an ’history’ file previously stored by the msWriteHistoryFile routine.

If the optional filename is not present, ’history’ is read from the file: /.mfreadline.history

See also: mfReadLine, msClearHistory, msAddEntryInHistory, msRemoveLastEntryInHistory

103

MUESLI Reference Manual (index) FML: Core Routines

msWriteHistoryFile write a ’readline’ history file

Interface:

subroutine msWriteHistoryFile(filename)

character(len=*), intent(in), optional :: filename

Description: Writes an ’history’ file in filename. This ’history’ contains all entries read by the
mfReadLine routine.

See also: msReadHistoryFile, msClearHistory, msAddEntryInHistory,
msRemoveLastEntryInHistory

104

MUESLI Reference Manual (index) FML: Core Routines

msClearHistory clear the ’readline’ history

Interface:

subroutine msClearHistory()

Description: Clears all entries read by the mfReadLine routine.

See also: msReadHistoryFile, msWriteHistoryFile, msAddEntryInHistory,
msRemoveLastEntryInHistory

105

MUESLI Reference Manual (index) FML: Core Routines

msAddEntryInHistory add an entry in the ’readline’ history

Interface:

subroutine msAddEntryInHistory(string)

character(len=*) :: string

Description: Adds the entry specified by the string argument in the ’readline’ history.

See also: mfReadLine, msReadHistoryFile, msWriteHistoryFile, msClearHistory,
msRemoveLastEntryInHistory

106

MUESLI Reference Manual (index) FML: Core Routines

msRemoveLastEntryInHistory remove last entry in the ’readline’ history

Interface:

subroutine msRemoveLastEntryInHistory()

Description: Remove last entry read by the mfReadLine routine.

See also: msReadHistoryFile, msWriteHistoryFile, msClearHistory, msAddEntryInHistory

107

MUESLI Reference Manual (index) FML: File Input/Output

1.2 File Input/Output

msSaveAscii ASCII file saving
mfLoadAscii ASCII file loading

msSaveSparse Sparse ASCII file saving
mfLoadSparse Sparse ASCII file loading
msLoadSparse Sparse ASCII file (with Right-Hand-Side) loading

msSave Binary file saving
mfLoad Binary file loading

mfLoadTriConnect Connectivity Binary file loading

msSaveHDF5 HDF5 file saving
mfLoadHDF5 HDF5 file loading

msMedit graphic mfArray editor

See also:

Core Routines

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

108

MUESLI Reference Manual (index) FML: File Input/Output

msSaveAscii ASCII file saving

Interface:

subroutine msSaveAscii(filename, A, append, format)

character(len=*), intent(in) :: filename

type(mfArray), intent(in) :: A

logical, intent(in), optional :: append

character(len=*), intent(in), optional :: format

Description:

Saves under ASCII form the dense mfArray A in the file named filename.

A is saved via a full 2D format, i. e. the number of lines of filename is exactly the number of rows
of A. Special IEEE values (NaN and Inf s) are written also in ASCII form (using the strings "NaN",
"Infinity" and "-Infinity").

If the boolean append is present and TRUE then the data is written at the end of the (previously written)
file. The default is to overwrite a pre-existing file.

If the character string format is present, it specifies the Fortran format used during the write of individual
numbers (for example "ES13.6"). It must be of course a non-empty valid format for writing numerical
real values. As usual, if the format is not sufficient to write the required number of digits, stars will be
printed out instead (for example, "F3.0" is the shortest format if your are sure that all numbers in the
mfArray are integers; and even "F2.0" if they are all positive).

msSaveAscii doesn’t store the internal properties of A, so writing a boolean mfArray converts it in real.
Another limitation is that only the real part of complex numbers is written; to save the imaginary part,
use:

call msSaveAscii(filename, mfImag(A))

Remarks:

− if A contains a permutation, it will be written as a column vector, using integers (the optional
argument format will be discarded). However, reading again the same file with mfLoadAscii will
convert it into real numbers, as ordinary matrices; msSave is therefore recommended to save a
permutation vector.

− to avoid loss of precision during the read of filename, a sufficient number of decimal digits is used
to print each real when the optional argument format is not present.

− do not use the optional arguments append and format if you plan to read the file with mfLoadAscii.

− to save sparse matrices, use the msSaveSparse routine.

See also: mfLoadAscii, msSave, msSaveHDF5

109

MUESLI Reference Manual (index) FML: File Input/Output

mfLoadAscii ASCII file loading

Interface:

function mfLoadAscii(filename, &

ieee, comment, rect, row_max, col_max) result(out)

character(len=*), intent(in) :: filename

logical, intent(in), optional :: ieee, rect

character(len=1), intent(in), optional :: comment

integer, intent(in), optional :: row_max, col_max

type(mfArray) :: out

Description:

Reads data from an ASCII file named filename and copy it in an mfArray. Inside the file, numerical
data are separated by one or more space(s) and tabulation(s). Usually, this file has been created by
the msSaveAscii routine but actually, nearly all kinds of ASCII file may be read by mfLoadAscii: see
below.

If ieee is present and equal to .true., this routine is able to read special IEEE values, such as NaN
and Inf (but this feature makes the read not very efficient for some compilers). The default behavior is
to rise an error if any non numeric value is found.

If comment is present, all lines beginning (at any position) by this character are skipped (of course, this
character must be different from: a space, a tabulation, a carriage-return, a digit, the signs + and −,
the letters I and N which begin Inf and NaN); comments after data are also ignored. Empty lines are
treated as commented. The default behavior assumes that the file contains only numerical values and
no empty lines.

If rect is present and equal to .false., the file read may contain data which are not under a rectangular
layout. In this latter case, the routine returns a column vector mfArray. By default, this routine expects
a rectangular layout, i. e. the same number of reals stored in each row.

For the standard case only (i. e., rect is equal to .true., or not present), the optional arguments row max

and col max allow the user to read partially the data file. These two arguments are not dependent (and
do not need to be both present). Note also that the whole data file may have a non-rectangular layout:
it is sufficient that (row max, col max) covers a rectangular subpart of the data file.

Remark: DOS or UNIX text files are supported.

See also: msSaveAscii, mfLoad, mfLoadHDF5

110

MUESLI Reference Manual (index) FML: File Input/Output

msSaveSparse Sparse ASCII file saving

Interface:

subroutine msSaveSparse(filename, A, format)

character(len=*), intent(in) :: filename

type(mfArray), intent(in) :: A

character(len=3), intent(in), optional :: format

Description:

Saves the sparse matrix mfArray A in the file filename, using the (optionally) specified ASCII format:

− "CSC": Compact Sparse Column (default)

The first line contains exactly five items, which are the numbers of rows and columns (nrow
and ncol), an integer (1 or 0) specifying whether the entries are row-sorted or not in each
colums, the tag "CSC" and the type of data ("real" or "complex");

the following line(s) contains the integer vector of the pointers to the columns;

the following line(s) contains the integer vector of the row indices;

the remaining line(s) contains the floating-point values.

− "CSR": Compact Sparse Row

Very close to the previous format, except that row and column role are exchanged.

− "HBO": Harwell-Boeing

A commonly used format for sparse matrices, described at:
http://math.nist.gov/MatrixMarket/formats.html#hb

− "MTX": Matrix Market (also called “Coordinates format”, or "COO")

A commonly used format for sparse matrices, described at:
http://math.nist.gov/MatrixMarket/formats.html#MMformat

If format is not present, this routine uses the "CSC" format.

The routine always overwrites a pre-existing file.

See also: mfLoadSparse

111

http://math.nist.gov/MatrixMarket/formats.html#hb
http://math.nist.gov/MatrixMarket/formats.html#MMformat

MUESLI Reference Manual (index) FML: File Input/Output

mfLoadSparse Sparse ASCII file loading

Interface:

function mfLoadSparse(filename, format, duplicated_entries) result(out)

character(len=*), intent(in) :: filename

character(len=3), intent(in), optional :: format

character(len=*), intent(in), optional :: duplicated_entries

type(mfArray) :: out

Description:

Reads the file filename and copy the sparse matrix it contains in an mfArray.

When reading the file, it uses the (optionally) specified ASCII format:

− "CSC": Compact Sparse Column

− "CSR": Compact Sparse Row

− "HBO": Harwell-Boeing (without Right Hand Side; on the contrary, use msLoadSparse instead)

− "MTX": Matrix Market (also called “Coordinates format”, or "COO")

If format is not present, this routine tries to auto-detect the used format.

The description of these different formats can be found at the msSaveSparse entry.

After reading the matrix:

− eventual duplicated entries are treated according to the optional character argument
duplicated entries. When this argument is present and equal to "ignored", duplicated en-
tries are ignored; when it is equal to "added" (default value), duplicated entries are added; when
it is equal to "replaced", last entries found overwrite previous one.

− entries containing a null value are removed.

See also: msLoadSparse, msSaveSparse, mfSpImport

112

MUESLI Reference Manual (index) FML: File Input/Output

msLoadSparse Sparse ASCII file (with Right-Hand-Side) loading

Calling syntax:

call msLoadSparse(mfOut(A[,RHS]), filename [, format, duplicated_entries])

Description:

Similar to mfLoadSparse but allows the user to retrieve a Right-Hand-Side (HBO format only) together
with the sparse matrix.

The input arguments are described in the mfLoadSparse description.

A and RHS are both mfArrays and, after reading the file, contain respectively the sparse matrix and the
Right-Hand-Side (dense or sparse, according to the file content).

See also: mfLoadSparse, msSaveSparse, mfSpImport

113

MUESLI Reference Manual (index) FML: File Input/Output

msSave Binary file saving

Interface:

subroutine msSave(filename, A, compressed)

character(len=*), intent(in) :: filename

type(mfArray), intent(in) :: A

or type(mfTriConnect), intent(in) :: A

logical, optional :: compressed

Description:

Saves under a binary form the mfArray (or mfTriConnect) A in the file named filename. The MUESLI
Binary Format (MBF) used is specific to the current library. Any filename extension is supported; the
".mbf" used in the MUESLI examples just helps to remind that it is a MUESLI binary file.

If compressed is present and true, or if the specified filename ends with the extension ".gz", then msSave

directly stores the file in the ’gzip’ compressed format.

Remarks:

− to read the created file, you must use mfLoad (or mfLoadTriConnect), because a special format
is used to organize data inside it. MUESLI add a special tag to help with compatibility between
versions.

− msSave takes care of endianness of your architecture, so read/write this kind of file should be
possible across big endian and little endian machines.

− msSave stores all the internal properties of A, including its dynamic type, structure and data,
hidden matrix properties and physical units; so mfLoad (or mfLoadTriConnect) should restore
exactly the same mfArray (but for sparse structure, internal arrays will have the minimal size).

− msSave always overwrites a pre-existing file.

See also: msSaveAscii, msSaveHDF5

114

MUESLI Reference Manual (index) FML: File Input/Output

mfLoad Binary file loading

Interface:

function mfLoad(filename) result(out)

character(len=*), intent(in) :: filename

type(mfArray) :: out

Description:

Reads a matrix previously stored in the file named filename (MUESLI Binary Format) by the routine
msSave, and copy it in an mfArray.

This routine is able to read directly a compressed gzipped file, as stored by msSave.

See also: mfLoadAscii

115

MUESLI Reference Manual (index) FML: File Input/Output

mfLoadTriConnect Connectivity Binary file loading

Interface:

function mfLoadTriConnect(filename) result(out)

character(len=*), intent(in) :: filename

type(mfTriConnect) :: out

Description:

Reads a connectivity structure previously stored in the file named filename (MUESLI Binary Format)
by the routine msSave, and copy it in an mfArray.

See also: mfLoadAscii

116

MUESLI Reference Manual (index) FML: File Input/Output

msSaveHDF5 HDF5 file saving

Interface:

subroutine msSaveHDF5(filename, A, &

name, file_access, mfarray_overwrite, status)

character(len=*), intent(in) :: filename

type(mfArray), intent(in) :: A

character(len=*), intent(in), optional :: name

character(len=*), intent(in), optional :: file_access

logical, intent(in), optional :: mfarray_overwrite

integer, intent(out), optional :: status

Description:

By default (or if file access is present and equal to "trunc"), this routine creates a new HDF5 file
(or overwrites a pre-existing one) and writes the mfArray A (dense or sparse) in it.

If file access is present and equal to "append", it tries to add in the existing HDF5 file a new group
for A. In the case where a group with the same name already exists, the group will be overwritten only if
mfarray overwrite is present and equal to true; on the contrary, it will return a non zero value in the
status flag (if this later optional argument is present).

The mfArray A is written as one group (named from the optional argument name, or "untitled

mfArray" by default), with all its MUESLI properties, stored as group attributes.

The created file can be read in MUESLI by the routine mfLoadHDF5; moreover, it can be browsed by a
specific viewer, as ’hdfview’ for example.

Remark: No specific extension is required for the "filename", nevertheless ".h5" or ".hdf5" are often
used.

See also: msSave, msSaveAscii

117

MUESLI Reference Manual (index) FML: File Input/Output

mfLoadHDF5 HDF5 file loading

Interface:

function mfLoadHDF5(filename, name) result(out)

character(len=*), intent(in) :: filename

character(len=*), intent(in), optional :: name

type(mfArray) :: out

Description:

Reads from an HDF5 file and tries to find an mfArray named from the optional argument name. If this
latter in not present, it tries to get the first group which has an attribute named MF MUESLI VERSION. It
doesn’t enter in any group: the searched mfArray must be located just under the root structure ("/")
of the HDF5 file.

The file filename must have been created by msSaveHDF5.

See also: mfLoad, mfLoadAscii

118

MUESLI Reference Manual (index) FML: File Input/Output

msMedit graphic mfArray editor

Interface:

subroutine msMedit(A)

type(mfArray), intent(in out) :: A

Description:

This routine allows the user to interactively modify a real mfArray, with a small graphical Matrix-editor.

Actually, it launch another X11 (Qt4-based) application, named ‘meditor’ (spreadsheet-like), which
displays a table containing initially the matrix A. The user can modify the values and extend the shape
of the matrix. When the window is closed, new data are automatically saved in the mfArray A.

Special IEEE values can be entered in cells, by typing their ASCII names, NaN and Inf (‘meditor’ is
not case-sensitive). Bad entries are ignored.

To extend the matrix, click anywhere outside the matrix and enter a value (empty cells of the new matrix
will be filled with 0).

Remarks:

− complex numeric matrices, or containing boolean values, are not accepted;

− if A is a sparse matrix, it is first converted to a dense one before display, but the new modified
matrix will be converted back to sparse storage;

− the run of the ‘meditor’ tool blocks the calling program till it’s window is closed by the user;

− the size of A is limited to 200 × 200: it can be changed in the file ‘meditor.cpp’ if needed (of
course, the ‘meditor’ tool has to be compiled again).

119

MUESLI Reference Manual (index) FML: Data Analysis Functions

1.3 Data Analysis Functions

mfMax, msMax mfArray max
mfMin, msMin mfArray min
mfSum columns sum
mfExtrema data extrema
mfProd columns product
mfSort, msSort columns/rows sort
mfIsSorted vector sort test
mfSortRows sort whole rows of a matrix

mfDiff difference and approximate derivative
mfGradient approximate 1D gradient
msGradient approximate 2D gradient

mfMean columns mean
mfMedian columns median
mfVar columns variance
mfStd columns standard deviation
mfRMS root mean square
msHist data histogram
mfMoments few first moments of a distribution

mfSmooth smoothing of vector values

mfXCorr autocorrelation of a vector data
mfXCorr2 autocorrelation of a matrix data

mfFFT, mfInvFFT discrete Fast Fourier transformation
mfFFT2, mfInvFFT2 2D discrete Fast Fourier transformation
mfFourierCos, mfInvFourierCos discrete Fourier cosine transformation
mfFourierSin, mfInvFourierSin discrete Fourier sine transformation
mfFourierLeg, mfInvFourierLeg discrete Fourier-Legendre transformation

See also:

Core Routines

File Input/Output

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

120

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfMax mfArray max

mfMax has two forms. The first one is used to compute the maximum value of the columns (default
behavior) or of the rows of an mfArray. The second one compares two matrices.

First interface:

function mfMax(A, dim, nanflag) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

character(len=*), intent(in), optional :: nanflag

type(mfArray) :: out

If dim is present, A is always considered as a matrix, and the returned vector contains the maximum of
each column (if dim = 1) or the maximum of each row (if dim = 2).

If dim is not present: if A is a vector, mfMax returns the largest element; otherwise it returns the max of
each columns.

If the string nanflag is present, it must be equal to either "omitNaN", or "includeNaN" (practically, the
argument is not case sensitive). By default, NaN values are discarded (see examples below), so "omitNaN"
is implied.

For a sparse mfArray A, the result is exactly the same as for the full corresponding matrix. In all cases
(sparse or dense), it must contain real values.

Second interface:

function mfMax(A, B, nanflag) result(out)

type(mfArray), intent(in) :: A

type(mfArray), intent(in) :: B

or real(kind=MF_DOUBLE), intent(in) :: B

character(len=*), intent(in), optional :: nanflag

type(mfArray) :: out

When the two arguments A and B are mfArrays (sparse storage is allowed), they must have the same
shape and must contain real values; in this case, the max operation is applied element-wise. Otherwise,
the second argument B may be a scalar real.

The optional argument nanflag has the same meaning as in the first interface.

See also: mfMin, msMax, mfExtrema

Example(s):

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(mfMax(x), "mfMax(x)")

output:

mfMax(x) =

5.0000

. . ./ . . .

121

MUESLI Reference Manual (index) FML: Data Analysis Functions

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(mfMax(x,nanflag=’includeNaN’), "mfMax(x,nanflag=’includeNaN’)")

output:

mfMax(x,nanflag=’includeNaN’) =

NaN

x = [MF_NAN, MF_NAN]

call msDisplay(mfMax(x), "mfMax(x)")

output:

mfMax(x) =

NaN

122

MUESLI Reference Manual (index) FML: Data Analysis Functions

msMax mfArray max

Calling syntax:

call msMax(mfOut(v,i), A [, dim, nanflag])

Description:

Computes the maximum value of the columns (default behavior) or of the rows of the mfArray A (real
values only) and shows where this maximum occurs.

If dim is present, A is always considered as a matrix, and the vector v contains the maximum of each
column (if dim = 1) or the maximum of each row (if dim = 2). indices of these maxima are returned in
the vector i.

If dim is not present: if A is a vector, msMax returns the largest element in v and the corresponding index
in i; otherwise it returns the max of each columns in v and the corresponding indices in i.

The optional argument nanflag has the same meaning as in the mfMax routine.

For a sparse mfArray A, the result is exactly the same as for the full corresponding matrix. In all cases
(sparse or dense), it must contain real values.

See also: mfOut, msMin, mfExtrema

Example(s):

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(x, "x")

call msMax(mfOut(a,i), x)

call msDisplay(a, "max")

call msDisplay(i, "for index")

output:

x =

1.0000 NaN 5.0000 2.0000 4.0000

max =

5

for index =

3

call msMax(mfOut(a,i), x, nanflag=’includeNaN’)

call msDisplay(a, "max")

call msDisplay(i, "for index")

output:

max =

NaN

for index =

2

123

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfMin mfArray min

mfMin has two forms. The first one is used to compute the minimum value of the columns (default
behavior) or of the row of an mfArray. The second one compares two matrices.

First interface:

function mfMin(A, dim, nanflag) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

character(len=*), intent(in), optional :: nanflag

type(mfArray) :: out

If dim is present, A is always considered as a matrix, and the returned vector contains the minimum of
each column (if dim = 1) or the minimum of each row (if dim = 2).

If dim is not present: if A is a vector, mfMin returns the smallest element; otherwise it returns the min
of each columns.

If the string nanflag is present, it must be equal to either "omitNaN", or "includeNaN" (practically, the
argument is not case sensitive). By default, NaN values are discarded (see examples below), so "omitNaN"
is implied.

For a sparse mfArray A, the result is exactly the same as for the full corresponding matrix. In all cases
(sparse or dense), it must contain real values.

Second interface:

function mfMin(A, B, nanflag) result(out)

type(mfArray), intent(in) :: A

type(mfArray), intent(in) :: B

or real(kind=MF_DOUBLE), intent(in) :: B

character(len=*), intent(in), optional :: nanflag

type(mfArray) :: out

When the two arguments A and B are mfArrays (sparse storage is allowed), they must have the same
shape and must contain real values; in this case, the min operation is applied element-wise. Otherwise,
the second argument B may be a scalar real.

The optional argument nanflag has the same meaning as in the first interface.

See also: mfMax, msMin, mfExtrema

Example(s):

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(mfMin(x), "mfMin(x)")

output:

mfMin(x) =

1.0000

. . ./ . . .

124

MUESLI Reference Manual (index) FML: Data Analysis Functions

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(mfMin(x,nanflag=’includeNaN’), "mfMin(x,nanflag=’includeNaN’)")

output:

mfMin(x,nanflag=’includeNaN’) =

NaN

x = [MF_NAN, MF_NAN]

call msDisplay(mfMin(x), "mfMin(x)")

output:

mfMin(x) =

NaN

125

MUESLI Reference Manual (index) FML: Data Analysis Functions

msMin mfArray min

Calling syntax:

call msMin(mfOut(v,i), A [, dim, nanflag])

Description:

Computes the minimum value of the columns (default behavior) or of the rows of the mfArray A (real
values only) and shows where this minimum occurs.

If dim is present, A is always considered as a matrix, and the vector v contains the minimum of each
column (if dim = 1) or the minimum of each row (if dim = 2). indices of these minima are returned in
the vector i.

If dim is not present: if A is a vector, mfMax returns the smallest element in v and the corresponding
index in i; otherwise it returns the min of each columns in v and the corresponding indices in i.

The optional argument nanflag has the same meaning as in the mfMin routine.

For a sparse mfArray A, the result is exactly the same as for the full corresponding matrix. In all cases
(sparse or dense), it must contain real values.

See also: mfOut, msMax, mfExtrema

Example(s):

x = [1.0d0, MF_NAN, 5.0d0, 2.0d0, 4.0d0]

call msDisplay(x, "x")

call msMin(mfOut(a,i), x)

call msDisplay(a, "min")

call msDisplay(i, "for index")

output:

x =

1.0000 NaN 5.0000 2.0000 4.0000

min =

1

for index =

1

call msMin(mfOut(a,i), x, nanflag=’includeNaN’)

call msDisplay(a, "min")

call msDisplay(i, "for index")

output:

min =

NaN

for index =

2

126

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfExtrema data extrema

Interface:

function mfExtrema(A, nanflag) result(out)

type(mfArray), intent(in) :: A

character(len=*), intent(in), optional :: nanflag

type(mfArray) :: out

Description:

Returns in an mfArray the two extreme values of an mfArray, in ascent order, i. e. the couple (min,
max).

The optional argument nanflag has the same meaning as in the mfMin and mfMax routines.

See also: msMin, msMax

Example(s):

x = [5, 9, 3, 6, 0, 2]

call msDisplay(x, "x")

call msDisplay(mfExtrema(x), "extrema")

output:

x =

5 9 3 6 0 2

extrema =

0 9

x = [5, 9, MF_NAN, 6, 0, 2]

call msDisplay(x, "x")

call msDisplay(mfExtrema(x,nanflag=’includeNaN’), "extrema (include NaN)")

output:

x =

5 9 NaN 6 0 2

extrema (include NaN) =

NaN NaN

127

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfSum columns sum

Interface:

function mfSum(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the sum of the columns (or rows) of an mfArray.

If dim is present, A is always considered as a matrix, and the output contains the sum of each column
(if dim = 1) or the sum of each row (if dim = 2).

If dim is not present: if A is a vector, mfSum returns the sum of all elements; otherwise it returns the
sum of each columns.

See also: mfProd

128

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfProd columns product

Interface:

function mfProd(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the product of the columns (or rows) of an mfArray. The behavior of this routine is similar
to the product Fortran 90 intrinsic function.

If dim is present, A is always considered as a matrix, and the output contains the product of each column
(if dim = 1) or the product of each row (if dim = 2).

If dim is not present: if A is a vector, mfSum returns the product of all elements; otherwise it returns the
product of each columns.

Remarks: this routine cannot be applied to a boolean mfArray.

Warning: this function cannot be applied to sparse matrices.

See also: mfSum

129

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfSort columns sort

Interface:

function mfSort(A, dim, mode) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

character(len=*), intent(in), optional :: mode

type(mfArray) :: out

Description:

If dim is not present, sorts the values of the vector A, and returns the sorted vector in an mfArray.

If dim is present, A may be a matrix. In this case, the sort is applied to the columns if dim is equal to
1, and to the rows if dim is equal to 2.

Remarks:

− this routine is appropriate for 2D arrays containing unrelated data in rows. If you want to sort
a particular column, keeping the coherence of the lines (i. e. sorting the whole lines by key), you
have to write your own code, based on the msSort version (see an example in the Muesli User’s
Guide); this means also that it is not possible to sort one specific column (or row) while keeping
the others unchanged.

− this routine use a quick sort algorithm. By default, or if the optional argument mode is equal to
"ascending" values are sorted in increasing order; on the contrary, if the optional argument mode
is equal to "descending" values are sorted in decreasing order.

− currently, only rank-1 mfArrays (i. e. vectors) may contain NaN values. These NaN s are moved
to the tail of the sorted vector.

− see msSort for an ’in-place’ version.

Warning: If the mfArray A is a matrix, it must be real; for a complex vector mfArray, the sort is applied
first on the module values, then on the phase-angle.

See also: msSort, mfSortRows

Example(s):

x = mf([1.0d0, MF_NAN, 5.0d0, MF_NAN, 2.0d0, 4.0d0])

call msDisplay(x, "x")

call msDisplay(mfSort(x), "mfSort(x)")

call msDisplay(mfSort(x,’descending’), "mfSort(x,’descending’)")

output:

x =

1.0000 NaN 5.0000 NaN 2.0000 4.0000

mfSort(x) =

1.0000 2.0000 4.0000 5.0000 NaN NaN

mfSort(x,’descending’) =

5.0000 4.0000 2.0000 1.0000 NaN NaN

130

MUESLI Reference Manual (index) FML: Data Analysis Functions

msSort columns sort

First calling syntax:

call msSort (A [, dim, mode])

The ’in-place’ version of mfSort.

Second calling syntax:

call msSort (mfOut(v,i), A [, dim, mode])

Similar to mfSort but the result is returned in the mfArray v; in addition, indices of the sort are stored
in the vector i.

See also: mfOut, mfSortRows

Example(s):

x = mfMagic(3)

call msDisplay(x, "x")

call msSort(mfOut(a,i), x, dim=1)

call msDisplay(a, "ascending column sort")

call msDisplay(i, "with indices")

call msSort(mfOut(a,i), x, dim=2, mode="descending")

call msDisplay(a, "descending row sort")

call msDisplay(i, "with indices")

output:

x =

8 3 4

1 5 9

6 7 2

ascending column sort =

1 3 2

6 5 4

8 7 9

with indices =

2 1 3

3 2 1

1 3 2

descending row sort =

8 4 3

9 5 1

7 6 2

with indices =

1 3 2

3 2 1

2 1 3

131

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfIsSorted vector sort test

Interface:

bool = mfIsSorted(v, mode)

Description:

Checks that the mfArray vector v is sorted, according the mode, which can be equal to "ascend",
"descend" or "either".

If the optional argument mode is not present, then an ascending sort is presumed.

This function returns a logical.

Remarks:

− currently, only rank-1 mfArrays (i. e. vectors) can be checked.

− the vector v may contain NaN values. The vector is considered as sorted if all NaN s are located
at the end.

− for a complex vector mfArray, sorting concerns first the module, then the phase-angle.

See also: mfSort

132

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfSortRows sort whole rows of a matrix

First interface:

function mfSortRows(A, col, mode) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), :: col

character(len=*), intent(in), optional :: mode

type(mfArray) :: out

Description:

Sorts the rows of the matrix A according to the specified column given by col, and returns the result in
an mfArray.

Remarks:

− this routine use a quick sort algorithm. By default, or if the optional argument mode is equal to
"ascending" values are sorted in increasing order; on the contrary, if the optional argument mode
is equal to "descending" values are sorted in decreasing order.

− currently, the matrix A should not contain NaN values.

Warning: The mfArray A must be real.

Other interface:

function mfSortRows(A, cols) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: cols(:)

type(mfArray) :: out

Description:

Same as before except that the sort of the rows is made by many columns, not necessarily in order,
stored in cols (if present). The only constraint is that the size of cols must less or equal the number
of columns of A. If cols is not present, then the sort is done by all columns, in order.

In this new interface, the direction of the sort is specified by the sign of the elements of the cols argument:
when a column number is positive, the sort is ascending; in the opposite, i. e. when it is negative, the
sort is descending.

See also: mfSort, msSort

Example(s):

x = mfMagic(3)

call msDisplay(x, "x")

call msDisplay(mfSortRows(x,3), "mfSortRows(x,3)")

call msDisplay(mfSortRows(x,1,"descending"), "mfSortRows(x,1,’descending’)")

. . ./ . . .

133

MUESLI Reference Manual (index) FML: Data Analysis Functions

output:

x =

8 3 4

1 5 9

6 7 2

mfSortRows(x,3) =

6 7 2

8 3 4

1 5 9

mfSortRows(x,1,’descending’) =

6 7 2

1 5 9

8 3 4

x = mf([3, 6, 2, 5]) .vc. &

mf([2, 1, 4, 2]) .vc. &

mf([1, 0, 0, 3]) .vc. &

mf([2, 1, 5, 1]) .vc. &

mf([2, 3, 3, 1])

call msDisplay(x,"x")

call msDisplay(mfSortRows(x,[3]), "sortrows(x,[3])")

call msDisplay(mfSortRows(x,[1,-3]), "sortrows(x,[1,-3])")

output:

x =

3 6 2 5

2 1 4 2

1 0 0 3

2 1 5 1

2 3 3 1

sortrows(x,[3]) =

1 0 0 3

3 6 2 5

2 3 3 1

2 1 4 2

2 1 5 1

sortrows(x,[1,-3]) =

1 0 0 3

2 1 5 1

2 1 4 2

2 3 3 1

3 6 2 5

134

MUESLI Reference Manual (index) FML: Data Analysis Functions

msSortRows sort whole rows of a matrix

First calling syntax:

call msSortRows (A, col [, mode])

or

call msSortRows (A [, cols])

The ’in-place’ version of mfSortRows.

Second calling syntax:

call msSortRows (mfOut(v,i), A, col [, mode])

or

call msSortRows (mfOut(v,i), A [, cols])

Similar to mfSortRows but the result is returned in the mfArray v; in addition, indices of the sort are
stored in the vector i.

See also: mfOut, mfSortRows

Example(s):

x = mf([3, 6, 2, 5]) .vc. &

mf([2, 1, 4, 2]) .vc. &

mf([1, 0, 0, 3]) .vc. &

mf([2, 1, 5, 1]) .vc. &

mf([2, 3, 3, 1])

call msDisplay(x,"x")

call msSortRows(mfOut(a,i), x)

call msDisplay(a,"fully row sorted", i,"with row indices")

output:

x =

3 6 2 5

2 1 4 2

1 0 0 3

2 1 5 1

2 3 3 1

fully row sorted =

1 0 0 3

2 1 4 2

2 1 5 1

2 3 3 1

3 6 2 5

with row indices =

3

2

4

5

1

135

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfDiff difference and approximate derivative

Interface:

function mfDiff(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the difference of two consecutive values of the columns (or rows) of an mfArray A.

If dim is present, A is always considered as a matrix, and the routine computes the difference of two
consecutive values for each column (if dim = 1) or for each row (if dim = 2).

If dim is not present: if A is a vector, then mfDiff computes the difference of two consecutive values in
the natural way; otherwise the same process is applied for each columns.

Remark: this function cannot be applied to sparse matrices.

See also: mfGradient, msGradient

Example(s):

x = mf([1, 2, 3, 2, 1])

call msDisplay(x, "x")

call msDisplay(mfDiff(x), "mfDiff(x)")

output:

x =

1 2 3 2 1

mfDiff(x) =

1 1 -1 -1

136

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfGradient approximate 1D gradient

Calling syntax:

D = mfGradient(F, h [, dim, location])

Description:

Computes the gradient D of the rank-1 mfArray F.

If dim is present, F is always considered as a matrix, and the routine computes the gradient for each
column (if dim = 1) or for each row (if dim = 2).

If dim is not present: if F is a vector, then mfGradient computes the gradient in the natural way;
otherwise the same process is applied for each columns.

The data is supposed to be equally spaced with h as increment. h may be a double precision real or a
scalar mfArray; it may have negative values.

If the optional argument location (character string) is equal to "centered" then the gradient is com-
puted on an internal centered, staggered grid; otherwise it is computed at the same points as F.

Remark: The gradient is computed using second order formulæ.

See also: msGradient, mfDiff, mfOut

Example(s):

integer :: nx = 5

real(kind=MF_DOUBLE) :: lx = 1.0d0, hx

x = mfLinSpace(0.0d0,lx,nx)

F = x**2

call msDisplay(F, "F")

hx = lx/(nx-1)

Fx = mfGradient(F, hx)

call msDisplay(Fx, "Fx = grad_x(F)")

output:

F =

0.0000 0.0625 0.2500 0.5625 1.0000

Fx = grad_x(F) =

0.0000 0.5000 1.0000 1.5000 2.0000

fx = mfGradient(F, hx, "centered")

call msDisplay(fx, "grad_x(F)")

output:

grad_x(z) =

0.2500 0.7500 1.2500 1.7500

137

MUESLI Reference Manual (index) FML: Data Analysis Functions

msGradient approximate 2D gradient

Calling syntax:

call msGradient(mfOut(Fi, Fj), F, hi, hj [, location])

Description:

Computes the gradient of the rank-2 mfArray F, along the two dimensions. The data are supposed to
be equally spaced in both direction, with hi and hj as increments, which may have negative values.

As a result, Fi is the gradient of F with respect to increasing indices i (i. e. along the rows) and Fj is
the gradient of F with respect to increasing indices j (i. e. along the columns).

If the optional argument location (character string) is equal to "centered" then the two components
of the gradient are computed on an internal centered, staggered grid; otherwise they are computed at
the same points as F.

Remarks:

− this function cannot be applied to sparse matrices. For all cases and all points, the gradient is
computed using second order formulæ.

− if the data matrix F is associated to coordinates X and Y , hi and hj may be chosen to give directly
the two components Fx and Fy (see the Muesli User Guide, section entitled “Data Analysis with
mfArrays”).

See also: mfGradient, mfDiff, mfOut

Example(s):

integer :: nx = 5, ny = 5

real(kind=MF_DOUBLE) :: lx = 1.0d0, ly = 2.0d0, hx, hy

call msMeshGrid(mfOut(x,y), mfLinSpace(0.0d0,lx,nx), &

.t. mfLinSpace(ly,0.0d0,ny))

call msDisplay(x, "x", y, "y")

F = (2*x+y)**2

call msDisplay(F, "F")

hx = lx/(nx-1)

hy = -ly/(ny-1)

call msGradient(mfOut(Fy,Fx), F, hy, hx)

call msDisplay(Fx, "Fx = grad_x(F)", Fy, "Fy = grad_y(F)")

output:

x =

0.0000 0.2500 0.5000 0.7500 1.0000

0.0000 0.2500 0.5000 0.7500 1.0000

0.0000 0.2500 0.5000 0.7500 1.0000

0.0000 0.2500 0.5000 0.7500 1.0000

0.0000 0.2500 0.5000 0.7500 1.0000

. . ./ . . .

138

MUESLI Reference Manual (index) FML: Data Analysis Functions

y =

2.0000 2.0000 2.0000 2.0000 2.0000

1.5000 1.5000 1.5000 1.5000 1.5000

1.0000 1.0000 1.0000 1.0000 1.0000

0.5000 0.5000 0.5000 0.5000 0.5000

0.0000 0.0000 0.0000 0.0000 0.0000

F =

4.0000 6.2500 9.0000 12.2500 16.0000

2.2500 4.0000 6.2500 9.0000 12.2500

1.0000 2.2500 4.0000 6.2500 9.0000

0.2500 1.0000 2.2500 4.0000 6.2500

0.0000 0.2500 1.0000 2.2500 4.0000

Fx = grad_x(F) =

8 10 12 14 16

6 8 10 12 14

4 6 8 10 12

2 4 6 8 10

0 2 4 6 8

Fy = grad_y(F) =

4 5 6 7 8

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

0 1 2 3 4

call msGradient(mfOut(Fy,Fx), F, hy, hx, "centered")

call msDisplay(Fx, "Fx = grad_x(F)", Fy, "Fy = grad_y(F)")

output:

Fx = grad_x(F) =

8 10 12 14

6 8 10 12

4 6 8 10

2 4 6 8

Fy = grad_y(F) =

4 5 6 7

3 4 5 6

2 3 4 5

1 2 3 4

139

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfMean columns mean

Interface:

function mfMean(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the mean of the columns (or rows) of an mfArray, as
1

N

N∑
i=1

ai .

If dim is present, A is always considered as a matrix, and the output contains the mean of each column
(if dim = 1) or the mean of each row (if dim = 2).

If dim is not present: if A is a vector, mfMean returns the mean of all elements; otherwise it returns the
mean of each columns.

Warning:

− this function cannot be applied to sparse matrices;

− the user must take care that the mfArray A doesn’t contain any NaN values.

See also: mfMedian, mfVar, mfStd, mfRMS, mfMoments

140

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfMedian columns median

Interface:

function mfMedian(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the median of the columns (or rows) of an mfArray. The median value of a vector is, after
sorting this vector, the value located in the middle.

If dim is present, A is always considered as a matrix, and the output contains the median of each column
(if dim = 1) or the median of each row (if dim = 2).

If dim is not present: if A is a vector, mfMedian returns the median of all elements; otherwise it returns
the median of each columns.

Warning:

− this function cannot be applied to sparse matrices;

− the user must take care that the mfArray A doesn’t contain any NaN values.

See also: mfMean, mfVar, mfStd, mfMoments

141

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfVar columns variance

Interface:

function mfVar(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the variance of the columns (or rows) of an mfArray, as
1

N

N∑
i=1

(ai − ā)2, with ā =
1

N

N∑
i=1

ai .

If dim is present, A is always considered as a matrix, and the output contains the variance of each column
(if dim = 1) or the variance of each row (if dim = 2).

If dim is not present: if A is a vector, mfVar returns the variance of all elements; otherwise it returns the
variance of each columns.

Warning:

− this function cannot be applied to sparse matrices;

− the user must take care that the mfArray A doesn’t contain any NaN values.

See also: mfMean, mfMedian, mfStd, mfMoments

142

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfStd columns standard deviation

Interface:

function mfStd(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the standard deviation of the columns (or rows) of an mfArray. The standard deviation is
the square root of the variance.

If dim is present, A is always considered as a matrix, and the output contains the standard deviation of
each column (if dim = 1) or the standard deviation of each row (if dim = 2).

If dim is not present: if A is a vector, mfStd returns the standard deviation of all elements; otherwise it
returns the standard deviation of each columns.

Warning:

− this function cannot be applied to sparse matrices;

− the user must take care that the mfArray A doesn’t contain any NaN values.

See also: mfMean, mfRMS, mfMedian, mfVar, mfMoments

143

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfRMS root mean square

Interface:

function mfRMS(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Computes the Root-Mean-Square of the columns (or rows) of an mfArray.

The RMS is defined by:

aRMS =

√√√√ 1

N

N∑
i=1

a2i

where N is the number of elements xi. The following relation holds:

a2RMS = ā2 + σ2
a

so the RMS of a signal is synonym to its standard deviation only when the mean is zero.

If dim is present, A is always considered as a matrix, and the output contains the mean of each column
(if dim = 1) or the RMS of each row (if dim = 2).

If dim is not present: if A is a vector, mfRMS returns the RMS of all elements; otherwise it returns the
RMS of each columns.

Warning:

− this function can be applied only to real, dense matrices;

− the user must take care that the mfArray A doesn’t contain any NaN values.

See also: mfMean, mfMedian, mfVar, mfStd, mfMoments

144

MUESLI Reference Manual (index) FML: Data Analysis Functions

msHist data histogram

Calling syntax:

call msHist(mfOut(num [, x_bin]), x, x_min, x_max, n_bin)

computes a data histogram.

The vector mfArray x contains the data. The histogram is computed for data ranged from x min to
x max using a number of bins equal to n bin.

The output mfArray num is a vector of the bins values (length equal to n bin).

If present, the output mfArray x bin is a vector containing the abscissas of the bins (length equal to
n bin+1).

Note: to process discrete data, it is recommended to choose x min as the minimum integer value minus
1/2, and x max as the maximum integer value plus 1/2 (see example below).

See also: mf/msBar, mf/msPlotHist, msCumulHist, mfOut

Example(s):

x = .t. mf([12, 11, 8, 10, 6, 8, 9, 10, 12, 9, 10, 8, 6, 10])

call msHist(mfOut(y, z), x, 6.0d0-0.5d0, 12.0d0+0.5d0, 7)

call msDisplay(y, "y (hist)", z, "z (x_bin)")

output:

y (hist) =

2

0

3

2

4

1

2

z (x_bin) =

5.5000

6.5000

7.5000

8.5000

9.5000

10.5000

11.5000

12.5000

145

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfMoments few first moments of a distribution

Interface:

function mfMoments(v) result(out)

type(mfArray), intent(in) :: v

type(mfArray) :: out

Description:

Computes some moments of the data distribution provided in the vector mfArray v.

It returns a vector mfArray of length 6, containing in order:

− the mean value of data

− the average deviation

− the standard deviation

− the variance

− the skewness

− the kurtosis

Warning:

− this function cannot be applied to sparse matrices;

− the user must take care that the mfArray v doesn’t contain any NaN values.

See also: mfMean, mfMedian, mfVar, mfStd

146

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfSmooth smoothing of vector values

Interface:

function mfSmooth(v [, span]) result(out)

type(mfArray), intent(in) :: v

integer, intent(in), optional :: span

type(mfArray) :: out

Description:

Applies the moving average method to the vector mfArray v. It is equivalent to a lowpass filter.

The width of the sliding window is span which must be a non negative integer. The span value should
not be greater than the number of elements in v. The default value is 5.

See also: mfSpline

147

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfXCorr autocorrelation of a vector data

Interface:

function mfXCorr(v [, maxlag, scale]) result(out)

type(mfArray), intent(in) :: v

integer, intent(in), optional :: maxlag

character(len=*), intent(in), optional :: scale

type(mfArray) :: out

Description:

Computes the autocorrelation of the real vector mfArray v.

The output mfArray out is a vector having an odd number of elements, and is symmetric with respect
to its center.

Its maximum corresponds to a lag equal to zero. This maximum is equal to 1 when the optional argument
scale is set to "normalized".

The maximum lag used can be set by using the optional maxlag argument. By default, its value is equal
to N − 1, where N is the length of the vector v.

See also: mfXCorr2

148

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfXCorr2 autocorrelation of a matrix data

Interface:

function mfXCorr2(A [, maxlag_r, maxlag_c, scale]) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: maxlag_r, maxlag_c

character(len=*), intent(in), optional :: scale

type(mfArray) :: out

Description:

Computes the autocorrelation of the real matrix mfArray A. It is similar to the mfXCorr routine.

The output mfArray out is a matrix having an odd number of rows and columns, and is symmetric with
respect to its center.

Its maximum corresponds to a lag equal to zero. This maximum is equal to 1 when the optional argument
scale is set to "normalized".

The maximum lag used for the row shift (resp. the column shift) can be set by using the optional
maxlag r argument (resp. maxlag c). By default, their value is equal to the size of thecorresponding
dimension.

See also: mfXCorr

149

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfFFT discrete Fast Fourier transformation

Interface:

function mfFFT(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Applies a Fast Fourier transformation to the columns (or rows) of an mfArray, real or complex. The
output mfArray is always complex.

If dim is present, A is always considered as a matrix, and the output contains the transformation coeffi-
cients of each column (if dim = 1) or the transformation of each row (if dim = 2).

If dim is not present: if A is a vector, mfFFT returns the transformation of all elements; otherwise it
returns the transformation of each columns.

Warning: this function cannot be applied to sparse matrices.

Remarks: abscissa are supposed to be equally spaced.

See also: mfInvFFT, mfFFT2, mfFourierCos, mfFourierSin, mfFourierLeg

150

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfInvFFT inverse Fast Fourier transformation

Interface:

function mfInvFFT(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

This is the inverse tranformation of mfFFT. So, for any vector v, we have:

v = mfInvFFT(mfFFT(v))

See also: mfFFT, mfFFT2, mfFourierCos, mfFourierSin, mfFourierLeg

151

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfFFT2 2D discrete Fast Fourier transformation

Interface:

function mfFFT2(A) result(out)

type(mfArray), intent(in) :: A

type(mfArray) :: out

Description:

Applies a two dimensional Fast Fourier transformation to the mfArray A, real or complex. The output
mfArray is always complex.

Warning: this function cannot be applied to sparse matrices.

Remarks: abscissa are supposed to be equally spaced for both dimensions.

See also: mfInvFFT2, mfFFT, mfFourierCos, mfFourierSin, mfFourierLeg

152

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfInvFFT2 inverse 2D Fast Fourier transformation

Interface:

function mfInvFFT2(A) result(out)

type(mfArray), intent(in) :: A

type(mfArray) :: out

Description:

This is the inverse tranformation of mfFFT2. So, for any complex matrix A, we have:

A = mfInvFFT(mfFFT(A))

See also: mfFFT2, mfFFT, mfFourierCos, mfFourierSin, mfFourierLeg

153

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfFourierCos discrete Fourier cosine transformation

Interface:

function mfFourierCos(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Applies a discrete Fourier cosine transformation to the columns (or rows) of an mfArray.

If dim is present, A is always considered as a matrix, and the output contains the transformation coeffi-
cients of each column (if dim = 1) or the transformation of each row (if dim = 2).

If dim is not present: if A is a vector, mfFourierCos returns the transformation of all elements; otherwise
it returns the transformation of each columns.

Warning: this function cannot be applied to sparse matrices. Moreover, the array must contain real
values.

Remarks:

− abscissa are supposed to be equally spaced;

− actually, data are already considered symmetric on the interval [−n + 1, n + 1]; therefore, there
doesn’t exist any constraint on the value of the data vector.

See also: mfInvFourierCos, mfFFT, mfFFT2, mfFourierSin, mfFourierLeg

154

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfInvFourierCos inverse Fourier cosine transformation

Interface:

function mfInvFourierCos(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

This is the inverse tranformation of mfFourierCos. So, for any vector v, we have:

v = mfInvFourierCos(mfFourierCos(v))

See also: mfFourierCos, mfFFT, mfFFT2, mfFourierSin, mfFourierLeg

155

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfFourierSin Fourier sine transformation

Interface:

function mfFourierSin(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Applies a discrete Fourier sine transformation to the columns (or rows) of an mfArray.

If dim is present, A is always considered as a matrix, and the output contains the transformation coeffi-
cients of each column (if dim = 1) or the transformation of each row (if dim = 2).

If dim is not present: if A is a vector, mfFourierSin returns the transformation of all elements; otherwise
it returns the transformation of each columns.

Warning: this function cannot be applied to sparse matrices. Moreover, the array must contain real
values.

Remarks:

− abscissa are supposed to be equally spaced;

− actually, data are already considered antisymmetric on the interval [−n+1, n+1]; therefore, there
exists some constraints: the conditions y(1) = y(n+ 1) = 0 are required.

See also: mfInvFourierSin, mfFFT, mfFFT2, mfFourierCos, mfFourierLeg

156

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfInvFourierSin inverse Fourier sine transformation

Interface:

function mfInvFourierSin(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

This is the inverse tranformation of mfFourierSin. So, for any vector v, we have:

v = mfInvFourierSin(mfFourierSin(v))

See also: mfFourierSin, mfFFT, mfFFT2, mfFourierCos, mfFourierLeg

157

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfFourierLeg Fourier-Legendre transform

Interface:

function mfFourierLeg(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

Applies a discrete Fourier-Legendre transformation to the columns (or rows) of an mfArray.

This transformation is also called “discrete spherical Fourier transform”.

If dim is present, A is always considered as a matrix, and the output contains the transformation coeffi-
cients of each column (if dim = 1) or the transformation of each row (if dim = 2).

If dim is not present: if A is a vector, mfFourierLeg returns the transformation of all elements; otherwise
it returns the transformation of each columns.

Warning: this function cannot be applied to sparse matrices. Moreover, the array must contain real
values.

Remarks:

− abscissa are supposed to be spanned over [−1, 1] like a cos(θ) function, with θ equally spaced;

− actually, data are already considered symmetric on the interval [−n + 1, n + 1]; therefore, there
doesn’t exist any constraint on the value of the data vector.

See also: mfInvFourierLeg, mfLegendre, mfFFT, mfFFT2, mfFourierSin, mfFourierCos

158

MUESLI Reference Manual (index) FML: Data Analysis Functions

mfInvFourierLeg inverse Fourier-Legendre transform

Interface:

function mfInvFourierLeg(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

This is the inverse tranformation of mfFourierLeg. So, for any vector v, we have:

v = mfInvFourierLeg(mfFourierLeg(v))

See also: mfFourierLeg, mfLegendre, mfFFT, mfFFT2, mfFourierSin, mfFourierCos

159

MUESLI Reference Manual (index) FML: Operators

1.4 Operators

+ mfArray sum
- mfArray difference
mfMul, .x. mfArray product
mfCross cross-product of two vectors
mfKron Kronecker tensor product

* mfArray element-wise product
/ mfArray element-wise quotient
** mfArray element-wise exponentiation

.t. mfArray transposition

.h. mfArray conjugate transposition

.vc. vertical concatenation

.hc. horizontal concatenation
msHorizConcat sparse matrix horizontal concatenation

mfColPerm, msColPerm columns permutation
mfRowPerm, msRowPerm rows permutation
mfInvPerm inverse of a permutation
mfColScale, msColScale columns scaling
mfRowScale, msRowScale rows scaling
msColAutoScale columns auto scaling
msRowAutoScale rows auto scaling

>=, > mfArray relational operator
<=, < mfArray relational operator
==, /= mfArray relational operator

mfAll, mfAny mfArray boolean operator

mfColon mfArray sequence constructor

.not., .and., .or. mfArray logical operator

.eqv., .neqv. mfArray logical operator

mfIsMember elements members of a set
mfIntersect common elements of two sets
mfUnion all elements of two sets
mfUnique unique elements of a set

See also:

Core Routines

File Input/Output

Data Analysis Functions

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

160

MUESLI Reference Manual (index) FML: Operators

Sparse Matrices

161

MUESLI Reference Manual (index) FML: Operators

+ mfArray sum

Calling syntax:

C = A + B

Description:

Computes the sum of two mfArrays of same shape.

One of them may be a scalar of type real (single or double) or complex; in such a case, if the mfArray
is not a scalar, then the operation is made on all elements.

Remarks: A and B may have a dense or sparse structure.

See also: -

162

MUESLI Reference Manual (index) FML: Operators

- mfArray difference

Calling syntax:

C = A - B

Description:

Computes the difference of two mfArrays of same shape.

One of them may be a scalar of type real (single or double) or complex; in such a case, if the mfArray
is not a scalar, then the operation is made on all elements.

Remarks: A and B may have a dense or sparse structure.

See also: +

163

MUESLI Reference Manual (index) FML: Operators

mfMul, .x. mfArray product

Interface:

function mfMul(A, B, transp) result(out)

type(mfArray), intent(in) :: A, B

integer, intent(in), optional :: transp

type(mfArray) :: out

A .x. B is a shortcut for writing: mfMul(A, B)

Description:

Computes the matrix product A ∗B (which is not commutative).

When the optional argument transp is present, it computes A′ ∗ B (transp=1) or A ∗ B′ (transp=2).
This latter option is valid only for dense mfArrays.

The shape of the two matrices must respect the classical matrix-product rule, according to the value of
transp.

Remarks: the element-wise operation is done with the operator ‘*’.

This routine can be applied to dense or sparse mfArrays of any type (real or complex).

See also: mfCross

164

MUESLI Reference Manual (index) FML: Operators

mfCross cross-product of two vectors

Interface:

function mfCross(u, v) result(out)

type(mfArray), intent(in) :: u, v

type(mfArray) :: out

Description:

Computes the cross-product of two vectors in R3.

See also: mfMul

165

MUESLI Reference Manual (index) FML: Operators

mfKron Kronecker tensor product

Interface:

function mfKron(A, B) result(out)

type(mfArray), intent(in) :: A, B

type(mfArray) :: out

Description:

Computes the Kronecker product of A and B. If the shape of A is (m,n) and the shape of B is (p, q), then
the shape of the Kronecker product will be (mp, n q).

The mfArrays A and B may be dense or sparse.

Remark: Currently, only real mfArrays are accepted.

See also: mfMul

166

MUESLI Reference Manual (index) FML: Operators

* mfArray element-wise product

Calling syntax:

C = A * B

Description:

Computes the product (element-wise) of two mfArrays of same shape.

One of them may be a scalar of type real (single or double) or complex; in such a case, if the mfArray
is not a scalar, then the operation is made on all elements.

Only for this routine, B may be of type mfUnit. This feature allows the user to change the physical unit
of the mfArray A.

Remarks: A and B may have a dense or sparse structure.

See also: mfMul, /

167

MUESLI Reference Manual (index) FML: Operators

/ mfArray element-wise quotient

Calling syntax:

C = A / B

Description:

Computes the division (element-wise) of two mfArrays of same shape.

One of them may be a scalar of type real (single or double) or complex; in such a case, if the mfArray
is not a scalar, then the operation is made on all elements.

Remarks: A and B may have a dense or sparse structure.

See also: mfLDiv, mfRDiv, *

168

MUESLI Reference Manual (index) FML: Operators

** mfArray element-wise exponentiation

Calling syntax:

C = A ** i

Description:

Computes the power (element-wise) of the mfArray A to the exponent i, which must be a scalar, of type
integer or real.

Remarks: A may have a dense or sparse structure.

169

MUESLI Reference Manual (index) FML: Operators

.t. mfArray transposition

Calling syntax:

C = .t. A

Description:

The prefixed operator ‘.t.’ transposes the mfArray A.

A warning is emitted if this routine is applied to a complex mfArray (in this case, the operator ‘.h.’
should be used instead).

Remarks: A may have a dense or sparse structure. This operator can also be applied to integer or real
arrays, of rank 1 or 2 (i. e. vector or matrix); in all cases it returns an mfArray.

170

MUESLI Reference Manual (index) FML: Operators

.h. mfArray conjugate transposition

Calling syntax:

C = .h. A

Description:

The prefixed operator ‘.h.’ returns the conjugate transpose of the mfArray A.

Remarks: A may have a dense or sparse structure. This operator should be applied to complex arrays,
of rank 1 or 2 (i. e. vector or matrix); in all cases it returns an mfArray. If A is a real mfArray, it is
converted in a complex mfArray.

See also: .t.

171

MUESLI Reference Manual (index) FML: Operators

.vc. vertical concatenation

Calling syntax:

C = A .vc. B

Description:

Vertical concatenation of mfArrays (dense and/or sparse).

A and B must have the same number of columns.

One of the two mfArrays can be empty: it enables the construction of a matrix inside a loop, from an
empty one.

Remark: This operator also accepts usual Fortran 90 1-rank numeric array (i. e. either real or complex).

See also: .hc.

172

MUESLI Reference Manual (index) FML: Operators

.hc. horizontal concatenation

Calling syntax:

C = A .hc. B

Description:

Horizontal concatenation of mfArrays (dense and/or sparse).

A and B must have the same number of rows.

One of the two mfArrays can be empty: it enables the construction of a matrix inside a loop, from an
empty one.

Remarks:

− when working with sparse mfArrays, the subroutine msHorizConcat is much more efficient.

− this operator also accepts usual Fortran 90 1-rank numeric array (i. e. either real or complex).

See also: msHorizConcat, .vc.

173

MUESLI Reference Manual (index) FML: Operators

msHorizConcat sparse matrix horizontal concatenation

Interface:

subroutine msHorizConcat(A, data)

type(mfArray), intent(in out) :: A

type(mfArray), intent(in) :: data

Description:

This subroutine version of operator(.hc.) is intended to be more efficient, because: (i) modifications
of A are made “in place” and (ii) allocation of space is anticipated and over-dimensioned.

A can be empty: it enables the construction of a matrix inside a loop, from an empty one.

The mfArrays A must be sparse; the mfArray data must be sparse if it is a matrix, but can be dense if
it is a vector.

Restrictions: the two mfArrays must have the same data type.

Remarks: use operator(.hc.) instead of for dense matrices.

See also: .hc., .vc.

174

MUESLI Reference Manual (index) FML: Operators

mf/msColPerm, columns permutation

First calling syntax:

B = mfColPerm(A, p)

Description:

Returns the columns permutation of the mfArray A (may be of any type, dense or sparse), using the
permutation p: the jth column of B is the p(j)th column of A.

In Matlab syntax or Fortran 90 notation, it computes B = A(:, p).

p is either an ordinary vector mfArray, containing the (integer) indices of the permutation, or a true
permutation mfArray (see mfPerm).

The second calling syntax:

call msColPerm(A, p)

applies the same operation, but in-place.

Remark: This routine is much more efficient than computing a column’s permutation by calling
mfGet(A,MF ALL,p).

See also: mf/msRowPerm, mf/msColScale, mf/msRowScale

175

MUESLI Reference Manual (index) FML: Operators

mf/msRowPerm, rows permutation

First calling syntax:

B = mfRowPerm(A, p)

Description:

Returns the rows permutation of the mfArray A (may be of any type, dense or sparse), using the
permutation p: the ith row of B is the p(i)th row of A.

In Matlab syntax or Fortran 90 notation, it computes B = A(p, :).

p is either an ordinary vector mfArray, containing the (integer) indices of the permutation, or a true
permutation mfArray (see mfPerm).

The second calling syntax:

call msRowPerm(A, p)

applies the same operation, but in-place.

Remark: This routine is much more efficient than computing a row’s permutation by calling
mfGet(A,p,MF ALL).

See also: mf/msColPerm, mf/msColScale, mf/msRowScale

176

MUESLI Reference Manual (index) FML: Operators

mfInvPerm, inverse of a permutation

Calling syntax:

p_inv = mfInvPerm(p)

Description:

Inverts the permutation p.

See also: mf/msColPerm, mf/msRowPerm

177

MUESLI Reference Manual (index) FML: Operators

mf/msColScale, columns scaling

First calling syntax:

B = mfColScale(A, s)

Description:

Returns the columns scaling of the mfArray A (must be numeric, dense or sparse), using the dense vector
s: the jth column of B is the jth column of A multiplied by s(j).

In Matlab syntax, it computes B = A ∗ diag(s).

Restrictions: the vector s must be a real mfArray.

The second calling syntax:

call msColScale(A, s)

applies the same operation, but in-place.

See also: mf/msColPerm, mf/msRowPerm, mf/msRowScale

178

MUESLI Reference Manual (index) FML: Operators

mf/msRowScale, rows scaling

First calling syntax:

B = mfRowScale(A, s)

Description:

Returns the rows scaling of the mfArray A (must be numeric, dense or sparse), using the dense vector
s: the ith row of B is the ith row of A multiplied by s(i).

In Matlab syntax, it computes B = diag(s) ∗A.

Restrictions: the vector s must be a real mfArray.

The second calling syntax:

call msRowScale(A, s)

applies the same operation, but in-place.

See also: mf/msColPerm, mf/msRowPerm, mf/msColScale

179

MUESLI Reference Manual (index) FML: Operators

msColAutoScale, columns auto scaling

Calling syntax:

call msColAutoScale(mfOut(s), A)

scales the columns of the mfArray A (must be numeric, dense or sparse), in such a way that the maximum
magnitude of each column is equal to 1.

It ouputs the scaling row vector s, which is a real mfArray.

See also: msRowAutoScale, mf/msColScale, mf/msRowScale

180

MUESLI Reference Manual (index) FML: Operators

msRowAutoScale, rows auto scaling

Calling syntax:

call msRowAutoScale(mfOut(s), A)

scales the rows of the mfArray A (must be numeric, dense or sparse), in such a way that the maximum
magnitude of each row is equal to 1.

It ouputs the scaling column vector s, which is a real mfArray.

See also: msColAutoScale, mf/msColScale, mf/msRowScale

181

MUESLI Reference Manual (index) FML: Operators

>= mfArray relational operator

Calling syntax:

C = A >= B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: >, <=, <, ==, /=

182

MUESLI Reference Manual (index) FML: Operators

> mfArray relational operator

Calling syntax:

C = A > B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: >=, <=, <, ==, /=

183

MUESLI Reference Manual (index) FML: Operators

<= mfArray relational operator

Calling syntax:

C = A <= B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: <, >=, >, ==, /=

184

MUESLI Reference Manual (index) FML: Operators

< mfArray relational operator

Calling syntax:

C = A < B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: <=, >=, >, ==, /=

185

MUESLI Reference Manual (index) FML: Operators

== mfArray relational operator

Calling syntax:

C = A == B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: /=, mfIsEqual, <=, <, >=, >

186

MUESLI Reference Manual (index) FML: Operators

/= mfArray relational operator

Calling syntax:

C = A /= B

Description:

Returns a boolean mfArray from two dense mfArrays, by making the comparison element-wise.

A and B must have the same shape and must be, of course, of type real.

B may be a scalar, real or even integer.

Remarks: a boolean mfArray contains TRUE and FALSE values only. It can be displayed as any
mfArray and can occur in logical operators (‘.not.’, ‘.and.’, ‘.or.’, etc.).

See also: ==, mfIsEqual, <=, <, >=, >

187

MUESLI Reference Manual (index) FML: Operators

mfAll mfArray boolean operator

Interface:

function mfAll(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

If A is a vector mfArray, returns a scalar boolean mfArray which is TRUE (i. e. 1) if all elements are
TRUE.

If A is a matrix, the routine works down the columns, returning a row vector mfArray.

If dim is present, it indicates on which dimension the routine must be applied.

See also: All, mfAny

188

MUESLI Reference Manual (index) FML: Operators

mfAny mfArray boolean operator

Interface:

function mfAny(A, dim) result(out)

type(mfArray), intent(in) :: A

integer, intent(in), optional :: dim

type(mfArray) :: out

Description:

If A is a vector mfArray, returns a scalar boolean mfArray which is TRUE (i. e. 1) if at least one element
is TRUE.

If A is a matrix, the routine works down the columns, returning a row vector mfArray.

If dim is present, it indicates on which dimension the routine must be applied.

See also: Any, mfAll

189

MUESLI Reference Manual (index) FML: Operators

mfColon mfArray sequence constructor

Interface:

A = mfColon(start, end [, step, tol])

Description:

Returns an mfArray containing a sequence: a list of reals equally spaced, from start to end, with the
specified step.

By default (i. e. when step is not present), increment is unity.

Arguments start, end and step may be of type integer or real (single or double precision), but all of
same kind and precision.

Because of the rounding errors, the last number of the sequence seldom matches to the specified value of
end, especially when step is not an integer. To avoid this unrequired behavior, the tolerance tol can be
used to round the resulting numbers in the sequence to a relative precision equal to tol. Therefore, the
tolerance tol should be present only in the case where the first three arguments are reals, all of them
having the same precision; moreover, it should be a negative power of ten, e. g. 0.001.

When step is not present, the value of end must be greater than that of start. When step is present,
its sign must be the same as that of end-start. step cannot have a zero value.

See also: mfLinSpace, mfLogSpace

Example(s):

call msDisplay(mfColon(1,15,step=3), "mfColon(1,15,step=3)")

output:

mfColon(1,15,step=3) =

1 4 7 10 13

call msDisplay(mfColon(1.0,3.0,step=0.3333,tol=0.001), &

"mfColon(1.0,3.0,step=0.3333,tol=0.001)")

output:

mfColon(1.0,3.0,step=0.3333,tol=0.001) =

1.0000 1.3330 1.6670 2.0000 2.3330 2.6670 3.0000

. . ./ . . .

190

MUESLI Reference Manual (index) FML: Operators

call msDisplay(mfColon(0.1, 1.3, step=0.2), &

"mfColon(0.1, 1.3, step=0.2)")

output:

mfColon(0.1, 1.3, step=0.2) =

0.1000 0.3000 0.5000 0.7000 0.9000 1.1000

call msDisplay(mfColon(0.1, 1.3, step=0.2, tol=0.0001), &

"mfColon(0.1, 1.3, step=0.2, tol=0.0001)")

output:

mfColon(0.1, 1.3, step=0.2, tol=0.0001) =

0.1000 0.3000 0.5000 0.7000 0.9000 1.1000 1.3000

191

MUESLI Reference Manual (index) FML: Operators

.not. mfArray logical operator

Calling syntax:

C = .not. A

Description:

Takes the negation (element-wise) of a boolean mfArray.

Remarks: a boolean mfArray is of type real and contains 1 for emphTRUE and 0 for FALSE. It can be
displayed as any mfArray; it is usually built from relational operators (’==’, ’/=’, ’>’, etc.).

See also: .and., .or., .eqv., .neqv.

192

MUESLI Reference Manual (index) FML: Operators

.and. mfArray logical operator

Calling syntax:

C = A .and. B

Description:

Composes (element-wise) two boolean mfArrays.

Remarks: a boolean mfArray is of type real and contains 1 for emphTRUE and 0 for FALSE. It can be
displayed as any mfArray; it is usually built from relational operators (’==’, ’/=’, ’>’, etc.).

See also: .not., .or., .eqv., .neqv.

193

MUESLI Reference Manual (index) FML: Operators

.or. mfArray logical operator

Calling syntax:

C = A .or. B

Description:

Composes (element-wise) two boolean mfArrays.

Remarks: a boolean mfArray is of type real and contains 1 for emphTRUE and 0 for FALSE. It can be
displayed as any mfArray; it is usually built from relational operators (’==’, ’/=’, ’>’, etc.).

See also: .not., .and., .eqv., .neqv.

194

MUESLI Reference Manual (index) FML: Operators

.eqv. mfArray logical operator

Calling syntax:

C = A .eqv. B

Description:

Composes (element-wise) two boolean mfArrays.

Remarks: a boolean mfArray is of type real and contains 1 for emphTRUE and 0 for FALSE. It can be
displayed as any mfArray; it is usually built from relational operators (’==’, ’/=’, ’>’, etc.).

See also: .not., .and., .or., .neqv.

195

MUESLI Reference Manual (index) FML: Operators

.neqv. mfArray logical operator

Calling syntax:

C = A .neqv. B

Description:

Composes (element-wise) two boolean mfArrays.

Remarks: a boolean mfArray is of type real and contains 1 for emphTRUE and 0 for FALSE. It can be
displayed as any mfArray; it is usually built from relational operators (’==’, ’/=’, ’>’, etc.).

See also: .not., .and., .or., .eqv.

196

MUESLI Reference Manual (index) FML: Operators

mfIsMember elements members of a set

Calling syntax:

E = mfIsMember(A, set [, tol])

Description:

Returns a boolean mfArray which shows which elements of the mfArray A are member of the mfArray

set.

E has the same shape as A.

The tol optional argument is the tolerance used in the comparison test. By default, tolerance is zero,
i. e. a strict equality is used to discard elements.

Remark: mfArrays A and set must be real with a dense structure.

See also: mfIntersect, mfUnion, mfUnique

Example(s):

a = mf([1, 2, 3]) .vc. mf([4, 5, 6])

set = [0, 12, 8, 6, 2, 10, 4]

call msDisplay(a, "a", set, "set")

call msDisplay(mfIsMember(a,set), "mfIsMember(a,set)")

output:

a =

1 2 3

4 5 6

set =

0 12 8 6 2 10 4

mfIsMember(a,set) =

F T F

T F T

197

MUESLI Reference Manual (index) FML: Operators

mfIntersect common elements of two sets

Calling syntax:

E = mfIntersect(A, B [, tol])

Description:

Returns an mfArray containing all elements common to the mfArrays A and B. Duplicated elements are
discarded; the result is a sorted row vector.

The tol optional argument is the tolerance used in the equality test to discard duplicated elements, if
any. By default, tolerance is zero, i. e. a strict equality is used to discard elements.

Remark: mfArrays A and B must be both real with a dense structure.

See also: mfIsMember, mfUnion, mfUnique

Example(s):

A = reshape([9, 7, 20, 4, 1, 5, 9, 7, 21, 1, 5, 25], [3, 4])

B = reshape([25, 15, 8, 8, 6, 5, 5, 4, 20, 10], [5, 2])

call msDisplay(A, "A", B, "B")

call msDisplay(mfIntersect(A,B), "mfIntersect(A,B)")

output:

A =

9 4 9 1

7 1 7 5

20 5 21 25

B =

25 5

15 5

8 4

8 20

6 10

mfIntersect(A,B) =

4 5 20 25

198

MUESLI Reference Manual (index) FML: Operators

mfUnion all elements of two sets

Calling syntax:

E = mfUnion(A, B [, tol])

Description:

Returns an mfArray containing all elements of to the mfArrays A and B. Duplicated elements are dis-
carded; the result is a sorted row vector.

The tol optional argument is the tolerance used in the equality test to discard duplicated elements, if
any. By default, tolerance is zero, i. e. a strict equality is used to discard elements.

Remark: mfArrays A and B must be both real with a dense structure.

See also: mfIsMember, mfIntersect, mfUnique

Example(s):

A = reshape([9, 7, 20, 4, 1, 5, 9, 7, 21, 1, 5, 25], [3, 4])

B = reshape([25, 15, 8, 8, 6, 5, 5, 4, 20, 10], [5, 2])

call msDisplay(A, "A", B, "B")

call msDisplay(mfIntersect(A,B), "mfIntersect(A,B)")

output:

A =

9 4 9 1

7 1 7 5

20 5 21 25

B =

25 5

15 5

8 4

8 20

6 10

mfIntersect(A,B) =

1 4 5 6 7 8 9 10 15 20 21 25

199

MUESLI Reference Manual (index) FML: Operators

mfUnique unique elements of a set

Interface:

function mfUnique(A, order, occurrence, tol) result(out)

type(mfArray) :: A

character(len=*), intent(in), optional :: order, occurrence

real(kind=MF_DOUBLE), intent(in), optional :: tol

type(mfArray) :: out

Description:

Returns the unique elements of the mfArray A. A must be a vector (either row or column).

By default, the returned elements are sorted in increasing order. However, their layout may be changed
by using the following optional parameters:

− the order optional argument (= "asc", "des" or "no") may be used to specify the ordering.

− if order="no", no ordering is applied to the resulting elements but it is required to add the other
occurrence optional argument (value may be "first" or "last") to specify if the selected element
is the first one or the last one.

The tol optional argument is the tolerance used in the equality test to discard duplicated elements, if
any. By default, tolerance is zero, i. e. a strict equality is used to discard elements.

Remark: the mfArray A must be real with a dense structure.

See also: mfIsMember, mfUnion, mfIntersect

Example(s):

a = [2, 4, 6, 8, 9, 8, 7, 1, 5, 3, 6, 2, 4]

call msDisplay(a, "a")

call msDisplay(mfUnique(a), "mfUnique(a)")

call msDisplay(mfUnique(a,order="des"), ’mfUnique(a,order="des")’)

call msDisplay(mfUnique(a,order="no",occurrence="first"), &

’mfUnique(a,order="no",occurrence="first")’)

call msDisplay(mfUnique(a,order="no",occurrence="last"), &

’mfUnique(a,order="no",occurrence="last")’)

output:

a =

2 4 6 8 9 8 7 1 5 3 6 2 4

mfUnique(a) =

1 2 3 4 5 6 7 8 9

mfUnique(a,order="des") =

9 8 7 6 5 4 3 2 1

. . ./ . . .

200

MUESLI Reference Manual (index) FML: Operators

mfUnique(a,order="no",occurrence="first") =

2 4 6 8 9 7 1 5 3

mfUnique(a,order="no",occurrence="last") =

9 8 7 1 5 3 6 2 4

201

MUESLI Reference Manual (index) FML: Elementary Math Functions

1.5 Elementary Math Functions

mfACos inverse cosine
mfACosh inverse hyperbolic cosine
mfACot inverse cotangent
mfACoth inverse hyperbolic cotangent
mfACsc inverse cosecant
mfACsch inverse hyperbolic cosecant
mfASec inverse secant
mfASech inverse hyperbolic secant
mfASin inverse sine
mfASinh inverse hyperbolic sine
mfATan inverse tangent
mfATan2 four quadrant inverse tangent
mfATanh inverse hyperbolic tangent
mfCos cosine
mfCosh hyperbolic cosine
mfCot cotangent
mfCoth hyperbolic cotangent
mfCsc cosecant
mfCsch hyperbolic cosecant
mfSec secant
mfSech hyperbolic secant
mfSin sine
mfSinh hyperbolic sine
mfTan tangent
mfTanh hyperbolic tangent

mfSqrt square root
mfExp exponential
mfExpm1 exponential minus one
mfLog natural logarithm
mfLog1p natural logarithm of 1 + x
mfLog10 base 10 logarithm
mf/msLog2 base 2 logarithm
mfPow10 base 10 power
mfPow2 base 2 power
mfFun, mfFun2 general function (one or two arguments)
mfGridFun general function (two arguments) applied to coords matrices

mfAbs absolute value
mfAngle phase angle
mfComplex complex conversion
mfConj complex conjugate
mfImag complex imaginary part
mfReal complex real part
mfHypot hypotenuse
mfRound round towards nearest integer
mfCeil round towards plus infinity
mfFix round towards zero
mfFloor round towards minus infinity
mfMod modulus after division
mfRem remainder after division
mfSign signum function
mfCSign complex signum function

202

MUESLI Reference Manual (index) FML: Elementary Math Functions

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

203

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACos inverse cosine

Calling syntax:

C = mfACos(A)

Description:

Returns the inverse cosine (element-wise) of the mfArray A (numerical dense only).

See also: mfCos, mfACosh, mfCosh

204

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACosh inverse hyperbolic cosine

Calling syntax:

C = mfACosh(A)

Description:

Returns the inverse hyperbolic cosine (element-wise) of the mfArray A (numerical dense only).

See also: mfCos, mfACos, mfCosh

205

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACot inverse cotangent

Calling syntax:

C = mfACot(A)

Description:

Returns the inverse cotangent (element-wise) of the mfArray A (numerical dense only).

See also: mfCot, mfACoth, mfCoth

206

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACoth inverse hyperbolic cotangent

Calling syntax:

C = mfACoth(A)

Description:

Returns the inverse hyperbolic cotangent (element-wise) of the mfArray A (numerical dense only).

See also: mfCot, mfACot, mfCoth

207

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACsc inverse cosecant

Calling syntax:

C = mfACsc(A)

Description:

Returns the inverse cosecant (element-wise) of the mfArray A (numerical dense only).

See also: mfCsc, mfACsch, mfCsch

208

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfACsch inverse hyperbolic cosecant

Calling syntax:

C = mfACsch(A)

Description:

Returns the inverse hyperbolic cosecant (element-wise) of the mfArray A (numerical dense only).

See also: mfCsc, mfACsc, mfCsch

209

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfASec inverse secant

Calling syntax:

C = mfASec(A)

Description:

Returns the inverse secant (element-wise) of the mfArray A (numerical dense only).

See also: mfSec, mfASech, mfSech

210

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfASech inverse hyperbolic secant

Calling syntax:

C = mfASech(A)

Description:

Returns the inverse hyperbolic secant (element-wise) of the mfArray A (numerical dense only).

See also: mfSec, mfASec, mfSech

211

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfASin inverse sine

Calling syntax:

C = mfASin(A)

Description:

Returns the inverse sine (element-wise) of the mfArray A (numerical dense only).

See also: mfSin, mfASinh, mfSinh

212

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfASinh inverse hyperbolic sine

Calling syntax:

C = mfASinh(A)

Description:

Returns the inverse hyperbolic sine (element-wise) of the mfArray A (numerical dense only).

See also: mfSin, mfASin, mfSinh

213

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfATan inverse tangent

Calling syntax:

C = mfATan(A)

Description:

Returns the inverse tangent (element-wise) of the mfArray A (numerical dense only).

See also: mfATan2, mfTan, mfATanh, mfTanh

214

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfATan2 four quadrant inverse tangent

Calling syntax:

C = mfATan2(Y, X)

Description:

Returns the four quadrant inverse tangent (element-wise) of the quotient Y/X, and the result is in
(−π, π].

X and Y must be numerical, dense mfArrays.

See also: mfATan, mfTan, mfATanh, mfTanh

215

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfATanh inverse hyperbolic tangent

Calling syntax:

C = mfATanh(A)

Description:

Returns the inverse hyperbolic tangent (element-wise) of the mfArray A (numerical dense only).

See also: mfTan, mfATan, mfTanh

216

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCos cosine

Calling syntax:

C = mfCos(A)

Description:

Returns the cosine (element-wise) of the mfArray A (numerical dense only).

See also: mfACos, mfACosh, mfCosh

217

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCosh hyperbolic cosine

Calling syntax:

C = mfCosh(A)

Description:

Returns the hyperbolic cosine (element-wise) of the mfArray A (numerical dense only).

See also: mfCos, mfACos, mfACosh

218

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCot cotangent

Calling syntax:

C = mfCot(A)

Description:

Returns the cotangent (element-wise) of the mfArray A (numerical dense only).

See also: mfACot, mfACoth, mfCoth

219

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCoth hyperbolic cotangent

Calling syntax:

C = mfCoth(A)

Description:

Returns the hyperbolic cotangent (element-wise) of the mfArray A (numerical dense only).

See also: mfCot, mfACot, mfACoth

220

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCsc cosecant

Calling syntax:

C = mfCsc(A)

Description:

Returns the cosecant (element-wise) of the mfArray A (numerical dense only).

See also: mfACsc, mfACsch, mfCsch

221

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCsch hyperbolic cosecant

Calling syntax:

C = mfCsch(A)

Description:

Returns the hyperbolic cosecant (element-wise) of the mfArray A (numerical dense only).

See also: mfCsc, mfACsc, mfACsch

222

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSec secant

Calling syntax:

C = mfSec(A)

Description:

Returns the secant (element-wise) of the mfArray A (numerical dense only).

See also: mfASec, mfASech, mfSech

223

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSech hyperbolic secant

Calling syntax:

C = mfSech(A)

Description:

Returns the hyperbolic secant (element-wise) of the mfArray A (numerical dense only).

See also: mfASech, mfASec, mfSec

224

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSin sine

Calling syntax:

C = mfSin(A)

Description:

Returns the sine (element-wise) of the mfArray A (numerical dense only).

See also: mfASin, mfASinh, mfSinh

225

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSinh hyperbolic sine

Calling syntax:

C = mfSinh(A)

Description:

Returns the hyperbolic sine (element-wise) of the mfArray A (numerical dense only).

See also: mfASin, mfASinh, mfSin

226

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfTan tangent

Calling syntax:

C = mfTan(A)

Description:

Returns the tangent (element-wise) of the mfArray A (numerical dense only).

See also: mfATan, mfATanh, mfTanh

227

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfTanh hyperbolic tangent

Calling syntax:

C = mfTanh(A)

Description:

Returns the hyperbolic tangent (element-wise) of the mfArray A (numerical dense only).

See also: mfATan, mfATanh, mfTan

228

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSqrt square root

Calling syntax:

C = mfSqrt(A)

Description:

Returns the square root (element-wise) of the mfArray A (dense or sparse, real or complex).

The returned mfArray may be of type complex if any element has a negative value.

See also: mfSqrtm

229

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfExp exponential

Calling syntax:

C = mfExp(A)

Description:

Returns the exponential (element-wise) of the mfArray A (numerical dense only).

See also: mfLog, mfLog1p, mfExpm1, mfExpm

230

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfExpm1 exponential minus one

Calling syntax:

C = mfExpm1(A)

Description:

Returns the value of exp(x)−1, for each x element of the mfArray A. This operation is made element-wise.

See also: mfExp, mfLog, mfLog1p, mfExpm

231

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfLog natural logarithm

Calling syntax:

C = mfLog(A)

Description:

Returns the natural logarithm (element-wise) of the mfArray A (numerical dense only).

See also: mfLog1p, mfExp, mfExpm1, mfLogm

232

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfLog1p natural logarithm of 1 + x

Calling syntax:

C = mfLog1p(A)

Description:

Returns the value of log(1 + x), for each x element of the mfArray A (numerical dense only). This
operation is made element-wise.

See also: mfLog, mfExp, mfExpm1, mfExpm

233

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfLog10 base 10 logarithm

Calling syntax:

C = mfLog10(A)

Description:

Returns the base 10 logarithm (element-wise) of the mfArray A (numerical dense only).

See also: mfLog, mf/msLog2

234

MUESLI Reference Manual (index) FML: Elementary Math Functions

mf/msLog2 base 2 logarithm

Calling syntax:

C = mfLog2(A)

Description:

Returns the base 2 logarithm (element-wise) of the mfArray A (numerical dense only).

The subroutine version returns two mfArrays:

call msLog2(mfOut(M,E), A)

The mantissa M has its element ranged in [0.5, 1[, whereas elements of E are integer exponents.

Each element of A verifies: a = m2e

See also: mfPow2, mfLog, mfLog10, mfOut

235

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfPow10 base 10 power

Calling syntax:

C = mfPow10(A)

Description:

Returns the base 10 power (element-wise) of the mfArray A (numerical dense only).

See also: mfLog10

236

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfPow2 base 2 power

First usage:

C = mfPow2(A)

Description:

Returns the base 2 power (element-wise) of the mfArray A (numerical dense only).

Second usage:

C = mfPow2(M, E)

Description:

Returns numbers which write: m2e, for each (real) m of M and each (integer) e of E. M and E are two
mfArrays.

See also: mfLog2

237

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfFun general function (one arg.)

Usage:

C = mfFun(A, fun)

Description:

Apply the user-defined function (element-wise) fun to the mfArray A (numerical dense only).

fun is a real or complex function having the following interface:

real(kind=MF_DOUBLE) function fun(x1)

real(kind=MF_DOUBLE), intent(in) :: x1

end function

or

complex(kind=MF_DOUBLE) function fun(x1)

complex(kind=MF_DOUBLE), intent(in) :: x1

end function

See also: mfFunm, mfFun2

238

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfFun2 general function (two args)

Usage:

C = mfFun2(A, B, fun)

Description:

Apply the user-defined function (element-wise) fun to the mfArrays A and B (numerical dense only).

fun is a real or complex function having the following interface:

real(kind=MF_DOUBLE) function fun(x1, x2)

real(kind=MF_DOUBLE), intent(in) :: x1, x2

end function

or

complex(kind=MF_DOUBLE) function fun(x1, x2)

complex(kind=MF_DOUBLE), intent(in) :: x1, x2

end function

See also: mfFun, mfGridFun

239

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfGridFun general function (two args) applied to coords matrices

Usage:

Z = mfGridFun(v_x, v_y, fun)

applies the 2-argument function fun to the couple of coordinate matrices (X,Y) generated by the vectors
v x and v y, without building X and Y (see msMeshGrid about contraints concerning v x and v y). It
aims at economize memory for large grids.

fun is either a character string giving the name of a 2-arg function (as complex, hypot, atan2, ...), or the
name of a user defined function. In this latter case, the user function must have the following interface:

real(kind=MF_DOUBLE) function fun(x1, x2)

real(kind=MF_DOUBLE), intent(in) :: x1, x2

end function

See also: mfFun2

240

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfAbs absolute value

Calling syntax:

C = mfAbs(A)

Description:

Returns the absolute value (or the module for complex numbers) of the mfArray A (dense or sparse).
This operation is made element-wise.

See also: mfAngle

241

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfAngle phase angle

Calling syntax:

C = mfAngle(A)

Description:

Returns the phase angle (element-wise), in radians of the complex mfArray A (dense or sparse).

For real values, this function returns 0 or π. Moreover, it returns 0 when argument is null (real or
complex), so maintains the sparsity of the mfArray.

See also: mfAbs

242

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfComplex complex conversion

Calling syntax:

C = mfComplex(A [, B])

Description:

Converts a real mfArray A (dense or sparse) in a complex one.

If the optional argument mfArray B is present, builds a complex mfArray whose real part is A and the
imaginary part is B. In this latter case, A and B must be both real (dense or sparse).

See also: mfReal, mfImag

243

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfConj complex conjugate

Calling syntax:

C = mfConj(A)

Description:

Returns the conjugate (element-wise) of the complex mfArray A (dense or sparse).

A may be real, but the returned mfArray is complex.

See also: .h.

244

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfImag complex imaginary part

Calling syntax:

C = mfImag(A)

Description:

Returns the imaginary part (element-wise) of the complex mfArray A (dense or sparse).

See also: mfReal

245

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfReal complex real part

Calling syntax:

C = mfReal(A)

Description:

Returns the real part (element-wise) of the complex mfArray A (dense or sparse).

See also: mfImag

246

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfHypot hypotenuse

Calling syntax:

C = mfHypot(A, B)

Description:

Returns the hypotenuse of a right rectangle whose sides (mfArrays A and B, in dense format) are provided.
This operation is made element-wise.

Remarks: the computation is done without overflow or underflow.

247

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfRound round towards nearest integer

Calling syntax:

C = mfRound(A)

Description:

Rounds towards nearest integer each element of the mfArray A (dense or sparse). The behavior of this
routine is similar to the anint Fortran 90 intrinsic function.

See also: mfCeil, mfFix, mfFloor

248

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCeil round towards plus infinity

Calling syntax:

C = mfCeil(A)

Description:

Rounds towards plus infinity each element of the mfArray A (dense or sparse).

See also: mfFix, mfFloor, mfRound

249

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfFix round towards zero

Calling syntax:

C = mfFix(A)

Description:

Rounds towards zero each element of the mfArray A (dense or sparse).

See also: mfCeil, mfFloor, mfRound

250

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfFloor round towards minus infinity

Calling syntax:

C = mfFloor(A)

Description:

Rounds towards minus infinity each element of the mfArray A (dense or sparse).

See also: mfCeil, mfFix, mfRound

251

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfMod modulus after division

Calling syntax:

C = mfMod(A, B)

Description:

Returns the modulus after division of each element of the mfArray A (numerical dense only).

N.B.: this is the Fortran 90 modulo function

See also: mfRem

252

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfRem remainder after division

Calling syntax:

C = mfRem(A, B)

Description:

Returns the modulus after division of each element of the mfArray A (numerical dense only).

N.B.: this is the Fortran 90 mod function

See also: mfMod

253

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfSign signum function

Calling syntax:

C = mfSign(A)

Description:

Applies the signum function to each element of the mfArray A (numerical dense only). It returns only
1 or −1.

N.B.: It differs from the Fortran 90 sign intrinsic function.

See also: mfCSign

254

MUESLI Reference Manual (index) FML: Elementary Math Functions

mfCSign complex signum function

Calling syntax:

C = mfCSign(A)

Description:

Applies the complex signum function to each element of the mfArray A (numerical dense only).

See also: mfSign

255

MUESLI Reference Manual (index) FML: Specialized Math Functions

1.6 Specialized Math Functions

mfErf Error function
mfErfInv inverse Error function
mfErfC Complementary Error function
mfErfCInv inverse Complementary Error function
mfErfCScaled Scaled Complementary Error function

mfExpInt Exponential Integral function

mfGamma Gamma function
mfGammaLn Logarithm of the Gamma function

mfBesselJ Bessel functions of the first kind
mfBesselY Bessel functions of the second kind
mfBesselI modified Bessel functions of the first kind
mfBesselK modified Bessel functions of the second kind
mfAiry Airy function

msEllipKE complete elliptic integrals of first and second kinds

mfIsPrime prime number test
mfFactor prime numbers factorization
msCleanPrimeNumbers prime numbers storage cleaning

msRat rational approximation

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

256

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfErf Error function

Calling syntax:

C = mfErf(A)

Description:

Returns the Error function (element-wise) of the mfArray A (dense only, real or complex).

See also: mfErfC, mfErfInv, mfErfCInv, mfErfCScaled

257

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfErfInv inverse Error function

Calling syntax:

C = mfErfInv(A)

Description:

Returns the inverse Error function (element-wise) of the mfArray A (dense only).

Restriction: A must be of type real.

See also: mfErf, mfErfC, mfErfCInv, mfErfCScaled

258

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfErfC Complementary Error function

Calling syntax:

C = mfErfC(A)

Description:

Returns the Complementary Error function (element-wise) of the mfArray A (dense only, real or com-
plex).

See also: mfErf, mfErfInv, mfErfCInv, mfErfCScaled

259

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfErfCInv inverse Complementary Error function

Calling syntax:

C = mfErfCInv(A)

Description:

Returns the inverse Complementary Error function (element-wise) of the mfArray A (dense only).

Restriction: A must be of type real.

See also: mfErf, mfErfInv, mfErfC, mfErfCScaled

260

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfErfCScaled Scaled Complementary Error function

Calling syntax:

C = mfErfCScaled(A)

Description:

Returns the Scaled Complementary Error function (element-wise) of the mfArray A (dense only), defined
by mfErfCScaled(x) = exp(x**2) * mfErfC(x)

Restriction: A must be of type real.

See also: mfErf, mfErfInv, mfErfC, mfErfCInv

261

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfExpInt Exponential Integral function

Calling syntax:

C = mfExpInt(A)

Description:

Returns the exponential integral function (element-wise) of the mfArray A (dense only).

This function is mathematically defined as:

E1(x) =

∫ ∞

x

exp(−t)

t
dt

For positive value of x, it has the following properties:

E1(0) = +∞, E1(+∞) = 0

Restriction: A must be of type real and must have a positive value. On the contrary, a warning is emitted.

262

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfGamma Gamma function

Calling syntax:

C = mfGamma(A)

Description:

Returns the gamma function (element-wise) of the mfArray A (dense only).

Restriction: A must be of type real.

See also: mfGammaLn

263

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfGammaLn Logarithm of the Gamma function

Calling syntax:

C = mfGammaLn(A)

Description:

Returns the natural logarithm of the gamma function (element-wise) of the mfArray A (dense only).

Restriction: A must contain positive real values.

See also: mfGamma

264

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfBesselJ Bessel functions of the first kind

Calling syntax:

C = mfBesselJ(alpha, A)

Description:

Returns the Bessel functions of the first kind Jα(x) (element-wise) of the mfArray A (dense only).

The real alpha order doesn’t need to be an integer: both positive and negative fractional orders are
possible.

Restriction: A must be of type real but, according to the values of α and x, a complex mfArray may be
returned.

Remark: Some roots of J0(x) and J1(x) are stored respectively in the arrays: MF BESSEL J0 ROOTS and
MF BESSEL J1 ROOTS.

See also: mfBesselY, mfBesselI, mfBesselK, MF BESSEL J0 ROOTS, MF BESSEL J1 ROOTS

265

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfBesselY Bessel functions of the second kind

Calling syntax:

C = mfBesselY(alpha, A)

Description:

Returns the Bessel functions of the second kind Yα(x) (element-wise) of the mfArray A (dense only).

The real alpha order doesn’t need to be an integer: both positive and negative fractional orders are
possible.

Restriction: A must be of type real but, according to the values of α and x, a complex mfArray may be
returned.

See also: mfBesselJ, mfBesselI, mfBesselK

266

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfBesselI modified Bessel functions of the first kind

Calling syntax:

C = mfBesselI(alpha, A)

Description:

Returns the modified Bessel functions of the first kind Iα(x) (element-wise) of the mfArray A (dense
only).

The real alpha order doesn’t need to be an integer: both positive and negative fractional orders are
possible.

Restriction: A must be of type real but, according to the values of α and x, a complex mfArray may be
returned.

See also: mfBesselJ, mfBesselY, mfBesselK

267

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfBesselK modified Bessel functions of the second kind

Calling syntax:

C = mfBesselK(alpha, A)

Description:

Returns the modified Bessel functions of the second kind Kα(x) (element-wise) of the mfArray A (dense
only).

The real alpha order doesn’t need to be an integer: both positive and negative fractional orders are
possible.

Restriction: A must be of type real but, according to the values of α and x, a complex mfArray may be
returned.

See also: mfBesselJ, mfBesselY, mfBesselI

268

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfAiry Airy function

Calling syntax:

B = mfAiry(A)

Description:

Returns the Airy function (element-wise) of the mfArray A (dense only).

Restriction: A must be of type real and a real mfArray is returned. Complex function is not yet
implemented.

See also: mfBesselJ

269

MUESLI Reference Manual (index) FML: Specialized Math Functions

msEllipKE complete elliptic integrals of first and second kinds

Calling syntax:

call msEllipKE(mfOut(K,E), A)

Description:

Computes the complete elliptic integrals of first and second kind K(m) and E(m) (element-wise) of the
mfArray A (dense only), which are stored in the two mfArray K and E.

Each element of the array A is taken to be the parameter m = k2, where k is the modulus.

The parameter m must be ranged in [0, 1] else NaN values are returned for both integrals.

See also: mfOut

270

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfIsPrime prime number test

Calling syntax:

B = mfIsPrime(A)

Description:

Tests if numbers in the mfArray A are prime numbers. This function returns a boolean mfArray of same
shape as A. The argument A may be scalar, vector or matrix, and is supposed to contain only integer
numbers.

Remark: Integers involved in this routine must be less than 2,147,000,000.

See also: mfFactor, msCleanPrimeNumbers

271

MUESLI Reference Manual (index) FML: Specialized Math Functions

mfFactor prime numbers factorization

Calling syntax:

B = mfFactor(A)

Description:

Returns the prime factors of the scalar mfArray A. The argument A is supposed to contain an integer
number.

Remark: Integers involved in this routine must be less than 2,147,000,000.

See also: mfIsPrime, msCleanPrimeNumbers

Example(s):

x = 2**4 * 3**3 * 5**2 * 7

call msDisplay(x, "x = 2**4 * 3**3 * 5**2 * 7")

print "(/,A)", "*** test number 109 ***"

call msDisplay(mfFactor(x), "mfFactor(x)")

output:

x = 2**4 * 3**3 * 5**2 * 7 =

75600

mfFactor(x) =

2 2 2 2 3 3 3 5 5 7

272

MUESLI Reference Manual (index) FML: Specialized Math Functions

msCleanPrimeNumbers prime numbers storage cleaning

Calling syntax:

call msCleanPrimeNumbers()

Description:

Cleans the temporary storage of prime numbers, required for mfIsPrime and mfFactor routines. Ac-
cording to the magnitude of the involved integers, up to 450 MB of memory can be freed.

273

MUESLI Reference Manual (index) FML: Specialized Math Functions

msRat rational approximation

Calling syntax:

call msRat(mfOut(N,D), A [, tol])

Description:

Computes the rational approximation (element-wise) of the mfArray A (real dense only), and returns
the matrix of numerators in the mfArray N and the matrix of denominators in the mfArray D.

Tolerance cannot be smaller than 10−12 (default value is 10−6).

For example, with the default tolerance, π ≈ 355/113. Any numerical value has a rational approximation,
even Inf = 1/0 and NaN = 0/0.

See also: mfOut

Example(s):

x = MF_PI

call msDisplay(x, "x = MF_PI")

call msRat(mfOut(y,z), x)

call msDisplay(y, "numerator", z, "denominator")

output:

x = MF_PI =

3.1416

numerator =

355

denominator =

113

x = mfHilb(4)

call msDisplay(x, "x = mfHilb(4)")

call msRat(mfOut(y,z), x)

call msDisplay(y, "numerator", z, "denominator")

output:

x = mfHilb(4)

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

. . ./ . . .

274

MUESLI Reference Manual (index) FML: Specialized Math Functions

numerator =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

denominator =

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

275

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

1.7 Elementary Matrix Manipulation Functions

mfEye identity matrix
mfLinSpace linear spaced vector
mfLogSpace log spaced vector
mfMagic magic square
msMeshGrid arrays for interpolation and 3-D plots
mfZeros matrix of zeros
mfOnes matrix of ones
mfRand uniformly distributed random numbers
msRand set the random number generator seed
mfRandN normally distributed random numbers
mfRandPoiss Poisson distributed random numbers
mfRepMat replicate and tile an array
mfMerge merge of two arrays
mfPack, mfUnpack packing and unpacking arrays
mfCshift, mfEoshift array shifting
mf/msDiag diagonal matrices and diagonals of a matrix
mfBlkDiag block diagonal concatenation
mf/msFind find indices of nonzero elements
mfNonZeros non-zero elements
mf/msReshape shape modification
mfTriL lower triangular part
mfTriU upper triangular part
mfFlipLR matrix flip Left-Right
mfFlipUD matrix flip Up-Down
mfRot90 matrix rotation
mfHilb Hilbert matrix
mfInvHilb inverse Hilbert matrix
mfVander Vandermonde matrix
mfCompan Companion matrix
mfHankel Hankel matrix
mfToeplitz Toeplitz matrix

mfPerm permutation vector creation
mfRandPerm random permutation vector creation
mfCheckPerm permutation vector checking

isfinite, mfIsFinite finite test
isinf, mfIsInf infinity test
isnan, mfIsNaN Not-a-Number test

mfIsDiag diagonal pattern test
mfIsTril lower triangular pattern test
mfIsTriu upper triangular pattern test

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Matrix Functions

276

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

277

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfEye identity matrix

Calling syntax:

A = mfEye(n1 [, n2])

Description:

Returns an mfArray containing the identity matrix.

If it is called with one integer argument, the identity matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds an identity matrix of shape (n1,n2).

See also: mfOnes, mfZeros

278

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfLinSpace linear spaced vector, given nb of values

First calling syntax:

A = mfLinSpace(start, end [, nval])

Description:

Returns an mfArray (row vector) which contains a list of reals equally spaced, from start to end, with
the specified number of values nval. start and end can take any arbitrary finite values, even equal.

By default (i. e. when the integer nval is not present), the list contains nval = 100 reals. If nval is
present, it must be greater than or equal to 2.

Second calling syntax:

A = mfLinSpace([start | end], nval, step)

Description:

In this second syntax, only one argument among start and end can be present. The additional step
argument specifies the step between two consecutive values; it cannot be equal to zero.

Remarks: start, end and step must be of type real (single or double precision).

See also: mfColon, mfLogSpace

Example(s):

call msDisplay(mfLinspace(-MF_PI, MF_PI, 5), &

"mfLinspace(-MF_PI, MF_PI, 5)")

output:

mfLinspace(-MF_PI, MF_PI, 5) =

-3.1416 -1.5708 0.0000 1.5708 3.1416

call msDisplay(mfLinSpace(end=1.0d0, nval=5, step=0.1d0), &

"mfLinSpace(end=1.0d0, nval=5, step=0.1d0)")

output:

mfLinSpace(end=1.0d0, nval=5, step=0.1d0) =

0.6000 0.7000 0.8000 0.9000 1.0000

279

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfLogSpace log spaced vector, given nb of values

First calling syntax:

A = mfLogSpace(start, end [, nval])

Description:

Returns an mfArray (row vector) which contains a list of reals logarithmic spaced, from 10start to

10end, with the specified number of values nval.

By default (i. e. when the integer nval is not present), the list contains nval = 20 reals. If nval is
present, it must be greater than or equal to 2.

Second calling syntax:

A = mfLogSpace([start | end], nval, step)

Description:

In this second syntaxe, only one argument among start and end can be present. The additional step
argument specifies the step between the logarithm of two consecutive values; it cannot be equal to zero.

Remarks: start, end and step must be of type real (single or double precision).

See also: mfColon, mfLinSpace

Example(s):

call msDisplay(mfLogspace(0.0d0, 5.0d0, 6), &

"mfLogspace(0.0d0, 5.0d0, 6)")

output:

mfLogspace(0.0d0, 5.0d0, 6) =

1 10 100 1000 10000 100000

call msDisplay(mfLogSpace(start=0.0d0, nval=6, step=0.5d0), &

"mfLogSpace(start=0.0d0, nval=6, step=0.5d0)")

output:

mfLogSpace(start=0.0d0, nval=6, step=0.5d0) =

1.0000 3.1623 10.0000 31.6228 100.0000 316.2278

280

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfMagic magic square

Calling syntax:

A = mfMagic(n)

Description:

Returns an mfArray containing a magic square, from any positive integer n ≥ 3.

Example(s):

call msDisplay(mfMagic(3), "mfMagic(3)")

call msDisplay(mfMagic(4), "mfMagic(4)")

output:

mfMagic(3) =

8 3 4

1 5 9

6 7 2

mfMagic(4) =

1 12 8 13

15 6 10 3

14 7 11 2

4 9 5 16

281

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

msMeshGrid grid coordinates generation

Calling syntax:

call msMeshGrid(mfOut(X,Y), v_x, v_y)

Description:

Builds two mfArrays containing the (x, y) coordinates of the nodes of a rectangular, structured grid,
generated from the two real vectors v x and v y.

Among the two input vectors (called generator vectors), one must be a row vector, and the other a
column vector. Then the row vector is vertically replicated as many times as the size of the other to
form one of the coordinate matrices, and conversely for the other.

The coordinate matrices X and Y are typically used to visualize a data matrix with an orientation different
from that used by default. See more explanation in section “Changing Orientation/Transposition of
Matrix Data” in the Muesli User Guide. They can also be used in 2D interpolation (see mfInterp2).

Remark: Note that most of the time, you don’t need to compute explicitly the coordinate matrices (X,Y)
since you are able to pass the generator vectors directly to graphic routines (msPColor, msContour, etc.),
and also to the numerical routine mfGridFun.

See also: mfOut

Example(s):

v_x = mfLinSpace(-1.0d0, 1.0d0, 5)

v_y = .t. mfLinSpace(-1.5d0, 1.5d0, 7)

call msMeshgrid(mfOut(X,Y), v_x, v_y)

call msDisplay(X, "X", Y, "Y")

output:

X =

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

-1.0000 -0.5000 0.0000 0.5000 1.0000

Y =

-1.5000 -1.5000 -1.5000 -1.5000 -1.5000

-1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000

0.0000 0.0000 0.0000 0.0000 0.0000

0.5000 0.5000 0.5000 0.5000 0.5000

1.0000 1.0000 1.0000 1.0000 1.0000

1.5000 1.5000 1.5000 1.5000 1.5000

282

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfZeros matrix of zeros

Calling syntax:

A = mfZeros(n1 [, n2])

Description:

Returns an mfArray containing zeros.

If it is called with one integer argument, the output matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds a matrix of shape (n1,n2).

See also: mfEye, mfOnes

283

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfOnes matrix of ones

Calling syntax:

A = mfOnes(n1 [, n2])

Description:

Returns an mfArray containing ones.

If it is called with one integer argument, the output matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds a matrix of shape (n1,n2).

See also: mfEye, mfZeros

284

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRand uniformly distributed random numbers

Calling syntax:

A = mfRand(n1 [, n2])

Description:

Returns an mfArray containing pseudo-random real values, with a uniform distribution in [0, 1].

If it is called with one integer argument, the output matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds a matrix of shape (n1,n2).

Other syntax:

A = mfRand(string)

When called with the string "seed", the seed (six long integers stored as double reals) of the random
number generator is returned. This value can be later used to reset the seed to a previous state with the
msRand routine.

Remark: Generated numbers doesn’t depend on the compiler used, because the random number Fortran
90 intrinsic routine is not use. The RngStreams package (included in the MUESLI library) is used
instead.

See also: mfRandN, mfRandPoiss

285

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

msRand set the random number generator seed

Calling syntax:

call msRand([seed])

Description:

Set the random number generator seed either from given values, or from the clock.

Without argument, the seed is set from the clock.

If the optional argument seed is present, then this argument must be an mfArray whose values are used
to reset the seed of the RngStreams package, included in the MUESLI library. This seed must be an
array of six integer numbers (stored as double precision reals) satifying the following constraints:

− the first three values must be less than 4294967087 (and not all zero);

− the last three values must be less than 4294944443 (and not all zero).

Note that a check is done in the current routine.

See also: mfRand, mfRandN, mfRandPoiss

286

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRandN normally distributed random numbers

Calling syntax:

A = mfRandN(n1 [, n2])

Description:

Returns an mfArray containing pseudo-random real values, with a normal distribution (with zero mean
and unit variance).

If it is called with one integer argument, the output matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds a matrix of shape (n1,n2).

See also: mfRand, mfRandPoiss, msRand

287

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRandPoiss Poisson distributed random numbers

Calling syntax:

A = mfRandPoiss(mu, n1 [, n2])

Description:

Returns an mfArray containing pseudo-random integer values, with a Poisson distribution, with mean
(and variance) equal to mu.

The argument mu is a real number.

If it is called with only one size, the output matrix is square, of shape (n1,n1).

If the optional argument n2 is present, the routine builds a matrix of shape (n1,n2).

See also: mfRandN, mfRand, msRand

288

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRepMat replicate and tile an array

Calling syntax:

C = mfRepMat(A, m, n)

Description:

This routine replicates the tile mfArray A, to build a bigger mfArray. The returned mfArray can be
viewed as a m-by-n tiling matrix.

The behavior of this routine is similar to the spread Fortran 90 intrinsic function.

Example(s):

x = reshape([(i, i = 1, 6)], [2, 3])

call msDisplay(x, "x", mfRepmat(x,3,2), "mfRepmat(x,3,2)")

output:

x =

1 3 5

2 4 6

mfRepmat(x,3,2) =

1 3 5 1 3 5

2 4 6 2 4 6

1 3 5 1 3 5

2 4 6 2 4 6

1 3 5 1 3 5

2 4 6 2 4 6

289

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfMerge merge of two arrays

Calling syntax:

C = mfMerge(A, B, mask)

Description:

The three arguments are mfArrays having the same shape. This function merge the two numeric arrays
A and B under the control of the boolean mask. Its behavior is like that of the merge Fortran 90 intrinsic
function.

Sparse arrays are not handled.

Example(s):

A = 3.0d0*mfOnes(3,2)

B = -1.0d0*mfOnes(3,2)

mask = mfEye(3,2) > 0.5d0

call msDisplay(A,"A", B,"B", mask,"mask")

call msDisplay(mfMerge(A,B,mask), "mfMerge(A,B,mask)")

output:

A =

3 3

3 3

3 3

B =

-1 -1

-1 -1

-1 -1

mask =

T F

F T

F F

mfMerge(A,B,mask) =

3 -1

-1 3

-1 -1

290

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfPack packing an array

Calling syntax:

C = mfPack(A, mask)

Description:

Packs the elements of the numeric mfArray A in a long column vector, under the control of the boolean
mask. The behavior of this routine is similar to the pack Fortran 90 intrinsic function.

Sparse arrays are not handled.

See also: mfUnpack

Example(s):

A = mfMagic(3)

mask = A >= 5.0d0

call msDisplay(A,"A", mask,"mask")

Ap = mfPack(A, mask)

call msDisplay(Ap, "A packed")

output:

A =

8 3 4

1 5 9

6 7 2

mask =

T F F

F T T

T T F

A packed =

8 6 5 7 9

R = mfOnes(3)*MF_NAN

call msDisplay(mfUnpack(Ap,mask,field=R), "A unpacked")

output:

A unpacked =

8.0000 NaN NaN

NaN 5.0000 9.0000

6.0000 7.0000 NaN

291

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfUnpack unpacking an array

Calling syntax:

C = mfUnpack(A, mask, field)

Description:

Unpacks the elements of the numeric vector mfArray A under the control of the boolean mask. The
returned mfArray is completed from values of field. A should have been previously processed by the
mfPack routine.

The behavior of this routine is similar to the unpack Fortran 90 intrinsic function.

Sparse arrays are not handled.

See also: mfPack

Example(s):

A = mfMagic(3)

mask = A >= 5.0d0

call msDisplay(A,"A", mask,"mask")

Ap = mfPack(A, mask)

call msDisplay(Ap, "A packed")

output:

A =

8 3 4

1 5 9

6 7 2

mask =

T F F

F T T

T T F

A packed =

8 6 5 7 9

R = mfOnes(3)*MF_NAN

call msDisplay(mfUnpack(Ap,mask,field=R), "A unpacked")

output:

A unpacked =

8.0000 NaN NaN

NaN 5.0000 9.0000

6.0000 7.0000 NaN

292

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfCshift array shifting

Calling syntax:

C = mfCshift(A, shift)

Description:

Performs a circular shift on the vector mfArray A. shift is an integer. The behavior of this routine is
similar to the cshift Fortran 90 intrinsic function.

Sparse arrays are not handled.

See also: mfEoshift

Example(s):

A = [1, 2, 3, 4, 5, 6]

call msDisplay(A, "A")

call msDisplay(mfCshift(A,shift=1), "mfCshift(A,shift=1)")

output:

A =

1 2 3 4 5 6

mfCshift(A,shift=1) =

2 3 4 5 6 1

293

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfEoshift array shifting

Calling syntax:

C = mfEoshift(A, shift)

Description:

Performs an end-off shift on the vector mfArray A. shift is an integer. The behavior of this routine is
similar to the eoshift Fortran 90 intrinsic function.

Sparse arrays are not handled.

See also: mfCshift

Example(s):

A = [1, 2, 3, 4, 5, 6]

call msDisplay(A, "A")

b = 99

call msDisplay(mfEoshift(A,shift=1,boundary=b), &

"mfEoshift(A,shift=1,boundary=b)")

output:

A =

1 2 3 4 5 6

mfEoshift(A,shift=1,boundary=b) =

2 3 4 5 6 99

294

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mf/msDiag diagonal matrices and diagonals of a matrix

The first form is:

C = mfDiag(A [, d])

If A is a matrix-like mfArray (dense or sparse), this function extracts the main (or the d-) diagonal (the
output is dense, whatever the storage type of A is).

If A is a vector-like mfArray (dense only), this function builds a dense square matrix which has A as main
(or as d-) diagonal. For building a sparse matrix, use mfSpDiags.

The subroutine form:

call msDiag(A, v [, d])

modifies the main (or the d-) diagonal of the mfArray A (dense or sparse) by copying the elements of the
vector-like mfArray v. The data type of A may be changed because A and v can have real or complex
values. The vector v is not modified.

Remarks: When d is equal to zero, it points to the main diagonal; when positive, the upper part of the
matrix is concerned. If the arg. d is not present, the main diagonal is the default.

See also: mfBlkDiag, mfEye, mfSpDiags

Example(s):

v = [1, 2, 3]

C = mfDiag(v,2)

call msDisplay(C, "C = mfDiag(v,2)")

output:

v =

1 2 3

C = mfDiag(v,2) =

0 0 1 0 0

0 0 0 2 0

0 0 0 0 3

0 0 0 0 0

0 0 0 0 0

v = [4, 5, 6]

call msDisplay(v, "v")

call msDiag(C, v, d=-2)

call msDisplay(C, "C")

output:

v =

4 5 6

C =

0 0 1 0 0

0 0 0 2 0

4 0 0 0 3

0 5 0 0 0

0 0 6 0 0

295

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfBlkDiag block diagonal concatenation

The first calling syntax:

C = mfBlkDiag(A, B)

gives the concatenation of the two (square) blocks diagonal A and B.

The other calling syntax:

C = mfBlkDiag(A, n)

concatenates n times (n being non negative) the square matrix A on the diagonal.

Remarks: A (and B, for the first form), may be dense or sparse, and of any type accepted by the .vc.

or .hc. operators.

See also: mf/msDiag

Example(s):

A = mfRot90(mfEye(3,3))

call msDisplay(A,"A")

call msDisplay(mfBlkDiag(A,3), "blkdiag(A,3)")

output:

A =

0 0 1

0 1 0

1 0 0

blkdiag(A,3) =

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

296

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mf/msFind find indices of nonzero elements

The first form:

C = mfFind(A)

finds non zero (resp. TRUE) elements of the numerical (resp. boolean) mfArray A and returns a long
column of their indices (called also linear indices).

Usually, this routine is applied to a boolean mfArray, automatically created in comparison operators;
for example, mfFind(A > 1.0d0) returns indices of elements which verify the specified property.

The subroutine form:

call msFind(mfOut(i,j[,v]), A)

allows the user to retrieve the matrix-indices. The two vectors returned (i and j) contain the row-index
and column-index for non-zero elements.

If the optional argument v is present, it contains the values of corresponding non-zero elements.

Warning: Contrary to MATLAB, mf/msFind always return row index vectors, instead of column vectors.

See also: mfNonZeros, mfOut

Example(s):

A = mf([9, 0, 0]) .vc. &

mf([0, 0, 7]) .vc. &

mf([0, 11, 0])

call msDisplay(A, "A")

call msFind(mfOut(i,j,v), x)

call msDisplay(i,"row indices", j,"col indices", v,"values")

output:

A =

9 0 0

0 0 7

0 11 0

row indices =

1 3 2

col indices =

1 2 3

values =

9 11 7

297

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfNonZeros non-zero elements

Calling syntax:

C = mfNonZeros(A)

Description:

Returns all non-zero elements of the mfArray A in a vector.

Works as msFind, except that indices (i,j) are not returned.

See also: ms/mfFind

298

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mf/msReshape shape modification

Generic interface:

function mfReshape(A, m, n) result(out)

integer, intent(in) :: A(:)

or real(kind=MF_DOUBLE), intent(in) :: A(:)

or type(mfArray) :: A

integer, intent(in) :: m, n

type(mfArray) :: out

Description:

This function extends the Fortran intrinsic reshape; it can be applied to a dense or sparse mfArray.

Remark: in the special call: mfReshape(A, MF EMPTY, n) with A being an mfArray only, the first
dimension, if not specified, is deduced from the total number of elements in A (the second dimension n

can also be replaced by MF EMPTY). Same behavior using MF NO ARG instead of MF EMPTY.

Another possible form is:

call msReshape(A, m, n)

which does the same job with the mfArray A, except that the shape modification is made “in place”.
Here, m or n cannot be replaced by MF EMPTY or MF NO ARG. This second routine is more efficient than
the first one, especially for sparse matrices.

See also: mfRepMat

Example(s):

x = [(i, i = 1, 12)]

call msDisplay(x, "x")

call msDisplay(mfReshape(x, 4, 3), "mfReshape(x, 4, 3)")

call msDisplay(mfReshape(x, 2, MF_EMPTY), "mfReshape(x, 2, MF_EMPTY)")

output:

x =

1 2 3 4 5 6 7 8 9 10 11 12

mfReshape(x, 4, 3) =

1 5 9

2 6 10

3 7 11

4 8 12

mfReshape(x, 2, MF_EMPTY) =

1 3 5 7 9 11

2 4 6 8 10 12

299

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfTriL lower triangular part

Calling syntax:

C = mfTriL(A [, k])

Description:

This function extracts the lower triangular part of an mfArray, including the main diagonal.

If k is present, it returns the lower part of A up to the k-th diagonal (included). k must be integer; it
can be negative.

See also: mfTriU

300

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfTriU upper triangular part

Calling syntax:

C = mfTriL(A [, k])

Description:

This function extracts the upper triangular part of an mfArray, including the main diagonal.

If k is present, it returns the upper part of A down to the k-th diagonal (included). k must be integer;
it can be negative.

See also: mfTriL

301

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfFlipLR matrix flip Left-Right

Calling syntax:

C = mfFlipLR(A)

Description:

This function flips the mfArray A in the left-right direction.

See also: mfFlipUD, mfRot90

Example(s):

A = reshape([(i,i=1,15)], [3,5])

call msDisplay(A, "A")

call msDisplay(mfFlipLR(A), "mfFlipLR(A)")

output:

A =

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

mfFlipLR(A) =

13 10 7 4 1

14 11 8 5 2

15 12 9 6 3

302

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfFlipUD matrix flip Up-Down

Calling syntax:

C = mfFlipUD(A)

Description:

This function flips the mfArray A in the up-down direction.

See also: mfFlipLR, mfRot90

Example(s):

A = reshape([(i,i=1,15)], [3,5])

call msDisplay(A, "A")

call msDisplay(mfFlipUD(A), "mfFlipUD(A)")

output:

A =

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

mfFlipUD(A) =

3 6 9 12 15

2 5 8 11 14

1 4 7 10 13

303

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRot90 matrix rotation

Calling syntax:

C = mfRot90(A [, k])

Description:

This function rotates the mfArray A in the trigonometric direction, by the angle k*90 in degrees. (i. e.
for 90°, last column becomes first row).

k may be any integer (including zero and negative value). It is an optional argument (default value is
1).

See also: mfFlipLR, mfFlipUD

Example(s):

A = reshape([(i,i=1,6)], [3,2])

call msDisplay(A, "A")

call msDisplay(mfRot90(A,1), "mfRot90(A,1) [90° anticlockwise]")

call msDisplay(mfRot90(A,-1), "mfRot90(A,-1) [90° clockwise]")

output:

A =

1 4

2 5

3 6

mfRot90(A,1) [90° anticlockwise] =

4 5 6

1 2 3

mfRot90(A,-1) [90° clockwise] =

3 2 1

6 5 4

304

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfHilb Hilbert matrix

Calling syntax:

C = mfHilb(n)

Description:

Builds a square mfArray which contains an Hilbert matrix. It is a well known example of badly condi-
tioned matrix.

See also: mfInvHilb, mfCond

Example(s):

A = mfHilb(5)

call msDisplay(A, "A = mfHilb(5)")

call msDisplay(mfCond(A), "cond(A)")

output:

A = mfHilb(5) =

1.0000 0.5000 0.3333 0.2500 0.2000

0.5000 0.3333 0.2500 0.2000 0.1667

0.3333 0.2500 0.2000 0.1667 0.1429

0.2500 0.2000 0.1667 0.1429 0.1250

0.2000 0.1667 0.1429 0.1250 0.1111

cond(A) =

4.7661E+05

305

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfInvHilb inverse Hilbert matrix

Calling syntax:

C = mfInvHilb(n)

Description:

Returns the inverse of an Hilbert matrix; therefore the matrix product of mfHilb(n) by mfInvHilb(n)

is the identity matrix.

Remarks: this inverse is not computed by some linear algebra algorithm but by an exact formula.

See also: mfHilb

Example(s):

A = mfHilb(5)

B = mfInvHilb(5)

call msDisplay(B, "B = mfInvHilb(5)")

call msDisplay(mfNorm(mfEye(5) - mfMul(A,B)), "| I - A*B |")

output:

B = mfInvHilb(5) =

25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600

1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200

630 -12600 56700 -88200 44100

| I - A*B | =

5.7926E-12

306

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfVander Vandermonde matrix

Calling syntax:

A = mfVander(v [, n])

Description:

Returns a Vandermonde matrix. The input vector mfArray v may be either a row or a column vector.

If the optional argument n is present, the returned matrix will have n columns, each one constituted by
a power of the vector v; else the returned matrix will be square, i. e. will have as much columns as the
size of v.

Example(s):

x = [1, 2, 3, 4, 5]

call msDisplay(x, "x")

call msDisplay(mfVander(x,3), "A = mfVander(x,3)")

output:

x =

1 2 3 4 5

A = mfVander(x,3) =

1 1 1

4 2 1

9 3 1

16 4 1

25 5 1

307

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfCompan Companion matrix

Calling syntax:

A = mfCompan(v)

Description:

Returns the Companion matrix of a polynomial, represented by its coefficients provided in the input
vector mfArray v (this latter array may be either a row or a column vector).

The eigenvalues of the matrix A are the roots of the input polynomial.

See also: mfRoots, mfEig

Example(s):

! polynom: (x-1)*(x-2)*(x-3)*(x-4) = x^4 - 10*x^3 + 35*x^2 - 50*x + 24,

! so the roots are: {1, 2, 3, 4}

v = [1.0d0, -10.0d0, 35.0d0, -50.0d0, 24.0d0]

call msDisplay(v, "v")

A = mfCompan(v)

call msDisplay(A, "A = mfCompan(v)")

call msDisplay(mfEig(A), "Eigenvalues of A")

output:

v =

1 -10 35 -50 24

A = mfCompan(v) =

10 -35 50 -24

1 0 0 0

0 1 0 0

0 0 1 0

Eigenvalues of A =

4.0000 + 0.0000i

3.0000 + 0.0000i

2.0000 + 0.0000i

1.0000 + 0.0000i

308

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfHankel mfHankel matrix

Calling syntax:

A = mfHankel(C [, R])

Description:

Returns the Hankel matrix of the input vectors mfArray C and R (these latter arrays may be either a
row or a column vector).

A Hankel matrix has constant anti-diagonal values.

Hankel matrices are real (because only real input vectors are supported) and symmetric (if square).

See also: mfToeplitz

Example(s):

C = [1.0d0, 2.0d0, 3.0d0, 4.0d0]

R = [4.0d0, 5.0d0, 6.0d0]

call msDisplay(C, "C", R, "R")

call msDisplay(mfHankel(C,R), "mfHankel(C,R)")

output:

C =

1 2 3 4

R =

4 5 6

mfHankel(C,R) =

1 2 3

2 3 4

3 4 5

4 5 6

309

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfToeplitz Toeplitz matrix

Calling syntax:

A = mfToeplitz(C [, R])

Description:

Returns the Toeplitz matrix of the input vectors mfArray C and R (these latter arrays may be either a
row or a column vector).

A Toeplitz matrix has constant diagonal values and is symmetric (if square).

Complex input vectors are supported. In such a case, the complex matrix is hermitian if the first element
of R is real.

See also: mfHankel

Example(s):

C = [1.0d0, 2.0d0, 3.0d0, 4.0d0]

R = [1.0d0, 5.0d0, 6.0d0]

call msDisplay(mfToeplitz(C,R), "mfToeplitz(C,R)")

output:

C =

1 2 3 4

R =

1 5 6

A = mfToeplitz(C,R) =

1 5 6

2 1 5

3 2 1

4 3 2

310

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfPerm permutation vector creation

Calling syntax:

p = mfPerm(v)

Description:

Returns a permutation vector mfArray from the vector of indices v.

v may be either a Fortran 90 integer vector, or a vector-like mfArray. In this latter case, the mfArray

should contains integer values; on the contrary, a warning is emitted by the routine.

See also: mfIsPerm, mfRandPerm, mfCheckPerm, mfColPerm, mfRowPerm, msSaveAscii

311

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfRandPerm random permutation vector creation

Calling syntax:

p = mfRandPerm(n [, k])

Description:

Returns a random permutation vector mfArray. Elements of p are unique integers in the range [1, n].

If the second argument k is present, returns k unique integers in the range [1, n]. In this latter case, p is
not a true permutation vector if k ̸= n.

See also: mfPerm, mfIsPerm, mfCheckPerm

312

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfCheckPerm permutation vector checking

Interface:

function mfCheckPerm(A) result(bool)

type(mfArray), intent(in) :: A

logical :: bool

Description:

Returns ‘.true.’ if A is a valid permutation vector, i. e. if the integers are consecutive numbers, not
necessarily ordered and appearing only once in the list.

See also: mfPerm, mfIsPerm

313

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

isfinite finite test

Interface:

function isfinite(x) result(out)

double precision, intent(in) :: x

logical :: out

Description:

This function returns a logical value, according to the value of x, which must be only of type double

precision.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isinf, isnan, mfIsFinite

314

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

isinf infinity test

Interface:

function isinf(x) result(out)

double precision, intent(in) :: x

logical :: out

Description:

This function returns a logical value, according to the value of x, which must be only of type double

precision.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isfinite, isnan, mfIsInf

315

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

isnan Not-a-Number test

Interface:

function isnan(x) result(out)

double precision, intent(in) :: x

logical :: out

Description:

This function returns a logical value, according to the value of x, which must be only of type double

precision.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isfinite, isinf, mfIsNaN

316

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsFinite finite test

Calling syntax:

C = mfIsFinite(A)

Description:

This elemental function returns a boolean mfArray.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isfinite, mfIsInf, mfIsNaN

317

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsInf infinity test

Calling syntax:

C = mfIsInf(A)

Description:

This elemental function returns a boolean mfArray.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isinf, mfIsFinite, mfIsNaN

318

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsNaN Not-a-Number test

Calling syntax:

C = mfIsNaN(A)

Description:

This elemental function returns a boolean mfArray.

Remarks: in the IEEE-754 standard, any real value is either finite, infinite, or NaN.

See also: isnan, mfIsFinite, mfIsInf

319

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsDiag diagonal pattern test

Calling syntax:

bool = mfIsDiag(A)

returns a TRUE boolean value if the mfArray A (sparse or dense) is a diagonal matrix.

See also: mfIsTril, mfIsTriu

320

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsTril lower triangular pattern test

Calling syntax:

bool = mfIsTril(A)

returns a TRUE boolean value if the mfArray A (sparse or dense) is a lower triangular matrix.

See also: mfIsDiag, mfIsTriu

321

MUESLI Reference Manual (index) FML: Elementary Matrix Manipulation Functions

mfIsTriu upper triangular pattern test

Calling syntax:

bool = mfIsTriu(A)

returns a TRUE boolean value if the mfArray A (sparse or dense) is a upper triangular matrix.

See also: mfIsDiag, mfIsTril

322

MUESLI Reference Manual (index) FML: Matrix Functions

1.8 Matrix Functions

mfDet determinant
mfTrace sum of diagonal elements
mfNorm matrix or vector norm
mfRank matrix rank
mfCond matrix condition number
mfRCond reciprocal condition number estimation
msLU LU factorization
msLDLT LDLt factorization
mf/msChol Cholesky factorization
msCholSpSymb Symbolic Cholesky factorization (sparse only)
msCholSpNum Numerical Cholesky factorization (sparse only)
mf/msBalance scaling to improve eigenvalue accuracy
mf/msSVD singular value decomposition
mfInv, .i. matrix inverse
mfPseudoInv matrix pseudo-inverse
mfQR, msQR orthogonal-triangular factorization
mfQleft, mfQright left or right multiplication by a Q factor (sparse only)
mf/msEig eigenvalues and eigenvectors
mf/msHess Hessenberg form
mf/msSchur Schur decomposition
mfLDiv, .ix. left matrix divide
mfRDiv, .xi. right matrix divide
msRref reduced row echelon form
mfNull null space
mfOrth matrix orthogonalization

mfExpm matrix exponential
mfLogm matrix logarithm
mfSqrtm matrix square root
mfPowm matrix power
mf/msFunm general matrix function

mf/msEigs few eigenvalues and eigenvectors
mf/msSVDS few singular values and vectors
mfNormEst, mfNormEst1 norm estimations
mfCondEst matrix condition number estimation

mfIsSymm matrix symmetry inquiry
mfTolForSymm tolerance for symmetry
mfIsPosDef definite positiveness inquiry
mfIsDiagDomCol diagonally dominant by cols inquiry
mfIsStrictDiagDomCol strictly diagonally dominant by cols inquiry
mfIsFullRank full rank inquiry

MF LAPACK VERSION LAPACK version
msGetBlasLib Get BLAS library type
msGetLapackLib Get LAPACK library type
msGetArpackInfo Get ARPACK library information
msGetSuiteSparseLib Get SuiteSparse library version

See also:

Core Routines

File Input/Output

Data Analysis Functions

323

MUESLI Reference Manual (index) FML: Matrix Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Polynomial Functions

Optimization and Function Functions

Sparse Matrices

324

MUESLI Reference Manual (index) FML: Matrix Functions

mfDet determinant

Calling syntax:

C = mfDet(A)

Description:

Returns the determinant of the mfArray A.

A must be square, and cannot be sparse.

Remarks: using the determinant of a matrix to detect whether it is singular is not a good idea: use
mfCond or mfRCond instead.

See also: mfRank

325

MUESLI Reference Manual (index) FML: Matrix Functions

mfTrace sum of diagonal elements

Calling syntax:

C = mfTrace(A)

Description:

Returns the sum of all diagonal element of the mfArray A (dense or sparse, real or complex).

Remarks: the trace of a square matrix is also the sum of its eigenvalues.

See also: mfEig

326

MUESLI Reference Manual (index) FML: Matrix Functions

mfNorm matrix or vector norm

Calling syntax:

C = mfNorm(A [, norm | p])

Description:

Returns the norm of the mfArray A, which can be a vector or a matrix (sparse or dense).

The two optional arguments (norm is a character string whereas p is an integer) cannot be both present.

− For a matrix, only 1-, 2-, "inf"- or "fro"-norms are supported.

By default, returns the 2-norm (which is also the largest singular value of A). If p is present, it
returns the p-norm of A (therefore, p can take only the values 1 or 2). If norm is present, it must
be inf (infinite-norm) or fro (frobenius-norm).

− For a vector, only p- > 0 and "inf"- norms are supported.

By default, returns the 2-norm. If p is present, it returns the p-norm of A. If norm is present, it
must be inf (infinite-norm).

Note: For sparse matrices, use mfNormEst or mfNormEst1 instead, which are more efficient.

See also: mfCond, mfSVD

327

MUESLI Reference Manual (index) FML: Matrix Functions

mfRank matrix rank

Calling syntax:

C = mfRank(A [, tol])

Description:

Computes the rank of a matrix, i. e. the number of linearly independent rows or columns.

If tol, of type real, is present then it returns the number of singular values greater or equal to this
optional tolerance. Default tolerance is chosen as max(m,n) ||A||2 ϵ, where m and n are respectively the
number of rows and number of columns of the mfArray A.

Remarks:

− it is internally based on the Singular Value Decomposition;

− for sparse matrices, the user is invited to use mfSVDS, and examine himself few singular values.

See also: mfSVD, mfSVDS, mfIsFullRank

328

MUESLI Reference Manual (index) FML: Matrix Functions

mfCond matrix condition number

Calling syntax:

C = mfCond(A)

Description:

Returns the condition number of the mfArray A. It is the ratio of the largest singular value to the smallest
one.

Remarks: The condition number is always greater than 1. A value equal to infinity (resp. close to the
inverse of the ϵ machine) indicates that the matrix A is singular (resp. nearly singular).

See also: mfCondEst, mfRCond, mfNorm, mfSVD, mfDet

329

MUESLI Reference Manual (index) FML: Matrix Functions

mfRCond reciprocal condition number estimation

Calling syntax:

C = mfRCond(A)

Description:

Returns an estimation of the inverse of the condition number (which is called the reciprocal condition
number).

Remarks: The reciprocal condition number is always between 0 and 1. A value equal to zero (resp. close
to the ϵ machine) indicates a singular matrix (resp. nearly singular).

See also: mfCond, mfCondEst, mfNorm, mfSVD, mfDet

330

MUESLI Reference Manual (index) FML: Matrix Functions

msLU LU factorization

Description:

Computes numerically the LU decomposition of an mfArray.

First calling syntax:

call msLU(mfOut(L, U [, p]), A)

For dense mfArrays, returns the L (lower triangular, with a unit diagonal) and U (upper triangular)
factors, and, optionally, the row permutation vector p, such that:

LU = A(p, :)

If the optional argument p is not present, the routine actually returns a row permuted L, such that:

LU = A

In this latter case, be aware that you will not be able to solve a linear system using only the factors L
and U , because you must know the permutation p to be applied to the right hand side vector. See the
Muesli User’s Guide to an example using the LU decomposition.

Second calling syntax:

call msLU (mfOut(L, U [, p, q, r]), A)

For sparse mfArrays, the routine msLU behaves in a slightly different manner:

p and q are respectively row and column permutations vectors while r is a vector containing the row
scaling of A. All these sparse matrices should verify the following (theoretical) relationship:

L U = P R A Q

where the matrices P,Q,R are associated to the vectors p, q, r. Practically, the RHS of the previous
identity should be computed using mfRowScale, mfColPerm and mfRowPerm.

Moreover, the L factor contains a pointer to an internal structure containing all the five output matrices,
so that a call to the mfLDiv routine is simplified.

Third calling syntax: In all cases (sparse or dense matrix A), the following syntax:

call msLU(mfOut(factors), A)

provides the possibility to factorize only, without copying factors in explicit mfArrays. In this case, the
factors (accompanied by the permutations and the scaling) are internally stored (i. e. not available for
the end-user) and can be referenced only via the mfMatFactor factors.

The mfMatFactor obtained is intended to be used only in mfLDiv.

Remark: If the matrix A is symmetric and positive definite, the current routine may emit a warning:
indeed, a Cholesky factorization (via the mf/msChol routine) should be more efficient and uses less
memory.

See also: msQR, msRref, mfOut

331

MUESLI Reference Manual (index) FML: Matrix Functions

msLDLT LDLt factorization

Calling syntax:

call msLDLT(mfOut(L,D,P), A)

Description:

Computes numerically the LDLt decomposition of a real and symmetric (indefinite) mfArray A, dense
or sparse. Returns a lower triangular L, a matrix D (block diagonal 1x1 or 2x2) and a permutation matrix
P such that: LDL′ = P ′ AP .

Remark: if A is moreover positive definite, then the Cholesky factorization should be more appropriate !

N.B.: For sparse matrices:

− the matrix D is strictly diagonal;

− be aware that the LDLt factorization can fail, especially if the original matrix has some zeros on
the main diagonal (the fact that A is non-singular is necessary but not sufficient); in this case, use
the LU factorization instead which makes pivoting.

See also: msLU, mf/msChol, mfOut

332

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msChol Cholesky factorization

Description:

Computes numerically the Cholesky factorization of the mfArray A, which must be symmetric and
positive definite; if this latter property doesn’t hold, MUESLI emits an error and returns an empty
mfArray.

First calling syntax:

U = mfChol(A)

For dense matrices, returns an upper triangular mfArray U, such that: U ′ U = A

Second calling syntax: For sparse matrices, the calling syntax is slightly different, because a permutation
is first applied to the matrix A in order to reduce the fill-in:

call msChol(mfOut(L,p), A)

returns a lower triangular mfArray L and a permutation p such that: LL′ = P ′ AP . The permutation p

is always returned as a special mfArray (see mfPerm), thus the routines mf/msColPerm and mf/msRowPerm

must be used to applied this permutation to the matrix A.

Third calling syntax: For sparse matrices only, there is also the possibility to factorize only, without
copying the factors (L and P) in explicit mfArrays. In this case, the factors are internally stored (i. e.
not available for the end-user) and can be referenced only via the mfMatFactor factors:

call msChol(mfOut(factors), A)

The mfMatFactor obtained is intended to be used only in mfLDiv.

See also: msLU, msLDLT, mfOut, msCholSpSymb, msCholSpNum

333

MUESLI Reference Manual (index) FML: Matrix Functions

msCholSpSymb Symbolic Cholesky factorization (sparse only)

Description:

Computes the symbolic Cholesky factorization of the sparse mfArray A, which must be symmetric; if
this latter property doesn’t hold, MUESLI emits an error and returns an empty mfArray.

Interface:

subroutine msCholSpSymb(factor, A)

type(mfArray), intent(in) :: A

type(mfMatFactor), intent(out) :: factor

end subroutine

After using this routine, the usual step is to call (once or more) the msCholSpNum routine, before solving
a linear system with mfLDiv.

See also: mf/msChol

334

MUESLI Reference Manual (index) FML: Matrix Functions

msCholSpNum Numerical Cholesky factorization (sparse only)

Description:

After having called the symbolic factorisation (via the msCholSpSymb routine), computes the numerical
Cholesky factorization of the sparse mfArray A, which must be positive definite; if this latter property
doesn’t hold, MUESLI emits an error and returns an empty mfArray.

Interface:

subroutine msCholSpNum(factor, A)

type(mfArray), intent(in) :: A

type(mfMatFactor), intent(in out) :: factor

end subroutine

After using this routine, the usual step should be to solve a linear system with mfLDiv.

See also: mf/msChol

335

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msBalance scaling to improve eigenvalue accuracy

The first form:

B = mfBalance(A)

returns an mfArray which is balanced, i. e. applies similarity transformations to A in order to make the
rows and columns as close in norm as possible.

The second form:

call msBalance(mfOut(T,B), A)

also returns the (non singular) diagonal transformation matrix T, such that: B = T−1AT

Remark: there is no permutation applied to the matrix A. Moreover, the matrix A must be square.

See also: mfNorm, mfEig, mfOut

336

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msSVD singular value decomposition

Calling syntax:

S = mfSVD(A)

The function form returns only the singular values of the mfArray A (size m by n), in a column vector
that is sorted from the greatest to the smallest; the size of this vector is min(m,n) and its type is always
real, whatever the type of A.

The subroutine form allows the user to access to the full decomposition:

call msSVD(mfOut(U,S,V), A [, economy_size])

which returns three mfArrays such that A = US V ′. U and V are both unitary matrices whose columns
contain, respectively, the left- and right-singular vectors of A. In this case, S is returned as a rank-2 array.

If the logical optional argument economy size is present and equal to TRUE, then U contains only the
min(m,n) first columns of the matrix U , and V contains only the min(m,n) first columns of the matrix
V . S is always a square matrix of order min(m,n).

Remarks: sparse matrices are not handled; please use mf/msSVDS instead.

See also: mfNorm, mfRank, mfDet, mfOut

337

MUESLI Reference Manual (index) FML: Matrix Functions

mfInv, .i. matrix inverse

Calling syntax:

C = mfInv(A)

.i. A (A−1) is a shortcut for writing: mfInv(A)

Description:

Returns the inverse of the square mfArray A, mathematically noted A−1.

If A is singular (or close to, ought to the machine ϵ), it returns an infinite mfArray of same shape.

For singular of non square matrices, the Moore-Penrose pseudo-inverse routine mfPseudoInv could also
be used.

Remarks: sparse matrices are not handled; it is very unusual to have to explicitly compute the inverse
of a matrix. If necessary, solving the system Ax = ei for each basis vector ei gives each column of A−1;
but be aware that you will obtain a (nearly) dense matrix.

See also: mfPseudoInv, mfLDiv, mf/msSVD, mfRank

338

MUESLI Reference Manual (index) FML: Matrix Functions

mfPseudoInv matrix pseudo-inverse

Calling syntax:

C = mfPseudoInv(A [, tol])

Description:

Returns the Moore-Penrose pseudo-inverse of the mfArray A.

A may be non square or square singular. mfPseudoInv returns a matrix, based on the SVD of A and any
singular values less than the tolerance tol are treated as zero. The default tolerance is max(m,n) ||A||2 ϵ,
where m and n are respectively the number of rows and number of columns of the mfArray A.

See also: mfInv, mf/msSVD, mfRank

339

MUESLI Reference Manual (index) FML: Matrix Functions

mfQR orthogonal-triangular decomposition

Calling syntax:

R = mfQR(A)

performs a QR factorization of the matrix A (m × n, dense or sparse mfArray), but returns only the R

factor (upper triangular matrix of size n× n) verifying R′ R = A′ A. This is the Q-less decomposition.

Remark for sparse matrices: The use of this routine should be restricted to small or moderate size sparse
matrices because no ordering is applied to prevent the fill-in. For large sparse matrices, use the msQR

routine instead, which has also more options.

Note: The complex type is not yet supported for sparse matrices.

See also: msQR, msLU

340

MUESLI Reference Manual (index) FML: Matrix Functions

msQR orthogonal-triangular decomposition

Calling syntax:

call msQR(mfOut(Q,R[,p,RANK]), A [, tol])

applies the orthogonal-triangular decomposition to the mfArray A, dense or sparse, of size m × n. It
returns the two mfArrays Q and R such that A = QR.

Usually, Q is an orthogonal matrix (size m×m) and R is a upper-triangular matrix (size m× n).

If m > n, the economy size is always used: Q contains only the n first columns of the orthogonal full
matrix Q (therefore of size m × n), and R is the square upper part (i. e. the non-zero part) of the full R
(therefore of size n× n). This latter case is used for least-square problems.

Optionally, a column permutation vector p may be applied to the matrix A, such that QR = A(:, p):

− for the dense case, the use of this option leads to a factor R having the module of its diagonal
terms in decreasing order;

− for the sparse case, the permutation is chosen to obtain a better sparsity for both Q and R factors.

If the mfArray RANK is present, it contains on return the numerical rank of the matrix A:

− for the dense case, a different method is used in order to compute safely the rank: it is the rank-
revealing QR;

− for the sparse case, an estimation of the rank is returned.

If the argument tol (real double) is present, it specifies to which accuracy the rank is computed. Default
value is the machine precision, MF EPS.

Other syntax: for sparse matrices only, the additional syntax can be used:

call msQR(mfOut(Qhouse,R[,p,RANK]), A[, tol])

which returns the Householder vectors of the Q matrix in the mfMatFactor Qhouse variable, and the R
triangular factor in the mfArray R. Although Qhouse doesn’t contain explicitly the matrix Q, the Shape
routine applied to it will returned the shape of Q, i. e. (m,m). The shape of R is (m,n).

This second form should be used for large size matrices, Qhouse being much more sparse than Q. The
user is invited to use one of the routines mfQleft or mfQright in order to perform the multiplication of
Q with another vector or matrix.

The other parameters have the same meaning as in the first calling syntax.

Note: The complex type is not yet supported for sparse matrices.

See also: mfQR, msLU, mfOut

341

MUESLI Reference Manual (index) FML: Matrix Functions

mfQleft left multiplication by a sparse Q factor

Calling syntax:

B = mfQleft(Qhouse, A)

returns the product Q′ A.

The mfMatFactor Qhouse holds a sparse Q factor (obtained from a QR decomposition of a sparse
matrix); the mfArray A may be a vector (dense) or a matrix (dense or sparse). B has the same structure
(dense or sparse) than A.

By performing the operation: Q = .t. mfQleft(Qhouse, mfSpEye(m,m)) the standard form of the
Q factor can be obtained (but be aware that Qhouse is often much more sparse than Q).

Note: The complex case is not yet implemented.

See also: msQR, mfQright

342

MUESLI Reference Manual (index) FML: Matrix Functions

mfQright right multiplication by a sparse Q factor

Calling syntax:

B = mfQright(A, Qhouse)

returns the product AQ.

The mfMatFactor Qhouse holds a sparse Q factor (obtained from a QR decomposition of a sparse
matrix); the mfArray A may be a vector (dense) or a matrix (dense or sparse). B has the same structure
(dense or sparse) than A.

By performing the operation: Q = mfQright(mfSpEye(m,m), Qhouse) the standard form of the Q
factor can be obtained (but be aware that Qhouse is often much more sparse than Q).

Note: The complex case is not yet implemented.

See also: msQR, mfQleft

343

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msEig eigenvalues and eigenvectors

The first form:

E = mfEig(A)

returns the eigenvalues of the mfArray A in the vector mfArray E.

The subroutine form:

call msEig(mfOut(V,D), A)

returns two mfArrays. D is a diagonal matrix containing the eigenvalues and V is the matrix whose
columns are the corresponding eigenvectors so that: AV = V D (or, equivalently, A = V D V ′).

Remarks:

− Sparse matrices are not handled; please use mf/msEigs instead.

− Eigenvalues are returned in ascending order, according to the magnitude for complex ones.

See also: mf/msEigs, mf/msSchur, mfOut

344

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msHess Hessenberg form

The first form:

H = mfHess(A)

computes the Hessenberg form of the mfArray A. The returned mfArray has the same eigenvalues as A
but contains zeros below the first subdiagonal.

The subroutine form:

call msHess (mfOut(P,H), A)

returns two mfArrays. H is the Hessenberg form and P is a unitary matrix so that: A = PHP ′.

Remarks: sparse matrices are not (yet) handled.

See also: mfOut

345

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msSchur Schur decomposition

Calling syntax:

call msSchur (mfOut(U,T), A [, form])

produces a upper triangular Schur matrix T and a unitary matrix U so that: A = UTU ′. A must be
square.

For a real, dense mfArray A the Schur matrix T is generally quasi-triangular (real form by default, see
below).

The optional character argument form may be equal to "real" or "complex".

When processing a complex, dense mfArray A, or when the optional form string is equal to "complex",
the matrix T is complex, (strictly) upper triangular.

Other syntax:

T = mfSchur(A [, form])

just returns the T factor.

Remarks:

− in the real form, the matrix T contains 1-by-1 and 2-by-2 diagonal blocks: the 2-by-2 blocks
correspond to complex conjugate pairs of eigenvalues of A.
Each 2-by-2 block is in the form: (

a b
c a

)
where b c < 0. The eigenvalues of such a block are a±

√
b c.

− the Schur decomposition is intended to be used for non-symmetric eigenvalue problems; if
the mfArray A is symmetric/hermitian, it is preferable to compute eigenvalues/vectors via the
mf/msEig routines (in such a case, V and D mfArrays returned by mf/msEig correspond exactly to
U and T). A warning is therefore emitted if A is symmetric or hermitian.

− sparse matrices are not (yet) handled.

See also: mfOut

346

MUESLI Reference Manual (index) FML: Matrix Functions

mfLDiv, .ix. left matrix divide

Calling syntax:

x = mfLDiv(A, b)

A .ix. b (A−1b) is a shortcut for writing: mfLDiv(A, b)

Description: solves a linear system of the form Ax = b, i. e. returns x = A−1b without computing A−1.

The mfArray A (of size m× n) may be real or complex, sparse or dense, and doesn’t need to be square;
it can be even rank deficient (tests are made internally to use the most appropriate method):

– if m > n the mean-square solution is returned;

– if m < n the minimum 2-norm solution is returned.

This routine automatically detects if A is triangular and chooses the appropriate method.

Multiple right hand sides may be simultaneously solved, by concatenating all the RHS vectors in one
rank-2 mfArray b. This feature is not available for sparse matrices A (but see below the way of solving
simultaneously equations by using intermediate factors).

Note: For the sparse complex case, only square matrices A are supported.

Using this routine is always more efficient than computing the inverse of the matrix A first followed by
the product with b.

Remarks:

− After doing an LU factorization of the (dense) matrix A, this routine can also be called to solve
the linear system Ax = P LU x = b, by using the following syntax:

x = mfLDiv(L, U, P, b[, option="transp"])

The optional last argument allows the user to solve the system A′ x = b (transpose in the real case,
conjugate transpose in the complex case).

− After doing a Cholesky factorization of the (dense) matrix A via mfChol, this routine can also be
called to solve the linear system Ax = U ′ U x = b, by using the following syntax:

x = mfLDiv(U, b, form="cholesky")

− Similarly,

x = mfLDiv(L, U, b)

is used for a sparse matrix. As noted in the msLU page, the mfArray L factor contains a pointer
to an internal structure containing all necessary data concerning the LU factorization. Note that
the RHS b cannot have here multiple columns.

. . ./ . . .

347

MUESLI Reference Manual (index) FML: Matrix Functions

− For using with an mfMatFactor factors (from, e. g., msLU or mf/msChol), the routine must be
called as:

x = mfLDiv(factors, b[, option="transp"])

This latter interface allows the user to simultaneously solve multiple RHS. Moreover, for this case
only, the RHS b may be dense or sparse. The optional last argument allows the user to solve the
system A′ x = b.

− When a (near) singular matrix is encountered, a Warning message may be emitted, according to
the message level parameter (see msSetMsgLevel to change this level).

See also: mfRDiv

348

MUESLI Reference Manual (index) FML: Matrix Functions

mfRDiv, .xi. right matrix divide

Calling syntax:

x = mfRDiv(b, A)

b .xi. A (bA−1) is a shortcut for writing: mfRDiv(b, A)

Description: solves linear system of the form xA = b, i. e. returns x = bA−1 without computing A−1.

The mfArray A (of size m× n) may be real or complex, sparse or dense, and doesn’t need to be square;
it can be even rank deficient (tests are made internally to use the most appropriate method):

– if n > m the least-square solution is returned;

– if n < m the minimum 2-norm solution is returned.

This routine automatically detects if A is triangular and chooses the appropriate method.

Multiple right hand sides may be simultaneously solved, by concatenating all the RHS vectors in one
rank-2 mfArray b. This feature is not available for sparse matrices A (you should use mfLDiv instead,
by using transposition).

Note: For the sparse complex case, only square matrices A are supported.

Using this routine is always more efficient than computing the inverse of the matrix A first followed by
the product with b.

Remarks:

− After doing an LU factorization of the (dense) matrix A, this routine can also be called to solve
the linear system xA = xP LUx = b, by using the following syntax:

x = mfRDiv(b, L, U, P)

− After doing a Cholesky factorization of the (dense) matrix A via mf/msChol, this routine can also
be called to solve the linear system xA = xU ′ U = b, by using the following syntax:

x = mfRDiv(b, U, form="cholesky")

− Similarly,

x = mfRDiv(L, U, b)

is used for a sparse matrix. As noted in the msLU page, the mfArray L factor contains a pointer
to an internal structure containing all necessary data concerning the LU factorization. Note that
the RHS b cannot have here multiple columns.

− When a (near) singular matrix is encountered, a Warning message may be emitted, according to
the message level parameter (see msSetMsgLevel to change this level).

See also: mfLDiv

349

MUESLI Reference Manual (index) FML: Matrix Functions

msRref reduced row echelon form

Calling syntax:

call msRref (mfOut(R,jpiv), A [, tol])

computes the reduced row echelon form of the mfArray A.

The optional real tol is the tolerance (should be positive) used to compute the rank of the matrix. This
tolerance cannot be too small. Minimum is the machine precision. When it is known, use the precision
of the elements of the matrix A.

Note that the rank provided by this method is only an approximation which may differ from that
computed with other methods (e. g., the Singular Value Decomposition msSVD). However, this approach
is pedagogically interesting.

See also: mfRank, mfOrth, mfNull, msQR, mfOut

350

MUESLI Reference Manual (index) FML: Matrix Functions

mfNull null space

Calling syntax:

B = mfNull(A [, rational, tol])

returns an orthonormal basis for the null space of the mfArray A.

The optional logical rational argument specifies whether the rational basis is expected or not.

The optional real tol argument is the tolerance (should be positive) used to compute the rank of the
matrix. As mfNull calls msRref, tol cannot be less than the machine ϵ.

See also: mfRank, mfOrth, msRref, msQR, msSVD

351

MUESLI Reference Manual (index) FML: Matrix Functions

mfOrth matrix orthogonalization

Calling syntax:

B = mfOrth(A)

returns an orthonormal basis for the range of the mfArray A.

See also: mfRank, mfNull, msRref, msQR, msSVD

352

MUESLI Reference Manual (index) FML: Matrix Functions

mfExpm matrix exponential

Calling syntax:

B = mfExpm(A)

computes the matrix exponential of the mfArray A (dense only).

See also: mfExp, mfLogm, mfSqrtm, mfPowm, mfFunm

353

MUESLI Reference Manual (index) FML: Matrix Functions

mfLogm matrix logarithm

Calling syntax:

B = mfLogm(A)

computes the matrix logarithm of the mfArray A (dense only).

See also: mfLog, mfExpm, mfSqrtm, mfPowm, mfFunm

354

MUESLI Reference Manual (index) FML: Matrix Functions

mfSqrtm matrix square root

Calling syntax:

B = mfSqrtm(A)

computes the matrix square root of the mfArray A (dense only).

The property BB = A doesn’t always hold, because A may not have a square root.

See also: mfSqrt, mfExpm, mfLogm, mfPowm, mfFunm

355

MUESLI Reference Manual (index) FML: Matrix Functions

mfPowm matrix power

Calling syntax:

B = mfPowm(A, e)

computes the matrix power of the mfArray A, i. e. Ae.

If e is integer, then A may have a sparse or a dense structure. Any positive integer is accepted.

If e is real, then A must have a dense structure. Any real value for e is accepted.

See also: mfPow10, mfExpm, mfLogm, mfSqrtm, mfFunm

356

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msFunm general matrix function

Calling syntax:

F = mfFunm(A, fun)

applies the matrix function fun to the mfArray A (dense only).

fun is either a character string giving the name of a usual function (as sin, cos, asin, ...), or the name of
a user function. In this latter case, the user function must have the following interface:

function fun(z1) result(z2)

complex(kind=MF_DOUBLE) :: z1, z2

end function

The subroutine form, which has the calling syntax:

call msFunm(mfOut(F,e), A, fun)

returns also an estimation of the error in the scalar mfArray e. Note that in the case of the exponential
function (fun set to "exp"), the mfExpm is directly called, so that the error estimation will be not available
(the mfArray e will be empty).

Remark: Use mfFun to apply the function fun in a element-wise manner.

See also: mfExpm, mfLogm, mfSqrtm, mfPowm, mfOut

357

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msEigs few eigenvalues and eigenvectors

The first form:

E = mfEigs(A, k [, which|sigma] [, tol, ncv])

returns few eigenvalues of the matrix A using ARPACK in the vector mfArray E. A may be real/complex,
sparse/dense.

The number of requested eignevalues k must be ranged in [2, n− 2].

which is a character(len=2) optional argument, can take the values "LM" or "SM", depending on
whether the Largest or the Smaller Magnitude eigenvalues/vectors are requested. In addition, which can
take the following values:

− for real, symmetric matrices:

"LA" = Largest Algebraic, with an algebraic selection;

"SA" = Smallest Algebraic, with an algebraic selection;

"BE" = Both Ends, with an algebraic selection (half from the largest ones and half from the
smallest ones.

− for real, unsymmetric matrices:

"LR" = Largest Real part, with an algebraic selection;

"SR" = Smallest Real part, with an algebraic selection;

"LI" = Largest Imaginary part, with a magnitude1 selection;

"SI" = Smallest Imaginary part, with a magnitude1 selection;

− for complex matrices:

"LR" = Largest Real part, with an algebraic selection;

"SR" = Smallest Real part, with an algebraic selection;

"LI" = Largest Imaginary part, with a algebraic selection;

"SI" = Smallest Imaginary part, with a algebraic selection;

Eigenvalues are generally returned in a ascending order, excepted for the "LM" and "LA" cases, for which
they are returned in a descending order.

sigma is a complex optional argument. If present, mfEigs tries to find the k eigenvalues closest to the
complex sigma.

If tol is present, it indicates the tolerance of the computed eigenvalues. By default, the machine epsilon
is taken.

If ncv is present, it indicates how many Arnoldi vectors are generated (following the ARPACK docu-
mentation, the minimum value for ncv is 2*k+1 and the maximum value is the order n of the matrix; a
warning is emitted if these conditions are not fulfilled).

If ncv is not present, the mfEigs routine tries larger and larger values of ncv, until (hopefully) the
convergence of all requested eigenvalues.

In both cases (ncv present or not present), a warning is issued if not all eigenvalues converged. Use the
subroutine form, explained below, to obtain a quiet behavior.

. . ./ . . .

1in order to keep adjacent the complex conjugate pairs.

358

MUESLI Reference Manual (index) FML: Matrix Functions

The subroutine form:

call msEigs(mfOut(V,E,flag), A, k [, which|sigma] [, tol, ncv])

returns the requested eigenvalues in the vector mfArray E, the corresponding eigenvectors in the columns
of the mfArray V, and the convergence of the iterative process. If the boolean mfArray flag is TRUE
then all the eigenvalues converged; otherwise not all converged. Note that non-converged eigenval-
ues/eigenvectors are set to NaN.

The remaining arguments are processed as described above.

See also: mf/msEig, mf/msSVDS, mfOut

359

MUESLI Reference Manual (index) FML: Matrix Functions

mf/msSVDS few singular values

The first form:

S = mfSVDS(A, k [, which, tol, ncv])

returns few singular values of the matrix A using ARPACK in the vector mfArray S. A may be
real/complex, sparse/dense; it doesn’t need to be square.

k, the number of required singular values, cannot be larger than min(m,n) − 2. If so, NaN values are
used to fill the vector S.

which is a character(len=2) optional argument, which must be equal to "LM", "SM" or "BE". If present,
mfSVDS tries to find the k singular values of largest magnitude ("LM"), or smallest magnitude ("SM").
Only for real matrices, "BE" allows to compute the both-end singular values. Default value is "LM".

If tol is present, it indicates the tolerance of the computed singular values. By default, the machine
epsilon is taken.

If ncv is present, it indicates how many Arnoldi vectors are generated (following the ARPACK docu-
mentation, the minimum value for ncv is 2*k+1 and the maximum value is min(m,n) of the matrix; a
warning is emitted if these conditions are not fulfilled).

If ncv is not present, the mfSVDS routine tries larger and larger values of ncv, until (hopefully) the
convergence of all requested singular values.

In both cases (ncv present or not present), a warning is issued if not all singular values converged. Use
the subroutine form, explained below, to obtain a quiet behavior.

The subroutine form:

call msSVDS(mfOut(S,flag), A, k [, which, tol, ncv])

returns the requested singular values in the vector mfArray S and the convergence of the iterative
process. If the boolean mfArray flag is TRUE then all the singular values converged; otherwise not all
converged. The remaining arguments are processed as described above.

See also: mf/msSVD, mf/msEigs, mfOut

360

MUESLI Reference Manual (index) FML: Matrix Functions

mfNormEst, mfNormEst1 norm estimations

Syntax:

C = mfNormEst(A [, tol])

Description:

Returns an estimation of the 2-norm of a rank-2 mfArray (dense or sparse, real or complex, square or
non-square).

The optional argument allows the user to choose the tolerance used in the iterative algorithm. By default,
tolerance is 10−6.

Syntax:

C = mfNormEst1(A)

returns an estimation of the 1-norm of a square matrix (sparse or dense).

See also: mfNorm

361

MUESLI Reference Manual (index) FML: Matrix Functions

mfCondEst matrix condition number estimation

Calling syntax:

C = mfCondEst(A)

Description:

Returns an estimation of the condition number of the rank-2 mfArray A.

Remarks: The condition number is always greater than 1. A value equal to infinity (resp. close to the
inverse of the ϵ machine) indicates that the matrix A is singular (resp. nearly singular).

See also: mfCond, mfRCond

362

MUESLI Reference Manual (index) FML: Matrix Functions

mfIsSymm matrix symmetry inquiry

Calling syntax:

bool = mfIsSymm(A [, option="pattern", tol])

returns a boolean value according to the symmetry property of the mfArray A. If the matrix is complex,
this property means hermitian.

For a sparse mfArray A, if the optional argument option is present and equal to "pattern", then the
routine checks only for the symmetry of the sparse structure.

If the optional tolerance tol is present, the symmetry test (for the real case) is made according to the
rule:

||A−A′||1 < 2 tol ||A||1

Default tolerance is MF EPS.

See also: mfIsPosDef, mfTolForSymm

363

MUESLI Reference Manual (index) FML: Matrix Functions

mfTolForSymm tolerance for symmetry

Calling syntax:

tol = mfTolForSymm(A)

returns the tolerance for which the mfArray A should be symmetric.

See also: mfIsSymm

364

MUESLI Reference Manual (index) FML: Matrix Functions

mfIsPosDef definite positiveness inquiry

Calling syntax:

bool = mfIsPosDef(A)

returns a boolean value according to the definite positiveness property of the mfArray A.

See also: mfIsSymm

365

MUESLI Reference Manual (index) FML: Matrix Functions

mfIsDiagDomCol diagonally dominant by cols inquiry

Calling syntax:

bool = mfIsDiagDomCol(A)

returns a boolean value according to the “diagonally dominant by cols” property of the mfArray A.

See also: mfIsStrictDiagDomCol

366

MUESLI Reference Manual (index) FML: Matrix Functions

mfIsStrictDiagDomCol strictly diagonally dominant by cols inquiry

Calling syntax:

bool = mfIsStrictDiagDomCol(A)

returns a boolean value according to the “strictly diagonally dominant by cols” property of the mfArray
A.

See also: mfIsDiagDomCol

367

MUESLI Reference Manual (index) FML: Matrix Functions

mfIsFullRank full rank inquiry

Calling syntax:

bool = mfIsFullRank(A [, tol])

returns ‘.true.’ if the mfArray A is full rank, i. e. if its rank is equal to the minimum of its dimensions.

If tol, of type real, is present then this value is used as tolerance in the rank computation. Default
tolerance is chosen as max(m,n)||A||ϵ.

See also: mfRank

368

MUESLI Reference Manual (index) FML: Matrix Functions

MF LAPACK VERSION LAPACK version

Calling syntax:

string = MF_LAPACK_VERSION()

returns the LAPACK version used during the link of the executable.

Note the parenthesis used after the name of the variable, because it is implemented as a function.

The returned string may be used by the mfIsVersion boolean function.

See also: MF COMPILER VERSION, MF MUESLI VERSION, msGetBlasLib, msGetLapackLib,
msGetArpackInfo, msGetSuiteSparseLib

369

MUESLI Reference Manual (index) FML: Matrix Functions

msGetBlasLib Get BLAS library type

Calling syntax:

call msGetBlasLib(string)

returns the BLAS library type used during the link of the executable, that is, either Reference for most
compilers or a specific package for others (e. g. MKL for the INTEL compiler suite; OpenBLAS or ATLAS
for the GNU compiler suite).

string is a character string of length at least 128.

The current routine is able to detect the dynamic switch between BLAS implementations like OpenBLAS
and ATLAS.

See also: MF COMPILER VERSION, MF MUESLI VERSION, MF LAPACK VERSION, msGetLapackLib,
msGetArpackInfo, msGetSuiteSparseLib

370

MUESLI Reference Manual (index) FML: Matrix Functions

msGetLapackLib Get LAPACK library type

Calling syntax:

call msGetLapackLib(string)

returns the LAPACK library type used during the link of the executable, that is, either Reference for
most compilers or a specific package for others (e. g. MKL for the INTEL compiler suite or ATLAS for
the GNU compiler suite).

string is a character string of length at least 128.

The current routine is able to detect the dynamic switch between BLAS implementations like Reference
and ATLAS.

See also: MF COMPILER VERSION, MF MUESLI VERSION, MF LAPACK VERSION, msGetBlasLib,
msGetArpackInfo, msGetSuiteSparseLib

371

MUESLI Reference Manual (index) FML: Matrix Functions

msGetArpackInfo Get ARPACK library information

Calling syntax:

call msGetArpackInfo(version[, info])

version is a character string of length at least 24, containing on return the version of the library. The
"NG" letters indicates the new generation version, which can be found at: http://forge.scilab.org/
index.php/p/arpack-ng/.

info is an optional character string of length at least 128, containing on return additional information,
especially various non official fixes applied to the library.

See also: MF COMPILER VERSION, MF MUESLI VERSION, MF LAPACK VERSION, msGetBlasLib,
msGetLapackLib, msGetSuiteSparseLib

372

http://forge.scilab.org/index.php/p/arpack-ng/
http://forge.scilab.org/index.php/p/arpack-ng/

MUESLI Reference Manual (index) FML: Matrix Functions

msGetSuiteSparseLib Get SuiteSparse library version

Calling syntax:

call msGetSuiteSparseLib(version)

version is a character string of length at least 8, containing on return the version of the library.

The returned string may be used by the mfIsVersion boolean function.

See also: MF COMPILER VERSION, MF MUESLI VERSION, MF LAPACK VERSION, msGetBlasLib,
msGetLapackLib, msGetArpackInfo

373

MUESLI Reference Manual (index) FML: Polynomial Functions

1.9 Polynomial Functions

mfPolyVal polynomial evaluation
mfPolyFit, msPolyFit polynomial fitting
mfFunFit, msFunFit nonlinear function fitting
mfRoots roots of a polynomial
mfPoly polynomial with specified roots
mfSpline, msSpline cubic spline interpolation or smoothing
mfLegendre Legendre polynomials
mfPPVal piecewise polynomial evaluation
mfPPDer piecewise polynomial derivative
mfInterp1 1D interpolation
mfInterp2 regular 2D interpolation

mfPSLG Planar Straight Line Graph (derived type)
msPrintPSLG Planar Straight Line Graph display
mfDelaunay Delaunay 2D tessellation (triangulation)
mfTriConnect 2D triangular connectivity (derived type)
msBuildTriConnect 2D triangular connectivity initialization
msUpdateTriConnect 2D triangular connectivity update
msExtractTriConnect get components from a mfTriConnect structure
msCheckDomainConvexity Check convexity of a 2D triangulation
msPrintTriConnect 2D triangular connectivity display
msTriNodeNeighbors 2D triangulation node neighbors
mfTriSearch, mfNodeSearch 2D triangulation search
mfVoronoi 2D Voronoi diagram from a set of points
mfVoronoiStruct 2D Voronoi structure (derived type)
msPrintVoronoi 2D Voronoi structure display
mfGridData irregular 2D interpolation

mfDelaunay3D Delaunay 3D tessellation (tetrahedralization)
msEndDelaunay3D Internal free storage after Delaunay 3D
mfTetraConnect 3D tetrahedral connectivity (derived type)
msBuildTetraConnect 3D tetrahedral connectivity initialization
msExtractTetraConnect get components from a mfTetraConnect structure
msPrintTetraConnect 3D tetrahedral connectivity display
msDel3DNodeNeighbors 3D tetrahedralization node neighbors
mfTetraSearch, mfNodeSearch3D 3D tetrahedralization search
mfGridData3D irregular 3D interpolation

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Optimization and Function Functions

Sparse Matrices

374

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPolyVal polynomial evaluation

Interface:

function mfPolyVal(p, x) result(out)

type(mfArray), intent(in) :: p, x

type(mfArray) :: out

Description:

Evaluates polynomial p at points x.

The mfArray p is a vector of length k+1 whose elements are the coefficients of the polynomial in
descending powers.

out = p1 x
k + p2 x

k−1 + ...+ pk x+ pk+1

See also: mfPPVal, mfPolyFit

375

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPolyFit polynomial fitting

Interface:

function mfPolyFit(x, y, n) result(p)

type(mfArray), intent(in) :: x, y

integer, intent(in) :: n

type(mfArray) :: p

Description:

Fit polynomial to real data.

The mfArray x and y must be column vectors of same shape. They are coordinates of the data. n is the
degree of the polynomial to be obtained, so n + 1 real coefficients are returned in the vector p. These
coefficients are sorted for descending powers.

See also: msPolyFit, mfPolyVal, mfFunFit

376

MUESLI Reference Manual (index) FML: Polynomial Functions

msPolyFit polynomial fitting

Calling syntax:

call msPolyFit(mfOut(p, normr[, r2]), x, y, n)

Description:

Similar to mfPolyFit, but also returns (in mfArrays) the norm-2 of the residuals (in normr) and optionally
the correlation coefficient r2corr (in r2).

Nota: The correlation coefficient of the approximation is computed as follows:

r2corr = 1− normr2

M σ2

where σ2 is the standard deviation (as computed by mfVar(y)) and M is the number of data points in
x and y.

See also: mfPolyVal, msFunFit, mfOut

377

MUESLI Reference Manual (index) FML: Polynomial Functions

mfFunFit nonlinear function fitting

Interface:

function mfFunFit(x, y, fun, p0, n, tol) result(out)

type(mfArray), intent(in) :: x, y, p0

interface

function fun(x, p, n) result(res)

import :: MF_DOUBLE

real(kind=MF_DOUBLE), intent(in) :: x

real(kind=MF_DOUBLE), intent(in) :: p(n)

integer, intent(in) :: n

real(kind=MF_DOUBLE) :: res

end function fun

end interface

integer, intent(in) :: n

real(kind=MF_DOUBLE), intent(in), optional :: tol

type(mfArray) :: out

Description:

Fit arbitrary (nonlinear) function to real data.

Data is stored in the mfArrays x and y, which must be column vectors of same shape. There are m
couples (x, y).

fun is the real function which tries to model the data. This function is parameterized by n variables
stored in the mfArray p.

At input, p0 contains an initial guess for the values of the n unknown parameters. Final values are stored
in the mfArray out.

tol is the tolerance for the convergence. Its default value is 10−6.

Remarks:

− the problem is formulated as a non-linear least-square problem, solved by package MINPACK ;

− therefore, m (the number of couples (x, y)) must be bigger than the number of parameters n.

See also: msFunFit, mfPolyFit, mfLsqNonLin

378

MUESLI Reference Manual (index) FML: Polynomial Functions

msFunFit nonlinear function fitting

Calling syntax:

call msFunFit(mfOut(p[, r2]), x, y, fun, p0, n [, tol])

Description:

Similar to mfFunFit, but in addition it returns the correlation coefficient r2corr (in the mfArray r2).

For this subroutine, the output of the desired n variables is stored in the mfArray p.

Remark: Please note that the correlation coefficient r2corr is ranged in the interval [−1,+1]. A value
close to +1 indicates a perfect correlation while a null value indicates no correlation. A negative value
means that the relationship between original data and fitted data is very bad most of time (practically,
this should indicates that your function fun is not adapted to the data).

See also: mfOut

379

MUESLI Reference Manual (index) FML: Polynomial Functions

mfRoots roots of a polynomial

Calling syntax:

r = mfRoots(p)

Description:

Returns the roots of the polynomial whose coefficients are provided in the mfArray p (row or column
vector).

This polynomial writes:
P (x) = p1 x

n−1 + p2 x
n−2 + . . . + pn−1 x+ pn

where [p1, p2, . . . , pn] are the n components of the input vector p.

Even if the roots are real, the returned mfArray is complex. The roots are not sorted.

Remarks:

− p must be of type real.

− The mfPoly function is the inverse of the mfRoots function.

See also: mfCompan, mfEig, mfFZero

380

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPoly polynomial with specified roots

Calling syntax:

p = mfPoly(r)

Description:

Returns the coefficients of the polynomial whose roots are provided in the mfArray r (row or column
vector).

If n is the size of p then the output polynomial reads:

P (x) = p1 x
n−1 + p2 x

n−2 + . . . + pn−1 x+ pn

Remarks:

− The specified roots in r may be complex.

− The mfRoots function is the inverse of the mfPoly function.

See also: mfCompan, mfEig

381

MUESLI Reference Manual (index) FML: Polynomial Functions

mfSpline cubic spline interpolation

Interface:

function mfSpline(x, y, &

xi, &

BC_type_1, BC_val_1, BC_type_2, BC_val_2, &

periodic) &

result(y_sec)

type(mfArray), intent(in) :: x, y

type(mfArray), intent(in), optional :: xi

integer, intent(in), optional :: BC_type_1

real(kind=MF_DOUBLE), intent(in), optional :: BC_val_1

integer, intent(in), optional :: BC_type_2

real(kind=MF_DOUBLE), intent(in), optional :: BC_val_2

logical, intent(in), optional :: periodic

type(mfArray) :: y_sec

Description:

If xi is not present, this function returns the coefficients of the spline (piecewise cubic polynomial form)
which interpolates the values y at the abscissas x. The returned coefficients in y sec (second derivative
at abscissas) are intended to be used with the mfPPVal function.

If xi is present, mfSpline returns only the interpolated values at the entries contained in the mfArray

xi.

By default, the spline form is natural, which means that the first and the last coefficients are null (i. e.
curvature is null at both ends). Optionally, boundary conditions of various (and mixed) types may be
specified at the ends of the interval:

BC_type_1 = 1 implies that y′ = BC_val_1 at first end;

BC_type_1 = 2 implies that y′′ = BC_val_1 at first end;

BC_type_2 = 1 implies that y′ = BC_val_2 at second end;

BC_type_2 = 2 implies that y′′ = BC_val_2 at second end;

If periodic is present and equal to TRUE, then the value of y, along with the first and second derivatives
are equal at the two ends of the interval. Default is FALSE.

Remarks:

− x and y must be vectors having the same shape, but xi may have any shape.

− Abscissas x doesn’t need to be equally spaced; x must contain at least 2 points.

− x, y and xi may be temporary mfArrays.

− interpolated values, at abscissas different than the nodes in xmay be obtained by using the mfPPVal
function.

− smoothing of data may be obtained by using the msSpline routine.

382

MUESLI Reference Manual (index) FML: Polynomial Functions

msSpline cubic spline smoothing

Interface:

call msSpline(mfOut(y_smooth, y_sec), x, y, weights &

[, BC_type_1, BC_val_1, BC_type_2, BC_val_2])

Description:

Similar to the mfSpline function (in particular the last four optional arguments), but apply a smoothing
to the data, instead of a strict interpolation. The new (smoothed) values of y are stored in the y smooth

mfArray, and the cubic spline coefficients are stored in the y sec mfArray.

Remarks:

− The weights mfArray contains the weight of the smoothing, to be applied to each value of the y

mfArray; it may be a scalar: in such a case, all weights are equal. Weights must be strictly positive
reals from 0 to infinity. If some weights are less or equal to zero, this will lead to an error.

− When choosing infinite weights, this routine gives the same results than the mfSpline function,
i. e. a strict interpolation of the data; on the other end, choosing very small weights leads to the
least-square linear regression of all the data points.

− Typically, the values of the weights vary according to the powers of ten. If the abscissas are not
equally spaced, you may choose to scale your weights with h3, where h is the interval between the
x values.

See also: mfOut

383

MUESLI Reference Manual (index) FML: Polynomial Functions

mfLegendre Legendre polynomials

Calling syntax:

C = mfLegendre(n, A)

Description:

Returns the evaluation of the n-th Legendre polynomial (degree n) of each element of the mfArray A.

Restriction: A must be of type real.

384

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPPVal piecewise polynomial evaluation

Interface:

function mfPPVal(x, y, p, xi, extrapol) result(yi)

type(mfArray), intent(in) :: p, xi

(logical|real(kind=MF_DOUBLE)), intent(in), optional :: extrapol

type(mfArray) :: yi

Description:

Computes the interpolated values at the entries xi.

The way this function treats out-of-range input values in xi is similar to that of mfInterp1 (see the
remarks below).

p is the vector of Spline coefficients – of the curve (x,y) – returned by mfSpline.

Remarks:

− x, y, p and xi may be temporary mfArrays.

− xi mfArray may have any shape.

− By default, an element of yi is set to MF NAN if the corresponding value in xi is outside the range
of x. The optional argument extrapol may be used to override this behaviour: a real value allows
the use of a constant for out-of-range inputs. More interestingly, a logical value can be used to
compute an extrapolated value by using the interpolation law of the nearest valid interval.

See also: mfPolyVal, mfPPDer

385

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPPDer piecewise polynomial derivative

Interface:

function mfPPDer(x, y, p, xi, extrapol) result(yi)

type(mfArray), intent(in) :: p, xi

(logical|real(kind=MF_DOUBLE)), intent(in), optional :: extrapol

type(mfArray) :: yi

Description:

Similar to mfPPVal but returns the derivative instead of the function value.

p is the vector of Spline coefficients – of the curve (x,y) – returned by mfSpline.

386

MUESLI Reference Manual (index) FML: Polynomial Functions

mfInterp1 1D interpolation

Interface:

function mfInterp1(x, y, xi, order, extrapol) result(yi)

type(mfArray), intent(in) :: x, y, xi

integer, intent(in), optional :: order

(logical|real(kind=MF_DOUBLE)), intent(in), optional :: extrapol

type(mfArray) :: yi

Description:

Interpolates data y, which are defined along a vector x, at the entry(ies) specified by xi.

x and y must be vectors with the same shape; x must have strictly monotonous values.

xi may be a scalar or a vector; yi, which contains interpolated data, will have the same shape as xi.

Remarks:

− By default a linear interpolation (2-point stencil) is used (order=1); set the optional argument
order to 2 (resp. 3) in order to use a quadratic (resp. cubic) interpolation using a 3-point (resp.
4-point) stencil. A nearest interpolation (1-point stencil) is also possible: set order to 0.

− By default, an element of yi is set to MF NAN if the corresponding value in xi is outside the range
of x. The optional argument extrapol may be used to override this behaviour: a real value allows
the use of a constant for out-of-range inputs. More interestingly, a logical value can be used to
compute an extrapolated value by using the interpolation law of the nearest valid interval.

See also: mfSpline, mfInterp2, mfGridData, msMeshGrid

Example(s):

x = mfLinspace(0.0d0, 1.0d0, 5)

call msDisplay(x, "x")

print *, "y = x**2"

y = x**2

xi = mfLinspace(0.05d0, 0.95d0, 4)

call msDisplay(xi, "xi")

yi = mfInterp1(x, y, xi, order=2)

call msDisplay(yi, "interpolated data at many points")

output:

x =

0.0000 0.2500 0.5000 0.7500 1.0000

y = x**2

xi =

0.0500 0.3500 0.6500 0.9500

interpolated data at many points =

0.0025 0.1225 0.4225 0.9025

. . ./ . . .

387

MUESLI Reference Manual (index) FML: Polynomial Functions

xi = mfLinspace(-0.15d0, 1.15d0, 7)

call msDisplay(xi, "xi")

yi = mfInterp1(x, y, xi, order=2)

call msDisplay(yi, "interpolated data at many points (2 NaNs expected)")

output:

xi =

-0.1500 0.0667 0.2833 0.5000 0.7167 0.9333 1.1500

interpolated data at many points (2 NaNs expected) =

NaN 0.0044 0.0803 0.2500 0.5136 0.8711 NaN

yi = mfInterp1(x, y, xi, order=2, extrapol=MF_INF)

call msDisplay(yi, "interpolated data at many points (2 Infs expected)")

output:

interpolated data at many points (2 Infs expected) =

Inf 0.0044 0.0803 0.2500 0.5136 0.8711 Inf

yi = mfInterp1(x, y, xi, order=2, extrapol=.true.)

call msDisplay(yi, "interpolated data at many points (using extrapolation)")

output:

interpolated data at many points (using extrapolation) =

0.0225 0.0044 0.0803 0.2500 0.5136 0.8711 1.3225

388

MUESLI Reference Manual (index) FML: Polynomial Functions

mfInterp2 regular 2D interpolation

Interface:

function mfInterp2(x, y, z, xi, yi, order, extrapol) result(zi)

type(mfArray), intent(in) :: x, y, z, xi, yi

integer, intent(in), optional :: order

(logical|real(kind=MF_DOUBLE)), intent(in), optional :: extrapol

type(mfArray) :: zi

Description:

Interpolates data z, which are defined on a rectangular, horizontal grid (x,y), at the entry(ies) specified
by xi and yi.

x, y and z must be matrices with the same shape; x, y must have strictly monotonous values. Usually,
x and y are built with the routine msMeshGrid.

(xi,yi) also must have the same shape (scalars, vectors, or matrices); zi, which contains interpolated
data, will have the same shape as xi and yi.

Remarks:

− By default a bilinear interpolation (4-point stencil) is used (order=1); set the optional argument
order to 2 (resp. 3) in order to use a biquadratic (resp. bicubic) interpolation using a 9-point
(resp. 16-point) stencil. A nearest interpolation (1-point stencil) is also possible: set order to 0.

− Note that the method used is valid only for rectangular, horizontal grid. For a general, irregular
grid, see mfGridData.

− By default, an element of zi is set to MF NAN if the corresponding value in (xi,yi) is outside the
range of x and y. The optional argument extrapol may be used to override this behaviour: a real
value allows the use of a constant for out-of-range inputs. More interestingly, a logical value can be
used to compute an extrapolated value by using the interpolation law of the nearest valid interval.

See also: mfInterp1, msMeshGrid

389

MUESLI Reference Manual (index) FML: Polynomial Functions

mfPSLG Planar Straight Line Graph (derived type)

Description:

This derived type encapsulates internal arrays describing a 2D domain definition, using polygonal shapes.

Declaration is made as follows:

type(mfPSLG) :: PSLG_domain

Contrary to other Muesli derived types, all internal fields are public, letting the user to allocate/deallocate
and set the data himself. The complete definition of this kind of object is:

type :: mfPSLG

real(kind=MF_DOUBLE), allocatable :: n_xy(:,:), holes_xy(:,:)

integer, allocatable :: edge_n(:,:)

end type

n xy contains the coordinates of the nodes; must be of size (nn, 2), with nn ≥ 3.

edge n contains the definition of each edge segment, by its two endpoints; ; must be of size (ne, 2), with
ne ≥ 0.

holes xy contains the definition of holes; they are points having two coordinates; must be of size (nh, 2),
with nh ≥ 0. A hole should be, ideally, located inside a closed boundary of edges or, alternatively,
outside the domain but inside the convex hull (in this later case, its role is to allow concavities). The
hole points must not be located exactly on any edge.

Remarks:

− This structure can be used directly by msDelaunay to triangulate the corresponding domain.

− See examples of PSLG domains in the Muesli User’s Guide.

− A variable of this type may be freed, at the end of its use, by the msRelease routine.

See also: msPrintPSLG, msPlotPSLG

390

MUESLI Reference Manual (index) FML: Polynomial Functions

msPrintPSLG Display of a Planar Straight Line Graph

Calling syntax:

call msPrintPSLG(PSLG_domain [, short_info])

Description:

For a small number of nodes (typically less than few dozens), this routine print on the screen the definition
of a Planar Straight Line Graph, which is used to represent a domain geometry.

The input argument PSLG domain must be of type mfPSLG.

When the boolean optional argument short info is present and equal to TRUE then the routine just
print the number of items, i. e. nodes, edges and holes. Therefore, it is the only way to inspect the
structure when it is big.

See also: msPlotPSLG

391

MUESLI Reference Manual (index) FML: Polynomial Functions

mfDelaunay Delaunay 2D tessellation (triangulation)

First calling syntax:

tri = mfDelaunay(x_in, y_in)

Description:

Builds a Delaunay 2D triangulation from a list of nodes whose coordinates are given in x in and y in

(these two mfArrays must be vectors having the same shape).

The returned mfArray contains indices for the triangles: each row of tri provides three integers which
describes a triangle (direct orientation, when travelling from first node to the second and the third ones).

Second calling syntax:

call msDelaunay(mfOut(x, y, tri), x_in, y_in, &

[theta_min, area_max])

Description:

Builds a constrained conforming Delaunay 2D triangulation (as previously, from a given list of nodes
whose coordinates are stored in x in and y in), giving a quality mesh by adding new nodes where it is
required. Two different criteria are used:

− A minimal angle theta min, to avoid triangles with too small angles. This angle, in degree, must
be less than 28.6 (otherwise the algorithm may fail to converge – anyway, the routine will emit an
error). The recommanded value ranges from 20 to 25.

− A maximum area area max, to avoid big triangles.

These two optional arguments are real. At least one is required.

Third calling syntax:

call msDelaunay(mfOut(x, y, tri), PSLG_domain, &

[theta_min, area_max])

Description:

Same as the above interface, but take a PSLG domain on input (see mfPSLG), instead of a list of nodes.
PSLG means Planar Straight Line Graph and, very briefly, can be viewed as a polygonal description of
the boundaries of a domain; it is intended to store the description of a plane domain to be meshed.

See also: msBuildTriConnect, mfNodeSearch, mfTriSearch, mfDelaunay3D

392

MUESLI Reference Manual (index) FML: Polynomial Functions

mfTriConnect 2D triangular connectivity (derived type)

Description:

This derived type encapsulates internal arrays describing the connectivity of a 2D triangulation. It must
be initialized with the msBuildTriConnect routine.

Declaration is made as follows:

type(mfTriConnect) :: tri_connect

Note that this structure embeds not only the connectivity tables, but also all nodes coordinates.

See msExtractTriConnect for more information about the content of this structure.

A variable of this type must be freed, at the end of its use, by the msRelease routine.

See also: msPrintTriConnect, msTriMesh

393

MUESLI Reference Manual (index) FML: Polynomial Functions

msBuildTriConnect 2D triangular connectivity initialization

Interface:

subroutine msBuildTriConnect(x, y, tri, tri_connect, &

check_tri_orient, &

tri_renum, equil_face_orient)

type(mfArray), intent(in) :: x, y

type(mfArray), intent(in out) :: tri

type(mfTriConnect), intent(out) :: tri_connect

logical, intent(in), optional :: check_tri_orient

logical, intent(in), optional :: tri_renum, equil_face_orient

Description:

This routine initializes the internal structures of the 2D triangulation connectivity tri connect. See
mfTriConnect.

Arguments are mfArrays describing (i) the coordinates of all nodes (in x and y) and (ii) the definition
of the triangles in terms of nodes (in tri).

The indices in the mfArray tri describe the 2D triangulation; they may come from the mfDelaunay

routine applied to the coordinates x and y.

The optional logical argument check tri orient is used to check that all triangles, described in
the mfArray tri, have a direct orientation; this is required if you plan to apply, later on, the
msCheckDomainConvexity routine. Default is to apply such a check. As this check is costly, you should
omit it only if you are sure on the constraint about triangles’ orientation, for example when tri results
from the use of the mfDelaunay routine. When used, this check may change some indices in the tri

mfArray.

The optional logical argument tri renum is used to apply a renumbering of the triangles, in such a way
that they are, wherever possible, geometrically contiguous. In this case, the table of triangles tri can
be modified (row ordering). Default is to not apply such a renumbering.

The optional logical argument equil face orient is used to modify the orientation of triangles’ faces,
in such a way that they are, wherever possible, equilibrated at each node. Default is to not modify the
faces’ orientation.

Remarks:

− After use, the tri connect object should be freed via a call to the routine msRelease.

− The nodes coordinates are embedded in the tri connect structure. Therefore, you should NOT
change the nodes coordinates after calling the current routine: indeed, while the connectivity
remains the same, the convexity (which is a geometrical property embedded in the structure, see
msExtractTriConnect) may be affected. Otherwise, especially if you DO modify the coordinates
of the boundary nodes, you will have to compute again the connectivity.

See also: mfTriSearch, mfNodeSearch, msPrintTriConnect

394

MUESLI Reference Manual (index) FML: Polynomial Functions

msUpdateTriConnect 2D triangular connectivity update

Interface:

subroutine msUpdateTriConnect(x, y, tri_connect)

type(mfArray), :: x, y

type(mfTriConnect), intent(in out) :: tri_connect

Description:

Update the nodes’ position in an mfTriConnect structure.

Arguments x and y are mfArrays containing the new (x, y) position of the nodes in the 2D triangulation.

See also: msBuildTriConnect

395

MUESLI Reference Manual (index) FML: Polynomial Functions

msExtractTriConnect get components from a mfTriConnect structure

Interface:

subroutine msExtractTriConnect(tri_connect, tri_f, face_n, &

face_tri, convexity, &

boundary_nodes, boundary_faces)

type(mfTriConnect), intent(in) :: tri_connect

integer, allocatable, intent(out), optional :: tri_f(:,:), &

face_n(:,:), &

face_tri(:,:)

integer, intent(out), optional :: convexity

type(mf_Int_List), allocatable, intent(out), optional :: boundary_nodes(:)

type(mf_Int_List), allocatable, intent(out), optional :: boundary_faces(:)

Description:

Usually, the 2D mesh connectivity is embedded (with hidden components) in a mfTriConnect structure.
If the user want to know/use the detailed links between nodes, triangles and faces, he has to extract
himself the corresponding connectivity tables.

The input 2D connectivity tri connect must have been initialized by the msBuildTriConnect routine.

According to the optional argument presence, this routine returns the following integer tables, containing
positive integers (when nothing else is specified):

− tri f, of dimension (nt, 3), which contains the three faces of a given triangle; nt is the total
number of triangles.

− face n, of dimension (nf, 2), which contains the two nodes which define a given face; nf is the
total number of faces.

− face tri, of dimension (nf, 2), which contains the two triangles separated by a given face; nf is
the total number of faces. In the case where the given face is on the boundary domain, only the
first triangle number is valid; the second one is set to a value which is negative or zero (see below).

− convexity, an integer variable whose value may be −1 (UNKNOWN), 0 (FALSE) or 1 (TRUE).
It is recommended to ask for its value when interpreting the value of the second column of the
face tri table. When the domain convexity is UNKNOWN or TRUE, the second element of the
face tri table is always zero for a boundary face. When the domain convexity is FALSE, the value
zero for a boundary face indicates the convex exterior part, the value −1 indicates the non-convex
part of the exterior boundary, whereas other negative values indicates an interior bondary (i. e. a
hole; add one to this number to obtain the numbering of the hole).
Note that the order of the interior boundaries’ numbering is determined by the smallest value of
the nodes for each of these internal boundaries.
Note also that the convexity can be explicitely determined by use of the msCheckDomainConvexity
routine.

− boundary nodes, a structure of type mf Int List, containing the indices of the boundary nodes,
stored in several lists, if appropriate (i. e., if internal boundaries exist, in addition to the external
one). This implies computing the convexity of the domain (see above).

− boundary faces, a structure of type mf Int List, containing the indices of the boundary nodes,
stored in several lists, if appropriate (i. e., if internal boundaries exist, in addition to the external
one). This implies computing the convexity of the domain (see above).

. . ./ . . .

396

MUESLI Reference Manual (index) FML: Polynomial Functions

Remarks:

− the connectivity doesn’t depend on the exact location of the nodes, but the convexity does.

− the number of faces (nf) can be retrieve by asking the shape of the face n array.

− the allocatable arrays (tri f, face n and others) are allocated by the routine itself; in the case
where one of them is already allocated, it will be deallocated and reallocated if needed.

See also: mfTriConnect, msBuildTriConnect

397

MUESLI Reference Manual (index) FML: Polynomial Functions

msCheckDomainConvexity Check convexity of a 2D triangulation

Calling syntax:

call msCheckDomainConvexity(tri_connect)

Description:

Computes the convexity of a 2D triangulation, given as argument in the tri connect connectivity.

After use of this routine, the convexity component of the connectivity may be only TRUE or FALSE,
not UNKNOWN (see msExtractTriConnect).

See also: mfTriConnect, msBuildTriConnect, msPrintTriConnect

398

MUESLI Reference Manual (index) FML: Polynomial Functions

msPrintTriConnect Display of a 2D triangular connectivity

Calling syntax:

call msPrintTriConnect(tri_connect [, short_info])

Description:

For a small number of nodes (typically less than few dozens), this routine print on the screen the
connectivity tables of a triangular mesh (the connectivity could be computed by the msBuildTriConnect
routine, or by other ways).

The input argument tri connect must be of type mfTriConnect.

When the boolean optional argument short info is present and equal to TRUE then the routine just
print the number of items, i. e. nodes, triangles and faces. Therefore, it is a simple way to inspect the
structure when it is big. Another way is to extract some components of tri connect by using the
msExtractTriConnect routine.

See also: msTriMesh

399

MUESLI Reference Manual (index) FML: Polynomial Functions

msTriNodeNeighbors 2D triangulation node neighbors

Interface:

subroutine msTriNodeNeighbors(tri_connect [, connected_nodes | connected_faces])

type(mfTriConnect), intent(in) :: tri_connect

type(mf_Int_List), intent(out), allocatable, optional :: connected_nodes(:)

type(mf_Int_List), intent(out), allocatable, optional :: connected_faces(:)

Description:

This routine computes the list of the neighbors (either nodes, stored in connected nodes, or faces, stored
in connected faces) for each node belonging to the triangulation given in tri connect.

The ouput lists, connected nodes and connected faces are both vectors of type mf Int List, a special
structure which can contain a variable number of elements. Be aware that the allocation is done by the
current routine, not by the user. The length of these vectors is, of course, equal to the number of nodes
of the triangulation.

The input mesh connectivity tri connect must have been built before via a call to msBuildTriConnect.

400

MUESLI Reference Manual (index) FML: Polynomial Functions

mfTriSearch 2D triangulation search (for triangle)

Generic Interface:

function mfTriSearch(tri_connect, x, y, strict) result(num)

type(mfTriConnect), intent(in) :: tri_connect

type(mfArray), intent(in) :: x, y

or real(kind=MF_DOUBLE), intent(in) :: x, y

logical, intent(in), optional :: strict

integer :: num

Description:

Searches in a Delaunay triangulation the triangle which encloses the point (x,y).

The input mesh connectivity tri connect must have been built before via a call to msBuildTriConnect.

For a general search (i. e. when the optional argument strict is FALSE) the routine always returns a
valid triangle index which is the enclosing triangle to the targeted point, or the nearest triangle if the
targeted point is outside the meshed domain.

On the contrary, for a strict search (i. e. when the optional argument strict is TRUE, which is the
default), if the search successes, then num contains the (non zero) index of the triangle; else it contains a
negative or null value, which is related to concavities in the meshed domain: 0 means a targeted point
outside the domain, whereas −k means a point located in the hole number k (a warning is emitted).

Remark: The belonging of a point to a triangle is not strict: this means that the same point can belong
to several adjacent triangles. In particular, a node of the triangulation belongs to all triangles who share
it.

See also: mfNodeSearch

401

MUESLI Reference Manual (index) FML: Polynomial Functions

mfNodeSearch 2D triangulation search (for node)

Interface:

function mfNodeSearch(tri_connect, x, y, strict) result(num)

type(mfTriConnect), intent(in) :: tri_connect

type(mfArray), intent(in) :: x, y

or real(kind=MF_DOUBLE), intent(in) :: x, y

logical, intent(in), optional :: strict

integer :: num

Description:

Searches in a Delaunay triangulation the nearest node to the point (x,y).

The input mesh connectivity tri connect must have been built before via a call to msBuildTriConnect.

For a general search (i. e. when the optional argument strict is FALSE) the routine always returns a
valid node number which is the nearest node to the targeted point, even if this latter point is outside
the meshed domain.

On the contrary, for a strict search (i. e. when the optional argument strict is TRUE, which is the
default), if the search successes, then num contains the (non zero) index of the node; else it contains a
negative or null value, which is related to concavities in the meshed domain: 0 means a targeted point
outside the domain, whereas −k means a point located in the hole number k (a warning is emitted).

See also: mfTriSearch

402

MUESLI Reference Manual (index) FML: Polynomial Functions

mfVoronoi 2D Voronoi diagram from a set of points

First calling syntax:

voronoi = mfVoronoi(x_in, y_in, what)

Description:

Builds a 2D Voronoi diagram from a list of nodes whose coordinates are given in x in and y in (these
two mfArrays must be vectors having the same shape).

The returned structure voronoi (mfVoronoiStruct derived type) contains optionally the vertices and
the neighbors.

More specifically, the returned structure have a content which depends on the value argument what

(character string):

− if what is equal to "vertices", then voronoi contains only the coordinates of the vertices defining
each Voronoi cell, and the list of corresponding indices of these vertices for each input points;

− if what is equal to "neighbors", then voronoi contains only the list of neighbors for each input
points.

− if what is equal to "both", the two previous components are stored in the voronoi structure.

Remark : Note that the returned structure contains also the input points, making it an autonomous
structure.

See also: msPrintVoronoi, mfPlotVoronoi, mfDelaunay

403

MUESLI Reference Manual (index) FML: Polynomial Functions

mfVoronoiStruct 2D Voronoi structure emph(derived type)

Description:

This derived type encapsulates internal arrays describing a 2D Voronoi diagram. It is created by the
mfVoronoi routine.

Declaration is made as follows:

type(mfVoronoiStruct) :: voronoi

The content of this structure, useful to the user, is:

type :: mfVoronoiStruct

real(kind=MF_DOUBLE), pointer :: n_xy(:,:)

real(kind=MF_DOUBLE), pointer :: v_xy(:,:)

type(mf_Int_List), pointer :: vertices(:)

type(mf_Int_List), pointer :: neighbors(:)

end type

n xy contains the coordinates of the input points; its size is (nn, 2), where nn is the number of points.

v xy contains the position of the vertices; its size is (nv, 2), where nv is the number of (unique) vertices.

vertices is a vector of lists (size nn); each list contains integer indices of the vertices, for each Voronoi
cell centered on a point.

neighbors is a vector of lists (size nn); each list contains integer indices of the neighbors, for each
Voronoi cell.

Remarks:

− It is of course not recommended to set or change yourself the components of this structure.

− A variable of this type may be freed, at the end of its use, by the msRelease routine.

See also: msPrintVoronoi, mfPlotVoronoi, mf Int List

404

MUESLI Reference Manual (index) FML: Polynomial Functions

msPrintVoronoi 2D Voronoi structure display

Calling syntax:

call msPrintVoronoi(voronoi)

Description:

For a small number of nodes (typically less than few dozens), this routine print on the screen a Voronoi
diagram (this structure must be computed by the mfVoronoi routine).

The input argument voronoi must be of type mfVoronoiStruct.

See also: mfVoronoiStruct, mfPlotVoronoi

405

MUESLI Reference Manual (index) FML: Polynomial Functions

mfGridData irregular 2D interpolation

Interface:

function mfGridData(x, y, f, xi, yi) result(fi)

type(mfArray), intent(in) :: x, y, f, xi, yi

type(mfArray) :: fi

Description:

Interpolates data f, which are defined on an irregular grid (x,y), at the entries specified by xi and yi.

x, y and f must be vectors with the same shape.

(xi,yi) also must have the same shape (scalars, vectors, or matrices); fi, which contains interpolated
data, will have the same shape as them.

fi is set to MF NAN if (xi,yi) is outside the convex hull of x and y.

Remarks: a linear interpolation is used.

See also: mfInterp2, mfGridData3D

406

MUESLI Reference Manual (index) FML: Polynomial Functions

mfDelaunay3D Delaunay 3D tessellation (tetrahedralization)

Interface:

function mfDelaunay3D(x, y, z) result(tetra)

type(mfArray), intent(in) :: x, y, z

type(mfArray) :: tetra

or

function mfDelaunay3D(coords) result(tetra)

type(mfArray), intent(in) :: coords

type(mfArray) :: tetra

Description:

Builds a Delaunay 3D tetrahedralization from a list of nodes whose coordinates are given in x, y and z

(these three mfArrays must be vectors having the same shape). In the second possible interface, coords
must have three columns.

The returned mfArray contains indices for the tetrahedra: each row of tetra provides four integers
which describes a tetrahedron.

All tetrahedra have a direct orientation: nodes 1, 2 and 3 is a direct triangle if node 4 is above them.

See also: msBuildTetraConnect, mfDelaunay

407

MUESLI Reference Manual (index) FML: Polynomial Functions

msEndDelaunay3D Internal free storage after Delaunay 3D

Calling syntax:

call msEndDelaunay3D()

Description:

After using the mfDelaunay3D (and perhaps also msBuildTetraConnect) routine(s), it is recommended
to call msEndDelaunay3D in order to clean the auxiliary memory used to build the tetrahedralization.

Currently, the Muesli library is not designed to handle the cleaning of intricated 3D connectivities cre-
ation. In other words, you should follow each mfDelaunay3D call by (if nedeed) a msBuildTetraConnect

call, and last by a mfDelaunay3D call, otherwise you will be faced with some memory leaks.

408

MUESLI Reference Manual (index) FML: Polynomial Functions

mfTetraConnect 3D tetrahedral connectivity (derived type)

Description:

This derived type encapsulates internal arrays describing the connectivity of a 3D tetrahedralization. It
must be initialized with the msBuildTetraConnect routine.

Declaration is made as follows:

type(mfTetraConnect) :: tetra_connect

A variable of this type must be freed, at the end of its use, by the msRelease routine.

See also: msPrintTetraConnect, mfDelaunay3D

409

MUESLI Reference Manual (index) FML: Polynomial Functions

msBuildTetraConnect 3D tetrahedral connectivity initialization

Interface:

subroutine msBuildTetraConnect(x, y, z, tetra, tetra_connect)

type(mfArray), intent(in) :: x, y, z, tetra

type(mfTetraConnect), intent(out) :: tetra_connect

or

subroutine msBuildTetraConnect(coords, tetra, tetra_connect)

type(mfArray), intent(in) :: coords, tetra

type(mfTetraConnect), intent(out) :: tetra_connect

Description:

This routine initializes the internal structures of a 3D tetrahedralization connectivity.

The indices in the mfArray tetra describe the 3D tetrahedralization; they MUST come from the
mfDelaunay3D routine applied to the coordinates x, y and z.

Arguments are mfArrays describing (i) the coordinates of all nodes (in x, y and z) and (ii) the definition
of the triangles in terms of nodes (in tetra).

The second possible interface allows the user to group all the columns vector coordinates in one matrix
having a coherent shape.

After use, the tetra connect object should be freed via a call to the routine msRelease.

Remarks: This routine may lead to an error if internal information have been erased by using
msEndDelaunay3D. As a consequence, you should call this latter cleaning routine after getting the
mfTetraConnect connectivity.

See also: mfTetraSearch, mfNodeSearch3D

410

MUESLI Reference Manual (index) FML: Polynomial Functions

msExtractTetraConnect get components from a mfTetraConnect structure

Interface:

subroutine msExtractTetraConnect(tetra_connect, tetra_f, face_n, face_tetra)

type(mfTetraConnect), intent(in) :: tetra_connect

integer, allocatable, intent(out), optional :: tetra_f(:,:), &

face_n(:,:), &

face_tetra(:,:)

Description:

Usually, the 3D mesh connectivity is embedded (with hidden components) in a mfTetraConnect struc-
ture. If the user want to know/use the detailed links between nodes, tetrahedra and faces, he has to
extract himself the corresponding connectivity tables.

The input 3D connectivity tetra connect must have been initialized by the msBuildTetraConnect

routine.

According to the optional argument presence, this routine returns the following integer tables, containing
positive integers (when nothing else is specified):

− tetra f, of dimension (nt, 4), which contains the four faces of a given tetrahedra; nt is the total
number of tetrahedra.

− face n, of dimension (nf, 3), which contains the three nodes which define a given face; nf is the
total number of faces.

− face tetra, of dimension (nf, 2), which contains the two tetrahedra separated by a given face; nf
is the total number of faces. In the case where the given face is on the boundary domain, only the
first triangle number is valid; the second one is set to a value which is zero.

Remarks:

− the number of faces (nf) can be retrieve by asking the shape of the face n array.

− the allocatable arrays (tretra f, face n and face tetra) are allocated by the routine itself; in
the case where one of them is already allocated, it will be deallocated and reallocated if needed.

See also: mfTetraConnect, msBuildTetraConnect

411

MUESLI Reference Manual (index) FML: Polynomial Functions

msPrintTetraConnect Display of a 3D tetrahedral connectivity

Calling syntax:

call msPrintTetraConnect(tetra_connect [, short_info])

Description:

For a few numbers of nodes (typically less than few dozens), this routine print on the screen the connec-
tivity tables of a tetrahedral mesh (the connectivity could be computed by the msBuildTetraConnect

routine, or by other ways).

The input argument tetra connect must be of type mfTetraConnect.

When the boolean optional argument short info is present and equal to TRUE then the routine just
print the number of items, i. e. nodes, tetrahedra and faces. Therefore, it is a simple way to inspect the
structure when it is big. Another way is to extract some components of tetra connect by using the
msExtractTetraConnect routine.

412

MUESLI Reference Manual (index) FML: Polynomial Functions

msDel3DNodeNeighbors 3D tetrahedralization node neighbors

Interface:

subroutine msDel3DNodeNeighbors(tetra, node_neighbors)

type(mfArray), intent(in) :: tetra

type(mf_Int_List), intent(out) :: node_neighbors(:)

Description:

This routine computes the list of the neighbors of all nodes in the allocatable array node neighbors (of
type mf Int List). Be aware that the allocation is done by the current routine, not by the user.

The indices in the mfArray tetra describe the 3D tetrahedralization; they may come from the
mfDelaunay3D routine applied to the coordinates (x, y, z) of a set of nodes.

See also: msBuildTetraConnect

413

MUESLI Reference Manual (index) FML: Polynomial Functions

mfTetraSearch 3D tetrahedralization search (for tetrahedron)

Generic Interface:

function mfTetraSearch(tetra_connect, x, y, z) result(num)

type(mfTetraConnect), intent(in) :: tetra_connect

type(mfArray), intent(in) :: x, y, z

or real(kind=MF_DOUBLE), intent(in) :: x, y, z

integer :: num

Description:

Searches in a Delaunay tetrahedralization the tetrahedron which encloses the point (x,y,z).

tetra connect must be built before via a call to msBuildTetraConnect.

If the search successes, then num contains the (non zero) index of the tetrahedron, else it contains 0.

Remark: The belonging of a point to a tetrahedron is not strict: this means that the same point can
belong to several adjacent tetrahedra. In particular, a node belongs to all tetrahedra who share it.

See also: mfNodeSearch3D, msBuildTetraConnect

414

MUESLI Reference Manual (index) FML: Polynomial Functions

mfNodeSearch3D 3D tetrahedralization search (for node)

Interface:

function mfNodeSearch3D(tetra_connect, x, y, z) result(num)

type(mfTetraConnect), intent(in) :: tetra_connect

type(mfArray), intent(in) :: x, y, z

or real(kind=MF_DOUBLE), intent(in) :: x, y, z

integer :: num

Description:

Searches in a Delaunay tetrahedralization the nearest node to the point (x,y,z).

tetra connect must be built before via a call to msBuildTetraConnect.

If the search successes, then num contains the (non zero) index of the node, else it contains 0. If num is
0, this means that the point is outside the convex hull (a Warning is emitted).

See also: mfTetraSearch, msBuildTetraConnect

415

MUESLI Reference Manual (index) FML: Polynomial Functions

mfGridData3D irregular 3D interpolation

Interface:

function mfGridData3D(x, y, z, f, xi, yi, zi) result(fi)

type(mfArray), intent(in) :: x, y, z, f, xi, yi, zi

type(mfArray) :: fi

Description:

Interpolates data f, which are defined on an irregular 3D grid (x,y,z), at the entries specified by xi,
yi and zi.

x, y, z and f must be vectors with the same shape.

(xi,yi,zi) also must have the same shape (scalars, vectors, or matrices); fi, which contains interpolated
data, will have the same shape as them.

fi is set to MF NAN if (xi,yi,zi) is outside the convex hull of x, y and z.

Remarks: a linear interpolation is used.

See also: mfGridData

416

MUESLI Reference Manual (index) FML: Optimization and Function Functions

1.10 Optimization and Function Functions

mf/msFZero single-variable non-linear zero finding
mf/msFSolve multiple-variable non-linear zero finding
mf/msLsqNonLin non-linear least-square minimization
mfTrapz numerical evaluation of integrals by trapezoidal method
mfCumTrapz cumulative integrals by trapezoidal method
mfSimpson numerical evaluation of integrals by Simpson method
mfQuad, msQuad numerical evaluation of integrals (adaptive method)
mfDblQuad, msDblQuad numerical evaluation of double integrals (adaptive method)

mfOdeSolve, msOdeSolve integrator of ODE (explicit) systems
mfDaeSolve, msDaeSolve integrator of DAE (implicit) systems

mf DE Options options for differential solvers (derived type)
mf NL Options options for non-linear solvers (derived type)

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Sparse Matrices

417

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mf/msFZero single-variable non-linear zero finding

Interface:

function mfFZero(fun, x0, tol) result(out)

interface

real(kind=MF_DOUBLE) function fun(x)

real(kind=MF_DOUBLE), intent(in) :: x

end function

end interface

type(mfArray), intent(in) :: x0

real(kind=MF_DOUBLE), optional :: tol

type(mfArray) :: out

Description:

Search for a solution of the non-linear equation fun(x) = 0, via the Dekker algorithm (combination of
bisection, linear and quadratic interpolation).

fun is a user-supplied function which has the prescribed interface above.

x0 must be a real vector mfArray containing exactly two values; it defines the interval for searching x.
These two values must be set such that the sign of fun(x) differs.

The optional argument tol specifies the relative tolerance for the stopping criterium. It should be a non
negative and not too small real value; default value is 2 ϵ.

Remarks:

− the convergence is usually fast and the Dekker method theoretically never fail, providing the initial
interval given in x0 is correct;

− fun has an imposed list of arguments; the user may use module’s data in order to exchange other
information between his program and this function. Therefore, except for very simple cases, this
user’s routine must be located inside a module, USEd also by the user’s program.

The subroutine form:

call msFZero(mfOut(x,fval[,status]), fun, x0 [, tol])

allows the user to access to other information: fval is the function value associated to the zero x, and
a status (optional) which has the following values:

status explanation

0 Normal termination of the algorithm.

-1 Bad initialization: fun, applied to the two elements of x0, must have opposite
sign.

-2 Bad argument value: x0 has not enough components.

Remark: Adding the optional argument status allows the user to launch its program in a batch mode:
indeed, errors in the current routine will not stop the program (it is the responsability of the programmer
to test the value of the status variable before using the result). Otherwise (i. e. when the status optional
argument is not used), an error will stop the program and, in debug mode, a traceback of this error will
be displayed.

See also: mfRoots, mfFSolve, mfOut

418

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfFSolve multiple-variable non-linear zero finding

Interface:

function mfFSolve(fcn, n, x0, options, jac, sparse) result(out)

interface

subroutine fcn(n, x, fvec, flag)

integer, intent(in) :: n

real(kind=MF_DOUBLE), intent(in) :: x(n)

real(kind=MF_DOUBLE) :: fvec(n)

integer :: flag

end subroutine

end interface

type(mfArray), intent(in) :: x0

type(mf_NL_Options), intent(in), optional :: options

external, optional :: jac

logical, intent(in), optional :: sparse

type(mfArray) :: out

Description:

Search for a solution of n non-linear equations with n unknowns:

Fi(x1, x2, . . . , xn) = 0, i = 1, . . . , n

described in the subroutine fcn. This user-supplied subroutine has the interface prescribed above and
computes fvec(i) = Fi(x1, x2, . . . , xn), i = 1, . . . , n.

flag is actually an in-out argument of fcn: on entry, its value is always zero. The user can stop the
iteration process, by setting it to any negative integer.

x0 is an initial guess for the solution x.

The mfArray options%tol contains the tolerance(s) for the convergence:

− when it is a scalar, both the function tolerance FTOL and the parameter tolerance XTOL are set
to the corresponding value;

− when it is a vector of two elements, the values are used to set the two tolerances: FTOL and
XTOL, respectively.

When the mfArray options%tol is empty (i. e. not set by the user), FTOL and XTOL are both set to
10−9.

See mf NL Options for other options.

Optionally, the user may provide the computation of the jacobian via the subroutine jac. Its interface
must be as follows:

interface

subroutine jac(n, x, jacobian)

integer, intent(in) :: n

real(kind=MF_DOUBLE), intent(in) :: x(n)

real(kind=MF_DOUBLE) :: jacobian(n,n)

end subroutine jac

end interface

. . ./ . . .

419

MUESLI Reference Manual (index) FML: Optimization and Function Functions

The jacobian matrix is defined as J =
∂F

∂x
, therefore, the rank-2 array jacobian must be filled as follows:

jacobian(i,j) = Ji,j =
∂Fi

∂xj
. Only non-zero values of J need to be defined.

For the sparse case, the optional argument sparse must be set to .true. and the jac routine must be
defined as:

interface

subroutine jac(n, x, job, pd, ipd, jpd, nnz)

integer, intent(in) :: n, job

real(kind=MF_DOUBLE), intent(in) :: x(n)

real(kind=MF_DOUBLE) :: pd(*)

integer, :: ipd(*), jpd(*), nnz

end subroutine

end interface

The pd,ipd,jpd f90 arrays describe the CSC (Compact Sparse Column) representation of the sparse
jacobian matrix, as follows:

− pd(1:nnz) contains the non-zero matrix entries;

− ipd(1:nnz) contains the row indices;

− jpd(1:ncol+1) is the pointer to the beginning of the columns, in arrays (pd,ipd).

pd,ipd must contain all diagonal terms, even if they are null. Moreover, row indices must be sorted
in ascending order. Lastly, this routine must include a mechanism such that only the value of nnz is
computed when job=0. You must also use the convention: jpd(ncol+1)=nnz+1.

Remarks:

− the problem is solved by the package MINPACK ;

− the algorithm may fail (it is not unusual to have no solution for the non-linear problem – the
returned value will be therefore a vector of NaN s); in such a case, using the msFSolve subroutine
helps in giving some information about the reason of the failure.

− fcn and jac have imposed lists of arguments; as for mfLsqNonLin, mfOdeSolve and mfDaeSolve

the user may use module’s data in order to exchange other information between his program and
these routines (especially for checking the number of equations).Therefore, except for very simple
cases, these two user’s routines must be located inside a module, USEd also by the user’s program.

See also: mfFZero, mfLsqNonLin

420

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msFSolve multiple-variable non-linear zero finding

Calling syntax:

call msFSolve(mfOut(x[, fvec, status]), fcn, n, x0 [, options, jac])

Description:

Similar to mfFSolve, but also returns the vector function (in the mfArray fvec) and, optionally, a
status which has the following values:

status explanation

1 Normal termination of the algorithm. The stopping criterion about xtol has
been reached first.

2 Normal termination of the algorithm. The stopping criterion about ftol has
been reached first.

-1 Bad initialization for x0 (size or type).

-2 Bad argument value: tol is not strictly positive.

-3 Bad termination: number of calls of fcn has reached or exceeded
max iter*(n+1) (if jac is not present) or max iter (if jac is present).

-4 Bad termination: tol is too small. No further improvement in the approximate
solution x is possible.

-5 Bad termination: iteration is not making good progress.

-10 The user has stopped the algorithm via the argument flag of the fcn subrou-
tine.

-14 The user-supplied fcn routine returned invalid entries (NaN value).

For this subroutine, the solution is stored in the mfArray x.

If the status value is not positive (i. e. when algorithm fails), both x and fvec are vectors of NaN s.

Remark: Adding the optional argument status allows the user to launch his program in a batch mode:
indeed, errors in the current routine will not stop the program (It is the responsability of the programmer
to test the value of the status variable before using the result). Otherwise (i. e. when the status optional
argument is not used), an error will stop the program and, in debug mode, a traceback of this error will
be displayed.

See also: mfOut

421

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfLsqNonLin nonlinear least-square minimization

Interface:

function mfLsqNonLin(m, fcn, p0, n, options, jac) result(out)

integer, intent(in) :: m, n

type(mfArray), intent(in) :: p0

interface

subroutine fcn(m, n, p, fvec, flag)

integer, intent(in) :: m, n

real(kind=MF_DOUBLE), intent(in) :: p(n)

real(kind=MF_DOUBLE) :: fvec(m)

integer :: flag

end subroutine fcn

end interface

type(mf_NL_Options), optional :: options

external, optional :: jac

type(mfArray) :: out

Description:

Minimize the sum of the squares of m nonlinear functions Fi depending on n parameters.

fcn is the user-supplied subroutine which calculates the functions; it has the interface prescribed above
and computes fvec(i) = Fi(p), i = 1, . . . , m, where p represents the vector of the n parameters.

flag is actually an in-out argument of fcn: on entry, its value is always zero. The user can stop the
iteration process, by setting it to any negative integer. See just below for constrained minimization.

Constraints of type BOX are possible, for each parameter(see mf NL Options).

At input, p0 contains an initial guess for the values of the n unknown parameters. Final values are stored
in the mfArray out.

All the following options are stored in the structure options (see mf NL Options).

The mfArray options%tol contains the tolerance(s) for the convergence:

− when it is a scalar, both the function tolerance FTOL and the parameter tolerance XTOL are set
to the corresponding value, while the orthogonality tolerance GTOL (it measures the orthogonality
between the function vector and the columns of the jacobian) is set to zero;

− when it is a vector of three elements, the values are used to set the three tolerances: FTOL, XTOL
and GTOL, respectively.

When the mfArray options%tol is empty (i. e. not set by the user), FTOL and XTOL are both set to
10−6 while GTOL is set to zero.

options%max iter is the maximum number of iterations. Its default value is 50.

. . ./ . . .

422

MUESLI Reference Manual (index) FML: Optimization and Function Functions

options%epsfcn is the approximation error of the functions Fi. Its default value is zero. It is used
only to compute the step for the finite differences computation of the Jacobian; this argument will not
be referenced if jac is present. In the case of an approximate computation in the fcn routine (e. g. an
integration or whatelse), the value of epsfcn may be critical to obtain good convergence; it must be
chosen carefully; see mf NL Options for additional information.

The logical options%print can be used to print some information during the iterative process. Default
is FALSE.

Optionally, the user may provide the computation of the jacobian via the subroutine jac. Its interface
must be as follows:

interface

subroutine jac(m, n, p, jacobian)

integer, intent(in) :: m, n

real(kind=MF_DOUBLE), intent(in) :: p(n)

real(kind=MF_DOUBLE) :: jacobian(m,n)

end subroutine jac

end interface

The jacobian matrix is defined as J =
∂F

∂p
, and the rank-2 array jacobian must be filled as follows:

jacobian(i,j) = Ji,j =
∂Fi

∂pj
. Only non-zero values of J need to be defined.

The integer options%check jac allows the user to numerically check (via finite differences) the compo-
nents of the jacobian each time it is called. A quick global check is done by setting this argument to 1
while a complete (but more expensive) check is done by setting it to 2. Default is 0, i. e. no check.

Lastly, the integer print check jac allows the printing (either on the screen if the value is 1, or in files
if the value is 2) of the results of the previous jacobian check. Default is 0, i. e. no check.

Remarks:

− the problem is solved by the LMA method (Levenberg-Marquardt Algorithm) of the MINPACK
package;

− m must be bigger than the number of parameters n.

− fcn and jac have imposed lists of arguments; as for mfFSolve, mfOdeSolve and mfDaeSolve the
user may use module’s data in order to exchange other information between his program and these
routines (especially for checking the number of equations). Therefore, except for very simple cases,
these two user’s routines must be located inside a module, USEd also by the user’s program.

− the initial step bound for the parameters’ vector is based on a factor whose default value is 100.
Sometimes, we may want to change this factor to a smaller value, especially if you use the log()
function to ensure the positiveness of your unknowns; in such a case, factor = log(100) is more
appropriate, by setting options%init step bound factor to this value.

See also: mfFunFit, msLsqNonLin

423

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msLsqNonLin nonlinear least-square minimization

Calling syntax:

call msLsqNonLin(mfOut(p, resnorm[, status, res_log, p_log, ident]), &

m, fcn, p0, n[, options, jac])

Description:

Similar to mfLsqNonLin, but also returns the 2-norm residue (in the mfArray resnorm) and, optionally,
a status which has the following values:

status explanation

1 Normal termination of the algorithm. Both actual and predicted relative re-
ductions in the sum of squares of the functions fvec are at most ftol.

2 Normal termination of the algorithm. Relative error between two consecutive
iterates of the parameters’ vector is at most xtol.

3 Normal termination of the algorithm. Conditions for status = 1 and status =
2 both hold.

-1 Improper input parameters.

-4 fvec is orthogonal to the columns of the jacobian. This means that the gra-
dient is approximatively null (with respect to gtol): it may correspond to a
minimum, or a maximum, or a saddle point, so the algorithm cannot continue.

-5 number of calls of fcn has reached max iter*(n+1) (if jac is not present) or
max iter (if jac is present).

-6 tol is too small. No further reduction in the sum of squares is possible.

-7 tol is too small. No further improvement in the approximate solution p is
possible.

-8 fvec is orthogonal to the columns of the jacobian to machine precision. This
means that the gradient is approximatively null: it may correspond to a min-
imum, or a maximum, or a saddle point, so the algorithm cannot continue.
Incidently, gtol is too small.

-9 The algorithm has been stopped because a constraints’ interval for one of the
unknown parameters is too small, which makes the finite-differences approxi-
mation of the jacobian impossible.

-10 The algorithm has been stopped via the argument flag of the fcn subroutine.

-14 The user-supplied fcn routine returned invalid entries (NaN value).

For this subroutine, the output of the desired n variables is stored in the mfArray p.

res log and p log are mfArrays which contain the history of the norm of the residue and the parameters,
along the iterations. Each row of these matrices corresponds to an iteration.

ident is an mfArray which contains the identifiability of each parameter. This vector has values ranged
between 0 and 1, and computed internally by the ratio |Ri| / |R1|, where Ri, i = 1 . . . n, are the diagonal
values of the R matrix obtained after a QR decomposition of the jacobian (sensitivity matrix). The
elements of ident have been reordered to match the original order of the parameters. A value equal or
close to 0 means that the corresponding parameter is not identifiable. Actually, the user should compare
the values of ident to the numerical precision of the fvec functions.

. . ./ . . .

424

MUESLI Reference Manual (index) FML: Optimization and Function Functions

Remark: Adding the optional argument status allows the user to launch his program in a batch mode:
indeed, errors in the current routine will not stop the program (It is the responsability of the programmer
to test the value of the status variable before using the result). Otherwise (i. e. when the status optional
argument is not used), an error will stop the program and, in debug mode, a traceback of this error will
be displayed.

See also: mfOut

425

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfTrapz integration by trapezoidal method

First calling syntax:

res = mfTrapz(y)

Description:

Performs the numerical integration of the data y, assuming constant unit spacing for the abscissas, using
the trapezoidal rule. If the spacing is different from unity, the result res must be multiplied by the
effective spacing.

Second calling syntax:

res = mfTrapz(x, y)

Description:

Performs the numerical integration of the data y, spread against the abscissas x.

Remark:

− x and y must be real vector mfArrays.

− the method used is of order 2, i. e. the resulting error (when the exact result is known or can be
estimated) should be divided by 4 when the number of values in x and y is doubled. If this behavior
is not reached, this may indicate that the integral is not convergent.

See also: mfSimpson, mfQuad, mfCumTrapz

426

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfCumTrapz cumulative integration by trapezoidal method

First calling syntax:

res = mfCumTrapz(y)

Description:

Performs the numerical cumulative integration of the data y, assuming constant unit spacing for the
abscissas, using the trapezoidal rule. If the spacing is different from unity, the result res must be
multiplied by the effective spacing.

Second calling syntax:

res = mfCumTrapz(x, y)

Description:

Performs the numerical cumulative integration of the data y, spread against the abscissas x.

Remark:

− x and y must be real vector mfArrays.

− the method used is of order 2, i. e. the resulting error (when the exact result is known or can be
estimated) should be divided by 4 when the number of values in x and y is doubled. If this behavior
is not reached, this may indicate that the integral is not convergent, at least at some abscissas.

See also: mfTrapz

427

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfSimpson integration by Simpson method

Calling syntax:

res = mfSimpson(y)

Description:

Performs the numerical integration of the data y, assuming constant unit spacing for the abscissas, using
the Simpson rule. If the spacing is different from unity, the result res must be multiplied by the effective
spacing.

Second calling syntax:

res = mfSimpson(x, y)

Description:

Performs the numerical integration of the data y, spread against the abscissas x.

Remarks:

− x and y must be real vector mfArrays.

− the number of points must be odd.

− the method used is of order 4, i. e. the resulting error (when the exact result is known or can
be estimated) should be divided by 16 when the number of values in x and y is doubled. If this
behavior is not reached, this may indicate that the integral is not convergent.

See also: mfTrapz, mfQuad

428

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfQuad numerical evaluation of integrals

Interface:

function mfQuad(fun, a, b, abs_tol, rel_tol, sing) result(out)

interface

real(kind=MF_DOUBLE) function fun(x)

real(kind=MF_DOUBLE), intent(in) :: x

end function

end interface

real(kind=MF_DOUBLE), intent(in) :: a, b

real(kind=MF_DOUBLE), intent(in), optional :: abs_tol, rel_tol

logical, intent(in), optional :: sing

type(mfArray) :: out

Description:

Performs the numerical computation of the integral of the function fun(x) over the interval [a, b].

The optional arguments abs tol and rel tol allows the user to give the absolute and/or the relative
precision of the result. Default tolerance is 1× 10−12.

The second optional argument sing should be used when the function fun(x) has a singularity at x =a
or/and at x =b. ‘sing=.true.’ leads to use another quadrature method, which usually involves a fewer
number of function evaluation. This optional argument cannot be used when the interval range is infinite.

Remarks:

− out is set to MF NAN if required precision cannot be achieved; an error is emitted by the library.
Call the subroutine version if you don’t want such a behavior.

− a and/or b may be infinite values. In such a case, an appropriate routine is called; a correct result
is expected as long as the integral is convergent.

See also: msQuad, mfTrapz, mfDblQuad, msDblQuad

429

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msQuad numerical evaluation of integrals

Calling syntax:

call msQuad(mfOut(q, abserr[, status, neval]), &

fun, a, b [, abs_tol, rel_tol, sing])

Description:

The behavior of this routine is similar to those of mfQuad.

The subroutine call allows to get more information returned by the integrator:

− q contains the numerical result

− abserr contains an estimation of the absolute error

− status (optional) contains the returned error code:

status = 0: normal and reliable termination of the routine. It is assumed that the requested
accuracy has been achieved.

status < 0: abnormal termination of the routine. The estimates for q and abserr are less
reliable. It is assumed that the requested accuracy has not been achieved. Only a warning is
emitted by the library. (Exact meaning of the error can be found below)

− neval (optional) contains the effective number of function evaluation

All these variable must be of type(mfArray).

Remark: Adding the optional argument status allows the user to launch its program in a batch mode:
indeed, errors in the current routine will not stop the program (It is the responsability of the programmer
to test the value of the status variable before using the result). Otherwise (i. e. when the status optional
argument is not used), an error will stop the program and, in debug mode, a traceback of this error will
be displayed.

See also: mfQuad, mfOut, mfDblQuad, msDblQuad

status explanation

−1 Maximum number of subdivisions allowed has been achieved.

−2 The occurrence of roundoff errors is detected, which prevents the requested
tolerance from being achieved. The error may be under-estimated.

−3 Extremely bad integrand behaviour occurs at some points of the integration
interval.

−4 The algorithm does not converge. Roundoff error is detected in the extrapo-
lation table. It is presumed that the requested tolerance cannot be achieved,
and that the returned result is the best which can be obtained.

−5 The integral is probably divergent, or slowly convergent. It must be noted that
divergence can occur with any other value of status.

−6 Invalid input (this error should have been trapped by the routine msQuad itself).

430

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfDblQuad numerical evaluation of double integrals

Interface:

function mfDblQuad(fun, xa, xb, ya, yb, abs_tol, rel_tol) result(out)

interface

real(kind=MF_DOUBLE) function fun(x, y)

real(kind=MF_DOUBLE), intent(in) :: x, y

end function

end interface

real(kind=MF_DOUBLE), intent(in) :: xa, xb, ya, yb

real(kind=MF_DOUBLE), intent(in), optional :: abs_tol, rel_tol

type(mfArray) :: out

Other calling syntaxes:

out = mfDblQuad(fun, fun_xa, fun_xb, ya, yb, abs_tol, rel_tol)

or

out = mfDblQuad(fun, xa, xb, fun_ya, fun_yb, fun_y=.true., abs_tol, rel_tol)

where fun xa, fun xb, fun ya and fun ya are all double precision real function of one real argument.
By using these latter syntaxes, the user is able to integrate over non rectangular domains. Note that in
the second case, the additional argument fun y is mandatory (no other way to disambiguate a unique
interface for differente routines).

Description:

Performs the numerical computation of the double integral of the function fun(x, y) over the interval
[xa, xb]×[ya, yb].

The optional arguments abs tol and rel tol allows the user to give the absolute and/or the relative
precision of the result. Default tolerance is 1× 10−12.

Remarks: out is set to MF NAN if required precision cannot be achieved; an error is emitted by the library.
Call the subroutine version if you don’t want such a behavior.

See also: mfQuad, msQuad

431

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msDblQuad numerical evaluation of double integrals

Calling syntax:

call msDblQuad(mfOut(q, abserr[, status, neval]), &

fun, xa, xb, ya, yb [, abs_tol, rel_tol])

Description:

The behavior of this routine is similar to those of mfDblQuad (including the fact to do integration on
non rectangular domains).

The subroutine call allows to get more information returned by the integrator:

− q contains the numerical result

− abserr contains an estimation of the absolute error

− status (optional) contains the returned error code:

status = 0: normal and reliable termination of the routine. It is assumed that the requested
accuracy has been achieved.

status < 0: abnormal termination of the routine. The estimates for q and abserr are less
reliable. It is assumed that the requested accuracy has not been achieved. Only a warning is
emitted by the library. (Exact meaning of the error can be found below)

− neval (optional) contains the effective number of function evaluation

All these variable must be of type(mfArray).

Remark: Adding the optional argument status allows the user to launch its program in a batch mode:
indeed, errors in the current routine will not stop the program (It is the responsability of the programmer
to test the value of the status variable before using the result). Otherwise (i. e. when the status optional
argument is not used), an error will stop the program and, in debug mode, a traceback of this error will
be displayed.

See also: mfDblQuad, mfOut

status explanation

−1 Maximum number of subdivisions allowed has been achieved.

−2 The occurrence of roundoff errors is detected, which prevents the requested
tolerance from being achieved. The error may be under-estimated.

−3 Extremely bad integrand behaviour occurs at some points of the integration
interval.

−4 The algorithm does not converge. Roundoff error is detected in the extrapo-
lation table. It is presumed that the requested tolerance cannot be achieved,
and that the returned result is the best which can be obtained.

−5 The integral is probably divergent, or slowly convergent. It must be noted that
divergence can occur with any other value of status.

−6 Invalid input (this error should have been trapped by the routine msDblQuad

itself).

432

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfOdeSolve integrator of ODE (explicit) systems

Main interface:

function mfOdeSolve(deriv, t_span, y_0, options, jac, sparse) result(y)

interface

subroutine deriv(t, y, yprime, flag)

real(kind=MF_DOUBLE), intent(in) :: t, y(*)

real(kind=MF_DOUBLE), intent(out) :: yprime(*)

integer, intent(in out) :: flag

end subroutine

end interface

type(mfArray), intent(in) :: t_span, y_0

type(mf_DE_Options), intent(in), optional :: options

external, optional :: jac

logical, intent(in), optional :: sparse

type(mfArray) :: y

Description:

Performs the numerical integration of a system of (explicit1) ordinary differential equations (ODEs) of
first order, which is written under the form:

y′ = F (t, y)

described via the subroutine deriv (the variables t, y and yprime represent respectively t, y and y′).
Usually, the integration is done between time t0 and tend (extremal values of t span, which is a column
vector mfArray of at least two components) or, in the continuation mode2, up to the new values specified
in t span (in this case, t span may contain only one value).

The output of mfOdeSolve is the row vector y which represents the solution y at time tend. If the vector
t span contains more than two values (or more than one value in the continuation mode), the routine
returns in y the intermediate values of y, as specified by all time values present in t span; in this case,
y is a rank-2 mfArray with as many rows as components in t span.

The integration uses the prescribed initial condition stored in the row vector y 0. Note that this mfArray
is not referenced in the continuation mode.

The last argument flag of deriv is always set to zero (internally by the solver) on input, and should be
altered (inside the routine deriv) only in some special situations:

− set flag to −1 for an Illegal Condition; the value of y′ at this time may not be available. The
routine will try to continue the integration (reducing the time step) as long as possible without
getting the illegal condition. [You can put this assignment anywhere in the deriv routine.]

− set flag to −2 for an Emergency Exit ; the value of y′ at this time may not be available. The routine
will return control immediately to the calling program. [You can put this assignment anywhere in
the deriv routine.]

− set flag to 3 for an End Condition; the value of y′ at this time must be always available. The
routine will adapt its time step to finish exactly at the current time given by the argument t of
deriv. [WARNING: you must put this assignment at the end of the deriv routine, to insure
that all the derivatives have been computed.]

. . ./ . . .

1For implicit systems, the mfDaeSolve routine should be used instead.
2Currently, only the BDF integrator has this feature.

433

MUESLI Reference Manual (index) FML: Optimization and Function Functions

The previous three situations are called stopping conditions. Note that when a stopping condition is found
in the user subroutine resid, then the vector t span (which contains the value of tend) is modified. Note
also that the three stopping conditions doesn’t have the same numerical cost; their cost is mentioned in
the following table:

Flag to used in resid Stopping condition Numerical cost

−1 Illegal Condition expensive
−2 Emergency Exit very cheap
3 End Condition cheap

All following options are stored in the structure options (see mf DE Options).

The boolean mfArray options%continuation allows the user to continue the integration to a new value
of tend, without specify a new t0. Thanks to specific calls to mf/msOdeSolve, the user is even able to
save internal data of the integrator, to stop the program, and to launch again the integrator after the
reload of saved data. See the next section Other calling syntaxes.

The mfArray options%tol allows the user to give the precision of the result, and must contain strictly
positive values. Default values are 10−3 for the relative tolerance and 10−6 for the absolute tolerance;
this mfArray may be of rank 0, 1 or 2:

− if it is a scalar, it specifies the relative tolerance for all the components of the solution; the absolute
tolerance is fixed to 10−6.

− if it is a vector, it must have two elements which specifies the relative and the absolute tolerance,
respectively.

− if it is a matrix, it must have two columns (corresponding to the relative and absolute tolerance)
and a number of rows equal to the number of equations.

The mfArray options%y ind out allows the user to get only a subpart of the mfArray y; if present, it
must contain integer indices of the wanted components of the y vector.

The string options%method specifies the method to be used. Possible choices are "RKF" (Runge-Kutta
Fehlberg), "ABM" (Adams-Bashforth-Moulton), or "BDF" (Backward Differentiation Formula). By default,
the Runge-Kutta Fehlberg method is selected.

When the "BDF" method is used, the user may provide the jac routine to compute the jacobian matrix
(otherwise, it will be numerically evaluated by finite differences). Moreover, this jacobian matrix may
be defined in dense, band or sparse format. For the first two formats, the interface of the jac routine is:

interface

subroutine jac(t, y, jacobian, ldjac)

real(kind=MF_DOUBLE), intent(in) :: t, y(*)

integer, intent(in) :: ldjac

real(kind=MF_DOUBLE), intent(out) :: jacobian(ldjac,*)

end subroutine

end interface

The jacobian matrix is defined as J =
∂F

∂y
, therefore, the rank-2 array jacobian must be filled as follows:

jacobian(i,j) = Ji,j =
∂Fi

∂yj
.

Please note that, for the dense format, only non-zero values need to be defined.

If the jacobian is symmetric and positive definite (abbreviated as SPD), you should set the
jac symm pos def option (see mf DE Options) in order to economize storage and obtain a better perfor-
mance for its factorization; in such a case, you must give only the upper part of the jacobian.

. . ./ . . .

434

MUESLI Reference Manual (index) FML: Optimization and Function Functions

Furthermore, when the jacobian J is banded, the mfArray options%band may be used to economize
both memory and CPU time. It must be a vector of exactly two elements: ML and MU which are the
widths of the lower and upper parts of the band, respectively, with the main diagonal being excluded
(e. g. for a tridiagonal system, both elements are equal to 1).

In this case, routine jac must store the elements Ji,j in the matrix jacobian as follows:

irow = i - j + ML + MU + 1

jacobian(irow,j) = Ji,j

Actually, ldjac is equal to 2*ML+MU+1: indeed, an extra storage is needed for the matrix factorisation.
For an SPD matrix, simply take ML equal to zero in the previous formulae.

For the sparse case, the optional argument sparse must be set to .true. and the jac routine must be
defined as:

interface

subroutine jac(t, y, nrow, job, pd, ipd, jpd, nnz)

real(kind=MF_DOUBLE), intent(in) :: t, y(*)

integer, intent(in) :: nrow, job

real(kind=MF_DOUBLE), intent(out) :: pd(*)

integer, intent(out) :: ipd(*), jpd(*)

integer, intent(in out) :: nnz

end subroutine

end interface

The pd,ipd,jpd f90 arrays describe the CSC (Compact Sparse Column) representation of the sparse
jacobian matrix, as follows:

− pd(1:nnz) contains the non-zero matrix entries;

− ipd(1:nnz) contains the row indices;

− jpd(1:ncol+1) is the pointer to the beginning of the columns, in arrays (pd,ipd).

pd,ipd must contain all diagonal terms, even if they are null. Moreover, row indices must be sorted
in ascending order. Lastly, this routine must include a mechanism such that only the value of nnz is
computed when job=0. You must also use the convention: jpd(ncol+1)=nnz+1.

Be aware that the sparse structure (that is to say, the indices’ vectors ipd and jpd) must remain the same
during all the integration process. Otherwise, use the option spjac const struct of the mf DE Options

derived type. Moreover, you can even force to reuse the same sparse structure if you make many
calls to mf/msOdeSolve during, e. g., an iterative procedure: see the option reuse spjac struct of the
mf DE Options derived type.

Remarks:

− on output, y may contain NaN values for some reasons. In such a case, use the msOdeSolve routine
to further investigate the problem.

− deriv and jac have imposed lists of arguments; the user may use module’s data in order to
exchange other information between his program and these routines (especially for checking the
number of equations). Therefore, except for very simple cases, these two user’s routines must be
located inside a module, USEd also by the user’s program.

− for debugging purposes, the user may inspect the values of y and y′ during the integration pro-
cess. See explanations about the fields monitor y ind, monitor yp ind and monitor pause of the
mf DE Options derived type.

− the stopping conditions are not (yet) available for the "ABM" method.

. . ./ . . .

435

MUESLI Reference Manual (index) FML: Optimization and Function Functions

Other calling syntaxes

call msOdeSolve(A, "save" [, jac_sparse])

By using this call, the user is able to save all internal data of the integrator in the mfArray A, and then
continue the integration later on. The optional argument jac sparse, which is the name of the routine
computing the sparse Jacobian matrix, is required when the Jacobian has a sparse structure.

call msOdeSolve(A, "restore" [, jac_sparse])

This call is required to restore all internal data of the integrator, before a new integration sequence. The
optional argument jac sparse, which is the name of the routine computing the sparse Jacobian matrix,
is required when the Jacobian has a sparse structure.

call msOdeSolve("finalyze")

This call is useful to avoid memory leaks at the end of the integration process.

See also: mfDaeSolve

436

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msOdeSolve integrator of ODE (explicit) systems

Calling syntax:

call msOdeSolve(mfOut(y, status[, tolout, yp, solve_log, t_log, order_log]), &

deriv, t_span, y_0[, options, jac, sparse])

Description:

The behavior of this routine is similar to those of mfOdeSolve, but it allows to get more information
returned by the integrator (via mfArrays which must be enclosed to the mfOut function):

− y contains the numerical result.

− status contains a returned error code:

status > 0: normal and reliable termination of the routine. It is assumed that the requested
accuracy has been achieved. (Exact meaning of the status can be found below)

status < 0: abnormal termination of the routine. The estimates for y is less reliable. It is
assumed that the requested accuracy has not been achieved. Moreover, in some circumstances,
a message is printed; in such cases, the user cannot use numerical values in y and yp and
therefore an appropriate decision must be taken. (Exact meaning of the error can be found
below)

− tolout is different from tol only if status = −2: in such a case, it contains an appropriate value
for continuing the integration.

− yp contains an estimation of the derivative at time tend (or at all intermediate values defined in
t span); moreover, the role of the option options%y ind out applies also to yp.

− solve log contains additional information about the integration process. It is a vector of 4 or 6
elements, according to the method used. These elements are:

nb step is the total number of steps used

dt min the smallest step used

dt max the largest step used

nb deriv is the number of calls of the deriv routine

nb jac is the number of evaluation of the jacobian matrix (only for the "BDF" method)

nb solve is the number of times the linear system is solved using the jacobian matrix (only
for the "BDF" method)

− t log contains the whole history of the times used during the integration. This can be useful to
detect where a critical behavior is located.

− order log contains the whole history of the order used during the integration. The first value, not
defined, is set to NaN (Not-a-Number special IEEE floating-point value); as a consequence, this
mfArray has the same size as t log.

Among these returned variables, only the first two are required, while the others are optional. Moreover,
it is forbidden to use the same mfArray in place of two or more actual arguments, even empty.

Remarks:

− The presence of the argument status allows the user to launch its program in a batch mode:
indeed, errors in the current routine will not stop the program (it is the responsability of the
programmer to test the value of the status variable before using the result). If the mfOdeSolve

routine was used instead, an error would stop the program and, in debug mode, a traceback of this
error would be displayed.

. . ./ . . .

437

MUESLI Reference Manual (index) FML: Optimization and Function Functions

− The special calling syntaxes used to save/restore the internal data (in case of continuation in overlay
situations), or to finalize the integrator, have been presented at the end of the previous entry.

status explanation

0 Normal termination of the solver.

4 Normal termination of the solver, but a large amount of work has been ex-
pended.

5 Normal termination of the solver, but the RKF integrator has been used very
inefficiently because the natural step size has been restricted by too frequent
output.

12 Normal termination of the solver, but an End Condition was found (flag, last
argument in deriv, was equal to 3 and the solver has been called to finish at
the new current point).

−2 The error tolerances are too stringent.

−3 The local error test cannot be satisfied because you specified a zero value for
the absolute error in tol and the corresponding computed solution component
is zero. Thus, a pure relative error test is impossible for this component.

−4 The problem appears to be stiff (RKF and ABM integrators only).

−6 The BDF integrator had repeated convergence test failures on the last at-
tempted step.

−7 The BDF integrator had repeated error test failures on the last attempted step.

−10 Abnormal termination of the solver, due to an Illegal Condition (flag, last
argument in deriv, was equal to −1 and the solver did its best to not obtain
−1).

−11 Abnormal termination of the solver, due to an Emergency exit (flag, last
argument in deriv, was equal to −2 and control has been returned to the
calling program).

−14 The user-supplied deriv routine returned invalid entries (NaN value).

−20 Allocation error because the maximum of available memory has been reached.
An explanation is printed.

−33 Invalid argument.

−34 Invalid implementation of the user-defined sparse jacobian.

−40 On calling, the number of output argument(s) is incorrect.

−100 The routine wasn’t able to start, nor choose an initial timestep (flag, last
argument in deriv, was different from 0).

See also: mfOdeSolve, msDaeSolve, mfOut, mf DE Options

438

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mfDaeSolve integrator of DAE (implicit) systems

Interface:

function mfDaeSolve(resid, t_span, y_0, yp_0, options, jac, sparse) result(y)

interface

subroutine resid(t, y, yprime, delta, flag)

real(kind=MF_DOUBLE), intent(in) :: t, y(*), yprime(*)

real(kind=MF_DOUBLE), intent(out) :: delta(*)

integer, intent(in out) :: flag

end subroutine

end interface

type(mfArray), intent(in out) :: t_span

type(mfArray), intent(in) :: y_0, yp_0

type(mf_DE_options), intent(in), optional :: options

external, optional :: jac

logical, intent(in), optional :: sparse

type(mfArray) :: y

Description:

Performs the numerical integration of a system of (fully implicit 3) differential algebraic equations (DAEs)
of first order (and differential index 1 only4), which can be written in the general form:

R(t, y, y′) = 0

described via the user subroutine resid, which must define the components Ri(t, y, y
′) and store the

values in the delta array (the variables t, y and yprime represent respectively t, y and y′). Usually,
the integration is done between time t0 and tend (extremal values of t span, which is a column vector
mfArray of at least two components) or, in the continuation mode, up to the new values specified in
t span (in this case, t span may contain only one value).

The output of mfDaeSolve is the row vector y which represents the solution y at time tend. If the vector
t span contains more than two values, the routine returns in y the intermediate values of y, as specified
by all time values present in t span; in this case, y is a rank-2 mfArray with as many rows as components
in t span.

The integration uses the prescribed initial conditions stored in the row vectors y 0 and yp 0. By default,
it is assumed that the data y 0 and yp 0 are consistent (note that a consistency test is performed; if it
fails, an error is returned), i. e. verify the equation

R(t0, y0, y
′
0) = 0;

otherwise, the user must set the options%IC_known argument to .false., so that the initial conditions
will be computed by the solver, taking y 0 and yp 0 as initial guesses; yp 0 may be empty but y 0 must
always be allocated and must have its size equal to the number of equations (see mf DE Options for
more details; in particular, the user must indicate which components of these two vectors should be held
fixed).

. . ./ . . .

3Not just linearly implicit, which would have a mass matrix. For explicit systems, the mfOdeSolve routine should be
used instead.

4For higher-index problems, the current algorithm may or may not work!

439

MUESLI Reference Manual (index) FML: Optimization and Function Functions

The last argument flag of resid is always set to zero (internally by the solver) on input, and should be
altered (inside the routine resid) only in some special situations:

− set flag to −1 for an Illegal Condition; the value of y′ at this time may not be available. The
routine will try to continue the integration (reducing the time step) as long as possible without
getting the illegal condition. [You can put this assignment anywhere in the resid routine.]

− set flag to −2 for an Emergency Exit ; the value of y′ at this time may not be available. The routine
will return control immediately to the calling program. [You can put this assignment anywhere in
the resid routine.]

− set flag to 3 for an End Condition; the value of y′ at this time must be always available. The
routine will adapt its time step to finish exactly at the current time given by the argument t of
resid. [WARNING: you must put this assignment at the end of the resid routine, to insure
that all the residues delta have been computed.]

The previous three situations are called stopping conditions. Note that when a stopping condition is found
in the user subroutine resid, then the vector t span (which contains the value of tend) is modified. Note
also that the three stopping conditions doesn’t have the same numerical cost; their cost is mentioned in
the following table:

Flag to used in resid Stopping condition Numerical cost

−1 Illegal Condition expensive
−2 Emergency Exit very cheap
3 End Condition cheap

All following options are stored in the structure options (see mf DE Options).

The boolean mfArray options%continuation allows the user to continue the integration to a new value
of tend, without specify a new t0. Thanks to specific calls to mf/msDaeSolve, the user is even able to
save internal data of the integrator, to stop the program, and to launch again the integrator after the
reload of saved data. See the next section Other calling syntaxes.

The mfArray options%tol allows the user to give the precision of the result, and must contain non
negative values. Default values are 10−3 for the relative tolerance and 10−6 for the absolute tolerance;
this mfArray may be of rank 0, 1 or 2:

− if it is a scalar, it specifies the relative tolerance for all the component of the solution; the absolute
tolerance is fixed to 10−6.

− if it is a vector, it must have two elements which specifies the relative and the absolute tolerance,
respectively.

− if it is a matrix, it must have two columns (corresponding to the relative and absolute tolerance)
and a number of rows equal to the number of equations.

The mfArray options%non neg allows the user to apply non-negativity constraints to a subset (or all the
set) of the components of the solution y. It must be a vector describing the indices of such constraints.

The mfArray options%y ind out allows the user to get only a subpart of the mfArray y; if present, it
must contain integer indices of the wanted components of the y vector.

The user may provide the jac routine to compute the jacobian matrix (otherwise, it will be numerically
evaluated by finite differences). This matrix may be defined in dense, band or sparse format. For the
first two formats, the interface of the jac routine is:

. . ./ . . .

440

MUESLI Reference Manual (index) FML: Optimization and Function Functions

interface

subroutine jac(t, y, yprime, jacobian, cj, ldjac)

real(kind=MF_DOUBLE), intent(in) :: t, y(*), yprime(*), cj

integer, intent(in) :: ldjac

real(kind=MF_DOUBLE), intent(out) :: jacobian(ldjac,*)

end subroutine

end interface

The generalized jacobian5 J̃ must be defined as:

J̃ =
∂R

∂y
+ cJ

∂R

∂y′

where cJ is a scalar computed by the solver; therefore the numerical values of J̃ must be stored in the

jacobian rank-2 array as follows: jacobian(i,j) = J̃i,j =
∂Ri

∂yj
+ cJ

∂Ri

∂y′j
.

Please note that, for the dense format, only non-zero values of J̃ need to be defined.

If the jacobian is symmetric and positive definite (abbreviated as SPD), you should set the
jac symm pos def option (see mf DE Options) in order to economize storage and obtain a better perfor-
mance for its factorization; in such a case, you must give only the upper part of the jacobian.

Furthermore, the jacobian J̃ may be banded, in order to economize both memory and CPU time. In
such a case, the mfArray options%band must be set; it must contain a vector of exactly two elements:
ML and MU which are the widths of the lower and upper parts of the band, respectively, with the
main diagonal being excluded (e. g. for a tridiagonal system, both elements are equal to 1). In this case,

routine jac must store the elements J̃i,j in the matrix jacobian as follows:

irow = i - j + ML + MU + 1

jacobian(irow,j) = J̃i,j

Actually, ldjac is equal to 2*ML+MU+1: indeed, an extra storage is needed for the matrix factorisation.
For an SPD matrix, simply take ML equal to zero in the previous formulae.

For the sparse case, the optional argument sparse must be set to .true. and the jac routine must be
defined as:

interface

subroutine jac(t, y, yprime, cj, nrow, job, pd, ipd, jpd, nnz)

real(kind=MF_DOUBLE), intent(in) :: t, y(*), yprime(*), cj

integer, intent(in) :: nrow, job

real(kind=MF_DOUBLE), intent(out) :: pd(*)

integer, intent(out) :: ipd(*), jpd(*)

integer, intent(in out) :: nnz

end subroutine

end interface

cJ having the same meaning as before.

. . ./ . . .

5It is so called because it is the linear combination of two jacobian. Actually, it is close to the iteration matrix of the
non-linear solver. See also this remark.

441

MUESLI Reference Manual (index) FML: Optimization and Function Functions

The pd,ipd,jpd f90 arrays describe the CSC (Compact Sparse Column) representation of the sparse
jacobian matrix, as follows:

− pd(1:nnz) contains the non-zero matrix entries;

− ipd(1:nnz) contains the row indices;

− jpd(1:ncol+1) is the pointer to the beginning of the columns, in arrays (pd,ipd) (actually, a
jacobian matrix is always square, hence ncol=nrow).

Row indices must be sorted in ascending order. Moreover, this routine must include a mechanism such
that only the value of nnz is computed when job=0; therefore the argument nnz has generally an
intent(y) for the first call and an intent(in) for subsequent calls.

Be aware that the sparse structure (that is to say, the indices’ vectors ipd and jpd) must remain the same
during all the integration process. Otherwise, use the option spjac const struct of the mf DE Options

derived type. Moreover, you can even force to reuse the same sparse structure if you make many
calls to mf/msOdeSolve during, e. g., an iterative procedure: see the option reuse spjac struct of the
mf DE Options derived type.

Remarks:

− on output, y may contain NaN values for some reasons. In such a case, use the msDaeSolve routine
to further investigate the problem;

− resid and jac have imposed lists of arguments; the user may use module’s data in order to
exchange other information between his program and these routines (especially for checking the
number of equations). Therefore, except for very simple cases, these two user’s routines must be
located inside a module, USEd also by the user’s program.

− for debugging purposes, the user may inspect the values of y and y′ during the integration pro-
cess. See explanations about the fields monitor y ind, monitor yp ind and monitor pause of the
mf DE Options derived type.

Other calling syntaxes

call msDaeSolve(A, "save" [, jac_sparse])

By using this call, the user is able to save all internal data of the integrator in the mfArray A, and then
continue the integration later on. The optional argument jac sparse, which is the name of the routine
computing the sparse Jacobian matrix, is required when the Jacobian has a sparse structure.

call msDaeSolve(A, "restore" [, jac_sparse])

This call is required to restore all internal data of the integrator, before a new integration sequence. The
optional argument jac sparse, which is the name of the routine computing the sparse Jacobian matrix,
is required when the Jacobian has a sparse structure.

call msDaeSolve("finalyze")

This call is useful to avoid memory leaks at the end of the integration process.

See also: mfOdeSolve

442

MUESLI Reference Manual (index) FML: Optimization and Function Functions

msDaeSolve integrator of DAE (implicit) systems

Calling syntax:

call msDaeSolve(mfOut(y, status &

[, tolout, yp, solve_log, init_log, t_log, order_log]), &

resid, t_span, y_0, yp_0[, options, jac, sparse])

Description:

The behavior of this routine is similar to those of mfDaeSolve, but it allows to get more information
returned by the integrator (via mfArrays which must be enclosed by the mfOut function):

− y contains the numerical result

− status contains a returned error code:

status > 0: normal and reliable termination of the routine. It is assumed that the requested
accuracy has been achieved. (Exact meaning of the status can be found below)

status < 0: abnormal termination of the routine. The estimates for y is less reliable. It is
assumed that the requested accuracy has not been achieved. Moreover, in some circumstances,
a message is printed; in such cases, the user cannot use numerical values in y and yp and
therefore an appropriate decision must be taken. (Exact meaning of the error can be found
below)

− tolout is different from tol in some few cases. First, if status = −2, it contains an appropriate
value for continuing the integration. Second, if status = −101, it contains the absolute value of
the residual vector R(t0, y0, y

′
0) (initial data consistency).

− yp contains an estimation of the derivative at time tend (or at all intermediate values defined in
t span); moreover, the role of the optional argument y ind out applies to yp.

− solve log contains additional information about the integration process. It is a vector of 6 ele-
ments, which are:

nb step is the total number of steps used;

dt min the smallest step used;

dt max the largest step used;

nb resid is the number of calls of the resid routine;

nb jac is the number of evaluation of the jacobian matrix;

nb solve is the number of solving the linear system using the jacobian matrix.

− init log contains specific information about the computation of consistent initial conditions (when
this has been required). It is a vector of 4 elements, which are:

nb resid 0 is the number of calls of the resid routine;

nb jac 0 is the number of evaluation of the jacobian matrix;

nb solve 0 is the number of solving the linear system using the jacobian matrix;

cpu time 0 is the CPU time spent in this initialization part.

− t log contains the whole history of the times used during the integration. This can be useful to
detect where a critical behavior is located.

− order log contains the whole history of the order used during the integration. The first value, not
defined, is set to NaN (Not-a-Number special IEEE floating-point value); as a consequence, this
mfArray has the same size as t log.

. . ./ . . .

443

MUESLI Reference Manual (index) FML: Optimization and Function Functions

Among these returned variables, only the first two are required, while the others are optional. Moreover,
it is forbidden to use the same mfArray in place of two or more actual arguments, even empty.

Remark: The presence of the argument status allows the user to launch its program in a batch mode:
indeed, errors in the current routine will not stop the program (it is the responsability of the programmer
to test the value of the status variable before using the result). If the mfDaeSolve routine was used
instead, an error would stop the program and, in debug mode, a traceback of this error would be
displayed.

status explanation

0 Normal termination of the solver.

4 Normal termination of the solver, but a large amount of work has been ex-
pended.

12 Normal termination of the solver, but an End Condition was found (flag, last
argument in resid, was equal to 3 and the solver has been called to finish at
the new current point).

−2 The error tolerances are too stringent.

−3 The local error test cannot be satisfied because you specified a zero value for
the absolute error in tol and the corresponding computed solution component
is zero. Thus, a pure relative error test is impossible for this component.

−6 The method used had repeated error test failures on the last attempted step.

−7 The corrector could not converge.

−8 The matrix of partial derivatives is singular.

−9 The corrector could not converge: there were repeated error test failures in this
step.

−10 Abnormal termination of the solver, due to an Illegal Condition (flag, last
argument in resid, was equal to −1 and the solver did its best to not obtain
−1).

−11 Abnormal termination of the solver, due to an Emergency Exit (flag, last
argument in resid, was equal to −2 and control has been returned to the
calling program).

−13 Some indices for the non-negativity constraints stored in the non neg array of
the mf DE Options are not in the range [1,Neq] (where Neq is the number of
equations).

−14 The user-supplied resid routine returned invalid entries (NaN value).

−15 The user-supplied jac routine (either dense or sparse) returned invalid entries
(NaN value).

−20 Allocation error because the maximum of available memory has been reached.
An explanation is printed.

−33 Invalid argument.

−34 Invalid implementation of the user-defined sparse jacobian.

−40 On calling, the number of output argument(s) is incorrect.

−100 The routine wasn’t able to start, neither choose an initial timestep, nor check
initial conditions for consistency (flag, last argument in resid, was different
from 0).

−101 Initial conditions y 0 and yp 0 are not consistent.

−102 msDaeSolve failed to compute the initial vector yp 0.

See also: msOdeSolve, mf DE Options

444

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mf NL Options options for non-linear solvers (derived type)

Description:

This derived type gathers options used by the two routines mfFSolve and mfLsqNonLin, and is defined
as follows:

type :: mf_NL_Options

type(mfArray) :: tol

integer :: max_iter = 50

type(mfArray) :: epsfcn

real(kind=MF_DOUBLE) :: init_step_bound_factor = 1.0d2

logical :: print = .false., &

print_using_transf = .false., &

reuse_spjac_struct = .false.

type(func_ptr), allocatable :: f_inv_transf(:)

integer :: check_jac = 0, &

print_check_jac = 0

logical :: box_constrained = .false.

type(mfArray) :: lower_bounds, &

upper_bounds

real(kind=MF_DOUBLE) :: sing_jac_tol = epsilon(1.0d0)

logical :: print_sing_val = .false.

end type mf_NL_Options

The following fields may be used in both two routines:

− tol specifies the tolerance to be used. See the appropriate routine to know the usage of this option.

− max iter specifies the approximated maximum number of iterations.

− epsfcn specifies the optimum small increment (in a relative sense) used for computing the deriva-
tives (the elements of the jacobian matrix) by finite differences. Therefore, its value is not used
when the jacobian matrix is provided by the user. It may be a scalar or a vector; in the latter case
(but only for LsqNonLin), each components of epsfcn corresponds to an unknown.
The value(s) of epsfcn must be carefully chosen; there doesn’t exist a universal constant because
the optimum value depends on the algorithm in the user-supplied fcn routine. Its role is basically
to equalize the numerical error which comes from the scheme and the roundoff error inherent to
the floating-point model. If fcn is coded as a mathematical function, it can be set to zero (because
internally, the finite-difference routine will choose

√
ϵ, where ϵ is the machine precision; this is

the default). If fcn uses an interpolation over a given interval ∆x (e. g. from a table lookup)
then the epsfcn should be related to some power of this ∆x value, according the accuracy of the
interpolation scheme.

− init step bound factor specifies the initial step bound factor. The default value of 100 is recom-
mended in most cases. However it can be changed for another value as low as 0.1. For example, if
you use the log() function to ensure the positiveness of your unknowns, you should choose log(100)
instead.

− print is used to print on screen the following information during the iterative process: the iteration
number, the value of each unknown parameter and the norm of the residue. If some transforma-
tion is used between the physical value of the parameters and the actual value in the algorithm,
it may be convenient to print the physical value of each parameter; to do that, the user must
set the print using transf field to .true. and associate the function pointers stored in the
field f inv transf to appropriate user-defined inverse functions. The last pointer array must be
allocated by the user. See the Muesli User’s Guide for more details.

. . ./ . . .

445

MUESLI Reference Manual (index) FML: Optimization and Function Functions

− reuse spjac struct must be set to .true. only when you are sure that the sparse structure of
the jacobian is not modified during many different calls of the FSolve solver: this can occur inside
a loop when using the same set of equations. Be aware that this option can only set to .true.

after the first call of the solver; on the contrary, an error will arise. Note that this option is used
only for the sparse case.

− for debugging purposes (but only when MF NUMERICAL CHECK is TRUE), check jac can be used to
make a check of the user jacobian (dense only):

1. when check jac is set to 1, a global and quick check is done;

2. when check jac is set to 2, a complete (but more expensive) check is done.

In both cases, a message is displayed according to the errors obtained concerning the accuracy of the
jacobian. Note that this is an estimation because (i) discrepancies found may be strongly affected by
both floating-point roundoff errors and badly scaled variables or equations, and (ii) relative errors
are based on a sort of norm of the jacobian; when this latter is large, some terms in the error
matrix may remain small.

print check jac can be used to print the results of the jacobian check:

1. when print check jac is set to 1, information is displayed on the screen;

2. when print check jac is set to 2, information is stored in files (one different file for each
jacobian call).

In both cases, (i) the given information depends on the level of the check and (ii) the output is
done at each call of the jac routine, regardless of the severity of the discrepancies. See the Muesli
User’s Guide where a detailed example of use can be found.

− (for LsqNonLin only) box constrained can be used to constrain the parameters to be inside a box.
Set it to .true. and specify the box bounds as follows:

1. lower bounds is a vector containing the lower bound for each parameter. The length of this
mfArray vector must be equal to the number of unknown parameters; use -MF INF to release
the constraint.

2. upper bounds is a vector containing the upper bound for each parameter. The length of this
mfArray vector must be equal to the number of unknown parameters; use +MF INF to release
the constraint.

These constraints of type box are dynamic, which means that during the iterations, the user can
change the value of the bounds (e. g. in the fcn routine).

− Only when MF NUMERICAL CHECK is TRUE, sing jac tol allows the user to know whether his
system of equations is singular or not. It concerns only the LsqNonLin routine. Normally the
jacobian is not singular, which means that all the parameters are independant; on the contrary,
the routine displays the linear relation between the parameters, by showing the vector of the basis
of the nullspace. Note that the nullspace basis is always computed from a local point-of-view
(linearized equations); if this basis changes along the iteration, this means that the relationship
between the parameters is nonlinear. The default value of this tolerance is the machine ϵ. Set
sing jac tol to zero to avoid the computation of the nullspace.

− Only when MF NUMERICAL CHECK is TRUE, print sing val allows the user to print the singular
values of the jacobian matrix. Default is FALSE.

All fields of this derived type are public, so the user can access each component via the ‘%’ Fortran 90
selector.

Lastly, the user can use the msRelease routine to free all fields of this structure (and to re-initialize the
components between two different calls to any of these integrators).

See also: mf DE Options

446

MUESLI Reference Manual (index) FML: Optimization and Function Functions

mf DE Options options for differential solvers (derived type)

Description:

This derived type gathers options used by the two integrators mfOdeSolve and mfDaeSolve, and is
defined as follows:

type :: mf_DE_Options

logical :: continuation = .false.

character(len=3) :: method = ""

type(mfArray) :: tol, y_ind_out, band

type(mfArray) :: non_neg, y0_ind, yp0_ind

logical :: IC_known = .true., &

print_progress = .false., &

disp_times = .false., &

jac_symm_pos_def = .false., &

spjac_const_struct = .true., &

reuse_spjac_struct = .false., &

jac_investig = .false., &

rational_null_basis = .false., &

pseudo_inverse = .false.

real(kind=MF_DOUBLE) :: jac_rcond_min = MF_EPS

logical :: save_sing_jac = .false.

type(mfArray) :: monitor_y_ind, &

monitor_yp_ind

logical :: monitor_pause = .false.

integer :: check_jac = 0, &

print_check_jac = 0

type(mf_DE_Named_Group), allocatable :: named_eqn(:), &

named_var(:)

end type

The following fields may be used in both integrators:

− continuation specifies that the integrator is not restarted. Using such a feature to continue the
integration leads to much better performance than restarting the integrator.

− tol specifies the tolerance in many ways (relative or absolute, as a whole or by component).

− y ind out allows the user to get only a subpart of the result.

− band specifies that the jacobian is stored in a band format.

− print progress specifies that the percentage of work already done is printed in the terminal. This
options should not be used when using the main program in a batch mode, redirecting output in
a file.

− disp times specifies that time values will also be displayed – wall clock time is used, not CPU
time.

(See msPrepProgress and msPrintProgress for other information concerning the last two options.)

. . ./ . . .

447

MUESLI Reference Manual (index) FML: Optimization and Function Functions

− jac symm pos def must be set to .true. only when you are sure that the jacobian is symmetric
and positive definite; in such a case, you must only provide the upper part of the jacobian: this
will economize some storage. A Cholesky factorization will be used (instead of a general LU one)
and, especially for sparse, large matrices, this will be more efficient.

− spjac const struct must be set to .false. only when you are sure that the sparse structure of
the jacobian is modified along all the time integration (this is not common!); note that this option
is used only for the sparse case.

− reuse spjac struct must be set to .true. only when you are sure that the sparse structure of
the jacobian is not modified during many different calls of the DAE or ODE solvers: this can occur
during an iterative procedure using the same mesh. Be aware that this option can only set to
.true. after the first call of the solver; on the contrary, an error will arise. Note that this option
is used only for the sparse case.

− for debugging the DAE integration (but only if jac investig is TRUE), the user may set a
threshold value (not greater than unity) in jac rcond min in order to detect whether the jacobian
is singular or not6. When (an estimation of) the reciprocal of condition number is less than or equal
to the value of jac rcond min, then the jacobian is considered as singular: a warning message is
then emitted. Moreover, for the dense case only:

1. additional information is provided to the user, about the null space of the transpose of the
jacobian matrix: this may help the user in understanding why the jacobian is singular.

2. the jacobian and the nullspace of its transpose can be saved on disk according to the value of
the boolean save sing jac (the filenames are respectively ’jacobian.dat ’ and ’nullspace.dat ’).

The default value of jac rcond min is the machine epsilon and, if set by the user, it cannot be
smaller than this default value. The nullspace basis may be returned in the form of a rational
basis (set rational null basis to .true.) but this should be useful for small problem only (few
number of equations) or for pedagogical reasons. The pseudo inverse component is reserved for
a future usage.

− for debugging purposes again, the user can tell the appropriate integrator to store all intermediate
values (note: at the internal time steps!), by specifying a number of indices in monitor y ind,
and/or indices in monitor yp ind. In such a case, the selected values of the vector y (resp. y′) are
copied in the file ’odesolve y.out ’ or ’daesolve y.out ’ (resp. ’odesolve yp.out ’ or ’daesolve yp.out ’);
each line contains the current time (independant variable) in the first column, then the selected
values of the dependant variables. The boolean monitor pause allows the user to pause after
each successful internal step of the ODE/DAE solver (the default behavior is not to make such an
interruption). Moreover, the data files are flushed continuously, so you can use an external graphic
tool to plot the data which are monitored.

− recall that the use of MF NUMERICAL CHECK is recommended, because it allows internal routines to
check the validity of the equations or of the jacobian elements, especially non finite values (Infinities,
NaNs).

. . ./ . . .

6For the ODE solver, the jacobian provided by the user may be singular, it doesn’t matter for the integration process.
See the remark at the end of this entry.

448

MUESLI Reference Manual (index) FML: Optimization and Function Functions

− for debugging purposes (but only when MF NUMERICAL CHECK is TRUE), check jac can be used to
make a check of the user jacobian (dense only):

1. when check jac is set to 1, a global and quick check is done;

2. when check jac is set to 2, a complete (but more expensive) check is done.

In both cases, a message is displayed according to the errors obtained concerning the accuracy of the
jacobian. Note that this is an estimation because (i) discrepancies found may be strongly affected by
both floating-point roundoff errors and badly scaled variables or equations, and (ii) relative errors
are based on a sort of norm of the jacobian; when this latter is large, some terms in the error
matrix may remain small.

print check jac can be used to print the results of the jacobian check:

1. when print check jac is set to 1, information is displayed on the screen;

2. when print check jac is set to 2, information is stored in an overwritten file (a unique file
along all the integration process). The library makes as many pauses as needed to let the user
to inspect this file.

In both cases, (i) the given information depends on the level of the check and (ii) the output is
displayed at each call of the jac routine, regardless of the severity of the discrepancies. See the
Muesli User’s Guide where a detailed example of use can be found.

− the named eqn and named var fields allow the user to name his equations and variables by grouping
them under useful, physical names. The derived type mf DE named group is defined as follows:

type :: mf_DE_Named_Group

character(len=132) :: name

integer :: begin, last

end type

The user must allocate himself the arrays named eqn(:) and named var(:), then correctly ini-
tializes the three internal fields: name (the name of the group), begin and last (the indices of
equation in deriv or resid which define the beginning and the end of the each named group). See
the Muesli User’s Guide where an example of use can be found.

The field method is specific to the mfOdeSolve integrator. It may contains "RKF" (Runge-Kutta Fehlberg,
which is the default method), "ABM" (Adams-Bashforth-Moulton), or "BDF" (Backward Differentiation
Formula).

The remaining are specific to the mfDaeSolve integrator:

− non neg allows the user to constrain some components of the solution to remain non negative.

− IC known indicates whether initial conditions are known (and then supposed to be consistent) or
not (see also just below).

− in the case where initial conditions have to be computed (i. e. when IC known is equal to .false.)
and only when the jacobian matrix is provided, the user may indicate which components of the
vectors y 0 and yp 0 are prescribed in, respectively, y0 ind and yp0 ind (at most N components
may be prescribed, where N is the number of the system’s equations).

If used, these two vectors must have a length equal to N ; free components are selected by putting
a zero at appropriate locations, whereas prescribed components may be selected by putting any
non-zero value.

The user may also leave the fields empty, which is equivalent to specify that no component at all
are prescribed. Values present in the two mfArrays y 0 and yp 0 are then considered as initial
guesses.

It is worth mention that initialization may fail in the case where the user prescribed too many
components. A very common error is to prescribed the N components of y 0 by setting all com-

449

MUESLI Reference Manual (index) FML: Optimization and Function Functions

ponents of y0 ind to one, for a DAE systems which have Na algebraic equations; in such a case,
all components referencing to the algebraic equations should be left free, and the user can only
prescribed the N −Na components of y 0 corresponding to the differential equations.

All fields of this derived type are public, so the user can access each component via the ‘%’ Fortran 90
selector.

Lastly, the user can use the msRelease routine to free all fields of this structure (and to re-initialize the
components between two different calls to any of these integrators).

Remark: The jacobian matrix of the ODE solver may be singular, because the iteration matrix M writes:

M = I +∆t J = I +∆t
∂F

∂y

It can be seen easily that for a sufficiently small time-step ∆t, M is not singular so there is no constraint
over J : it could be even the null matrix! Otherwise, the iteration matrix M used by the DAE solver is
close to the following generalized jacobian:

M ≈ J̃ =
∂R

∂y
+ cJ

∂R

∂y′

where cJ is related to the inverse of the time step ∆t. In this latter case, J̃ cannot be singular. (The
two functions F (t, y) and R(t, y, y′) have been defined respectively at the mfOdeSolve and mfDaeSolve

entries.)

See also: mf NL Options

450

MUESLI Reference Manual (index) FML: Sparse Matrices

1.11 Sparse Matrices

mfSparse sparse matrix conversion
mfFull dense matrix conversion
mfSpAlloc, msSpReAlloc sparse matrix space allocation
mfNnz number of nonzero matrix elements
mfNzMax sparse matrix internal size
mfNcolMax sparse matrix internal size
mfSpEye sparse identity matrix
mfSpOnes replace nonzero elements with ones
mfSpRand sparse uniformly distributed random matrix
mfSpRandN sparse normally distributed random matrix
mfSpDiags sparse matrix formed from diagonals
mfSpCut cut small elements
mfSpImport, msSpExport sparse matrix conversion from/to f90 arrays

mfIsRowSorted row sorted inquiry
msRowSort sparse matrix row sort
msGetAutoRowSorted row sorting policy
msSetAutoRowSorted row sorting policy

mfMatFactor handle to internal matrix factors (derived type)
msFreeMatFactor deallocation of internal matrix factors

See also:

Core Routines

File Input/Output

Data Analysis Functions

Operators

Elementary Math Functions

Specialized Math Functions

Elementary Matrix Manipulation Functions

Matrix Functions

Polynomial Functions

Optimization and Function Functions

451

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSparse sparse matrix conversion

Calling syntax:

B = mfSparse(A)

converts the mfArray A (which should be dense) into a sparse mfArray.

To create a sparse matrix from scratch, use the mfSpAlloc routine instead; from existing contents, use
mfSpImport.

See also: mfFull, msSpExport

452

MUESLI Reference Manual (index) FML: Sparse Matrices

mfFull dense matrix conversion

Calling syntax:

B = mfFull(A)

converts the mfArray A (which should be sparse) into a dense mfArray.

See also: mfSparse

453

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpAlloc sparse matrix space allocation

Interface:

function mfSpAlloc(m, n, nzmax, ncolmax, kind) result(out)

integer, intent(in) :: m, n

integer, intent(in), optional :: nzmax, ncolmax

character(len=*), intent(in), optional :: kind

type(mfArray) :: out

Description:
This routine is used to create new space for a sparse mfArray of size m by n (logical dimensions) which
will contain at most nzmax (if present) non-zero values. If nzmax is not present, it is set to zero.

If ncolmax is present, it reserves space for a greater number of columns. The value of ncolmax cannot
be less than n; it defaults to n. This argument is usually employed with the routine msHorizConcat.

kind may be equal to "real" or "complex"; it defaults to "real".

See also: msSpReAlloc, msHorizConcat

454

MUESLI Reference Manual (index) FML: Sparse Matrices

msSpReAlloc sparse matrix space re-allocation

Interface:

subroutine msSpReAlloc(A, nzmax, ncolmax)

type(mfArray), intent(in out) :: A

integer, intent(in), optional :: nzmax

integer, intent(in), optional :: ncolmax

Description:
This routine changes the space for elements in the sparse mfArray A. At least one argument, among the
two optional ones nzmax and ncolmax, must be present.

The argument nzmax corresponds to the maximum number of non zero entries in the sparse structure.
It can be increased to any value, but you will get an error if the value of nzmax is too small.

The argument ncolmax corresponds to the maximum number of the columns. Here again, you will get
an error if the value of ncolmax is too small. Be careful when changing its value, because the logical size
of the matrix is determine by ncolmax.

Usually the two arguments are used to increase the corresponding value. It may be dangerous to try
to decrease their value without knowledge about the internal sparse structure. See below to decrease as
much as possible the internal size of the structure automatically, without loss of data.

Other calling syntax:
To compact an mfArray to its minimal room space (both in terms of the maximum number of non zero
entries nzmax, and maximum number of columns ncolmax), use the following special calling sequence:

call msSpReAlloc(A, "minimal")

Note that this will remove also any (unwanted) zeros actually stored.

See also: mfSpAlloc

455

MUESLI Reference Manual (index) FML: Sparse Matrices

mfNnz number of nonzero matrix elements

Interface:

function mfNnz(A) result(out)

type(mfArray), intent(in) :: A

integer :: out

Description:
Returns the number of non-zero element of the sparse mfArray A.

See also: mfNzMax

456

MUESLI Reference Manual (index) FML: Sparse Matrices

mfNzMax sparse matrix internal size

Interface:

function mfNzMax(A) result(out)

type(mfArray), intent(in) :: A

integer :: out

Description:
Returns the maximum number of non-zero element of the sparse mfArray A.

See also: mfNnz, mfNcolMax

457

MUESLI Reference Manual (index) FML: Sparse Matrices

mfNcolMax sparse matrix internal size

Interface:

function mfNcolMax(A) result(out)

type(mfArray), intent(in) :: A

integer :: out

Description:
Returns the maximum number of columns of the sparse mfArray A.

See also: mfNnz, mfNzMax

458

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpEye sparse identity matrix

Interface:

function mfSpEye(m, n, kind) result(out)

integer, intent(in) :: m

integer, intent(in), optional :: n

character(len=*), intent(in), optional :: kind

type(mfArray) :: out

Description:
This routine creates a sparse mfArray of size m by n, having ones on its main diagonal.

The optional argument kind allows the user to choose a complex array (if kind is equal to "complex");
by default, a real matrix is returned.

See also: mfSpDiags, mfSpOnes

459

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpOnes replace nonzero elements with ones

Calling syntax:

B = mfSpOnes(A)

Description:
This routine creates a sparse matrix by replacing all non-zero values of the mfArray A by one.

Be aware that this routine is NOT the sparse equivalent of mfOnes.

See also: mfSpEye

460

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpRand sparse uniformly distributed random matrix

First calling syntax:

B = mfSpRand(A)

Description:
This routine creates a sparse matrix by replacing all non-zero values of the mfArray A (which may be
dense or sparse) by a uniformly distributed random value. Therefore, the mfArray B has the same
sparsity than A.

Second calling syntax:

B = mfSpRand(m, n, density)

Description:
creates a random, m-by-n, sparse matrix with approximately density*m*n uniformly distributed nonzero
entries (the real density must be in [0,1]).

See also: mfSpEye, mfSpOnes, mfSpRandN

461

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpRandN sparse normally distributed random matrix

First calling syntax:

B = mfSpRandN(A)

Description:
This routine creates a sparse matrix by replacing all non-zero values of the mfArray A (which may be
dense or sparse) by a normally distributed random value. Therefore, the mfArray B has the same sparsity
than A.

Second calling syntax:

B = mfSpRandN(m, n, density)

Description:
creates a random, m-by-n, sparse matrix with approximately density*m*n normally distributed nonzero
entries (the real density must be in [0,1]).

See also: mfSpEye, mfSpOnes, mfSpRand

462

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpDiags sparse matrix formed from diagonals

Interface:

function mfSpDiags(m, n, v, d) result(out)

integer, intent(in) :: m, n

type(mfArray) :: v

integer, intent(in), optional :: d

type(mfArray) :: out

Description:
Creates a sparse matrix (of size m by n) whose d-diagonal is the input vector v (dense).

The vector v may have a length greater than those of the d-diagonal (in such a case, subsequent elements
will not be referenced); it can be also a scalar (in such a case, the scalar value is spread over the diagonal).

Remarks: When d is equal to zero, it points to the main diagonal; when positive, the upper part of the
matrix is concerned. If the arg. d is not present, the main diagonal is the default.

Simplified interface:

function mfSpDiags(v) result(out)

type(mfArray) :: v

type(mfArray) :: out

Description:
When only one argument is used (it must be a vector mfArray A), then the routine outputs a diagonal
square sparse matrix whose dimensions are deduced from the length of the vector d.

Other interface:

function mfSpDiags(m, n, A, d) result(out)

integer, intent(in) :: m, n

type(mfArray) :: A

integer, intent(in) :: d(:)

type(mfArray) :: out

Description:
In this second interface the input mfArray A may be a rank-2 array. So, each column of A is used to fill
a diagonal of the returned sparse matrix, whose index is specified in the vector d.

If A is a row vector then each constructed diagonal will have the same elements.

See also: mfSpEye, mf/msDiag

463

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpCut cut small elements

Calling syntax:

B = mfSpCut(A, threshold)

Description:
This routine removes all elements of the mfArray A (sparse, real or complex) whose magnitude is less or
equal than the prescribed threshold (positive real arg.).

464

MUESLI Reference Manual (index) FML: Sparse Matrices

mfSpImport sparse matrix conversion from f90 arrays

Calling syntax:

A = mfSpImport(i, j, d[, m, n, nzmax, format, duplicated_entries, pattern])

creates the sparse mfArray A from a sparse structure stored in classical f90 arrays; i and j are integer
f90 vectors whereas d is a real or a complex f90 vector.

The vector d may have a null size, in which case the allocation of data space is made by this routine but
filled with NaN value (initialization may occur later on).

If present, the character string format specifies the sparse format; it may be equal to "COO" (COOrdi-
nates), "CSC" (Compact Sparse Columns) or "CSR" (Compact Sparse Rows). By default, format="COO"
is assumed.

If present, m and n define the (logical) shape of the sparse mfArray; these shape must be large enough
to contain all the input indices specified in i and j. By default, the logical shape is deduced as follows:

− if the format is "COO", then the matrix shape is deduced from the maximum value of arrays i and
j. It follows than these two arrays are inspected.

− if the format is "CSC" (resp. "CSR"), the number of columns (resp. rows) comes from the size of the
j array (resp. of the i array). Then the other dimension is deduced by inspecting the appropriate
part of the other integer array; this is because the long index array may be overdimensioned.

If present, nzmax allows to reserve more place than the actual size.

During importing f90 arrays:

− eventual duplicated entries are treated according to the optional character argument
duplicated entries. When this argument is present and equal to "ignored", duplicated en-
tries are ignored; when it is equal to "added" (default value), duplicated entries are added; when
it is equal to "replaced", last entries found overwrite previous ones.

− entries containing a null value are removed.

If present, the character string pattern indicates that the input matrix has a specific pattern, and
consequently that only a part of the values may be present in the vector d:

− "symm": the input matrix is symmetric (real or complex) and, possibly, only the lower or the upper
part is provided by the user.

− "skew": the input matrix is skew-symmetric (real or complex) and, possibly, only the lower or the
upper part is provided by the user. No diagonal element can be found in the entries.

− "herm": the input matrix is hermitian (complex) and, possibly, only the lower or the upper part
is provided by the user. For a real matrix, it is equivalent to "symm".

Note that a check about the pattern is done after importing the input values; in other words, giving a
random matrix will raise an error.

See also: msSpExport, mfSparse, mfLoadSparse, msSaveSparse

465

MUESLI Reference Manual (index) FML: Sparse Matrices

msSpExport sparse matrix conversion to f90 arrays

Calling syntax:

call msSpExport(A, i, j, d [, format])

copies the sparse mfArray A to a sparse structure using classical f90 arrays.

i and j are integer f90 vectors. d is a real or a complex f90 vector.

If present, the character string format specifies the sparse format; it may be equal to "COO" (COOrdi-
nates), "CSC" (Compact Sparse Columns) or "CSR" (Compact Sparse Rows). By default, format="COO"
is assumed.

See also: mfSpImport, mfSparse, mfLoadSparse, msSaveSparse

466

MUESLI Reference Manual (index) FML: Sparse Matrices

mfIsRowSorted row sorted inquiry

Interface:

function mfIsRowSorted(A) result(bool)

type(mfArray), intent(in out) :: A

logical :: bool

Description:
Returns ‘.true.’ if the columns of the sparse mfArray A are “row sorted” and contain no duplicated
entries.

See also: msRowSort, msGetAutoRowSorted, msSetAutoRowSorted

467

MUESLI Reference Manual (index) FML: Sparse Matrices

msRowSort sparse matrix row sort

Calling syntax:

call msRowSort(A [, struct_only])

Description:
Sorts all columns of the sparse mfArray A in increasing order, and remove all duplicated entries.

If the logical optional argument struct only is present and equal to ‘.true.’ then the data array is
discarded.

See also: mfIsRowSorted, msGetAutoRowSorted, msSetAutoRowSorted

468

MUESLI Reference Manual (index) FML: Sparse Matrices

msGetAutoRowSorted row sorting policy

Interface:

subroutine msGetAutoRowSorted(auto_row_sorted)

logical, intent(out) :: auto_row_sorted

Description:
If the returned logical auto row sorted is TRUE, then all sparse matrices are row sorted when needed.

See also: msRowSort, mfIsRowSorted, msSetAutoRowSorted

469

MUESLI Reference Manual (index) FML: Sparse Matrices

msSetAutoRowSorted row sorting policy

Interface:

subroutine msSetAutoRowSorted(auto_row_sorted)

logical, intent(in) :: auto_row_sorted

Description:
Only if auto row sorted is TRUE, then all sparse matrices will be row sorted when needed. Therefore,
this routine can change this row sorting policy.

By default, auto row sorted is TRUE.

See also: msRowSort, mfIsRowSorted, msGetAutoRowSorted

470

MUESLI Reference Manual (index) FML: Sparse Matrices

mfMatFactor handle to internal matrix factors (derived type)

Description:

This derived type is a handle to (sparse or dense) factors computed by some factorization routine (e. g.
msLU, msQR or msChol). Declaration is made as follows:

type(mfMatFactor) :: factor

The user cannot manipulates the contents of this derived type: it is indeed intended to be used only by
other MUESLI routines.

The user may release this structure by use of the msFreeMatFactor routine (but use of msRelease is
equivalent).

471

MUESLI Reference Manual (index) FML: Sparse Matrices

msFreeMatFactor deallocation of internal matrix factors

Calling syntax:

call msFreeMatFactor(factor)

Description:
Deallocate the mfMatFactor factor.

Remark: The routine msRelease may also be used in an equivalent way.

472

MUESLI Reference Manual (index) FGL: Graphical Library

2 FGL: Graphical Library

FGL contains all routines to make figures and plots (only in 2D).

Routines beginning with ‘ms’ are subroutines, whereas those beginning with ‘mf’ are functions. Usually,
the two forms of the same routine do the same job, but the latter returns an identification (actually, a
handle to the graphic object).

The available routines have been grouped into sub-parts:

Global graphic settings

Window’s and figure’s management

Figure properties

Figure annotation – Low level graphic object’s manipulation

High level plotting routines

Interactive routines

473

MUESLI Reference Manual (index) FGL: Global graphic settings

2.1 Global graphic settings

msSetBackgroundColor background color setting
msSetColorOverflowPolicy set color overflow policy
mfGetColorOverflowPolicy get color overflow policy
msExitFgl FGL closing

mfGetX11Device, msSetX11Device X11 device status
mfGetX11ColorDepth get X11 screen color depth

mfGetDefaultCapStyle, msSetDefaultCapStyle default cap style for lines
mfGetDefaultJoinStyle, msSetDefaultJoinStyle default join style for lines

mfGetCharEncoding, msSetCharEncoding character encoding

See also:

Window’s and figure’s management

Figure properties

Figure annotation – Low level graphic object’s manipulation

High level plotting routines

Interactive routines

474

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetBackgroundColor background color setting

Interface:

subroutine msSetBackgroundColor(color_string)

character(len=*), intent(in) :: color_string

Description:
Set the background color. The only two possibilities are "white" (the default) and "black".

This routine must be used at the beginning of the graphic part. The background color must be the same
for all the opened windows; it cannot be changed during the execution, until FGL graphic part is closed
(msExitFgl) and automatically reinitialized by opening any figure.

Remark: When the background has been selected as black, printing leads to different behavior for EPS
and PDF formats (see msPrint).

475

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetColorOverflowPolicy get color overflow policy

Interface:

function mfGetColorOverflowPolicy() result(policy)

character(len=10) :: policy(2)

Description:
Returns two strings. The first one (resp. second one) refers to color overflow in the low part (resp. high
part) of the colormap.

The color overflow policy may be "signaled" or "truncated". When it is "signaled", a contrasted
color is used to signal the colormap overflow. When it is "truncated", the lowest color (or highest color)
is used, giving a smooth aspect to the colors.

Default behavior is "signaled" for both ends.

See also: msSetColorOverflowPolicy

476

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetColorOverflowPolicy set color overflow policy

Interface:

subroutine msSetColorOverflowPolicy(low, high)

character(len=*), optional :: low, high

Description:
This routine is used to monitor the colormap overflow. low and high are two strings which must contain
"signaled" or "truncated".

When it is "signaled", a contrasted color is used to signal the colormap overflow. When it is
"truncated", the lowest color (or highest color) is used, giving a smooth aspect to the colors.

Default behavior is "signaled" for both ends.

Remark: if none of the two arguments is present, then nothing is changed.

See also: mfGetColorOverflowPolicy

477

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetX11Device Get X11 device status

Interface:

status = mfGetX11Device()

Description:
Returns the status of the X11 device, which can be "on" (the default) or "off".

See also: msSetX11Device

478

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetX11Device Set X11 device status

Interface:

subroutine msSetX11Device(flag)

character(len=*), intent(in) :: flag

Description:
During execution, as MUESLI is able to produce printed images (EPS or PDF) in an independant way,
the X11 device can be de-activated, by setting the flag parameter to "off". It can be useful for batch
executions.

Remarks:

− the X11 device is "on" by default;

− it can be enabled/disabled by the MFPLOT X11 DEVICE environment variable, which can take
the value 0 or 1.

See also: mfGetX11Device

479

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetX11ColorDepth get color depth

Interface:

function mfGetX11ColorDepth() result(depth)

integer :: depth

Description:
Returns the color depth currently used by the X11 server. A figure must have been previously opened.

See also: mf/msColormapSize, mf/msColormap, msColorbar

480

MUESLI Reference Manual (index) FGL: Global graphic settings

msExitFgl FGL closing

Calling syntax:

call msExitFgl()

This routine is intended to be used at the end of your graphical program. It leaves a prompt to the user
and waits for an answer (‘y’ or ‘Y’), after warning the user by a text like:

End of MUESLI plotting:

- all figures are going to be closed.

- graphic memory will be properly cleaned.

Do you really close graphics ? [y|Y]

It is a useful command to avoid that all graphic windows disappear; as mentioned, it also cleans the FGL
internal memory (all graphic objects); moreover, X11 windows position and size are saved in a small
database.

Remarks: If you want that your program terminates without a user action, you can redirect the standard
input (via ‘<’ in a shell command) and read a file containing the ‘y’ symbol. Another possibility is to
use the ‘yes’ unix command which outputs repeatedly the character ‘y’ to your program via a unix pipe,
e. g.:

$ yes | a.out

See also: msRelease

481

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetDefaultCapStyle Get default cap style for lines

Calling syntax:

cap_style = mfGetDefaultCapStyle()

Description:
Returns the current default cap style, which may be 0 ("CapButt"), 1 ("CapRound") or 2
("CapProjecting").

The signification of these three attributes may be found easily on the web.

See also: msSetGrObj, msSetDefaultCapStyle, msSetDefaultJoinStyle

482

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetDefaultCapStyle Set default cap style for lines

Interface:

subroutine msSetDefaultCapStyle(cap_style)

character(len=*), intent(in) :: cap_style

Description:
Change the global value for the default cap style. The argument cap style may be set to "CapButt",
"CapRound" or "CapProjecting".

The signification of these three attributes may be found easily on the web.

Note also that this graphic attribute may be change for a particular object, via the msSetGrObj routine.

See also: mfGetDefaultCapStyle, mfGetDefaultJoinStyle

483

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetDefaultJoinStyle Get default join style for lines

Calling syntax:

join_style = mfGetDefaultJoinStyle()

Description:
Returns the current default join style, which may be 0 ("JoinMiter"), 1 ("JoinRound") or 2
("JoinBevel").

The signification of these three attributes may be found easily on the web.

See also: msSetGrObj, msSetDefaultJoinStyle, msSetDefaultCapStyle

484

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetDefaultJoinStyle Set default join style for lines

Interface:

subroutine msSetDefaultJoinStyle(join_style)

character(len=*), intent(in) :: join_style

Description:
Change the global value for the default join style. The argument join style may be set to "JoinMiter",
"JoinRound" or "JoinBevel".

The signification of these three attributes may be found easily on the web.

Note also that this graphic attribute may be change for a particular object, via the msSetGrObj routine.

See also: mfGetDefaultJoinStyle, mfGetDefaultCapStyle

485

MUESLI Reference Manual (index) FGL: Global graphic settings

mfGetCharEncoding Get character encoding

Interface:

encoding = mfGetCharEncoding()

Description:
Returns the current character encoding, which is "Latin" (the default) or "UTF-8".

This is used in the following graphic routines, which display character strings in a figure: mf/msText,
msTitle, msXLabel, msYLabel, mf/msFigure and msLegend.

See also: msSetCharEncoding

486

MUESLI Reference Manual (index) FGL: Global graphic settings

msSetCharEncoding Set character encoding

Interface:

subroutine msSetCharEncoding(encoding)

character(len=*), intent(in) :: encoding

Description:
When processing character’s strings (e. g. in the msTitle routine), MUESLI accepts two different char-
acter encodings. The charset may be "Latin" (default one) or "UTF-8".

So, the encoding argument can take only the following values:

− "Latin" (or "ISO-8859-1" which is an alias)

− "UTF-8"

Warning: Not all the characters defined in the "UTF-8" encoding are valid. Actually, only a subpart
of the 256 first characters (i. e. mostly of the "Latin" encoded characters, but not all) are correctly
processed.

See also: mfGetCharEncoding

487

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

2.2 Window’s and figure’s management

mf/msFigure figure creation
msResizeWindow window resizing
mfGetWinId current figure identification
msClose figure deletion

mfGetColorScheme, msSetColorScheme color scheme
mfGetColorInd, msSetColorInd index in color scheme

msPrint file printing (EPS and PDF)
msSetPdfOC PDF Optional Contents management

See also:

Global graphic settings

Figure properties

Figure annotation – Low level graphic object’s manipulation

High level plotting routines

Interactive routines

488

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

mf/msFigure figure creation

Calling syntax:

call msFigure([win_id] [, position] [, size] [, title])

where arguments are all optional.

This routine opens a new window or selects (and therefore makes active) a previously opened one.

The win id argument (integer) indicates the identification of the window; if not present, a sequential
integer from 1 is used.

The position argument is used to impose the position of the window on the screen. It must be a Fortran
array of two integer values specifying the position of the newly created window; the position in pixels of
the top-left corner of the window is taken from the top-left corner of the whole screen (virtual screen in
case of many monitors), counting positively downward for the y value. Default position is approximately
(0, 0) for the first window, and shifted both in x- and y-position, in order to be not completely overlapped
(for the windows below others, only their title is visible).

The size argument is used to impose the size of the window on the screen. It must be a Fortran array
of two integer values specifying the size of the newly created window; the two values indicates the width
and height in pixels of the window. Default size is 800 by 600.

The title argument (character string, of maximum length 80) specifies the title of the figure. This title
is visible in the X11 window title; it applies also for the printed EPS and PDF files.

Remarks:

− the default size of X11 windows can be modified via the environment variables MF-
PLOT X11 WIDTH and MFPLOT X11 HEIGHT.

− the window title always contains win id and the name of the executable program.

− ordinarily, if you have no figure opened, most of graphical routines automatically open a new one.

− maximum number of concurrent figures is 64. However, win id values don’t need to be contiguous,
and may be even greater than 64.

The other form:

win_id = mfFigure()

creates a new figure and returns its (integer) window identification.

Remarks: use mfGetWinId to get the window identification of the current active figure.

See also: msClose, msClf

489

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msResizeWindow window resizing

Calling syntax:

call msResizeWindow([width, height])

Description:
If the optional arguments width and height are both present, then the window is resized by the library.

On the contrary, i. e. when the optional arguments are not present, this routine becomes interactive,
prints a prompt on the terminal, and wait the resizing of the window by the mouse.

See also: msFigure, msClf

490

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

mfGetWinId current figure handle

Calling syntax:

win_id = mfGetWinId()

Description:
Returns the window identification (integer) of the current active figure.

See also: msFigure

491

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msClose figure deletion

Calling syntax:

call msClose([win_id])

Description:
Closes the specified window, or the current window if the optional argument win id is not present.

Note that after closing a window, the current selected window is undefined, even if other figures yet
exist. It is required to select another existing window if you wish to plot inside, else a new figure will be
automatically created.

See also: msFigure, msClf

492

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

mfGetColorScheme Get color scheme

Calling syntax:

color_scheme = mfGetColorScheme()

Description:
Returns the color scheme attached to the selected window, which is an integer ranged in [1-4]. Default
is 3.

There are four different color schemes, used for recycling colors when you plot several lines on the same
figure. They are described in the Muesli User’s Guide (cf. § 5.2 Color management).

See also: msSetColorScheme

493

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msSetColorScheme Set color scheme

Interface:

subroutine msSetColorScheme(color_scheme)

integer, intent(in) :: color_scheme

Description:
Set the color scheme for the selected window, via an integer argument ranged in [1-4].

There are four different color schemes, used for recycling colors when you plot several lines on the same
figure. They are described in the Muesli User’s Guide (cf. § 5.2 Color management).

The default color scheme is the third one, i. e. the new colors in Matlab (from release R2014b).

See also: mfGetColorScheme

494

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

mfGetColorInd Get color scheme index

Calling syntax:

ind = mfGetColorInd()

Description:
Returns the color scheme index attached to the selected window.

This is the index of the next color to be used.

See also: msSetColorInd

495

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msSetColorInd Set color scheme index

Interface:

subroutine msSetColorInd(ind)

integer, intent(in) :: ind

Description:
Set the color scheme index for the selected window, and for the current color scheme.

Usually, when plotting many curves on the same figure, colors are cycled inside the colortable of the
selected color scheme. This routine allows to select a specific index, for example to avoid the cycling in
the colors.

See also: mfGetColorInd

496

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msPrint file printing

Calling syntax:

call msPrint(filename [, file_format])

Description:
Prints the current figure in a file named filename.

Currently, file format may be only "EPS" or "PDF". If this optional argument is not present, MUESLI
tries to deduce the device type from the extension of the provided filename. By default, an EPS file is
created.

For EPS (resp. PDF) files, and for debugging purpose, comments can be inserted in the generated file by
setting the environment variable MFPLOT EPS COMMENTS (resp. MFPLOT PDF COMMENTS) to
1 (default is no comments). Be aware that this will increase the size of the file.

Note, if you have selected a black background (see msSetBackgroundColor), that the EPS only will have
also a black background. For the PDF files have always a white background.

Remarks:

− EPS and PDF files intensively make use of language-based shading. This means that all coloured
gradients (from msPatch or msPColor for example) are treated by using appropriate PostScript or
PDF commands, and leads to smaller files.

− Of course, printed files may be generated without any X11 capability. This is useful under Windows
(where there is no X11 access) or for batch processes.

− For PDF files only, optional contents (also known as layers) may be inserted. See msSetPdfOC.

497

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

msSetPdfOC PDF Optional Contents management

The first interface is:

subroutine msSetPdfOC(handle, &

name, mutex, persistent, super_group)

integer, intent(in) :: handle

character(len=*), intent(in), optional :: name, mutex, super_group

logical, optional :: persistent

It is used to tag a graphic object of the current window as Optional Content in the PDF. Doing so,
and once the Layers of your PDF viewer is opened, you should be able to choose to display or not this
graphic object (which appears under the name) on the screen.

The graphic object, referenced by its handle, may be visible or not. The initial state of visibility in the
PDF layers will be consistent with the visibility in the X11 window at the time of printing, except when
the persistent argument is used: in such a case, only the graphic object tagged as persistent will be
initially visible in the mutex group.

If name is not present, then it will be assigned the corresponding graphic object number (as “handle i”).

The mutex optional argument (MUTually EXclusive) is used to group some optional contents in a Radio-
Button group: at most one of these optional contents may be visible in the PDF (but that does not prevent
the existence of a state where none of these are visible — see below the section concerning persistent

if you want that exactly one content must be visible at a time). The mutex name is the name which will
appear in the “layers” panel of the PDF viewer, which enclosed all different names. Same thing for the
super group optional argument, except that the groups inside are not in mutually exclusion.

When using the mutex feature, replacing ‘name=name’ by ‘persistent=.true.’ allows that one object
is always visible, and it is the concerned object by default. A typical application is to group text
annotations in the figure in mutually exclusive groups, one for a language; each group may have its own
name, for example, equal to Français, Deutsch, etc. The mutex name could be then, Other languages
(default: English). See the Labels and Languages test.f90 program under src/test/fgl.

The other interface:

subroutine msSetPdfOC(handle, &

merge, name, mutex, persistent, super_group)

integer, intent(in) :: handle(:)

logical, optional :: merge, persistent

character(len=*), intent(in), optional :: name, mutex, super_group

concerns a vector of handle, and can be used to the following aims:

− when the two arguments merge and name are both present, it merges a group of graphic objects
under the same name as optional contents; as an example of use, see the PlotCubicBezier test

program under src/test/fgl.

− when the two arguments merge and name are both not present, it gets a different name for each
graphic objects of the group, from the legend of the figure. Of course, such a legend should exist;
on the contrary, a generic name (as “handle i”) will be used instead. As an example of use, see
the figure 4 of the Legend test program under src/test/fgl.

The mutex optional argument has the same meaning as in the first interface. Its use implies the merge
of all optional contents specified by the array of handles. Same thing for super group.

. . ./ . . .

498

MUESLI Reference Manual (index) FGL: Window’s and figure’s management

Constraints about the presence of optional arguments:

− mutex and super group arguments cannot be both present.

− persistent and name arguments cannot be both present.

− in a given group of optional contents, the persistent argument can be used only one time.

− currently (but this may change in a future version), there are only one Radio-Button group and
only one Super-group for each figure.

Remarks:

− this routine must be called before creating the PDF file via msPrint.

− you are allowed to first call the second interface, using an array of handle, getting the names from
the legend and then, call the first interface to modify the name of one specific graphic object.

− the PDF Optional Contents will be ignored if you print in the EPS format.

499

MUESLI Reference Manual (index) FGL: Figure properties

2.3 Figure properties

mf/msAxis figure axes setting
msAxisFontSize axis font size setting
msAxisLineWidth axis line width setting
msCharInPixels character size policy

mf/msCAxis get or set color axis
msClf clear current figure
msColorbar color bar setting
mf/msColormap get or set colormap
mf/msColormapSize get or set colormap size
msDrawBox redraw the box in current figure
msDrawGrid if needed, redraw the grid in current figure
msRedrawFigure redraw the current figure
msGetX11Pixmap X11 pixmap saving
msGrid grid setting
msHold plot command superposition
msRemoveClipBox remove a clipping box inside axes
msSetClipBox define a clipping box inside axes
msShading color shading mode

mfGetXAxisTicksNb get ticks number of the X-axis
msSetXAxisUserLabels set customized ticks labels of the X-axis

mf/msTitle title setting
msTitleFontSize title font size setting
mf/msXLabel x-label setting
mf/msYLabel y-label setting
msLabelFontSize descriptive labels font size setting
msAxisLabelFormat kind of labelling for Axis
msSetWinProp window properties setting

msLegend add legends to curves, in one frame
mfLegend add legends to curves, possibly in many frames

See also:

Global graphic settings

Window’s and figure’s management

Figure annotation – Low level graphic object’s manipulation

High level plotting routines

Interactive routines

500

MUESLI Reference Manual (index) FGL: Figure properties

mf/msAxis figure axes setting

The function form

function mfAxis([axis]) result(mf range)

type(mfArray) :: mf range

character(len=*), optional :: axis

returns the current axis values of the selected figure, always in the order: left, right, bottom, top, whatever
the mode ("xy" or "ij" – see below) is. This array is a vector of length 4 or 2, containing extremal
values of the x - and/or y-axis, according to the presence of the optional argument axis which must be
equal to the single character "x" or "y".

The subroutine form has the following calling syntax:

call msAxis(mode | dp_range | mf_range [, axis])

If the character string mode is present, it may have the following values:

− "on" / "off": axes are drawn (default) or hidden (and so for X label and Y label).

− "auto": axes’ ranges are computed from the actual numerical values of data to be plotted, giving
smart extremal values; this is the default. Note that graphic data involved do not include arrows
or texts, which are considered as annotations.

− "tight": axes’ ranges are computed from actual values of data (see just above what is considered
as “data”), strictly keeping their extremal values.

− "manual": axes’ ranges are not automatic; the current axis values are frozen, whatever the following
plots. This mode is also set when a range is explicitly used (see below). Only another call using
the "auto" or "tight" argument can unlock it.

− "equal": x - and y- axis are drawn with the same scale; the default behaviour is "unequal".
Note that the equal mode is possible only when axes have the same scaling (both linear or both
logarithmic).

− "xy" / "ij": the origin of the x- and y-axis is at the bottom left corner of the figure (default
location for most plotting commands) or at the top left corner (when the data is interpreted as a
matrix, which is the case for msSpy, msImage and msPColor in the absence of (X,Y) coordinates).
In the "xy" mode, the x-axis labels are written at the bottom side of the box, whereas they are
written at the top one in the other mode.

− "inverted": in this case, the second optional argument axis must be present and equal to "x"

or "y". Corresponding extremal values of this axis are then swapped together. This doesn’t imply
that the axis becomes "manual". There is no "normal" state, i. e. two successive calls with the
"inverted" argument is equivalent to do nothing; in other words, "inverted" is not a property
but an action to realize.

− "linlin" / "loglog": x - and y-axis are both linear (default) or logarithmic (base 10).

− "loglin" / "linlog": as specified, one of the two axes is linear whereas the other is logarithmic
(base 10); Note that if the equal mode is set, it will be disabled.

If the real dp range, or mfArray mf range, is present (containing 4 values), it is used to initialize the
axes’ range; the manual mode is automatically set. The additional optional argument axis can be used
to set only the x- or the y-axis: in this case, the length of the range vector must be equal to 2, instead
of 4, and the axis argument set to the single character "x" or "y".

The axis optional argument can also be used when the following modes are set: auto, tight and manual.

Axes may be inverted (e. g., for the x-axis, the maximum value on the left and the minimum value on
the right); to do this, simply give a range in decreasing order.

See also: msAxisFontSize, msAxisLineWidth, msLabelFontSize, msGrid

501

MUESLI Reference Manual (index) FGL: Figure properties

msAxisFontSize axis font size setting

Interface:

subroutine msAxisFontSize(size_factor)

real(kind=MF_DOUBLE), intent(in) :: size_factor

Description:
This routine is used to change the font size of the axis numbering.

size factor must be ranged in [0.4, 2.5]. Default size factor is unity. Actual font size also depends on
the char height pixel mode (see the msCharInPixels routine).

See also: msAxis, msTitleFontSize, msLabelFontSize, msAxisLineWidth

502

MUESLI Reference Manual (index) FGL: Figure properties

msAxisLineWidth axis line width setting

Interface:

subroutine msAxisLineWidth(width)

real(kind=MF_DOUBLE), intent(in) :: width

Description:
This routine is used to change the line width of the axis and the associated numbering.

Default width is unity.

Remark: If you increase the value of width, you will remark that the effective line width in pixels is
approximately half of this latter value. Actually, the pixel width is a discontinuous function of width,
especially at small values. The corresponding behaviour is however continuous for the drawing generated
in EPS and PDF files.

See also: msAxis, msAxisFontSize, msLabelFontSize

503

MUESLI Reference Manual (index) FGL: Figure properties

msCharInPixels character size policy

Interface:

subroutine msCharInPixels(mode)

character(len=*), intent(in) :: mode

Description:
If mode is equal to "off", the character size is proportional to the window size (default behavior).

If mode is equal to "on", the character size is absolute. Unity is about 12 pixels.

See also: msAxisFontSize, msText

504

MUESLI Reference Manual (index) FGL: Figure properties

mf/msCAxis get or set color axis

The first form:

function mfCAxis() result (out)

type(mfArray) :: out

returns the color axis of the current figure. It is a 2-value vector which contains the min and max values
used in the colorbar. The default value (if not set by the user) is the range [0,1].

The subroutine form:

call msCAxis(col_range | mf_range | string)

is used to set the color axis. One argument is required, it is either a real 2-value vector, an mfArray or
a character string.

When the argument contains numerical values, it specifies the color range. Be aware that the two values
must not be too close together: in such a case, the routine enlarges slightly the given interval and emits
a warning. Once the color axis has been defined, it will remain the same until the next call.

When the argument is a string, it must be equal to "reset": the color axis takes the initial [0,1]
range, whereas it becomes extensible again, when used repeatedly (by successive calls of msContour, for
example).

Remark: The two input numerical values defining the color axis must be ordered: first is the minimum,
second is the maximum.

See also: msColorbar, msColormap, msColormapSize, msPColor, msContour, msPatch

505

MUESLI Reference Manual (index) FGL: Figure properties

msClf clear current figure

Calling syntax:

call msClf()

Description:
Clears the current figure, but don’t close the corresponding window.

See also: msFigure, msClose, msCla

506

MUESLI Reference Manual (index) FGL: Figure properties

msColorbar color bar setting

Calling syntax:

call msColorbar(mode [, position] [, label])

Description:
If mode is equal to "on", adds a colorbar to the current figure.

Its position can be specified by an optional argument, position, which can be "vert" (i. e. right side)
or "horiz" (i. e. bottom side); by default the position is automatically chosen.

The optional argument label can be used for the labelling of the color bar.

The three arguments are of type character(len=*).

Remarks:

− In some situations, in particular when axis scaling are equal (see msAxis) and one figure side
is much smaller than the other, it is recommended to left the routine choose itself the position;
otherwise the colorbar may have a too short length.

− It is recommended to call this routine after drawing all objects.

See also: msCAxis, msColormap, msColormapSize

507

MUESLI Reference Manual (index) FGL: Figure properties

mf/msColormap get or set colormap

The function form:

colormap = mfColormap()

returns the current colormap in an mfArray (rank-2 array of 3 columns) which contains the Red-Green-
Blue components of each color. These components are reals, ranged from 0.0 to 1.0.

The other function form:

bool = mfColormap("init_status")

returns a logical value according to the initialization status of the colormap.

The subroutine form:

call msColormap(name [, "inverted"])

or

call msColormap(colormap [, int_max])

is used to set the colormap.

The user can choose a predefined colormap, via the character name argument: "rainbow" (or its alias
"jet"), "parula", "hot", "bluered", "fusion", "flag" or "grey" (a grey scale). Number of colors is
256, but it can be changed via msColormapSize. You can see their color representation in the Muesli
User’s Guide. If the optional argument "inverted" is added, then the colormap is inverted.

User-defined colormap can also be registered, via the mfArray colormap. This array must have 3 columns
and a number of rows up to 4096.

By default, colormap contains real color components, ranged from 0.0 to 1.0. If the optional argument
int max is present, it indicates that entries are integers whose max value is provided (e. g. 255 for 256
values for each R,G,B component, giving a subset among 16 millions of colors. Integer color components
always start from 0).

Remarks:

− Before using this routine, a window must be opened via msFigure.

− There is no default colormap. The user must select one of them before using colors.

See also: msCAxis, msColorbar

508

MUESLI Reference Manual (index) FGL: Figure properties

mf/msColormapSize get or set colormap size

The function form:

size = mfColormapSize()

returns the size (integer) of the current colormap.

The subroutine forms:

call msColormapSize(size)

is used to set the size of the colormap. A maximum of 4096 colors is allowed; note however that in most
of case, 256 colors are sufficient to eliminate color artifacts on the screen.

call msColormapSize("auto")

sets the size of the colormap to its default size, i. e. 256.

See also: mf/msColormap, msColorbar

509

MUESLI Reference Manual (index) FGL: Figure properties

msDrawBox redraw the box in the current figure

Calling syntax:

call msDrawBox()

Redraws the framed box in the current figure.

This routine is useful after drawing some plots which partially erase the ticks and marks of the box. It
doesn’t redraw the numerical label neither the optional grid (which should remain in the background).

See also: msRedrawFigure, msDrawGrid

510

MUESLI Reference Manual (index) FGL: Figure properties

msDrawGrid if needed, redraw the grid in the current figure

Calling syntax:

call msDrawGrid()

Redraws the grid in the current figure, if needed.

This routine is useful during animation: if the grid has been set with the msGrid routine, the current
routine must be called in the iteration loop, before any plotting with FGL.

See the Muesli User’s Guide about a typical sequence of Muesli routines to include in an animation loop.

See also: msRedrawFigure, msDrawBox

511

MUESLI Reference Manual (index) FGL: Figure properties

msRedrawFigure redraw the current figure

Calling syntax:

call msRedrawFigure()

redraws the current figure.

Typically, this routine should be used after any graphic object change, modified by the routine
msSetGrObj, in order to make visible the modification on the screen.

See also: msDrawBox, msDrawGrid, msResizeFigure

512

MUESLI Reference Manual (index) FGL: Figure properties

msGetX11Pixmap X11 pixmap saving

Calling syntax:

call msGetX11Pixmap(A1, A2, A3)

Description:
This routine returns in three mfArrays, the color components of the X11 pixmap drawn on the screen.

If the background color is black, then it gets the R,G,B planes.
If the background color is white, then it gets the C,M,Y planes.

Remark: the mfArray arguments should not be pointed by another ordinary Fortran pointer (see
msPointer); on the contrary, a Warning is emitted.

See also: msSetBackgroundColor

513

MUESLI Reference Manual (index) FGL: Figure properties

msGrid grid setting

Calling syntax:

call msGrid(mode [, minor])

The string mode may have the following values:

− "on": a background grey dashed grid is drawn for major axis ticks; (default)

− "off": grid is hidden;

The boolean optional minor can be set to .true. to get minor lines (aligned on minor ticks). By default,
these minor dotted lines are not drawn.

See also: msAxis

514

MUESLI Reference Manual (index) FGL: Figure properties

msHold plot command superposition

Calling syntax:

call msHold("on" | "off")

Description:
Usually, each new plot command erase the previous one. If you want to keep the previous graphic objects
drawn in the figure, you must call this routine with "on".

Use "off" to come back to the default behavior.

Remark : to avoid unwanted behavior, place this command after the first plot (msPlot or whatever).

515

MUESLI Reference Manual (index) FGL: Figure properties

msRemoveClipBox remove a clipping box inside axes

Interface:

subroutine msRemoveClipBox()

Description:
Remove the clipping box set by the msSetClipBox routine.

See also: msSetClipBox

516

MUESLI Reference Manual (index) FGL: Figure properties

msSetClipBox define a clipping box inside axes

Interface:

subroutine msSetClipBox(dp_range)

real(kind=MF_DOUBLE), intent(in) :: dp_range(:)

Description:
Define a clipping box (inside current axes) for subsequent plotting commands.

See also: msRemoveClipBox

517

MUESLI Reference Manual (index) FGL: Figure properties

msShading color shading mode

Calling syntax:

call msShading(mode)

where mode is a character string which can be "flat" or "interp".

Description:
Sets the shading mode used when drawing patches:

− "flat" implies that only one color is used;

− "interp" leads to interpolated colors between the vertices of the polygonal shape.

"flat" is the default mode.

Note that the "interp" mode doesn’t lead to bigger files when printing in PDF. Only for EPS, the use
of transparency leads to the inclusion of bitmap images.

The shading has no effect on the display of the colorbar. Indeed, the colormap may have sharp gradients
or even jumps in colors, or may use of a very small number of colors (e. g. 8 or 16): that must appear
clearly in the colorbar.

See also: mf/msPatch, mf/msPColor, msColorbar

518

MUESLI Reference Manual (index) FGL: Figure properties

mfGetXAxisTicksNb get ticks number of the X-axis

Calling syntax:

nb = mfGetXAxisTicksNb("major" | "all")

returns the number of ticks of the X-axis (linear scaling only). This can be the number of major ticks
(the default, or if "major" is used as argument) or all ticks (both major and minor) when "all" is used
as argument.

Usually, this routine is used in conjunction with a call to msSetXAxisUserLabels.

519

MUESLI Reference Manual (index) FGL: Figure properties

msSetXAxisUserLabels set customized ticks labels of the X-axis

First calling syntax:

call msSetXAxisUserLabels(labels)

This call must occur only after the function mfGetXAxisTicksNb, which returns the number N of ticks
of the (linear) X-axis.

labels must be an array (of size N) of character strings. The ticks labels (major or all, according the
previous call) are then replaced by each string in labels. Only the first 6 characters are used for each
label (truncation beyond).

Remark: Using customized labels can be useful for a Bar plot (see msBar), either because numerics are
not appropriate, or because you want to use a logarithmic scaling when it is not allowed.

Other calling syntax:

call msSetXAxisUserLabels(.false.)

This later call is used to manually disable the replacement of the labels. Note that this replacement is
also automatically disabled when the range of the X-axis is modified, either by the user (explicit call to
msAxis) or by a plot of other graphic objects which would modify this range.

520

MUESLI Reference Manual (index) FGL: Figure properties

mf/msTitle title setting

Interface:

subroutine msTitle(title)

character(len=*), intent(in) :: title

Description:
Adds a title to the current figure. Not drawn if axis is off.

Maximum length of the title is 128 characters.

This routine should be called after the other data plotting routines.

Escaped sequences may be use in the string (see msText) to change the font, the style, the position (sub-
or superscript), etc. Note also that the global character size may be changed by using msTitleFontSize.

Remark: the function mfTitle has the same argument list; it returns the (integer) handle of the created
graphic objet; this is useful to create many strings in different languages, and set them as optional
content for PDF creation (see msSetPdfOC).

See also: msXLabel, msYLabel, msAxis

521

MUESLI Reference Manual (index) FGL: Figure properties

msTitleFontSize title font size setting

Interface:

subroutine msTitleFontSize(size_factor)

real(kind=MF_DOUBLE), intent(in) :: size_factor

Description:
This routine is used to change the font size of the title.

size factor must be ranged in [0.5, 3.5]. Default size factor is 2. Actual font size also depends on the
char height pixel mode (see the msCharInPixels routine).

See also: msAxis, msAxisFontSize, msTitle, msLabelFontSize

522

MUESLI Reference Manual (index) FGL: Figure properties

mf/msXLabel x-label setting

Interface:

subroutine msXLabel(xlabel)

character(len=*), intent(in) :: xlabel

Description:
Adds a label to the x-axis of the current figure. Not drawn if axis is off.

Maximum length of this label is 96 characters.

This routine should be called after the other data plotting routines.

Escaped sequences may be use in the string (see msText) to change the font, the style, the position (sub-
or superscript), etc. Note also that the global character size may be changed by using msLabelFontSize.

Remark: the function mfXLabel has the same argument list; it returns the (integer) handle of the created
graphic objet; this is useful to create many strings in different languages, and set them as optional content
for PDF creation (see msSetPdfOC).

See also: msTitle, msYLabel, msAxis

523

MUESLI Reference Manual (index) FGL: Figure properties

mf/msYLabel y-label setting

Interface:

subroutine msYLabel(ylabel)

character(len=*), intent(in) :: ylabel

Description:
Adds a label to the y-axis of the current figure. Not drawn if axis is off.

Maximum length of this label is 96 characters.

This routine should be called after the other data plotting routines.

Escaped sequences may be use in the string (see msText) to change the font, the style, the position (sub-
or superscript), etc. Note also that the global character size may be changed by using msLabelFontSize.

Remark: the function mfYLabel has the same argument list; it returns the (integer) handle of the created
graphic objet; this is useful to create many strings in different languages, and set them as optional content
for PDF creation (see msSetPdfOC).

See also: msTitle, msXLabel, msAxis

524

MUESLI Reference Manual (index) FGL: Figure properties

msLabelFontSize descriptive labels font size setting

Interface:

subroutine msLabelFontSize(size_factor)

real(kind=MF_DOUBLE), intent(in) :: size_factor

Description:
This routine is used to change the font size of the axis labels.

size factor must be ranged in [0.4, 2.5]. Default size factor is unity. Actual font size also depends on
the char height pixel mode (see the msCharInPixels routine).

See also: msAxis, msAxisFontSize, msTitleFontSize, msXLabel, msYLabel

525

MUESLI Reference Manual (index) FGL: Figure properties

msAxisLabelFormat kind of labelling for Axis

Interface:

subroutine msAxisLabelFormat(x_axis_mode, y_axis_mode)

character(len=*), intent(in), optional :: x_axis_mode, y_axis_mode

Description:
This routine is used to set the format of labelling axis.

Default mode is "std", i. e. numeric numbers without unit. If set to "time" then numbers are supposed
to be seconds and are written under the format (DD) HH MM SS.S.

See also: msAxisFontSize

526

MUESLI Reference Manual (index) FGL: Figure properties

msSetWinProp window properties setting

Interface:

call msSetWinProp(property, data)

Description: Used to modify a specified property of the current window.

property may take the following values:

− "axis font size", "axis line width", "label font size" or "title font size":
→ data of type real

− "xlabel", "ylabel" or "title":
→ data of type character(len=*)

Remark: Contrary to the specific following routines: msAxisFontSize, msAxisLineWidth,
msLabelFontSize, msTitleFontSize, msXLabel, msYLabel, msTitle, the redraw of the figure is not
done; therefore, the user must call the msRedrawFigure to see the change effects.

527

MUESLI Reference Manual (index) FGL: Figure properties

msLegend add legends to curves, in one frame

First interface:

subroutine msLegend(legend_1 [, legend_2, legend_3, ...] &

[, location | position])

character(len=*), intent(in) :: legend_1

character(len=*), intent(in), optional :: legend_2, ..., legend_13

character(len=2), intent(in), optional :: location

type(mfArray), intent(in), optional :: position

Second interface:

subroutine msLegend(legend_1, handle_1 [, legend_2, handle_2, ...] &

[, location | position])

character(len=*), intent(in) :: legend_1

integer, intent(in) :: handle_1

character(len=*), intent(in), optional :: legend_2, ..., legend_13

integer, intent(in), optional :: handle_2, ..., handle_13

character(len=2), intent(in), optional :: location

type(mfArray), intent(in), optional :: position

Description:
Adds legends to the curves plotted in the figure. Up to 13 legends (noted above as legend 1, legend 2,
...) in one frame are supported, each containing a string of at most 80 characters.

The handles of the curves may be provided (see the second interface), making possible to legend only
a subset of the curves. Of course, all handled must be valid and must be integers returned by Muesli
graphic functions. Note that the two calling syntaxes above cannot be mixed.

Numbered legends and handles must be used in increasing order, otherwise some legends may not appear.

The optional argument location (not to be used in conjonction with position) can be used to specify
in which corner of the figure the legend is displayed. Possible values are "TL" (top-left), "TR" (top-right),
"BL" (bottom-left), "BR" (bottom-right) or "outside" (see below). Default is top-left corner.

The optional argument position (not to be used in conjonction with location) specify the position of
the legend’s frame, i. e. the coordinates of the top-left angle of the frame. The user is even allowed to
locate the legend “outside” of the axes, by specifying any value of the coordinates. The legend frame
may or may not be entirely visible in the X11 window, but it should appear in the EPS and PDF files.
This is useful in case of a very high legend. A better way, however, is to use location="outside"; in
such a case, the legend will be drawn in a small, additional window (but the legend will appear in the
same EPS or PDF after printing).

Legends are grouped in a unique frame which can be moved inside or outside axes via the msMoveLegend
routine. See mfLegend to create many frames. A legend frame cannot be removed without knowing its
handle, i. e. via mfLegend.

Remarks:

− Usually, the number of string arguments (or pairs of string and associated handle) specifying the
legends is equal to the current number of curves. However, it is possible to specify less legends
than the actual number of curves: a simple warning will be emitted during the call. Similarly,
specifying a number of legends larger than the number of current curves leads to a simple warning,
and additional legends will be discarded.

. . ./ . . .

528

MUESLI Reference Manual (index) FGL: Figure properties

− For bar plot, the different items in the legend correspond to the data series plotted; this works only
for grouped or stacked bars (see mf/msBar). Currently, the second interface above is not compatible
with bar plots.

Third interface:

subroutine msLegend(legend_array [, handle_array] &

[, location | position])

character(len=*), intent(in) :: legend_array(:)

integer, intent(in), optional :: handle_array(:)

character(len=2), intent(in), optional :: location

type(mfArray), intent(in), optional :: position

Description:
Allows the user to group all the legends (and, optionally, the associated handles) in one array of character
strings.

529

MUESLI Reference Manual (index) FGL: Figure properties

mfLegend add legends to curves, possibly in many frames

Description:
As opposed to most of graphic routines, the function version of the Legend family behaves differently.

It has the same interfaces as msLegend and, as usual, returns the (integer) handle of the graphic objet;
moreover, it can be called many times for the same figure, making it useful to create legends in different
languages, and to set them as optional content for PDF creation (see msSetPdfOC).

530

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

2.4 Figure annotation – Low level graphic object’s manipulation

mf/msArrow arrow drawing
mf/msText text display

mfGetAllGrObj get all graphic objects
mfGetTypeGrObj get the type of a graphic object
mfSelectTypeGrObj select graphic objects by type
msSetGrObj graphic object setting
msRemoveGrObj graphic object deletion

See also:

Global graphic settings

Window’s and figure’s management

Figure properties

High level plotting routines

Interactive routines

531

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

mf/msArrow arrow drawing

The first form:

call msArrow(x_start, y_start, x_end, y_end &

[, color] [, linewidth] [, headsize] [, clipping])

draws an arrow from the position (x start, y start) to the position (x end, y end). These coordinates
must be of type real.

The optional argument color have the same meaning as in the routine mf/msPlot.

Optional arguments linewidth and headsize (real numbers) can be used to specify the line width and
the head size of the arrow. Default values are unity.

If the optional boolean argument clipping is set to FALSE, then the arrow can be displayed out
of the viewport (default is TRUE, i. e. the arrow is clipped at the viewport; this default behavior is
recommended when it is an annotation at some location inside the viewport and you might want to pan
or zoom inside the axes).

The second form:

call msArrow(x, y, angle &

[, color] [, headsize])

draws only an arrow head, given a position (x, y) and an angle in radian (all are real variables).

The remaining arguments have the same meanings as above.

Remarks:

− the function mfArrow has the same argument list; it returns the (integer) handle of the created
graphic object.

− in future, the four first arguments will be able to take also the type mfArray, in order to display
many arrow at a time.

See also: mf/msText

532

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

mf/msText text display

Interface:

call msText(x, y, text &

[, angle] [, just] [, just_vert] [, pix_voffset] &

[, color] [, bg] [, height] [, clipping] [, xbox, ybox])

Description:
Writes the string text at the position (x, y). These coordinates may be of type real or mfArray. Many
escape codes allow the use of different kinds of fonts, the use of subscript or superscript, greek letters,
etc. See the Muesli User’s Guide at section 5.5 for more information.

If the real argument angle is present then text is written with this angle (in degrees).

The real argument just specifies the justification of the string in comparison with the position (−1 for
left (default), 0 for centered, +1 for right — other real values ranged from −1 to +1 are permitted, giving
intermediate justifications). Similarly, the real just vert argument concerns the vertical justification
(default is −1, i. e. the baseline of the glyph located at y coordinate, and 0 to obtain the topline of
the glyph at y; use −0.5 for a vertically centered glyph). Concerning only the vertical justification, the
optional boolean argument pix voffset can be used (under X11) to move vertically the string box by a
2 pixel shift — this is especially useful when the bottom or the top of the string box is against a drawn
line (default is pix voffset=.false.).

If the optional argument color is present, it specifies the color of the text displayed (see msSetGrObj).
Default color is black when the figure background is white (see msSetBackgroundColor).

If the optional argument bg is present, it specifies the color of the background (see msSetGrObj). Default
is transparent.

The optional real argument height specifies the height of the characters drawn (default is 1). This height
may be relative (the default, character size is proportional to the window size) or absolute (character
height is in pixels, unity is about 12 pixels), according to the mode defined in the routine msCharInPixels.

If the optional boolean argument clipping is set to FALSE, then text can be displayed out of the
viewport (default is TRUE, i. e. the text is clipped at the viewport; this default behavior is recommended
when text is an annotation at some location inside the viewport and you might want to pan or zoom
inside the axes).

The optional output arguments xbox and ybox allows the user to retrieve the value of the rectangle
frame of the string displayed (4 values for both x and y, because the string may be inclined). These
arguments must be real arrays of length 4.

Remarks:

− usually, the current routine is used to annotate a graphic, so it should be employed after any use
of mf/msPlot; on the contrary, the msHold routine must be added before the plot command, else
all texts from mf/msText will be erased.

− the function mfText has the same argument list; it returns the (integer) handle of the created
graphic object.

See also: mf/msArrow, msSetCharEncoding

533

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

mfGetAllGrObj get all graphic objects

Calling syntaxe:

hdle_vec = mfGetAllGrObj()

Description: Returns a vector of handle for all graphic objects in the current window.

The hdle vec variable, declared by the user, must be an integer vector. For an easy programming use,
it should be allocatable: due to a feature of modern Fortran, it will be allocate with the appropriate size
during the assignment; moreover, there is no need to deallocate it between calls.

See also: mfGetTypeGrObj, msSetGrObj

534

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

mfGetTypeGrObj get the type of a graphic object

Calling syntaxe:

type = mfGetTypeGrObj(handle)

Description: Returns the type of a graphic object, identified by its handle, as a character string.

The type may be one of the followings:

− "line", "point" or "line+point", typically created by mf/msPlot;

− "image", created by mf/msImage;

− "text", created by mf/msText;

− "polygon", created by mf/msPatch;

− "pcolor", created by mf/msPColor;

− "contour", created by mf/msContour;

− "quiver", created by mf/msQuiver;

− "streamline", created by mf/msStreamline or mf/msTriStreamline;

− "arrow" or "arrow head only", created by mf/msArrow;

− "quadr bezier", created by mf/msPlotQuadrBezier;

− "cubic bezier", created by mf/msPlotCubicBezier or mf/msPlotCubicSpline;

− "histogram", created by mf/msPlotHist;

− "errorbar x line", "errorbar y line", "errorbar xy line", "errorbar x pt",
"errorbar y pt", "errorbar xy pt", "errorbar x line+pt", "errorbar y line+pt" or
"errorbar xy line+pt", created by mf/msErrorBar;

− "pcolor spy", "pcolor spy sparse", "pcolor spy sparse 2", "plot spy sparse", created by
mf/msSpy;

− "legend", created by mf/msLegend;

− "tri fill", created by mf/msTriFill;

− "trimesh by fac", "trimesh by tri" or "mesh boundary unstruct", created by mf/msTriMesh;

− "tri pcolor", created by mf/msTriPColor;

− "tri quiver", created by mf/msTriQuiver;

− "tri contour", created by mf/msTriContour;

− "xlabel", created by mf/msXLabel;

− "ylabel", created by mf/msYLabel;

− "title", created by mf/msTitle;

− "set clip box", created by msSetClipBox;

− "remove clip box", created by msRemoveClipBox.

See also: mfGetAllGrObj, msSetGrObj

535

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

mfSelectTypeGrObj select graphic objects by type

Calling syntaxe:

hdle_vec = mfSelectTypeGrObj(handles, grobj_type)

Description: Returns a vector of handles for the graphic objects which match the type specified as
argument, among a list of input handles.

handles must be a integer vector, containing a set of valid graphic object handles.

grobj type is a character string, containing the type of the graphic object, as returned by
mfGetTypeGrObj.

The hdle vec variable, declared by the user, must be an integer vector. For an easy programming use,
it should be allocatable: due to a feature of modern Fortran, it will be allocate with the appropriate size
during the assignment; moreover, there is no need to deallocate it between calls.

See also: mfGetAllGrObj, msSetGrObj

536

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

msSetGrObj graphic object setting

First interface:

call msSetGrObj(handle, property, data)

Description: Changes one property of the graphic object identified by its handle. This handle may be
a scalar or vector integer, or even a vector of handles stored in an mfArray.

The type of data depends on the target property, as detailed below.

property may take the following values:

− "visible": data may be any string, but the object will be displayed only if data is "on"; an
exception occurs if the object is tagged as Optional Content for the PDF driver (see msSetPdfOC).

− "linestyle": data must be a string among "-", "--", "-." (or ".-" as an alias) or ":" (or ".."
as an alias), for continuous, dashed, dashed-dotted, and dotted, respectively.

− "linewidth": data must be of type real, positive (default value is 1).

− "cap style": data must be a string among "CapButt", "CapRound" or "CapProjecting" (but not
case sensitive). Signification of these three keywords may be found easily on the web and concerns
all devices (X11, EPS and PDF). Default is "CapRound".

− "join style": data must be a string among "JoinMiter", "JoinRound" or "JoinBevel" (but not
case sensitive). Signification of these three keywords may be found easily on the web and concerns
all devices (X11, EPS and PDF). Default is "JoinRound".

− "marker": data may be a single character among ".", "+", "*", "o", "x", "s", "^" or "d" (for Dot,
Plus, Asterisk, Circle, X, Square, TriangleUp and Diamond, respectively), or an escaped sequence
as "\M01" to "\M26" for using the complete set of markers, described in Fig. 27 of the Muesli
User’s Guide. Negative codes "\M-14" to "\M-21" tell Muesli to draw the 8 filled markers with a
small white border around them. For a more comprehensive reference, the markers may be also
specified by an escaped text sequence, as "\CircleFilled" (the character case doesn’t matter; it
can be adapted for a better reading).

− "markersize": data must be of type real, positive (default value is 1).

− "color": data may be a single character, among "w", "k", "r", "g", "b", "c", "m" or "y" (for
white, black, red, green, blue, cyan, magenta and yellow, respectively), or an escaped sequence of
the form "\Cnn" (e. g. "\C01", "\C02", ...) for using the corresponding color of the current color
scheme (see msSetColorScheme).

− "col name": data may be any string which represents a valid colorname from the X11 RGB
database.

− "col rgb": data must be a vector of type real and size 3.

− "text": data may be any string.

− "position": data must be a string among "first", "last", "up" or "down". This affects the
position in the stack, i. e. the drawing order.

− "opacity": data must be of type real, ranged from 0.0 (full transparency) to 1.0 (full opacity).

− "coordinates": (for text string) data must be of type real and size 2.

− "relat coords": (for a legend frame created by mfLegend) data must be of type real and size
2, and is understood as relative coordinates (left and bottom sides correspond to 0, right and top
sides correspond to 1).

− "EPS user comment" (not case sensitive): data can be any character string. This text will be add
only in the EPS file in order to find easily the PostScript commands related to the graphic object.

. . ./ . . .

537

https://en.wikipedia.org/wiki/X11_color_names
https://en.wikipedia.org/wiki/X11_color_names

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

Changing the coordinates of the points in a polyline needs to change both x and y coordinates together
by using the Other interface:

call msSetGrObj(handle, "x", x, "y", y)

Remarks:

− the user must call the msRedrawFigure to see the change effects.

− properties are not all editable for a given graphic object. The following table describes what can
be modified for all types of graphic objects.

See also: msSetWinProp, msRemoveGrObj

538

MUESLI Reference Manual (index) FGL: Figure annotation – Low level graphic object’s manipulation

msRemoveGrObj graphic object deletion

Calling syntax:

call msRemoveGrObj(handle [, redraw])

Description:
Removes the graphic object in the current figure, specified by its handle, and redraws the figure.

handle may be a scalar or a vector of handle (always integer); it can be also an mfArray containing
integer values of handles.

If the optional argument redraw is used and set to FALSE, the figure is not redrawn. This could be
justified when you have to remove a lot of graphic objects. Don’t forget to specify redraw = TRUE on
the last call, or call the msRedrawFigure to redraw the whole figure.

Remark: After the grobj removing, the handles are set to zero. In the case of an mfArray, all elements
are set to zero but the mfArray itself is not released.

See also: msSetWinProp, msSetGrObj

539

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

2.5 High level plotting routines - 2D

mf/msPlot data plot (using straight segments)
mf/msErrorBar data plot with error bars

mf/msPlotQuadrBezier data plot (using quadratic curved segments)
mf/msPlotCubicBezier data plot (using cubic curved segments)
mf/msPlotCubicSpline data plot (using cubic curved segments)

mf/msBar bar data plot

mf/msPColor pseudo-color plot
mf/msContour data contouring
mf/msContourF data contouring with filled regions
mf/msQuiver vector field plot
mf/msStreamline vector field streamline

mf/msPatch graphic patch
mf/msPlotHist data histogram
msCumulHist cumulative data histogram
msImRead, msImWrite image read and write
mf/msImage image display

mf/msPlotPSLG plot a PSLG domain
mf/msTriMesh plot a triangulation
mf/msPlotVoronoi plot a Voronoi diagram
mf/msTriPColor pseudo-color on a triangulation
mf/msTriFill coloring on a triangulation
mf/msTriContour data contouring on triangles
mf/msTriContourF data contouring on triangles with filled regions
mf/msTriQuiver vector field plot on a triangulation
mf/msTriStreamline vector field streamline on a triangulation

mf/msSpy sparsity pattern visualization

See also:

Global graphic settings

Window’s and figure’s management

Figure properties

Figure annotation – Low level graphic object’s manipulation

Interactive routines

540

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlot data plot (using straight segments)

Calling syntax:

call msPlot(x [, y] &

[, linespec] [, color] [, linewidth] [, markersize] &

[, dashes_inverted])

Description:
Plots the vector mfArray y versus the vector mfArray x.

If y is not present then x is plotted against its integer indices. One exception is when x is complex:
in such a case, msPlot(x) is equivalent to msPlot(real(x),imag(x)), so the drawing is done in the
complex plane.

The optional argument linespec is a string which contains a multiple attribute vector (color, linestyle,
marker) as in MATLAB. See msSetGrObj for further information.

The optional argument color may be a character string (one-letter color code, escaped sequence, color-
name from the RGB database) or a vector of type real and length 3 containing the RGB components
of a color.

The optional argument linewidth must be a positive number of type real (default is 1). Under X11
the unit is pixel, therefore specifying a value less than 1 makes no difference; however, in EPS and PDF,
this will lead to very thin lines.

The optional argument markersize must be a positive number of type real; it is used only for marker
symbols. If this argument is not present, then the marker size is automatically chosen to be coherent
with the line width value.

The optional argument dashes inverted must be a boolean; it is used only for dashed lines: it shifts
the dashes in such a way that two identical dashed lines using different colors are both visible, when this
argument is used for the second curve.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Log representation of the data is made by using the msAxis routine.

Remarks:

− the drawing is always clipped at the viewport.

− the function mfPlot has the same argument list; it returns the (integer) handle of the created
graphic object.

− when calling many time this routine in the same figure, without providing any color information,
there is an automatic color selection, cycling the colors from the current colortable (for more
information about colortables – or color schemes – see the Muesli User’s Guide).

− by default, the axis range presents its minimum on the left and its maximum on the right. To
invert the axis, use the msAxis routine.

See also: mf/msBar, mf/msPlotQuadrBezier, mf/msPlotCubicBezier, mf/msPlotCubicSpline

541

https://en.wikipedia.org/wiki/X11_color_names

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msErrorBar data plot with error bars

Calling syntax:

call msErrorBar([x,] y [, x_err] [, y_err] &

[, linespec] [, color] [, linewidth] [, markersize])

Description:
Plots the mfArray y versus the mfArray x, using line specification given in linespec and adding error
bars at each point.

The argument x is optional (the x-axis will use a vector of sequential integers from 1). x and y must be
vectors (row or col) of same length, not matrices.

The optional argument linespec (character string)) has exactly the same meaning as in the msPlot

routines. In particular, when not specified, colors will be recycled from the current colortable (for more
information about colortables – or color schemes – see the Muesli User’s Guide).

The optional arguments linewidth, color and markersize have exactly the same meaning as in the
msPlot routines.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remark:

− the drawing is always clipped at the viewport.

− the function mfErrorBar has the same argument list; it returns the (integer) handle of the created
graphic object.

− currently, axis must be both linear.

− due to the simple implementation and the number of optional arguments, it is required, most
of times, to use the name of each argument as keywords (on the contrary, errors will occur at
compilation and even at run-time). The examples below show typical calls.

See also: mf/msPlot, msAxis

Example(s):

For adding error bars only along the y-axis, the first call:

call msErrorBar(mf([2.00d0,1.50d0,3.00d0,2.50d0]), &

mf([0.10d0,0.15d0,0.20d0,0.25d0]))

will give at run-time:

(MUESLI msErrorBar:) ERROR: bad optional arg combinaison (see doc) !

because the first actual argument is associated to x and the second one to y.

The second one:

call msErrorBar(mf([2.00d0,1.50d0,3.00d0,2.50d0]), &

y_err=mf([0.10d0,0.15d0,0.20d0,0.25d0]))

will not compile:

Compilation Error: Missing actual argument for argument ‘y’

Only this third call is correct:

call msErrorBar(y=mf([2.00d0,1.50d0,3.00d0,2.50d0]), &

y_err=mf([0.10d0,0.15d0,0.20d0,0.25d0]))

542

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotQuadrBezier data plot (using quadratic curved segments)

Interface:

call msPlotQuadrBezier(x, y &

[, linespec] [, color] [, linewidth] &

[, dashes_inverted])

Description:
Draws a quadratic Bézier curve from the control points whose coordinates are given in the mfArrays x
and y. The drawn object is a quadratic piecewise polynomial parametric curve. The curve is continuous
(but doesn’t have necessarily continuous derivatives); therefore, the total number of points in the x and
y mfArrays must be of the form: 2k + 1, where k is the number of segments.

Optional arguments linespec, color, linewidth and dashes inverted have the same meaning as in
the routine msPlot.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− the drawing is always clipped at the viewport.

− the marker choice, when specified, is discarded.

− the function mfPlotQuadrBezier has the same argument list; it returns the (integer) handle of the
created graphic object.

− when not specified, colors will be recycled from the current colortable (for more information about
colortables – or color schemes – see the Muesli User’s Guide).

See also: mf/msPlotCubicBezier, mf/msPlotCubicSpline

543

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotCubicBezier data plot (using cubic curved segments)

Interface:

call msPlotCubicBezier(x, y &

[, linespec] [, color] [, linewidth] &

[, dashes_inverted])

Description:
Draws a cubic Bézier curve from the control points whose coordinates are given in the mfArrays x and
y. The drawn object is a cubic piecewise polynomial parametric curve. The curve is continuous (but
doesn’t have necessarily continuous derivatives); therefore, the total number of points in the x and y

mfArrays must be of the form: 3k + 1, where k is the number of segments.

Optional arguments linespec, color, linewidth and dashes inverted have the same meaning as in
the routine msPlot.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− the drawing is always clipped at the viewport.

− the marker choice, when specified, is discarded.

− the function mfPlotCubicBezier has the same argument list; it returns the (integer) handle of the
created graphic object.

− when not specified, colors will be recycled from the current colortable (for more information about
colortables – or color schemes – see the Muesli User’s Guide).

See also: mf/msPlotQuadrBezier, mf/msPlotCubicSpline

544

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotCubicSpline data plot (using cubic curved segments)

Interface:

call msPlotCubicSpline(abs_curv, x, y, wx, wy, &

[, linespec] [, color] [, linewidth] &

[, dashes_inverted])

Description:
Draws a cubic Spline curve from given points whose coordinates are given in the mfArrays x and y.
The drawn object is a cubic piecewise polynomial curve parametrized by the vector abs curv. It is C2

continuous at segment boundaries (i. e. both the tangent vector and the curvature are continuous). The
two vectors wx and wy must have been computed before the call by use of the routine mfSpline.

Optional arguments linespec, color, linewidth and dashes inverted have the same meaning as in
the routine msPlot.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− the drawing is always clipped at the viewport.

− the marker choice, when specified, is discarded.

− the function mfPlotCubicSpline has the same argument list; it returns the (integer) handle of the
created graphic object.

− when not specified, colors will be recycled from the current colortable (for more information about
colortables – or color schemes – see the Muesli User’s Guide).

See also: mf/msPlotQuadrBezier, mf/msPlotCubicBezier

545

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msBar bar data plot

Calling syntax:

call msBar([x,] y &

[, color] [, width] [, baseline] [, style])

Description:
Plots the mfArray y versus the mfArray x, using vertical bars. The argument x is optional (the x-axis
will use a vector of sequential integers from 1). When y is a vector (row or col) then x must have the
same shape as y; however, when y is a matrix (processed by columns), then x must be a column vector
of same length as that of y columns.

The optional argument color specifies the color used to fill the bars; the color convention is the same
as in the msPlot routine. See also msSetGrObj for further information. It may have many types and
shapes:

− it may be a single character string, containing a one-letter color code or a color name from the
RGB database; it may be also a vector of N character strings, N being the number of columns of
y.

− it may be a vector of type real with 3 RGB components (describing one color); or a matrix of
dimension (3, N), N being the number of columns of y.

The optional argument "width" must be a positive number of type real ranged in [0, 1]. It is the relative
width of the bars (default is 0.8).

The optional argument "baseline" must be of type real. Its role depends on whether the Y-axis is
linear or logarithmic:

− in the case of a linear Y-axis, baseline can take any value (default value is zero). The routine
plots a thin line to visualize the baseline.

− in the case of a logarithmic Y-axis, baseline is the minimum value for data (no default value).
Negative values, or those which are less than baseline are discarded.

The optional argument style works only for matrix data. When it is equal to "grouped" (default value),
grouped bars are used; when it is equal to "stacked", stacked bars are used.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− the function mfBar has the same argument list; it returns the (integer) handle of the created graphic
object.

− only the Y-axis can be of logarithmic type; in this case, of course, all values in y must be positive.

− when not specified, colors will be recycled from the current colortable (for more information about
colortables – or color schemes – see the Muesli User’s Guide).

See also: mf/msPlot, msAxis

546

https://en.wikipedia.org/wiki/X11_color_names

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPColor graphic pseudo-color

Calling syntax:

call msPColor([X, Y,] Z [, data_centering, view] &

[, grid, grid_color, grid_step] [, lighting])

Draws a pseudo color plot of the data contained in the Z mfArray.

The (i, j) indices are mapped to the axis (−Y,X), so data visualisation is coherent with the matrix
layout and with other routines working with matrix data (msContour, msQuiver, msStreamline). If this
orientation is not appropriate, use the coordinates (mfArrays X and Y), as described below.

The optional data centering argument specifies how the data stored in the matrix are graphically
displayed; it is a string which must be equal to "vertex" (default value — (i, j) points to the vertex of a
cell) or "cell" ((i, j) points to the center of a cell). In the cell centered model, the shading of the color
is only flat, whatever the value specified by the use of msShading. This is summarized in the following
figure:

data is localized at the vertices of the cell

2 modes of shading: flat or interp

data is located at the center of the cell

only one possible mode of shading: flat

3.7 1.6

0.4 5.9

The optional view argument is a character string specifying the type of view for displaying the data
in the matrix Z: the default view is the usual top view, noted "ji" or "XY", according to the presence
of the arguments X, Y. When these latter arguments are not present, view may be equal to "iZf",
"iZb", "jZf" or "jZf", specifying a side view as noted by the letters i, j or Z (always the vertical
axis); the third letter is a modifier, indicating a forward or a backward view. In the other case, i. e. when
the arguments X, Y are presents, the corresponding strings are "YZf", "YZb", "XZf" and "XZf". The
different side views are summarized below:

Note that, in projection mode, only the default data centering (i. e. data centering="vertex") is ac-
cepted.

. . ./ . . .

547

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

A thin line may be drawn to show the boundary of each quadrilateral cell by using the optional argument
grid equal to TRUE. The default is to not show these boundaries. The color of this thin line may be
specified in the optional argument grid color, with the same convention as in the msPlot, routine; by
default, it is the foreground color. The optional argument grid step allows to plot only some lines of
the grid, indicating the step to be used along the X or the Y coordinate; it must be a vector of two
integers. This is particularly useful when the size of the data is large.

The optional argument lighting (boolean variable) changes the use of colors: instead of selecting shades
from the Z values, they come from the lighting of the surface. In this case, it is recommended to select
the grey colormap from the msColormap routine. Note also that this option is applicable only when X

and X coordinates are provided.

When arguments X and Y are also provided, then their values are used as coordinates for the data points
in Z:

− usually, X and Y are matrices and their shape must be the same as that of the data matrix Z.
Use of these coordinates is required when, e. g., you want to swap the indices i and j, or apply a
transformation (linear or not) between the (i, j) indices and the (x, y) coordinates; these coordinate
matrices may be created by the msMeshGrid routine.

− to economize memory, it is possible to pass only vectors: in this case, X and Y, provided as rank-
1 mfArrays, must obey to the same constraint as edicted for the generator vectors (see again
msMeshGrid).

Be aware that X and Y are not used to defined the axes of the plot: to do so, you must use the msAxis

routine with appropriate argument(s).

The color axis may be set explicitly by the user via the msCAxis routine; otherwise it will be chosen
automatically by the routine itself. In the color axis manual mode, data should be theoretically ranged
entirely inside the color axis; on the contrary, the resulting behavior depends on the shading value
(cf. msShading). When shading is equal to "flat", a quiet behavior is obtained and the colormap
overflow can be monitored by use of the msSetColorOverflowPolicy routine; when shading is equal to
"interp", a warning is emitted by the library because strange colors can be drawn. This latter case
should be avoided if possible.

Note that a colormap must have been defined before the call, (via msColormap); otherwise, a warning is
emitted and strange or unexpected results can occur.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfPColor has the same argument list; it returns the (integer) handle of the created
graphic object.

− For making a pseudo color plot on a triangle (or a triangular patch), use the msTriPColor routine.

− NaN values are not (yet) allowed: an error is returned by the routine.

See also: msPatch, msContour, msImage, msQuiver

548

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msContour data contouring

Calling syntax:

call msContour([mfOut(C), X, Y,] Z &

[, nb_levels, levels, order, linespec, linewidth, &

labels, labelscolor, labelsize])

Description:
Draws a contour plot of the data contained in the mfArray Z. The plot is done in the current figure. As
opposed as msPColor routine, msContour accepts only vertex-centered data.

It doesn’t fill the regions between the contours with colors; for such a feature, see the mf/msContourF

routine.

(i, j) indices of Z are mapped to the axis (−Y,X), so data visualisation is coherent with the matrix
layout and with other routines working with matrix data (msPColor, msQuiver, msStreamline). If this
orientation is not appropriate, use the coordinates (mfArrays X and Y), as described below.

When arguments X and Y are also provided, then their values are used as coordinates for the data points
in Z:

− usually, X and Y are matrices and their shape must be the same as that of the data matrix Z.
Use of these coordinates is required when, e. g., you want to swap the indices i and j, or apply a
transformation (linear or not) between the (i, j) indices and the (x, y) coordinates; these coordinate
matrices may be created by the msMeshGrid routine.

− to economize memory, it is possible to pass only vectors: in this case, X and Y, provided as rank-
1 mfArrays, must obey to the same constraint as edicted for the generator vectors (see again
msMeshGrid).

If the optional C mfArray is given in front of (X,Y) coordinate matrices, then it will contain on output
a two-row matrix storing the contour lines. Each contiguous drawing segment contains the value of
the contour, the number of (x, y) drawing pairs, and the pairs themselves. The segment are appended
end-to-end as

C = [level_1, x_1, x_2, ..., level_2, x_1, x_2, ...;

pairs_1, y_1, y_2, ..., pairs_2, y_1, y_2, ...]

Be aware that these point coordinates must be interpreted in different ways, according the value of order
(see below).

The optional (integer) argument nb levels specifies the number of contours to be drawned; it cannot
be used together with levels.

The optional argument levels, which must be a rank-1 mfArray, is used to specify the level values; it
cannot be used together with nb levels.

By default, the number of level curves is equal to 9, and the level values are equally spaced within the
min and max values of the data, or within thoses of the Color Axis if it has been set before (see msCAxis);
this can be changed by using the optional arguments nb levels and levels (see above). A warning is
emitted if a level is outside the Color Axis, excepted when the color is prescribed in linespec.

By default, the level curves are labelled (use labels=.false. to remove the labels) and the contour
curves are colored using the current colormap (use a color inside linespec to specify the color of all
curves). Labels are displayed in the foreground color (e. g. black on white) by default; the user may choose
another color via the labelscolor optional argument. Moreover the label size may be changed by using
the optional labelsize real argument, which lets the user to specify a percentage of the standard size
(default is labelsize=1.0d0).

. . ./ . . .

549

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

The optional argument order is an integer (1 or 2) specifying the quality of the approximation of the
contour lines. Default is order = 1: in this case, segments are straight lines. If order is set to 2 then
a bilinear interpolation is used inside the cells, and segments are constituted by quadratic Bezier arcs.
Note that in all cases, the approximation provides only continuity at the cell boundaries, therefore the
tangent lines may appear as broken. Note also that the default case (order = 1) is well adapted for
most situations; only for situations where you have a small number of cells, or if you want to strongly
zoom inside a contour map, you would choose order = 2.

Optional arguments linespec (character string) and linewidth (real value) allow the user to change
the appearance of the contour curves. Possible values for these arguments are described in msSetGrObj,
under the "color", "linestyle" and "linewidth" entries. If a color has been specified, then all contour
lines will be drawn with the same color. Be aware, however, that the choice of markers is disabled.

Note that a colormap (see msColormap) must have been defined before the call if a specific color is not
present in linespec; otherwise, a warning is emitted and strange or unexpected results can occur.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfContour has the same argument list; it returns the (integer) handle of the created
graphic object.

− For making contours on a triangle (or a triangular patch), use the msTriContour routine.

− NaN values are not (yet) allowed: an error is returned by the routine.

See also: mf/msContourF, mf/msImage, mf/msQuiver

550

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msContourF data contouring with filled regions

Calling syntax:

call msContourF([mfOut(C), X, Y,] Z &

[, nb_levels, levels, linewidth, &

labels, labelscolor, labelsize])

Description:
Similar to the msContour routine, except that the regions between the contours are filled with appropriate
colors.

The whole region whose values are greater than the level is filled with the corresponding color. As a
consequence, the region less than all specified levels is left in white. To avoid white regions, it is sufficient
to add a level less than or equal the smaller value in the Z array.

Be aware however that some arguments of msContour are not available here.

See also: mf/msTriContourF

551

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msQuiver vector field plot

Calling syntax:

call msQuiver([X, Y,] u, v &

[, data_centering] [, color] [, arrow_length] [, step] &

[, linewidth] [, arrow_head])

Draws the vector field whose 2D components are stored in the u and v mfArrays, located at position
(X,Y) or whows location is deduced from the layout of u and v when X and Y are not present. The plot
is done in the current figure.

(i, j) indices are mapped to the axis (−Y,X), so data visualisation is coherent with the matrix layout and
with other routines working with matrix data (msContour, msPColor, msStreamline). If this orientation
is not appropriate, use the coordinates (mfArrays X and Y), as described below.

When arguments X and Y are also provided, then their values are used as coordinates for the data points
in u and v:

− usually, X and Y are matrices and their shape must be the same as those of the data matrices u

and v. Use of these coordinates is required when, e. g., you want to swap the indices i and j, or
apply a transformation (linear or not) between the (i, j) indices and the (x, y) coordinates; these
coordinate matrices may be created by the msMeshGrid routine.

− to economize memory, it is possible to pass only vectors: in this case, X and Y, provided as rank-
1 mfArrays, must obey to the same constraint as edicted for the generator vectors (see again
msMeshGrid).

Be aware that X and Y are not used to defined the axes of the plot: to do so, you must use the msAxis

routine with appropriate argument(s).

u and v must be rank-2 (i. e. matrices) mfArrays of same shape. They represent respectively the X and
Y components of the vector field to be drawn. If the orientation or the scaling is not appropriate, use
the second form of call described below, by adding coordinates.

The optional data centering argument specifies how the data are stored in the matrix; it is a string
which must be equal to "vertex" (default value) or "cell".

The optional color argument specifies the color used for drawing the arrows: it is a one-letter color
symbol or an escaped sequence, as described in the msSetGrObj routine.

The optional arrow length argument (real) specifies the maximum length of the arrow field as a mul-
tiplicative factor applied to the mesh size; by default its value is 1 so that each arrow is inside the
rectangular cell where its center is located. A value much less that 1 is useless, whereas a big value is
not recommended.

The optional step argument (integer) the step in the loops over the (i, j) indices to display the arrow;
the default value is 1. It is useful to avoid a too big number of arrows for high resolution meshes.

The optional linewidth argument (real) specifies the line width, as a relative factor; by default its value
is 1. The line width is constant and is the same for all arrows, whatever their length is.

The optional arrow head argument (real) specifies the size of the arrow head, based on the character
height; by default its value is 1.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

. . ./ . . .

552

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

Remarks:

− The drawing is always clipped at the viewport.

− An arrow is not drawn if any component of the corresponding vector (u, v) is equal to NaN.

− The function mfQuiver has the same argument list; it returns the (integer) handle of the created
graphic object.

− For drawing a 2D vector field on a triangular mesh, use the msTriQuiver routine.

− When specifying a color, the routine msColormap should be used before for definition of the col-
ormap.

See also: mf/msContour, mf/msPColor

553

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msStreamline vector field streamline

Calling syntax:

call msStreamline([X, Y,] u, v, start [, direction, n_arrow] &

[, color] [, linestyle] [, linewidth] [, arrow_head] &

[, npt_max] [, curv_tol] [, stop_zone])

Based on a velocity vector field whose x- and y-components are respectively u and v (mfArrays), draws
streamlines in the current figure. There is no restriction about the velocity field: it may have a non-zero
divergence, or a non-zero curl.

The streamlines are specified by their starting points (2D-point coordinates stored in the start mfArray,
which may have any number of lines, but exactly two columns). The integration always begins at the
starting point, in two possible direction: forward and/or backward (see below the explanation about the
direction optional argument). Usually, the end-points of a streamline are located at the boundary of
the domain, but in some rare cases (velocity field having a non zero divergence) they can end inside the
domain, at a stationnary point.

(i, j) indices are mapped to the axis (−Y,X), so data visualisation is coherent with the matrix layout
and with other routines working with matrix data (msContour, msPColor, msQuiver). If this orientation
is not appropriate, use the coordinates (mfArrays X and Y), as described below.

When arguments X and Y are also provided, then their values are used as coordinates for the data points
in u and v:

− usually, X and Y are matrices and their shape must be the same as those of the data matrices u

and v. Use of these coordinates is required when, e. g., you want to swap the indices i and j, or
apply a transformation (linear or not) between the (i, j) indices and the (x, y) coordinates; these
coordinate matrices may be created by the msMeshGrid routine.

− to economize memory, it is possible to pass only vectors: in this case, X and Y, provided as rank-
1 mfArrays, must obey to the same constraint as edicted for the generator vectors (see again
msMeshGrid).

Be aware that X and Y are not used to defined the axes of the plot: to do so, you must use the msAxis

routine with appropriate argument(s).

u and v must be rank-2 (i. e. matrices) mfArrays of same shape. They represent respectively the X and
Y components of the vector field to be drawn. If the orientation or the scaling is not appropriate, use
the second form of call described below, by adding coordinates.

The optional argument direction (character string) specifies whether the integration must be done
following the flow direction ("forward"), against the flow direction ("backward") or in both direction
("both"); this latter case is the default.

The optional n arrow argument specifies the number of arrow heads to be drawn at equally curvilinear
abscissa along each streamline. It must be an integer greater or equal zero (default value is 3); set it to
zero if you want to suppress the arrow heads.

The optional color argument specifies the color used for drawing the streamlines; it has the same
meaning as in the routine msPlot.

The optional linestyle argument (character string) specifies the line style, in the same way as msPlot;
default line style is continuous.

The optional linewidth argument (real) specifies the line width, as a relative factor; by default its value
is 1.

The optional arrow head argument (real) specifies the size of the arrow head; by default its value is 1.

. . ./ . . .

554

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

The optional npt max argument is the maximum number of points for each half-streamline (indeed, you
can ask for a forward integration, a backward one or both – see above); its default value is 1000.

The optional curv tol argument concerns the integration process and more specifically the tolerance for
high curvature detection; it is relative to the mesh size; its default value is 0.5.

The optional stop zone argument indicates to the integration process that some regions of the (x, y)
plane are forbidden. For example, this is useful to avoid entering in a region near a singularity of the
velocity vector field, which would lead to an excessive increase in the number of points. stop zone is a
user-provided subroutine, having the following interface:

logical function stop_zone(x, y)

real(kind=MF_DOUBLE), intent(in) :: x, y

end function

This function is called for each new point and the integration process will stop as soon as a TRUE value
is encountered.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfStreamline has the same argument list; it returns the vector of the (integer)
handles of the created graphic objects. Be aware that even for a single streamline, the returned
handle is a vector (of size 1).

− For drawing 2D streamlines on a triangular mesh, use the msTriStreamline routine.

− NaN values are not allowed: an error is returned by the routine. If such values are present in the
vector field (i. e. in u or v) you can try to define a stop zone user-function to avoid an error.

See also: mf/msQuiver

555

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPatch graphic patch

First interface:

call msPatch(x, y, c [, opacity] [, grid, grid_color])

Description:
This routine draws one colored polygonal shape from the mfArrays x, y and c. These vectors contain
respectively the coordinates of each vertex and the attached color. The polygonal shape doesn’t need to
be closed, e. g. a triangle may be defined only using three points.

The drawing is clipped at the viewport.

Before use, the color axis must be explicitly set by the user via the msCAxis routine. Theoretically, data
should be ranged entirely inside the color axis; on the contrary, the resulting behavior depends on the
shading value (cf. msShading). When shading is equal to "flat", a quiet behavior is obtained and the
colormap overflow can be monitored by use of the msSetColorOverflowPolicy routine; when shading is
equal to "interp", a warning is emitted by the library because strange colors can be drawn. This latter
case should be avoided if possible.

If the optional argument opacity is present, transparency can be used: opacity must be a real number
between 0 (full transparency, invisible object) and 1 (full opacity).

A thin line may be drawn to show the boundary of the polygonal cell by using the optional argument
grid equal to TRUE. The default is to not show the boundary. The color of this thin line may be
specified in the optional argument grid color; by default, it is the foreground color.

A colormap must have been defined before the call, (via msColormap); otherwise, a warning is emitted
and strange or unexpected results can occur.

Second interface:

call msPatch(x, y [, color] [, opacity] [, grid, grid_color] [, clipping])

Description:
This second form fills the shape with a flat color (if specified), avoiding the use of an array for specifying
the color. The color argument has the same meaning as in the routine msPlot.

grid and grid color are described above for the first interface.

The optional argument clipping is a boolean (default value is TRUE). When set to FALSE, it allows
the drawing of a polygonal colored shape (only using flat color) outside the viewport. This facility is
especially useful when the user wants to update a text string outside the viewport: due to the use of
antialiased text drawing, he must erase before the ancient text with a rectangular patch of appropriate
color.

Remarks:

− the function mfPatch has the same argument list; it returns the (integer) handle of the created
graphic object.

− this routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects of the figure, the Hold property must be set to "on" via the msHold routine.

See also: mf/msPColor

556

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotHist data histogram

Calling syntax:

handle = mfPlotHist(x, x_min, x_max, n_bin &

[, color] [, filled])

returns the (integer) handle of the newly created graphic object.

The vector mfArray x contains the data. The histogram is computed for data ranged from x min to
x max using a number of bins equal to n bin.

If present, color specifies the color for the bar plot. It may be a character string containing the usual
color code (see msPlot), a real triplet containing the RGB values or a string containing a color name
from the RGB database. If the color is left unspecified, then it is taken from the current colortable (for
more information about colortables – or color schemes – see the Muesli User’s Guide).

If present, the logical argument filled specifies that bars are filled with the color used (default is
FALSE).

The subroutine form:

call msPlotHist(mfOut(num [, x_bin]), x, x_min, x_max, n_bin &

[, color] [, filled])

allows the user to keep some internal data.

The optional arguments color (& Co.) and filled have the same meaning as above.

The output mfArray num is the vector of the bins values.

If present, the mfArray x bin is the vector containing the abscissas of the bins.

Remarks:

− The drawing is always clipped at the viewport.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− This routine may be called many times in the same figure with different data: histograms will be
superposed one above the other, showing cumulative statistics. When not specified, colors will be
recycled from the current colortable. Note that if your data is stored inside a two-dimensional
array, then it may be easier to call the msCumulHist routine instead.

See also: msHist, mfOut

557

https://en.wikipedia.org/wiki/X11_color_names

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

msCumulHist cumulative data histogram

Interface:

subroutine msCumulHist(X, x_min, x_max, n_bin, x_nb)

type(mfArray), intent(in) :: X

real(kind=MF_DOUBLE), intent(in) :: x_min, x_max

integer, intent(in) :: n_bin

type(mfArray), optional :: x_nb

Description:
Cumulative Histogram. Works on columns of the mfArray X.

If X has NCOL columns, draws first an histogram (via msHist) from the data of all columns, then draw
a second histogram from the data of the NCOL-1 first columns, and so on. Each histogram is drawn
in a different color, via the colors of the current colortable (for more information about colortables – or
color schemes – see the Muesli User’s Guide); if NCOL is greater than the maximum, following colors
are cycled in the same set.

Columns of X may have been initialized from data which contain different number of element. In such
a case, the optional argument x nb is a vector which contains the useful number of elements in each
column.

Remarks:

− The drawing is always clipped at the viewport.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

See also: msHist, mf/msPlotHist

558

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

msImRead image read

Interface:

call msImRead(mfOut(A,cmap), filename [, fmt, indexed])

Description:
Reads the image file filename: the colormap is extracted from the image and stored in the mfArray

cmap and the pixels values are stored in the mfArray A.

The image can be displayed by using first msColormap and then msImage.

The optional argument fmt, if present, is a string which must contain the image format. Common
accepted values for fmt are: "TIFF", "JPEG", "PNG", "XPM", Actually, in the current version of
MUESLI (but this should change in future), the file image is always converted in the XPM format
via the ‘convert’ command of ‘ImageMagick ’. So, a great number of image formats is supported and,
moreover, the argument fmt is not yet used for reading.

There are two options to fill the mfArray A, i. e. to give numerical values to pixels (the optional logical
argument indexed is by default false):

1. real valued pixels – each pixel of the array contains a numerical real value (ranged in [0.,1.]), and a
linear mapping is used between the whole range of these values and the index range of the colormap.
This first way is rather oriented to the numerical processing of the pixels value, and is well adapted
to image obtained via the pseudo colors from any numerical matrix.
For example, you may apply some filters or compute the gradient of the pixels values and you can
visualize the image in different ways by changing the colormap, which is always a continuum of
colors.

2. indexed pixels – each pixel of the array contains the index of the colormap.
This second way is more adapted to digital photos, or to color bitmaps which contain transparency
(as for some PNG images – see below).
You should not modify the whole colormap, else you may obtain some strange results when you
visualize the image. In contrast, you can easily remove or add some colors in the colormap.

Remarks about transparent pixels:
If the original image contains transparent pixels (“NONE” color in an XPM file, or transparency in PNG
files), then it cannot be opened using the default indexing scheme: the current routine will give an error.
You can open it only via the “indexed pixels” scheme. Moreover, these transparent pixels will be colored
in medium gray by the msImage routine.

Limitations:
Currently, these limitations are linked to the XPM format:

− original XPM images having more than two characters per color are not supported (to check
yourself, open the XPM file with any text editor: the fourth integer number of the third line must
be equal to 1 or 2). Moreover, they must have less than 8281 colors.

− for original XPM images, they must have maximum 12000 pixels in width if colors are stored in
one char (i. e. when the number of colors is small, less than 91), or 6000 pixels in width if colors
are stored in two chars (i. e. when the number of colors is greater than 91).

− for images converted in XPM by the ’convert’ tool of ‘ImageMagick ’, the number of colors is always
less than 256. So, the quality of true-color images is pretty degraded and, at least up to the version
6.9.3 of ‘ImageMagick ’, the picture is darker.

. . ./ . . .

559

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

Other interface:

call msImRead(mfOut(infos), filename [, fmt], only_infos=.true.)

allows the user to obtain some information about the image (currently, only the width and the height in
pixels unit), which are returned in the mfArray infos.

See also: msImWrite, mfOut

560

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

msImWrite image write

Interface:

call msImWrite(A, cmap, filename [, fmt, indexed])

Description:
Writes the mfArray A to the image file filename, using the colormap cmap.

The optional argument fmt, if present, is a string which must contain the image format. Common
accepted values for fmt are: "TIFF", "JPEG", "PNG", "XPM", Actually, in the current version of
MUESLI (but this should change in future), the file image is always converted in the XPM format via
the ‘convert’ command of ‘ImageMagick ’. So, a great number of image formats is supported.

The optional logical argument indexed (its default value is false) has the same meaning as those explained
in the msImRead routine. It concerns obviously the mfArray A, not the image stored in the image file
filename.

Remarks about transparency:

− if the mfArray image contains transparent pixels, consider using an appropriate image format
(XPM or PNG) with supports this transparency.

− transparency can be set in your image by two ways:

1. for the indexed pixels indexing scheme, set a color (in cmap) to the triplet (NaN, NaN, NaN).

2. for the real valued pixels indexing scheme, set an element of the image mfArray A to NaN.

Limitations:

− XPM images must have less than 8281 colors in their colormap.

− XPM images must have maximum 12000 pixels in width if colors are stored in one char (i. e. when
the number of colors is small, less than 91), or 6000 pixels in width if colors are stored in two chars
(i. e. when the number of colors is greater than 91).

See also: msImRead, mf/msImage

561

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msImage image display

Interface:

call msImage(image [, angle] [, flip] [, indexed])

Description:
Displays in the current figure the mfArray image, associated with the appropriate colormap previously
set by msColormap.

(i, j) indices of the image are mapped to the axis (−Y,X), so data visualisation is coherent with Contour
and PColor.

The optional real argument angle is used to define the orientation in degrees of the image (default is 0
degree; any real values are accepted).

The optional argument flip is a string can take the following values: "NONE", "HORIZ" (or mirror,
left/right swap), "VERT" (or upside/downside swap); default value is "NONE".

The optional logical argument indexed (its default value is FALSE) has the same meaning as those
explained in the msImRead routine. It tells the current routine that the image mfArray contains integer
indices of colors and not real values.

This routine, as most of high level ones, first erase the current plot; in order to plot multiple graphics
objects on the figure, the Hold property must be set to "on" via the msHold routine.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfImage has the same argument list; it returns the (integer) handle of the created
graphic object.

See also: mf/msContour, mf/msPColor

562

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotPSLG plot a PSLG domain

Description:
This routine plots a PSLG domain and, optionally, shows the numbering of nodes, edges and holes.

Calling syntax:

call msPlotPSLG(PSLG_domain [, color] [, linewidth] &

[, nod_num] [, edg_num] [, hol_num])

PSLG domain, of type mfPSLG, represents the 2D domain definition. It must be built by the user.

The optional color argument specifies the color used for drawing the cells: it may be a character string
or a vector of type real and length 3 (see mf/msPlot).

The optional linewidth argument (real) specifies the line width, as a relative factor; by default its value
is 1.

The three last optional arguments nod num, edg num and hol num, all booleans, are used to display
respectively nodes’, edges’ and holes’ numbering of the PSLG. By default, numbering is not displayed.

Be aware that only nodes involved in segments are drawn; unused nodes are therefore ignored. To see
all registered nodes, use msPrintPSLG.

Remarks:

− The drawing is always clipped at the viewport.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− The function mfPlotPSLG has the same argument list; it returns the (integer) handle of the created
graphic object.

563

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriMesh plot a triangulation

Description:
This routine plots a triangular mesh and, optionally, shows the numbering of triangles, nodes and faces.

First calling syntax:

call msTriMesh(x, y, tri [, color] [, linewidth] [, height] &

[, tri_num] [, nod_num] [, boundary_only])

The mfArrays x and y are vectors of same length which describe the position (x, y) of the nodes. The
mfArray tri contains the triangulation (i. e. the triangles’ indices, as returned by, e. g., the routine
mfDelaunay).

The optional color argument specifies the color used for drawing the cells: it has the same meaning as
in other plotting routine involving colors (see the msSetGrObj routine).

The optional linewidth argument (real) specifies the line width, as a relative factor; by default its value
is 1.

The optional height argument (real) specifies, for the numbering of triangles, nodes and faces, the
character height, as a relative factor; by default its value is 1.

The two last optional arguments tri num and nod num, both booleans, are used to display triangles’ and
nodes’ numbering of the triangular mesh. By default, numbering is not displayed.

When the optional boolean argument boundary only is used with the value TRUE then only the bound-
ary of the mesh is drawn. In this case, the triangles’ numbers are never displayed, whatever the optional
argument tri num is.

Second calling syntax:

call msTriMesh(tri_connect, ... [, fac_num])

The first argument is tri connect of type mfTriConnect, the mesh connectivity (see
msBuildTriConnect); it replaces the three first mfArrays in the first calling syntax.

Same optional arguments as in the first calling syntax may be added. Note however that an additional
optional argument is possible in this second case: the boolean fac num concerns the numbering of the
triangle faces.

This second use of msTriMesh uses a fast algorithm to draw the mesh; the printed files (both EPS and
PDF) are also smaller in size.

Remarks:

− The drawing is always clipped at the viewport.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− The function mfTriMesh has the same argument list; it returns the (integer) handle of the created
graphic object.

See also: msPrintTriConnect

564

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msPlotVoronoi plot a Voronoi diagram

Description:
This routine plots a Voronoi diagram and, optionally, shows the numbering of points and vertices.

Calling syntax:

call msPlotVoronoi(voronoi [, color] [, linewidth] [, height] &

[, nod_num] [, vert_num])

The only mandatory argument is voronoi, a structure of type mfVoronoiStruct, created by the
mfVoronoi routine.

The optional color argument specifies the color used for drawing the cells: it has the same meaning as
in other plotting routine involving colors (see the msSetGrObj routine).

The optional linewidth argument (real) specifies the line width, as a relative factor; by default its value
is 1.

The optional height argument (real) specifies, for the numbering of nodes and vertices, the character
height, as a relative factor; by default its value is 1.

The two last optional arguments nod num and vert num, both booleans, are used to display nodes’ and
vertices’ numbering. By default, numbering is not displayed.

Remarks:

− The drawing is always clipped at the viewport.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− The function mfPlotVoronoi has the same argument list; it returns the (integer) handle of the
created graphic object.

See also: msPrintVoronoi

565

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriPColor pseudo-color on a triangulation

Calling syntax:

call msTriPColor(x, y, z, tri)

Description:
This routine is equivalent to the routine msPColor, but for data which are spread on a triangulation.

The mfArrays x, y and z are vectors of same length which describes position (x, y) of the vertices and
the corresponding function value.

The mfArray tri contains the triangulation (i. e. the triangle’s indices, as returned by, e. g. the routine
mfDelaunay).

Remarks:

− The drawing is always clipped at the viewport.

− Use msTriMesh to show the grid or the boundary of the triangular mesh.

− The function mfTriPColor has the same argument list; it returns the (integer) handle of the created
graphic object.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− NaN values are not (yet) allowed: an error is returned by the routine.

See also: mf/msTriContour, mf/msTriFill, msPatch

566

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriFill coloring on a triangulation

Calling syntax:

call msTriFill(x, y, val, tri)

Description:
This routine is equivalent to the routine msPatch (when using flat colors), but for data which are spread
on a triangulation.

The mfArrays x and y are vectors of same length which describes position (x, y) of the nodes.

The value to be colored is stored inside the vector mfArray val. This latter vector must have a length
equal to the number of triangles. The mfArray val may contain NaN values: in such a case the
corresponding triangles are not drawn.

The mfArray tri contains the triangulation (i. e. the triangle’s indices, as returned by, e. g. the routine
mfDelaunay).

Remarks:

− The drawing is always clipped at the viewport.

− Use msTriMesh to show the grid or the boundary of the triangular mesh.

− The function mfTriFill has the same argument list; it returns the (integer) handle of the created
graphic object.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

See also: mf/msTriContour, mf/msTriPColor

567

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriContour data contouring on a triangulation

Description:
This routine is equivalent to the routine msContour, but for data which are spread on a triangular grid.

It doesn’t fill the regions between the contours with colors; for such a feature, see the mf/msTriContourF
routine.

First calling syntax:

call msTriContour([mfOut(C),] X, Y, Z, tri &

[, nb_levels, levels, linespec, linewidth, &

labels, labelscolor, labelsize])

The mfArrays X, Y and Z are vectors of same length which describes position (x, y) of the nodes and the
corresponding function value z.

The mfArray tri is the triangulation (e. g. returned by the routine mfDelaunay).

If the optional C mfArray is given in front of (X,Y) coordinate matrices, then it will contain on output
a two-row matrix storing the contour lines. Each contiguous drawing segment contains the value of
the contour, the number of (x, y) drawing pairs, and the pairs themselves. The segment are appended
end-to-end as

C = [level_1, x_1, x_2, ..., level_2, x_1, x_2, ...;

pairs_1, y_1, y_2, ..., pairs_2, y_1, y_2, ...]

By default, the number of level curves is equal to 9, and the level values are equally spaced within the min
and max values of the Color Axis (see msCAxis); this can be changed by using the optional arguments
nb levels and levels (see below).

The optional (integer) argument nb levels specifies the number of contours to be drawned; it cannot
be used together with levels.

The optional argument levels, which must be a rank-1 mfArray, is used to specify the level values.

The optional arguments linespec (character string) and linewidth allow the user to change the ap-
pearance of the contour curves. The possible values for these arguments are described in msSetGrObj,
under the "color", "linestyle" and "linewidth" entries.

By default, the level curves are labelled (use labels=.false. to remove the labels) and the contour
curves are colored using the current colormap (use a color inside linespec to specify the color of all
curves). Labels are displayed in the foreground color (e. g. black on white) by default; the user may choose
another color via the labelscolor optional argument. Moreover the label size may be changed by using
the optional labelsize real argument, which lets the user to specify a percentage of the standard size
(default is labelsize=1.0d0).

Second calling syntax:

call msTriContour([mfOut(C),] Z, tri_connect, [...])

Here, tri connect (of type mfTriConnect) is the mesh connectivity (see msBuildTriConnect); it re-
places the three mfArrays X, Y and tri in the first calling syntax. The other optional arguments are the
same.

. . ./ . . .

568

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

Remarks:

− The triangular mesh used doesn’t need to be convex, and may also have holes. See mfPSLG to
create triangulation with holes.

− The drawing is always clipped at the viewport.

− Use msTriMesh to show the grid or the boundary of the triangular mesh.

− The function mfTriContour has the same argument list; it returns the (integer) handle of the
created graphic object.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− NaN values are allowed: all triangles involved by these special non finite values are simply ignored.

See also: mf/msContourF, mf/msTriPColor, mf/msTriFill

569

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriContourF data contouring on triangles with filled regions

First calling syntax:

call msTriContourF([mfOut(C),] X, Y, Z, tri &

[, nb_levels, levels, linewidth, &

labels, labelscolor, labelsize])

Second calling syntax:

call msTriContourF([mfOut(C),] Z, tri_connect, [...])

Description:
Similar to the msTriContour routine, except that the regions between the contours are filled with ap-
propriate colors.

The whole region whose values are greater than a specified level is filled with the corresponding color.
As a consequence, the region less than all specified levels is left in white. To avoid white regions, it is
sufficient to add a level less than (or equal to) the smaller value in the Z array.

Be aware however that some arguments of msTriContour are not available here.

Lastly, be warned that the function version (i. e. mfTriContourF) returns a vector of handle(s), even if
the number of handles is one. Indeed, under some circumstances, the whole triangular mesh may be
splitted in many independant zones when the number of NaN values is great enough.

See also: mf/msContourF

570

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriQuiver vector field plot on a triangulation

Calling syntax:

call msTriQuiver(x, y, u, v &

[, color] [, arrow_length] [, arrow_head])

This routine is equivalent to the routine msQuiver, but for data which are spread on a triangulation.

x, y, u and v must be rank-1 (i. e. vectors) mfArrays having the same number of rows. They represent
respectively the X and Y coordinates of the points where the components (u, v) of the vector field have
to be drawn.

The optional color argument specifies the color used for drawing the arrows: it is a one-letter color
symbol or an escaped sequence, as described in the msSetGrObj routine.

The optional arrow length argument (real) specifies the length of the arrow as a multiplicative factor;
by default its value is 1 so that the biggest arrow has approximately a length equal to 1/10th the full
axis range.

The optional arrow head argument (real) specifies the size of the arrow head; by default its value is 1.

Remarks:

− The drawing is always clipped at the viewport.

− An arrow is not drawn if any component of the corresponding vector (u, v) is equal to NaN.

− The function mfTriQuiver has the same argument list; it returns the (integer) handle of the created
graphic object.

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

See also: mf/msTriPColor, mf/msTriStreamline

571

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msTriStreamline vector field streamline on a triangulation

Calling syntax:

call msTriStreamline(x, y, u, v, start [, tri | tri_connect] &

[, direction, n_arrow] [, color] [, linestyle] &

[, linewidth, arrow_head] [, npt_max] [, curv_tol] &

[, stop_zone])

This routine is similar to the routine msStreamline, but for data which are spread on a triangulation. In
particular, the arguments direction, n arrow, color, linewidth, arrow head, npt max and curv tol

have exactly the same meanings.

The optional arguments tri and tri connect (see msBuildTriConnect) describe respectively the tri-
angulation of the mesh and its connectivity. If they are both absent, then the triangulation and its
connectivity are done by the routine itself. If the user already knows the connectivity, it is preferable
to pass it to the current routine, to avoid a redundant computation. On the other hand, if the user
knows only the triangulation, it should pass it as argument, and the current routine will compute only
the connectivity.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfTriStreamline has the same argument list; it returns the vector of the (integer)
handles of the created graphic objects. Be aware that even for a single streamline, the returned
handle is a vector (of size 1).

− This routine, as most of high level ones, first erase the current plot; in order to plot multiple
graphics objects on the figure, the Hold property must be set to "on" via the msHold routine.

− NaN values are not allowed: an error is returned by the routine. If such values are present in the
vector field (i. e. in u or v) you can try to define a stop zone user-function to avoid an error.

See also: mf/msTriQuiver

572

MUESLI Reference Manual (index) FGL: High level plotting routines - 2D

mf/msSpy sparsity pattern visualization

Calling syntax:

call msSpy(A [, symbolspec, bitmap, continuous, &

color_scale, show_nnz, nz_threshold])

draws non-zero elements of the mfArray A (usually sparse).

If the optional argument symbolspec (string) is present, it must contain the specification for a symbol
and/or a color, as described in msSetGrObj at marker and color entries. By default, a star ("*") is
used, but note that it is well adapted only for small size matrices: for big matrices, a dot (".") may be
prefered.

If the optional argument continuous (logical) is present, the matrix A is drawn using a color/grey
scale for the absolute value of each element, as in msPColor. If you intend to spy a dense matrix, the
continuous argument must be used. Default value is .false.
In the continuous case:

− if the optional argument color scale (string) is present, it must be equal to "lin" or "log". The
latter case specifies the use of a logarithmic color/grey scale in the mapping between the value of
the matrix elements and the color/grey index (default mapping is linear);

− if the optional argument nz threshold (real) is present, it specifies the threshold value under
which an element is considered as zero and, thus, not displayed. The default value is zero for the
linear scale and max(|Ai,j |)× ϵ for the logarithmic scale. The threshold for small values is used for
defining the color map range.
By setting nz threshold to the special value −1, the threshold will be set to the minimum value
of the elements of |A|.

If the optional argument show nnz (logical) is present, the effective number of non-zero element is shown
in the X-label. It’s default value is ‘.true.’.

If the optional argument bitmap (character string) is present, it must contains the bitmap size (in pixels)
which will be used for printing. The string reads under the form "WIDTHxHEIGHT" (e. g. "3000x3000").
This option is useful only for large, sparse matrices.

Remarks:

− The drawing is always clipped at the viewport.

− The function mfSpy has the same argument list; it returns the (integer) handle of the created
graphic object.

− The continuous and symbolspec options are exclusive.

− The grey scale mentionned above is the default colormap when none was selected by the user.
Please use the msColormap routine to select another one, prior to the msSpy call.

573

MUESLI Reference Manual (index) FGL: Interactive routines

2.6 Interactive routines

Caution: the routines available in this chapter require the selection of the X11 driver (which is usually
selected by default). In batch mode, where the user selects the NULL driver (see msSetX11Device),
these routines will not be available, and an error will occur if the user tries to call any of them.

A figure must be also opened (see mf/msFigure).

If you have multiple workspaces, switching from one workspace to another may breaks the interaction of
the mouse with your Muesli program; therefore, it is recommended to stay in the same workspace during
all the duration of the interactive process.

Some routines (msPan, msZoom and msPanAndZoom) accept the use of an additional keyboard key (usually
the CTRL one) to modify the action. In such a case, it is required that the figure’s window have the
focus; on the contrary, the use of the key do nothing.

mfGinput, msGinput graphic input
mfGinputCustom graphic input using custom cursors with alternative
mfGinputRect rectangular graphic selection
mfGetModKeys modifier keys state

msPan manual scrolling
msZoom figure zoom
msPanAndZoom combine scrolling and zooming

msMoveLegend adjust legends frame in axes
msMoveGrObj move graphic object

msAnimation screen animation mode
msShowNow screen update during an animation
msCla clear current axes

msSetGBuffer graphic buffer policy
msBBuf, msEBuf begin and end of graphic buffering
msDefineCustomCursors define custom cursors for use with mfGinputCustom

See also:

Global graphic settings

Window’s and figure’s management

Figure properties

Figure annotation – Low level graphic object’s manipulation

High level plotting routines

574

MUESLI Reference Manual (index) FGL: Interactive routines

mfGinput graphic input

Interface:

function mfGinput(event, key) result (out)

logical, intent(in), optional :: event, key

type(mfArray) :: out

Description:
This function is an interactive facility to get the pointer coordinates when it is inside the current figure.

Usually, this function is called without the optional event and key argument (by default, event is
TRUE): the library waits for a mouse click or a key pressed, and the cursor show a cross shape in the
current active window.

The returned mfArray contains the coordinates (x, y) of the selected point. The point can be chosen
by any mouse button (which can be also emulated via the L, M or R key). Be aware that the current
routine implements a two-event procedure and therefore the location returned is that of the pointer for
the second event! (mouse up in the usual case).

For other key pressed, the routine mfGinput terminates and leaves the returned mfArray empty.

Remarks:

− this routine is usually employed for graphic interaction. If the user doesn’t have a mouse, the
pointer can be moved via the keyboard’s arrows (the shift key accelerates the move by a factor
of 10); moreover each mouse button can be emulated by using an equivalent sequence (L, M or R
followed by any other key).

− see the msGinput routine for more features.

When called with the event argument equal to FALSE, the library doesn’t wait for a user event: it
returns immediately the pointer coordinates in the mfArray out. A third element is added to out,
indicating whether the pointer is inside the window (value 1) or outside (value 0); the user must use this
flag to take any decision in its own program.

Moreover, if the key is present and equal to TRUE, then a fourth element is returned in out: the ASCII
code of the key pressed recently.

See also: mfGinputRect

575

MUESLI Reference Manual (index) FGL: Interactive routines

msGinput graphic input

Calling syntax:

call msGinput(mfOut(coords, keycode [, color]) &

[, whole_keyboard, rect_size, rect_inside_axes])

Description:
This function is an interactive facility to get the pointer position inside the current figure. See mfGinput
for a simpler use.

In case of multiple opened graphic windows, the cursor has a cross shape in the current active one instead
of the classical pointer.

The returned mfArray coords contains the coordinates (x, y) of the selected point. The point can be
chosen either by the mouse (default behavior), or by a key pressed (see below).

The returned mfArray keycode contains an equivalent code for the event detected:

− If the optional argument whole keyboard is FALSE (default behavior), then keycode contains the
button number (left=1, middle=2, right=3), even if the equivalent keys (L, M or R) have been used;
Note that mfArray coords and keycode will be empty if any key different from L, M or R is pressed.

− On the contrary, keycode contains the value of the key pressed (actually ichar(key pressed),
where ichar is the standard Fortran function which returns the ASCII code of the letter). coords
will be empty only if the ESCAPE key is pressed. Only when using keyboard, the mouse wheel
can be detected. The values returned are ichar(8)=56 for wheel up, and ichar(2)=50 for wheel
down (think that on a numeric keypad, 8 is for arrow up, and 2 is for arrow down).

If present, the returned mfArray color contains the RGB triple of the colored pixel just under the
pointer.

Usually (i. e. when the optional argument rect size is not present), the cursor shown on the screen has
the shape of a big crosshair, whose length is that of the selected window; on the contrary, if the mfArray
rect size is present and not empty, it must contain the size (both width and height) of a rectangle
which follows the pointer during its move. This rectangle is always centered around the pointer position.
Moreover, if the logical optional argument rect inside axes is present and equal to TRUE, the
rectangle drawn is constrained to be entirely inside the axes.

See also: mfGinputRect

576

MUESLI Reference Manual (index) FGL: Interactive routines

mfGinputCustom graphic input using custom cursors with alternative

Description:

The first Calling syntax has no argument:

out = mfGinputCustom()

Three elements are returned in the mfArray out: the coordinates (x, y) of the pointer when the mouse
has been clicked, and the case used (1 or 2)

1. without the Control key pressed, displaying the first custom cursor;

2. with the Control key pressed, displaying the second custom cursor.

The other Calling syntax implements a magnetic grid and has one argument:

out = mfGinputCustom(magnetic_grid_rule)

The magnetic grid rule subroutine, provided by the user, must have the following interface:

subroutine magnetic_grid_rule(icase, x1, y1, x2, y2, valid)

integer, intent(in) :: icase

real(kind=MF_DOUBLE), intent(in) :: x1, y1

real(kind=MF_DOUBLE), intent(out) :: x2, y2

logical, intent(out) :: valid

end subroutine

where x1, y1, x2, y2 are world-coordinates. The (x1,y1) is the pointer position in the figure, and the
(x2,y2), computed by the user, is where the user-defined cursor is displayed (icase is 1 or 2, according
the status of the Control Key, pressed or not, as mentioned above). If, for some reasons, no (x2,y2)

point can be computed, then the routine must set the last argument (valid) to FALSE and in this case
the cursor will show its standard shape (i. e. the left arrow).

In this second calling syntax, four elements are returned in the mfArray out:

1. x-coordinate of the clicked location.

2. y-coordinate of the clicked location.

3. an integer indicating whether the Control Key has been pressed or not.

4. an integer giving the validity of the position; if the validity is zero, the position should be ignored.

Note: Before use, the msDefineCustomCursors routine must be called to define the two cursor shapes.

577

MUESLI Reference Manual (index) FGL: Interactive routines

mfGinputRect rectangular graphic selection

Interface:

function mfGinputRect() result (out)

type(mfArray) :: out

Description:
This function is an interactive facility to get the size and position of a rectangle drawn inside the current
figure.

The returned mfArray contains the bounding box of the rectangle. This rectangle must be selected by
the left mouse button only; for other key pressed, the routine mfGinputRect terminates and leaves the
returned mfArray empty.

In case of multiple opened graphic windows, the cursor has a cross shape in the current active one,
instead of the classical pointer.

See also: mfGinput

578

MUESLI Reference Manual (index) FGL: Interactive routines

mfGetModKeys modifier keys state

Interface:

function mfGetModKeys() result (out)

logical :: out(2)

Description:
This function checks the state of the keyboard for the Shift and the Control keys.

It returns an array of two booleans: the first one (resp. the second one) tells if one of the Shift keys
(resp. the Control keys) was down when this routine was called.

579

MUESLI Reference Manual (index) FGL: Interactive routines

msPan manual scrolling

Calling syntax:

call msPan()

Description:
Activates the ‘pan’ mode for scrolling in the current figure. It ends when the [ESCAPE] key is pressed.

Scrolling is monitored via the mouse (or the equivalent keyboard key):

– click-and-drag with the left button (’L’ key) scrolls through the figure to a new view;

– middle-click does nothing;

– right-click (’R’ key) resets the view to the initial one; if the [CTRL] key is pressed during the click
(or the ’6’ key is pressed) then it centers the view with respect to the bounding box of all graphic
objects.

Remark:
Scrolling in the current figure should be used before putting annotations on the figure, otherwise,
parts of graphic objects drawn outside the axes will not be moved with this routine; however, a call
to msRedrawFigure will fix this problem.

See also: msZoom, msPanAndZoom

580

MUESLI Reference Manual (index) FGL: Interactive routines

msZoom figure zoom

Calling syntax:

call msZoom()

Description:
Activates the ‘zoom’ mode in the current figure. It ends when the [ESCAPE] key is pressed.

The zoom is monitored via the mouse:

– the left button is used to “zoom in” at the pointer location:

* a single click is used to enlarge the current view with a factor of 1.41 (or 1.19 if the [CTRL]
key is pressed during the click);

* a click-and-drag zooms to the new selected area;

– a middle-click is used to “zoom out” at the pointer location (by a factor of 1.41 — or 1.19 if the
[CTRL] key is pressed during the click);

– a right-click resets the view to the initial one; if the [CTRL] key is pressed during the click, then
it sets the view to an area which shows all the graphic objects.

See also: msPan, msPanAndZoom

581

MUESLI Reference Manual (index) FGL: Interactive routines

msPanAndZoom combine scrolling and zooming

Calling syntax:

call msPanAndZoom()

Description:
Activates both the ‘pan’ mode for scrolling and the ’zoom’ mode for zooming in the current figure. It
ends when the [ESCAPE] key is pressed.

Scrolling is monitored via the three mouse buttons:

– click-and-drag with the left button scrolls the figure to a new view;

– middle-click does nothing;

– right-click resets the view to the initial one; if the [CTRL] key is pressed during the click, then it
sets the view to an area which shows all the graphic objects.

Zooming is monitored via the mouse wheel by a factor of 1.41 (or 1.19 if the [CTRL] key is pressed
during the click). Note that the figure remains centered during this zooming process.

Remark:
Scrolling in the current figure should be used before putting annotations on the figure, otherwise,
parts of graphic objects drawn outside the axes will not be moved with this routine; however, a call
to msRedrawFigure will fix this problem.

See also: msPan, msZoom

582

MUESLI Reference Manual (index) FGL: Interactive routines

msMoveLegend adjust legends frame in axes

Calling syntax:

call msMoveLegend([handle])

Description:
This interactive routine allows the user to move the legend frame inside the figure via the mouse.

When a unique legends frame has been created by msLegend, the routine has no argument.

Use the optional argument to move a legends frame created by mfLegend and referenced by its handle.

Note that the legend frame may be located outside the axes; this may be useful in the case where a great
number of curves are plotted in the figure. During the interactive move on the screen, the legend frame
may appear truncated by the window boundary under X11 ; however, printing in EPS or PDF should
give correct results.

The use of this routine could follow msPan, msZoom or msPanAndZoom in order to optimize its position.

583

MUESLI Reference Manual (index) FGL: Interactive routines

msMoveGrObj move graphic object

Interface:

subroutine msMoveGrObj(handle, prompt)

integer, intent(in) :: handle

character(len=*), intent(in), optional :: prompt

Description:
Allows the user to move some types of graphic object, by interaction with the mouse (left button click
only). It ends when the [ESCAPE] key is pressed. Supported graphic object types are: text (generated
by mfText), arrow (generated by mfArrow) and polygon (generated by mfPatch using a flat color).

When this routine is called, it waits for a mouse down event (first part of a click) while the pointer
have the shape of an opened hand. To grab a text or polygon object, you can click elsewhere inside
its bounding box (displayed using a gray animated dashed line); for an arrow, you have three hotspots
(sensitive area): one is the arrow base, the second is the middle and the third is the arrow head.

When a mouse down event is detected, the shape of the pointer becomes a closed hand and the graphic
object (referenced by its handle) can be moved in the figure. Note that a text or polygon object can be
only translated, without changing its orientation; however, for an arrow and according to the selected
hotspot, you can change both its direction (when you have clicked on its base or its head) and its location
(when you have clicked in its middle).

When a mouse up event is detected (end of a click), the pointer shape changes back to an opened hand.

The prompt argument lets you chosing an appropriate sentence on the screen. By default, the prompt is
adapted to the type of graphic object:

text: -> Grab and move the text string surrounded by a dashed line...

arrow: -> Grab and move the arrow wearing three hotspots...

polygon: -> Grab and move the polygon surrounded by a dashed line...

Remarks:

− Note that the graphic objects may be clipped at the axes framebox. If you move a graphic object
out of the axes, it may no longer be visible; however, the dashed line(s) around it will be always
visible and will be an appreciable help.

− An example of use of the msMoveGrObj routine can be found in the test program named
MoveGrObj test inside the tests/fgl folder.

See also: msPan, msZoom, msMoveLegend

584

MUESLI Reference Manual (index) FGL: Interactive routines

msAnimation screen animation mode

Calling syntax:

call msAnimation("on" | "off")

Description:
The aim of this routine is to avoid the flickering between frames when you want to show quickly (usually
in a do loop) a succession of graphic objects.

Note that, at the end of the animation, you will not be able to print the figure in EPS or PDF files
(graphic objects are not saved into memory), unless you run yourself the same graphic commands out of
the animation.

Before setting animation to "on", a window must be opened (with msFigure). Moreover axis must be
defined as constant, by calling the msAxis routine before.

After drawing each frame, the only way to show the display of the graphic object in the figure is to call
the msShowNow routine. The MUESLI User Guide presents a detailed example of a typical sequence of
such an animation.

At the end of the animation sequence, the user should set animation to "off".

Remarks:
During an animation:

− the “hold” property cannot be changed by the user. Therefore, the msHold routine shouldn’t be
used.

− all graphic objects are volatile; as a consequence the handle returned by all plotting functions
beginning by mf is equal to zero. Therefore, you cannot use any routine requiring a valid handle.

− don’t use msClf (which does a complete erasing of the figure) between frames: in such a case, this
will annihilate a large part of the benefit of the current routine. Use msCla instead.

− a varying text string may be displayed outside the axes, and erased between frames with the use
of a white rectangle over it (see mf/msPatch).

− if the msPColor routine is used, then the optional arguments X and Y must be used.

585

MUESLI Reference Manual (index) FGL: Interactive routines

msShowNow screen update during an animation

Calling syntax:

call msShowNow()

Description:
This routine may be called only during an animation (see msAnimation). It forces the update of the
screen to show the new display of the current frame.

586

MUESLI Reference Manual (index) FGL: Interactive routines

msCla clear current axes

Calling syntax:

call msCla()

Description:
Clears the current axes, i. e. fills the rectangle inside the axes using the background color.

A typical usage concerns the animation of any graphic objects (curve, symbol, text, ...): at the beginning
of a loop, the axes should be erased with msCla (quick way) and then graphic objects are drawn. Avoid
to use msClf (heavy way) because this latter routine do a complete reset of the figure (among other
things, the axes range is lost).

See also: msFigure, msClose

587

MUESLI Reference Manual (index) FGL: Interactive routines

msSetGBuffer graphic buffer policy

Interface:

subroutine msSetGBuffer(flag)

character(len=*), intent(in) :: flag

flag may be equal to "on" or "off".

Description:
Activates the graphic buffer (default is "on"). Usually increases the display speed.

The graphic buffer may be turned "off" for debugging purpose, for example.

See also: msBBuf, msEBuf

588

MUESLI Reference Manual (index) FGL: Interactive routines

msBBuf begin of graphic buffering

Calling syntax:

call msBBuf()

Description:
Begins to draw in the graphic buffer, instead of directly on the screen.

Remarks:

– this routine is active only if the graphic buffer is not turned off by the msSetGBuffer routine;

– actually, many internal low-level graphic routines are already buffered.

See also: msSetGBuffer, msEBuf

589

MUESLI Reference Manual (index) FGL: Interactive routines

msEBuf end of graphic buffering

Calling syntax:

call msEBuf()

Description:
Ends to draw in the graphics buffer.

msBBuf and msEBuf calls should always be paired.

See also: msSetGBuffer, msBBuf

590

MUESLI Reference Manual (index) FGL: Interactive routines

msDefineCustomCursors define custom cursors for use with mfGinputCustom

Interface:

subroutine msDefineCustomCursors(cursor_1, cursor_1_mask, color_1, &

cursor_2, cursor_2_mask, color_2)

character(len=*), intent(in) :: cursor_1, cursor_1_mask, color_1, &

cursor_2, cursor_2_mask, color_2

Description:
Register two customized cursors, provided by the user in the XBM format. The arguments cursor_*

are the filenames of these images. Each cursor is defined by two bitmap images: one for the cursor shape
itself and the other for the mask. A color must be also specified for each cursor.

A size of 16× 16 pixels is recommended. The cursor main image must define the Hot Spot position, for
example

#define _x_hot 8

#define _y_hot 8

Last, each color is a colorname from the RGB X11 database.

See also: mfGinputCustom

591

Index

1 - Derived Types

mf DE Options . 447
mf Int List . 27
mf NL Options . 445
mf Out . 22
mf Real List . 28
mfArray . 8
mfMatFactor . 471
mfPSLG . 390
mfTetraConnect . 409
mfTriConnect . 393
mfUnit .81
mfVoronoiStruct . 404

2 - Parameters and Global Variables

MF ALL . 4
MF BESSEL J0 ROOTS 4
MF BESSEL J1 ROOTS 4
MF COLON . 4
MF COMPILATION CONFIG99
MF COMPILER VERSION 98
MF DOUBLE .4
MF E . 4
MF EMPTY . 4
MF END . 4
MF EPS . 4
MF I .4
MF INF . 4
MF LAPACK VERSION 369
MF MUESLI VERSION 100
MF NAN . 4
MF NUMERICAL CHECK 80
MF PI . 4
MF REALMAX .4
MF REALMIN . 4
STDERR . 5
STDIN .5
STDOUT . 5

3 - Operators

* . 167
** . 169
+ . 162
- . 163
.and. 12, 14, 193
.but. 12, 14
.by. 12, 14
.eqv. .195
.h. 171
.hc. 173
.i. 338
.ix. 347
.neqv. 196
.not. 192
.or. 194

.step. 12, 14

.t. 170

.to. 12, 14

.vc. 172

.x. 164

.xi. 349
/ . 168
/= .187
= . 10
== . 186
> . 183
>= . 182
< . 185
<= . 184

4 - FML Routines

All . 44
Any .45
isfinite . 314
isinf . 315
isnan . 316
mf . 9
mfAbs . 241
mfACos .204
mfACosh . 205
mfACot .206
mfACoth . 207
mfACsc . 208
mfACsch .209
mfAiry . 269
mfAll . 188
mfAngle . 242
mfAny . 189
mfASec . 210
mfASech . 211
mfASin . 212
mfASinh . 213
mfATan .214
mfATan2 . 215
mfATanh . 216
mfBalance . 336
mfBesselI . 267
mfBesselJ . 265
mfBesselK . 268
mfBesselY . 266
mfBlkDiag . 296
mfCeil . 249
mfCheckPerm .313
mfChol . 333
mfCmplx . 50
mfColon . 190
mfColPerm . 175
mfColScale . 178
mfCompan .308
mfComplex . 243
mfCond .329

592

MUESLI Reference Manual (index) Index

mfCondEst . 362
mfConj . 244
mfCos . 217
mfCosh . 218
mfCot . 219
mfCoth . 220
mfCount . 15
mfCross . 165
mfCsc . 221
mfCsch . 222
mfCshift . 293
mfCSign . 255
mfCumTrapz . 427
mfDaeSolve . 439
mfDble . 49
mfDblQuad . 431
mfDelaunay .392
mfDelaunay3D . 407
mfDet . 325
mfDiag . 295
mfDiff . 136
mfDisplayColumns . 17
mfEig .344
mfEigs . 358
mfEoshift . 294
mfErf . 257
mfErfC . 259
mfErfCInv . 260
mfErfCScaled . 261
mfErfInv .258
mfExp . 230
mfExpInt . 262
mfExpm . 353
mfExpm1 . 231
mfExtrema . 127
mfEye . 278
mfFactor .272
mfFFT . 150
mfFFT2 . 152
mfFind . 297
mfFix .250
mfFlipLR . 302
mfFlipUD . 303
mfFloor .251
mfFlops .72
mfFourierCos . 154
mfFourierLeg . 158
mfFourierSin .156
mfFSolve . 419
mfFull . 453
mfFun . 238
mfFun2 . 239
mfFunFit . 378
mfFunm . 357
mfFZero . 418
mfGamma . 263
mfGammaLn . 264
mfGet . 14
mfGetAutoComplex .75

mfGetAutoFilling . 65
mfGetMsgLevel . 51
mfGetRoundingMode 78
mfGetTermWidth . 63
mfGetTrbLevel .53
mfGradient . 137
mfGridData . 406
mfGridData3D .416
mfGridFun .240
mfHankel . 309
mfHasNoPhysDim . 85
mfHaveSamePhysDim 86
mfHess . 345
mfHilb . 305
mfHypot . 247
mfImag . 245
mfInt . 48
mfInterp1 . 387
mfInterp2 . 389
mfIntersect . 198
mfInv . 338
mfInvFFT . 151
mfInvFFT2 . 153
mfInvFourierCos . 155
mfInvFourierLeg . 159
mfInvFourierSin . 157
mfInvHilb . 306
mfInvPerm . 177
mfIsColumn .42
mfIsComplex .34
mfIsDense . 36
mfIsDiag .320
mfIsDiagDomCol . 366
mfIsEmpty .29
mfIsEqual .30
mfIsFinite . 317
mfIsFlopsOk . 73
mfIsFullRank . 368
mfIsInf . 318
mfIsLogical . 32
mfIsMatrix .40
mfIsMember . 197
mfIsNaN .319
mfIsNotEqual . 31
mfIsNumeric . 35
mfIsPerm . 43
mfIsPosDef . 365
mfIsPrime . 271
mfIsReal . 33
mfIsRow . 41
mfIsRowSorted . 467
mfIsScalar . 38
mfIsSorted . 132
mfIsSparse . 37
mfIsStrictDiagDomCol 367
mfIsSymm . 363
mfIsTempoArray . 70
mfIsTril .321
mfIsTriu . 322

593

MUESLI Reference Manual (index) Index

mfIsVector . 39
mfIsVersion . 96
mfKron . 166
mfLDiv . 347
mfLegendre . 384
mfLinSpace . 279
mfLoad . 115
mfLoadAscii . 110
mfLoadHDF5 . 118
mfLoadSparse .112
mfLoadTriConnect . 116
mfLog . 232
mfLog10 . 234
mfLog1p . 233
mfLog2 . 235
mfLogm . 354
mfLogSpace .280
mfLsqNonLin . 422
mfMagic . 281
mfMax .121
mfMean . 140
mfMedian .141
mfMerge . 290
mfMin . 124
mfMod . 252
mfMoments . 146
mfMul . 164
mfNbPointers . 25
mfNcolMax . 458
mfNnz . 456
mfNodeSearch . 402
mfNodeSearch3D . 415
mfNonZeros . 298
mfNorm . 327
mfNormEst . 361
mfNormEst1 . 361
mfNull . 351
mfNzMax . 457
mfOdeSolve . 433
mfOnes . 284
mfOrth . 352
mfOut . 21
mfPack . 291
mfPerm .311
mfPoly . 381
mfPolyFit . 376
mfPolyVal . 375
mfPow10 . 236
mfPow2 .237
mfPowm . 356
mfPPDer . 386
mfPPVal .385
mfProd . 129
mfPseudoInv .339
mfQleft . 342
mfQR . 340
mfQright . 343
mfQuad . 429
mfRand .285

mfRandN . 287
mfRandPerm . 312
mfRandPoiss .288
mfRank .328
mfRCond . 330
mfRDiv . 349
mfReadLine .102
mfReal . 246
mfRem . 253
mfRepMat . 289
mfReshape .299
mfRMS . 144
mfRoots . 380
mfRot90 . 304
mfRound . 248
mfRowPerm . 176
mfRowScale . 179
mfSchur . 346
mfSec .223
mfSech . 224
mfShape . 46
mfSign .254
mfSimpson .428
mfSin . 225
mfSinh .226
mfSize . 47
mfSmooth . 147
mfSort . 130
mfSortRows . 133
mfSpAlloc . 454
mfSparse . 452
mfSpCut .464
mfSpDiags . 463
mfSpEye . 459
mfSpImport . 465
mfSpline . 382
mfSpOnes . 460
mfSpRand . 461
mfSpRandN . 462
mfSqrt . 229
mfSqrtm . 355
mfStd .143
mfSum .128
mfSVD . 337
mfSVDS . 360
mfTan . 227
mfTanh . 228
mfTetraSearch . 414
mfToeplitz . 310
mfTolForSymm . 364
mfToLower . 93
mfToUpper . 94
mfTrace . 326
mfTrapz . 426
mfTriL .300
mfTriSearch . 401
mfTriU . 301
mfUnion . 199
mfUnique . 200

594

MUESLI Reference Manual (index) Index

mfUnpack . 292
mfVander . 307
mfVar . 142
mfVoronoi . 403
mfXCorr . 148
mfXCorr2 .149
mfZeros .283
msAddEntryInHistory 106
msAssign . 11
msAutoRelease . 20
msBalance . 336
msBuildTetraConnect 410
msBuildTriConnect . 394
msCheckDomainConvexity 398
msChol . 333
msCholSpNum .335
msCholSpSymb . 334
msCleanPrimeNumbers 273
msClearHistory . 105
msColAutoScale . 180
msColPerm . 175
msColScale . 178
msDaeSolve .443
msDblQuad .432
msDel3DNodeNeighbors 413
msDiag . 295
msDisableFPE . 77
msDisplay . 16
msEig . 344
msEigs .358
msEllipKE . 270
msEnableFPE . 76
msEndDelaunay3D . 408
msEquiv . 26
msExtractTetraConnect411
msExtractTriConnect 396
msFind . 297
msFindIOUnit . 95
msFlops . 71
msFlush . 60
msFormat .18
msFreeArgs . 67
msFreeMatFactor . 472
msFreePointer . 24
msFSolve . 421
msFunFit . 379
msFunm . 357
msGetArpackInfo . 372
msGetAutoRowSorted 469
msGetBlasLib . 370
msGetLapackLib .371
msGetStdIO . 58
msGetSuiteSparseLib 373
msGradient . 138
msHess . 345
msHist .145
msHorizConcat . 174
msInitArgs .66
msLDLT . 332

msLoadSparse . 113
msLog2 . 235
msLsqNonLin . 424
msLU .331
msMax . 123
msMedit . 119
msMeshGrid . 282
msMin . 126
msMuesliTrace . 101
msOdeSolve .437
msPause . 61
msPointer .23
msPolyFit . 377
msPostHashes .89
msPostProgress . 92
msPrepHashes . 87
msPrepProgress . 90
msPrintColoredMsg . 56
msPrintHashes . 88
msPrintProgress . 91
msPrintPSLG .391
msPrintTetraConnect 412
msPrintTriConnect . 399
msPrintVoronoi . 405
msQR . 341
msQuad . 430
msRand . 286
msRat . 274
msReadHistoryFile .103
msRelease . 19
msRemoveLastEntryInHistory 107
msRequMuesliVer . 97
msReshape . 299
msReturnArray . 69
msRowAutoScale . 181
msRowPerm . 176
msRowScale . 179
msRowSort . 468
msRref . 350
msSave . 114
msSaveAscii . 109
msSaveHDF5 . 117
msSaveSparse . 111
msSchur . 346
msSet . 12
msSetAsParameter . 68
msSetAutoComplex . 74
msSetAutoFilling . 64
msSetAutoRowSorted 470
msSetColoredMsg . 55
msSetMsgLevel . 52
msSetPhysDim .83
msSetPhysUnitAbbrev 84
msSetRoundingMode .79
msSetStdIO . 59
msSetTermColor . 57
msSetTermWidth . 62
msSetTrbLevel . 54
msSort .131

595

MUESLI Reference Manual (index) Index

msSortRows . 135
msSpExport . 466
msSpline .383
msSpReAlloc . 455
msSVD . 337
msSVDS . 360
msTriNodeNeighbors400
msUpdateTriConnect 395
msUsePhysUnits . 82
msWriteHistoryFile . 104
Shape .46
Size . 47

5 - FGL Routines

mfArrow . 532
mfAxis . 501
mfBar . 546
mfCAxis . 505
mfColormap . 508
mfColormapSize . 509
mfContour . 549
mfContourF . 551
mfErrorBar . 542
mfFigure .489
mfGetAllGrObj . 534
mfGetCharEncoding 486
mfGetColorInd . 495
mfGetColorOverflowPolicy 476
mfGetColorScheme . 493
mfGetDefaultCapStyle 482
mfGetDefaultJoinStyle 484
mfGetModKeys . 579
mfGetTypeGrObj .535
mfGetWinId . 491
mfGetX11ColorDepth 480
mfGetX11Device . 478
mfGetXAxisTicksNb 519, 520
mfGinput . 575
mfGinputCustom . 577
mfGinputRect . 578
mfImage . 562
mfLegend . 530
mfPatch . 556
mfPColor . 547
mfPlot . 541
mfPlotCubicBezier . 544
mfPlotCubicSpline . 545
mfPlotHist .557
mfPlotPSLG . 563
mfPlotQuadrBezier . 543
mfPlotVoronoi . 565
mfQuiver . 552
mfSelectTypeGrObj 536
mfSpy . 573
mfStreamline . 554
mfText . 533
mfTitle . 521
mfTriContour . 568
mfTriContourF . 570

mfTriFill .567
mfTriMesh . 564
mfTriPColor . 566
mfTriQuiver . 571
mfTriStreamline . 572
mfXLabel . 523
mfYLabel . 524
msAnimation . 585
msArrow .532
msAxis . 501
msAxisFontSize . 502
msAxisLabelFormat .526
msAxisLineWidth .503
msBar . 546
msBBuf .589
msCAxis .505
msCharInPixels . 504
msCla . 587
msClf . 506
msClose . 492
msColorbar . 507
msColormap . 508
msColormapSize . 509
msContour .549
msContourF . 551
msCumulHist . 558
msDefineCustomCursors 591
msDrawBox . 510
msDrawGrid . 511
msEBuf .590
msErrorBar . 542
msExitFgl . 481
msFigure . 489
msGetX11Pixmap . 513
msGinput .576
msGrid . 514
msHold . 515
msImage . 562
msImRead . 559
msImWrite . 561
msLabelFontSize . 525
msLegend .528
msMoveGrObj . 584
msMoveLegend . 583
msPan . 580
msPanAndZoom . 582
msPatch . 556
msPColor . 547
msPlot .541
msPlotCubicBezier .544
msPlotCubicSpline .545
msPlotHist . 557
msPlotPSLG .563
msPlotQuadrBezier . 543
msPlotVoronoi . 565
msPrint .497
msQuiver . 552
msRedrawFigure . 512
msRemoveClipBox . 516

596

MUESLI Reference Manual (index) Index

msRemoveGrObj . 539
msResizeWindow . 490
msSetBackgroundColor 475
msSetCharEncoding 487
msSetClipBox .517
msSetColorInd . 496
msSetColorOverflowPolicy 477
msSetColorScheme . 494
msSetDefaultCapStyle 483
msSetDefaultJoinStyle 485
msSetGBuffer . 588
msSetGrObj . 537
msSetPdfOC .498
msSetWinProp . 527
msSetX11Device . 479
msShading . 518
msShowNow . 586
msSpy . 573
msStreamline . 554
msText . 533
msTitle . 521
msTitleFontSize . 522
msTriContour .568
msTriContourF . 570
msTriFill . 567
msTriMesh . 564
msTriPColor . 566
msTriQuiver . 571
msTriStreamline . 572
msXLabel . 523
msYLabel . 524
msZoom . 581

597

	Introduction
	FML: Numerical Library
	Core Routines
	File Input/Output
	Data Analysis Functions
	Operators
	Elementary Math Functions
	Specialized Math Functions
	Elementary Matrix Manipulation Functions
	Matrix Functions
	Polynomial Functions
	Optimization and Function Functions
	Sparse Matrices

	FGL: Graphical Library
	Global graphic settings
	Window's and figure's management
	Figure properties
	Figure annotation – Low level graphic object's manipulation
	High level plotting routines - 2D
	Interactive routines

	Index

