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Abstract Using the μ(I ) continuum model recently pro-
posed for dense granular flows, we study theoretically steady
and fully developed granular flows in two configurations: a
plane shear cell and a channel made of two parallel plates
(Poiseuille configuration). In such a description, the granu-
lar medium behaves like a fluid whose viscosity is a func-
tion of the inertia. In the shear plane geometry our calcula-
tion predicts that the height of the shear bands scales with
U 1/4

0 P1/2
0 , where U0 is the velocity of the moving plate and

P0 the pressure applied at its top. In the Poiseuille configu-
ration, the medium is sheared between the lateral boundaries
and a plug flow is located in the center of the channel. The
size of the plug flow is found to increase for a decreasing
pressure gradient. We show that, for small pressure gradient,
the granular material behaves like a Bingham plastic fluid.
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1 Introduction

Granular flows [1] are of important scientific interest because
of their complex nature as well as their wide occurrence in
industry and in environment. Unlike classical fluid flows,
they display different behaviors in different flow regimes thus
making difficult a complete and general constitutive law from
being derived.

Three flow regimes are generally reported in the litera-
ture. In case of compact, slowly sheared flows, the grains
experience enduring contacts. They dissipate energy by inter-
nal friction, so the constitutive law is plastic-like. In case of
dilute, rapidly sheared and agitated flows, the granular mate-
rials interact mainly through collisions. The constitutive law
can be deduced from the kinetic theory of a gas of inelastic
grains [2]. In the intermediate flow regime, for example dense
granular flows down an inclined plane, the granular materials
are dense as well as rapid, and subject to both frictional and
collisional stresses.

In the last decade, significant theoretical progresses [3,4]
has been made for the latter regime. Those approaches consist
in describing the granular medium as an incompressible fluid
whose behavior is captured by a purely local rheology (called
the μ(I ) rheology) that can be used to write the stresses in
balance equations:{ ∂u

∂t + (u · ∇) u = − 1
ρ

∇P + 1
ρ

∇ · τ ,

∇ · u = 0.
(1)

In those equations, P is the pressure, τ the deviatoric stress
tensor, u the velocity and ρ the bulk density. Such a rhe-
ology is able to reproduce observations from a great vari-
ety of experimental and numerical setups [3–9]. It is based
on a coulombic friction model, and relates the value of
the effective coefficient of friction μ (i.e. the ratio of tan-
gential to normal stresses) to the non-dimensional inertial
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number I that compares the typical time scale of microscopic
rearrangements with the typical time scale of macroscopic
deformations:
|τ |
P

= μ (I ) with I = |γ̇ | d√
P/ρs

, (2)

where |τ | =
√

1
2τi jτi j is the deviatoric stress tensor norm,

d is the particle diameter, ρs is the particle density and
γ̇ the shear rate. Note that the inertial number I is the
square root of the Savage number [10] also called the
Coulomb number [11]. It has been empirically shown [12]
that, for dense granular flows, the effective coefficient of
friction μ of the system can be expressed by the following
expression:

μ (I ) = μs + μ2 − μs

I0/I + 1
. (3)

In the previous expression, μs is the threshold value for
the quasi-static regime (I → 0). It corresponds to the angle
of repose of the material. Therefore, the material flows only
if the yield criterion |τ | > μs P is satisfied. Below this
threshold, the system behaves locally as a rigid body. In
strongly sheared regimes (I � 1), μ(I ) grows asymptot-
ically towards μ2. In Eq. (3), the values of the coefficients
are material-dependent, for example the values for the spher-
ical glass bead used in [12] are μs = tan(20.9◦), μ2 =
tan(32.76◦) and I0 = 0.279. If the inertial number I is much
lower than I0 (I � I0) the coefficient of friction can be
approximated by the following (simpler) expression:

μ(I ) ≈ μs + (μ2 − μs)
I

I0
, (4)

with μ2 > μs . Recently it has been shown [13,14] that the
tensorial extension [6] of the μ(I ) rheology is questionable
since stress and strain tensors are not always aligned. There-
fore, the μ(I ) should be applied only to monodirectional
flows. In such a case Eq. (1) becomes

∂ux

∂t
+ ux

∂ux

∂x
= − 1

ρ

∂ P

∂x
+ 1

ρ

∂τ

∂y
, (5)

where τ is the shear stress.
Another quantity of interest is the packing fraction Φ,

which has been found to decrease when the inertial number
I increases [15].

Φ = Φmax − ζ I, (6)

where Φmax is the maximum packing fraction of the sys-
tem and ζ is a positive constant typically equal to 0.2. The
latter equation is only valid for small values of I since it
leads to negative packing fractions for I > Φmax/ζ . This
is consistent with the restriction of the μ(I ) rheology to
dense flows where relatively small values of I are expected.
However, for sake of simplicity, in the following, we will
not take into account the latter equation and assume that the

packing fraction does not depend on I : Φ = Φmax . This
assumption will be discussed in the last section of the paper.
For systems made of monodispersed spherical glass beads,
Φmax ≈ 0.6.

As shown above, the μ(I )-rheology is based on a phe-
nomenological approach. Other models, based on different
theoretical backgrounds [16–21] can be found in the litera-
ture, but it has the advantage to be simple and to compare well
against many experiments. It should be however pointed out
that this rheology is purely local, i.e. the shear stress depends
only on the local shear rate and pressure. Hence, it does not
include long range correlations, which are prevalent near the
jamming point [22–24]. A possible way to overcome this
flaw, consists in introducing non-local effects in such mod-
els (see e.g. [25,26]). Another questionable point is that such
a rheology does not use the notion of granular temperature
which is at the base of the kinetic theory [2] even in the
case of dense flows. Some discrepancies with experiments
and simulations are also found in the case of dilute granular
flows or important inclination angles [13,14,27,28]. More-
over the influence of the fluctuating energy flux is not taken
into account. This point is problematic especially close to
boundaries. In spite of its flaws, the μ(I ) rheology emerges
so far as a reliable description of granular flows, at least if
they are dense.

In this article, we use the μ(I ) rheology to solve analyt-
ically the conservation of momentum equation in the case
of two-dimensional granular flows in two simple setups: the
shear plane and the Poiseuille configurations. We will also
restrict ourselves to the cases of steady and fully developed
flows, i.e. flows whose properties depend neither on time nor
on the position along the main flow axis.

The outline of this article is the following. In the next
section we will present the assumptions used in this work.
Section 3 is devoted to the presentation of the description of
the analytical resolution that we used. Then, we will present
the analytical approach, results and discussions for the shear
plane flows (Sect. 4) and the Poiseuille flows (Sect. 5). Finally
we will present our conclusions.

2 Simplifying assumptions: steady and fully developed
flows

The analytical resolution of the Navier Stokes equations in
the case of Newtonian fluids is difficult. The μ(I ) rheol-
ogy introduces a non-constant viscosity that complicate the
resolution further. To bypass these difficulties, we restrict
ourselves to the case of steady and fully developed granular
flows.

Let us define the x-axis as the horizontal axis from left to
right and the y-axis as the vertical axis from bottom to top.
The used assumptions are:
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Analytical solution of the μ(I )−rheology 883

• the flow is steady i.e. it no longer depends on time, which
implies that ∂u/∂t = 0.

• the flow is fully developed; that is, its properties (e.g. veloc-
ity) are nearly invariant along the main direction of flow.
Consequently, we have for velocity, ∂u/∂x = 0 (flow does
not depend on x-direction), and then the y component of
the velocity is equal to zero, uy = 0.

• the pressure P is supposed to be hydrostatic within the flow
i.e. P = P0 +ρg(H − y) where H is the height of the flow
and P0 the external pressure. Note that this hypothesis was
tested many times by simulation of discrete elements in
different geometries [29,30].

Taking these assumptions into account, the system to solve
(5) is reduced to the following differential equation:

∂

∂y

(
η(y)

∂u

∂y

)
= K , (7)

where K = ∂ P/∂x is the pressure gradient in the direction
of flow (assumed to be constant) and η(y) = μ(I )P/|γ̇ | is
the effective dynamic viscosity. Let us recall here that the
variations of the packing fraction are neglected (Φ = 0.6
uniformly within the system).

3 Analytical resolution

We solve analytically the nonlinear Eq. (7). The steps of this
calculation are the followings:

1. We integrate analytically with respect to y the pressure
gradient ∂ P/∂x (assumed to be constant). This leads to:

η(y)
∂u

∂y
= K y + k1, (8)

where k1 is the constant of integration.
2. We solve directly the Eq. (8) with γ̇ = ∂u/∂y as

unknown. Let us recall here that η(y) = μ(I )P/|γ̇ | is
the effective viscosity.

3. We integrate with respect to y the result ∂u/∂y and call
k2 the constant of integration.

4. By applying the boundary conditions of the studied con-
figuration, we obtain a system of two equations which
allows the determination of the unknowns k1 and k2.

As mentioned above, in the following two sections, we will
apply this resolution to two simple configurations: the plane
shear flow (Sect. 4) and the Poiseuille flow (Sect. 5).

4 Shear plane flow

We applied the resolution described in Sect. 3 to the shear
plane configuration (see Fig. 1) with no pressure gradient

Fig. 1 Sketch of the 2D shear
plane configuration. H is the
distance between the two plates,
P0 is the pressure resulting from
a vertical stress on the top plate
and U0 the horizontal velocity
of the same plate

U0P0

H
g

x
y

(K = 0). The granular medium is located between two plates
separated by a height H, P0 is the pressure resulting from
a vertical stress on the top plate, which moves at a constant
velocity U0, the lower one being fixed. This geometry has
been studied intensively both experimentally [3] and numer-
ically by discrete element methods [3,4,29].

4.1 Dimensionless formulation

In Eq. (7), we have seven parameters that characterize the
flow: U0, P0, H, ρ, ρs, g and d which are respectively the
velocity of the top plate, the pressure on the top plate,
the height between the plates, the density of the granular
medium, the grain density, the gravity and the diameter of
the grains. To write Eq. (7) in a dimensionless form, we must
choose three scales: a length scale H , a velocity scale U0 and
a pressure scale P0. The dimensionless variables are then:
y∗ = y/H, u∗ = u/U0 and P∗ = P/P0. From Vaschy–
Buckingham theorem [31] we can then reduce our set of
parameters to only four dimensionless ones:

Λ = H

d
, ε = ρgd

P0
, α = U0√

P0/ρs
and Φ = ρ

ρs
.

The variables which depend on y∗ are: P∗(y∗) = 1 +
εΛ(1 − y∗), I (y∗) = α |γ̇ ∗|

Λ
√

P∗(y∗)
, and μ(I ) = μs +

μ2 − μs

I0/I + 1
. Note that μs, μ2 and I0 are not considered as

variables because they are constants of the μ(I )-rheology.
Thus, the dimensionless equation to solve is:

∂

∂y∗
[∣∣γ̇ ∗∣∣ (ε Λ

(
1 − y∗) + 1

)

×
(

α (μ2 − μs)

ΛI0
√

ε Λ (1 − y∗) + 1 + α |γ̇ ∗| + μs

|γ̇ ∗|
)]

= 0.

(9)

In order to easily solve this equation, we must get rid of
the absolute value that applies to the shear rate γ̇ ∗. In our
geometry, the top plate moves at a positive velocity and the
bottom one is motionless. The shear rate within the granular
system is therefore positive, or equal to zero:

γ̇ ∗ � 0 then
∣∣γ̇ ∗∣∣ = γ̇ ∗. (10)
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This allows us to obtain the following expression for the shear
rate

γ̇ ∗ =
−Λ I0

√
ε Λ (1 − y∗) + 1 (ε Λμs y∗ − ε Λμs − μs + k1)

α (ε Λμ2 y∗ − ε Λμ2 − μ2 + k1) .

(11)

where k1 is the constant of integration of Eq. (9).
The velocity is then obtained by integrating the shear rate

with respect to y∗:

u∗(y∗) = k2 + k1
3/2 I0 (μs − μ2)

α ε μ2
5
2

× log

(
2 μ2

√
Λε (1 − y∗) + 1 − 2

√
μ2 k1

2 μ2
√

Λε (1 − y∗) + 1 + 2
√

μ2 k1

)

+ 2 I0

3 α ε μ2
2

(
μ2 μs

(
ε Λ

(
1 − y∗) + 1

) 3
2

+3 k1 (μs − μ2)
√

ε Λ (1 − y∗) + 1
)

(12)

To completely define the velocity profile, it is necessary
to determine the constants k1 and k2. This is done in the next
section through the use of the boundary conditions.

4.2 Boundary conditions

Although the use of the μ(I ) rheology close to boundaries,
where the influence of the fluctuating energy flux may not
be disregarded, is questionable we assume here that such
an approximation does not modify significantly the features
of the flow. The relevancy of that assumption will be dis-
cussed in the last section of the present paper. Assuming
that there is no slip on the walls, the velocity of the gran-
ular material at y∗ = 1 is equal to that of the top plate
i.e. U0. Since the pressure P∗ decreases with increasing
y∗, we may observe situations where the yield criterion
τ/P > μs is verified only if y∗ is larger than a critical
value y∗

critical. Therefore, two situations have to be consid-
ered. First, the case where the yield criterion is verified at
any depth. In that case, the velocity of the granular medium
at the bottom plate is equal to the one of the bottom plate,
i.e. zero. The corresponding boundary condition is therefore
u∗(y∗ = 0) = 0. The other situation is the case where the
yield stress condition is only satisfied for y∗ ≥ y∗

critical. The
flow is then localized close to the moving plate between
y∗ = 1 and y∗

critical. In such a case, the former boundary
condition is still valid but the latter has to be replaced by
τ(y∗ = y∗

critical)/P∗(y∗ = y∗
critical) = μs and by u∗(y∗ =

y∗
critical) = 0. From a practical point of view, y∗

critical , depends
on α and ε, dependence which will be studied in the fol-
lowing. The flow localization is therefore observed only if
the dimensionless height of the channel Λ is greater than
the dimensionless length Λcritical = Λ(1 − y∗

critical). Note

that, for given ε and α, if Λ is set equal to Λcritical, the con-
ditions τ(y∗ = y∗

critical)/P∗(y∗ = Λcritical) = μs and
u∗(y∗ = y∗

critical) = 0 are equivalent to u∗(y∗ = 0).
If the yield criterion is satisfied at any depth, the two

boundary conditions allow us to find the values of k1 and k2

in step 4 of the resolution (see Sect. 3). To solve this nonlinear
equation, we use the second boundary condition and Eq. (12)
to write k2 as a function of k1. Then, the same equation and
the other boundary condition are used to get the value of k1

by using Newton’s iterative method. Note that it is necessary
to choose an adequate initial value of k1. Indeed, if we set
f (k1) = 0 the equation to be solved, the graph of f (k1) has
a vertical asymptote, which correspond to I → +∞, at the
point of abscissa k1 = μ2, and no real values for k1 > μ2.
Practically, we therefore choose k1 init = μ2 − 10−4.

If the flow is localized between y∗ = 1, and y∗ = y∗
critical

the system composed of the three boundary conditions is
solved numerically by using Newton’s iterative method.

4.3 Results

We have previously shown that the description of the flow
depends on four parameters Λ, ε, α and Φ. As mentioned
above, the variations of the packing fraction Φ are neglected
within the flow, so we restrict ourselves to the study of the
influence of the other three parameters. Note that by defin-
ition, these parameters are all positive and different to zero
except ε which can be zero if gravity is not taken into account.
In that case, the shear rate |γ̇ ∗| (see Eq. 11) reduces to a

constant |γ̇ ∗| = −Λ I0 (k1 − μs)

α (k1 − μ2)
and the velocity profile

becomes linear with y, as follows:

u∗ (
y∗) = −Λ I0 (k1 − μs) y∗

α (k1 − μ2)
+ k2.

In the general case (ε �= 0), we assigned values to the vari-
ables ε and α, and vary Λ. Experimentally that corresponds
to a variation of the height between the plates, or a variation
of the grain diameter. We chose values of α and ε compatible
with typical experimental situations on glass beads. Thus,
by choosing ρ = 1.5 × 103 kg/m3, g = 9.81 m/s2, d =
0.5 × 10−3 m, P0 = 1, 000 Pa and U0 = 100 mm/s we
obtain ε = 0.15 and α = 0.007.

Figure 2 shows the velocity profiles for different values
of Λ. Note that for very small values of Λ(Λ ≤ 2), the
velocity profile tends to be linear, whereas for larger values
(Λ = 5 and 10) the velocity profile is more curved. If the
gap between plates are even greater i.e. Λ > Λcritical, the
yield criterion is not satisfied between y∗ = 0 and y∗ =
y∗

critical leading to a localization of the flow between the latter
depth and y∗ = 1. Therefore, as expected, three cases can be
observed:
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Fig. 2 Velocity profiles obtained by varying Λ for ε = 0.15 and α =
0.007. For Λ = Λcritical, the shear rate is exactly zero at y∗ = 0. For
Λ > Λcritical there is an area for which the velocity is equal to zero

• for Λ = Λcritical the granular system flows at any height
and the shear rate is equal to zero at the bottom plate,

• for Λ < Λcritical the flow also occurs at any height but the
shear rate is strictly positive at the bottom plate,

• for Λ > Λcritical the flow is localized. The static zone
corresponds to y∗ ∈ [0, 1 − Λcritical/Λ[) and the flowing
zone to y∗ ∈ [1 − Λcritical/Λ, 1]).

Note that, practically, the value of Λcritical is determined
numerically by dichotomy on a given interval of Λ. Inter-
estingly, as long as Λcritical is defined (i.e. Λ ≥ Λcritical),
it does not depend on Λ. This result is in agreement with
experiments [3,32,33] as well as discrete element simu-
lations [4,29] that report that under some conditions the
flow in a plane shear cell is localized close to the moving
surface. Below the aforementioned shear layers, the sys-
tem is quasistatic. An increase of the height of the sys-
tem modifies neither the height of the shear layer nor the
velocities of its grains. However, it should be noted that
considering the zone below the shear layer as a purely sta-
tic area is an approximation. Although it has been used
many times [32,34–38] it does not reflect the reality: the
grains actually move intermittently [39,40] and the corre-
sponding average profile decreases exponentially with depth.
This discrepancy comes from the limitation of the μ(I )-
rheology that is not able to take into account the non-
local effects responsible of the aforementioned intermittent
motion.

4.4 Discussion

4.4.1 Proposed law for Λcritical

We will now investigate the dependency of Λcritical with the
other two parameters: ε and α. Figure 3 reports the variations
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Fig. 3 Critical height Λcritical as a function of the dimensionless para-
meter α for several values of ε. For a given ε, Λ is proportional to α1/2.
log refers to the neperian logarithm
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Fig. 4 Critical height Λcritical versus the dimensionless parameter 1/ε

for several values of α. For a given α, Λ is proportional to 1/ε1/2. log
refers to the neperian logarithm

of Λcritical versus α (α ∈ [0.01, 1]) and for different values
of ε. It shows that

Λcritical ≈ f (ε) α
1
2 , (13)

where f (ε) is a function that describes the dependence of
Λcritical with ε. Figure 4 reports the variations of Λ for 1/ε

ranged from 0 to 100 and for different values of α. Let us
recall that 1/ε is proportional to the pressure P0. Therefore,
studying the influence of 1/ε is equivalent to studying the
effect of the external pressure P0. We observe that

Λcritical ≈ g(α) 1/ε
1
2 , (14)

where g(α) is a function that describes the dependence of
Λcritical with α. From Eqs. (13) and (14) we deduce:

Λcritical ≈ A

√
α√
ε

, (15)

where A = 2.2 is calculated at point α = 10−2, ε = 10−2.
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log
10

( ε−1/2 )

lo
g 10

( 
α1/

2
)

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

2

4

6

8

10

12

14

16

Λ
critical

 increasing

Fig. 5 Isovalue lines of Λcritical = 1, 2, 4, 8, 16 (continuous line),
compared to the approximated law (15) (dashed line). The approximated
law fits well the isovalue lines for values of α and 1/ε near to α =
10−2, ε = 10−2. The map was obtained by a plot of isovalues of a
matrix of 34 by 34 points

An important point should be stressed out. In Figs. 3
and 4, Λcritical takes any value between ≈0 and≈10. How-
ever, since the height of a granular system cannot be smaller
than the diameter of a grains, we have H > d i.e. Λ > 1.
The latter condition and relation (15) lead to the follow-
ing condition 2.2

√
α � √

ε. Figure 5 shows the interval
of validity of the approached law given by Eq. (15). We
can observe that the aforementioned simplified equation
does not hold for large values of ε and α (for log10(ε

−1/2)

< 0.5 and log10(α
1/2) > −0.5). On the other side, the

approximate law better fits the exact results for small val-
ues of 1/ε and α. That approached law as well as the rela-
tive deviations from that law—whose isovalues are given by
Fig. 6—will be discussed in next section.

4.4.2 Justification of the simplified law for Λcritical

In order to justify the dependency of Λcritical in
√

α/ε, we will
derive below this relationship by a simplified approach. That
will allow us to better understand the origin of its domain of
validity (see Fig. 5). In the configuration of the shear plane,
the horizontal pressure gradient is zero ∂ P(y)/∂x = 0, the
equation of motion therefore is ∂τ(x, y)/∂y = 0, i.e.

∂τ

∂y
= ∂μ(y)P(y)

∂y
= 0. (16)

After integration, we obtain

μ(y) = A

P(y)
, (17)

where A is a constant.
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Fig. 6 Isovalue lines of the relative error = 20 %, 10 %, 5 %, 2 %, 1 %
of approximate law (15). The map was obtained by a plot of isovalues
of a matrix of 34 by 34 points

One of the simplifying assumptions adopted (see Sect. 2)
is the hydrostatic character of the pressure within the granular
medium. Thus, in dimensionless form, we have P∗(y) =
1 + εΛ(1 − y∗). Then, we can write the Eq. (16) as

μ(y∗) = A

1 + εΛ(1 − y∗)
. (18)

In the following, we will consider the case where the flow
height is exactly equal to the critical height for which the
shear stress becomes zero at the bottom plate (at y∗ = 0).
In this case, at this same plate, the granular system is at the
limit of the static state and, consequently, we have μ(y∗ =
0) = μs . Using this last relation in Eq. (18) we can find
the expression of the constant A and obtain for μ(y∗) the
following expression

μ(y∗) = μs
1 + εΛcritical

1 + εΛcritical(1 − y∗)
. (19)

At y∗ = 1 this equation becomes

μ(y∗ = 1) = μs(1 + εΛcritical). (20)

We have an expression for the critical height Λcritical depend-
ing on the effective friction coefficient μ(y∗). It is then suf-
ficient to express the coefficient of friction as a function
of α and ε to derive an expression for Λcritical in terms of
these quantities. This can be done with the empirical for-
mula connecting the effective friction with the inertial num-
ber I : μ(I ) = μs + (μ2 − μs) /(1 + I0/I ). The iner-
tial number depends on y through pressure and shear rate:
I (y∗) = γ̇ (y∗)α/(Λcritical

√
P∗(y∗)).

The pressure dependency with y is known (hydrostatic
assumption) contrary to that of the shear rate. To overcome
this lack, we can assume that the velocity profile is linear
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between y∗ = 1 and y∗ = 0. In doing so, we underestimate
the shear rate at the surface y∗ = 1 but it seems reasonable
to assume that this approximation does not alter the depen-
dency of γ̇ in respect to α and ε. Thus, within this approxi-
mation, the shear rate at the upper plate is γ̇ ≈ U0/Hcritical

which corresponds to a dimensionless shear γ̇ ∗ of the order 1.
Moreover, still at y∗ = 1, we have P∗(y∗ = 1) = 1 and
I ≈ α/Λcritical. We can then deduce the following expres-
sion for μ(y∗):

μ(y∗ = 1) ≈ μs + (μ2 − μs)
α

α + I0Λcritical
.

Then, this equation can be used to substitute μ(y∗ = 1)

in the Eq. (19) for which y∗ = 1 leading to the following
second-order equation:

Λcritical
2 + α

I0
Λcritical − μ2 − μs

I0μs

α

ε
= 0, (21)

which has real solutions only if

αε ≥ −4

(
μ2 − μs

μs

)
. (22)

Since the left hand side of this equation is negative, and the
quantities α and ε are positive, this condition is always sat-
isfied. The only positive solution, physically acceptable, is
therefore

Λcritical =
√

α

ε

μ2 − μs

μs I0

(√
1 + αεμs

4I0(μ2 − μs)

−
√

αεμs

4I0(μ2 − μs)

)
(23)

The dependency Λcritical ∝ √
α/ε is found if ζ =

αεμs/[4I0 (μ2 − μs)] � 1. This condition corresponds to
neglect the first order term in Λcritical in Eq. (21). In this case,
we have

Λcritical =
√

μ2 − μs

μs I0

√
α

ε
≈ 1.57

√
α

ε
. (24)

Note the proximity of the coefficient 1.57 with the coef-
ficient 2.2 of Eq. (15). The weak difference comes from the
approximation made above on the shear rate at the upper
plate for Λ = Λcritical. By estimating the shear rate more
accurately by using the Fig. 2 we find the right factor.

As mentioned above the law Λcritical = 2.2
√

α/ε is an
approximation and the isovalue lines of the relative error are
reported in Fig. 6. The simple justification mentioned above is
also able to explain the shape of those isovalues lines. Indeed,
to obtain such a simple relation between Λcritical, α and ε we
have to assume that ζ is negligible with respect to 1. If it is
not the case, but if ζ is small, we can perform a first order
Taylor expansion in ζ of Eq. (23) that leads to

Fig. 7 Sketch of the 2D
Poiseuille configuration. H is
the distance between the two
plates and Umax the maximum
velocity of the imposed
parabolic profile as input

Umax H

y

x

Λcritical ≈
√

α

ε

μ2 − μs

μs I0

(
1 −

√
αε

2
√

I0

√
μs

μ2 − μs

)
.

Therefore, the relative error can be approximated by

|ΔΛcritical/Λcritical| ≈
√

αε

2
√

I0

√
μs

μ2 − μs
,

justifying why the isovalues are more or less straight lines
when they are plotted in the plane (log α1/2, log ε−1/2).

5 Poiseuille flow

The second configuration for which we applied the semi-
analytical resolution is the Poiseuille flow. The granular
medium flows in a channel, i.e. between two stationary plates
(see Fig. 7) and a pressure difference between inlet and outlet
of the channel is imposed. In this configuration we have been
working in the absence of gravity. Here again we assume that
the packing fraction is uniform within the flow and equal to
0.6.

5.1 Dimensionless formulation

Following the same way as in the case of shear plane, to
solve the Eq. (7), we have six parameters that character-
ize our flow, i.e. K [the pressure gradient, see Eq. (8)],
P0, H, ρ, ρs and d. Let us recall that gravity is not taken
into account. To write Eq. (7) into a dimensionless form, we

give three scales: a length scale H , a velocity scale
√

−K H
ρs

and a pressure scale P0. The rescaled variables are then writ-

ten as follows: y∗ = y

H
, u∗ = u√

−K H
ρs

, P∗ = P

P0
. This

allows us to have three dimensionless variables:

Λ = H

d
, β =

√−K H√
P0

and Φ = ρ

ρs
.

The variables which depends on y∗ are: P∗(y∗) = 1,

I (y∗) = β |γ̇ ∗|
Λ

√
P∗(y∗)

, and μ(I ) = μs + μ2 − μs

I0/I + 1
.

In the Poiseuille configuration we have a plane of symme-
try (Fig. 7) which allows us to restrict our study to the half of
the domain (y∗ ∈ [0, 1/2]) where the shear rate is positive
γ̇ ∗ � 0 then |γ̇ ∗| = γ̇ ∗.
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Thus the system is solved in dimensionless form:

∂

∂y∗

(
β |γ̇ ∗| (μ2 − μs)

Λ I0 + β |γ̇ ∗| + μs

)
= −β2, (25)

with

∣∣γ̇ ∗∣∣ = −Λ I0
(
β2 y∗ + μs − k1

)
β

(
β2 y∗ + μ2 − k1

) , (26)

where k1 is the constant of integration. By integrating this
equation with respect to y∗, we obtain, if the yield criterion
is satisfied, the following expression of the velocity:

u∗(y∗) = k2 − Λ I0

β3

(
y∗ β2 + (μs − μ2)

× log
(
β2 y∗ + μ2 − k1

))
, (27)

where k2 is the constant of integration.

5.2 Boundary conditions

The two boundary conditions that we have in the half-
Poiseuille configuration are:

• the shear stress is equal to zero at the center line, i.e.
τ(y∗ = 1/2) = 0.

• we consider that the granular medium does not slide at
the plate, i.e. u∗(y∗) = 0 at y∗ = 0.

These two conditions allow us to find the value of k1 and k2

in step 4 of resolution (see Sect. 3), thus:

k1 = β2/2,

and

k2 = −Λ I0 (μ2 − μs)

β3 log

(
μ2 − β2

2

)
.

The dimensionless shear stress is then given by τ ∗ =
β2(1/2 − y∗). Note that, since this quantity has an upper
boundary μ2, a steady state cannot be attained, in the frame-
work of this theory, if β (the dimensionless pressure gradient)
is higher than

√
2μ2. In the following we will therefore con-

sider that β <
√

2μ2. Let us now determine y∗
c , the value

of y∗ for which the yield criterion is no more satisfied i.e.
τ < μs P . From the latter expression of τ it corresponds to
y∗

c = 1/2 − μs/β
2. Below this value, the yield criterion is

satisfied and the system is sheared. Above, it behaves like a
plug flow. Physically, y∗

c cannot be lower than 0. This con-
ditions leads to β2 > 2μs . So, in the following, we will
consider that β ∈ [√2μs,

√
2μ2]. After integration of the

shear rate, we obtain for y∗ < y∗
c , the following expression

of the velocity:

u∗(y∗) = −Λ I0

β3

(
β2 y∗ + (μs − μ2)

× log

(
−2 β2 y∗ + 2 μ2 − β2

β2 − 2 μ2

))
. (28)

The maximum value of the velocity is then

u∗
m = u∗(y∗ = 1/2 − μs/β

2) = −Λ I0

β3

×
(

β2/2 − μs + (μs − μ2) log

(
μ2 − μs

μ2 − β2/2

))
.

(29)

Interestingly, the limit case y∗
c = 1/2 is only obtained for

infinite pressure gradient i.e. β → +∞ which is incompat-
ible with the aforementioned condition β ∈ [√2μs,

√
2μ2].

Therefore, in such a geometry, the flow always displays a
plug flow at the center of the cell. Its minimum and maxi-
mum sizes are respectively μs/μ2 (obtained for β → √

2μ2)
and 1 (obtained for β → √

2μs).

5.3 Results and discussion

In the current configuration, the description of the flow
depends on two parameters Λ and β as the variations of Φ

are neglected (Φ = 0.6). For a granular flow with the para-
meters ρ = 1.5 × 103 kg/m3, g = 9.81 m/s2, d = 0.5 ×
10−3 m, H = 0.1 m, P0 = 100 Pa and K = −100 Pa/m we
have Λ = 20 and β = 0.31. We study the influence of these
parameters on the velocity profile of the flow. Equation (28)
clearly shows that the amplitude of the velocity profile is pro-
portional to Λ. Thus, the study will be restricted to the influ-
ence of the parameter β (Λ is kept constant and equal to 20).

Figure 8 reports the profiles obtained for different values
of β. As expected a plug flow is visible at the center of the
channel for any values of β ∈ [√2μs,

√
2μ2]. Those profiles

are somewhat close to the ones obtained by the “Da Vinci
fluid” model described in [41]. They also look similar to the
profiles obtained with Bingham plastic fluids, i.e. a material
that behaves as a rigid body at low stresses but flows as a
viscous fluid at high stress. Let us recall here that Poiseuille
flows of such fluids display a plug at the center of the cell
and a parabolic velocity profile close to the sidewalls. To
quantify this resemblance, we report in the inset of Fig. 8,
the quantity (1−u∗

x/umax ) versus (1−y∗/y∗
c )2. For Bingham

plastic fluids, those two dimensionless quantities are equal.
Interestingly, we find that the velocity profiles correspond to
those of a Bingham plastic fluid for small values of β (e.g.
β = 0.88, and 0.90). They flatten for larger values (e.g. β =
1, 1.1, 1.339). Another quantity of interest is the maximum
velocity u∗

m , which is equal to u∗(y∗ = y∗
c ). Figure 9, which

reports previous quantity as a function of β, shows that u∗
m

is equal to zero for β = √
2μs and diverges when β tends
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Fig. 8 Variation of velocity profile for different β and for Λ = 20.
The Inset represents the profile of the sheared regions which tend to to
be parabolic for β → √

2μs = 0.8739
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μ(I) = μs+(μ2-μs)/(1+I0/I)
μ(I) = μs+(μ2-μs)I/I0
μ(I)=(2μ2)

1/2

Fig. 9 Variation of u∗
m as a function of β and for Λ = 20. A Bingham

plastic fluid and a granular material obeying the μ(I )-rheology display
a similar behavior when β → 0. On the contrary, the latter displays a
divergence in velocity for when β → √

2 μ2 = 1.1344 whereas the
former remains linear

to
√

2μ2. The presence of this divergence can be explained
as follows. The balance of flow momentum over half the cell
width gives that the pressure gradient K times the half width
H/2 is balanced by the difference in shear stresses on the
wall and on the center of the cell. The former shear stress
is [μs + (μ2 − μs)/(1 + I0/I )] P0 and the latter is equal to
zero. Consequently, K H/2 can increase no further than the
limiting stress difference μ2 P0 obtained as I and u∗

m become
infinite.

This figure also shows that for small value of β (β <

0.95), the velocity Umax is the same as in the case of a Bing-
ham plastic fluid (i.e. a parabolic profile between 0 and y∗

c ,
then a plug flow) although the viscosity of the granular fluid
is not that of a Bingham plastic fluid. Figure 8 also shows
that for the same range of β (β < 1) the velocity profile of
the sheared region is approximated by a parabola. To justify

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

β

0

0.1

0.2

0.3

0.4

0.5

λ pl
ug

β = [2μ
s
]
1/2

β = [2μ
2
]
1/2

λ
plug

 = μ
2
 / 2μ

s

λ
plug

(β)

Fig. 10 The half-length of the plug flow in the Poiseuille configuration
depends on the gradient pressure β. Depending on the expression used
forμ(I ) (see text for details), this half-length is between 0.5 and μs/2μ2
(full expression given by Eq. 2—gray zone) or 0.5 and 0 (simplified
expression given by Eq. 4)

Bingham-like behavior for β → √
2μs , let us first recall that

for such fluid, when the yield criterion is satisfied, the shear
stress is equal to to τc+ηn γ̇ , where τc is the yield stress and ηn

a constant Newtonian viscosity. Then, let us consider now the
μ(I )-rheology and assume that I is much smaller that I0, jus-
tifying the approximation μ(I ) = μs +(μ2 −μs)I/I0. If the
yield criterion is satisfied, the shear stress is then Bingham-
like:

τ = τc + ηn |γ̇ | , (30)

with τc = μs P and ηn = (μ2 − μs)
√

ρS P/I0. In such a
case, we obtain the following expressions of the velocity for
y∗ ≤ y∗

c :

u∗ = I0Λ

2β(μs − μ2)

(
β2 y∗2 + (2μs − β2)y∗). (31)

Its maximum value is given by

u∗
m = u∗(y∗ = y∗

c ) = ΛI0

8β3

(β2 − 2μs)
2

μs − μ2
. (32)

It is worth noting that, if the expression used for the effec-
tive friction coefficient μ(I ) is the simplified one (Eq. 4), β

has no upper limit. Therefore, the position of the plug flow
y∗

c belongs to the range [0, 1/2]. Then, when β → ∞ the
half-length of the plug flow, λplug, tends to zero and the sys-
tem is sheared all along its length. This point is illustrated
on Fig. 10 where λplug is reported versus β. The gray zone
corresponds to the ranges of β and λplug that can be reached
using the full expression of μ(I ) (Eq. 2). If the simplified
expression is used (Eq. 4), the values of λplug are bounded
between 0 and 1 and those of β between

√
2μs and + ∞.

From the two latter equations we can easily show that, in
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such a condition, the velocity profile tends toward a parabola
and the maximum velocity diverges like β−1.

6 Conclusion and discussion

In this paper, we studied theoretically granular flows in the
framework of the μ(I ) rheology. We focused on steady and
fully developed granular flows in two geometries: the shear
plane and Poiseuille. We obtained results can be summarized
as follow:

In the shear plane configuration, we have shown that
for appropriate parameters, the flow is spatially localized.
This is consistent with many experimental observations. We
have also identified a law characterizing the flow, including
Λcritical ∝ √

α/ε [see Eqs. (15) and (24)], i.e. the height
H on which the granular medium is in motion is propor-
tional to U 1/2

0 P1/4
0 . Although this law is not valid for all

values of α and ε the domain of applicability seems very
broad.

In the Poiseuille configuration, we have described in detail
the influence of the parameter β which is a function of the
pressure gradient in the flow. We have shown that the granular
material flows only if the pressure gradient is greater than a
threshold value and that, under certain circumstances, the
system behaves like a Bingham plastic fluid.

As mentioned above, the μ(I ) rheology does not take
into account the influence of the fluctuating energy flux
that cannot be disregarded close to a boundary, especially
when the granular material is not dense. In the case of the
plane shear flow, we obtain a qualitative agreement with
experiments [3] and simulations [29,40] which suggests that
neglecting the energy flux is a reasonable assumption. The
case of Poiseuille flow is more difficult since few experimen-
tal data are available in such a configuration. Our goal was
not to compare directly experimental results with the μ(I )
rheology but to apply the latter to a geometry commonly used
in fluid mechanics. However, the following discussion will
shed some light on that particular point.

In this work, we have assumed that the packing fraction
is constant within the granular material, assumption that can
be checked a posteriori. For that purpose, we can use Eq. 6
(with ζ = 0.2) and the expressions of I derived in Sect. 4
for the shear plane flow and in Sect. 5 for the Poiseuille flow
and see whether the variations of Φ are important or not.
Figure 11 reports packing fraction profiles for the shear
plane flow (a) and the Poiseuille flow (b). For the former
geometry the packing fraction varies slightly (<2 %) justi-
fying the approach used in this work. This is not surprising
since, as mentioned above, our results agree with numeri-
cal and experimental results. In the Poiseuille geometry, at
low β, the packing fraction variations are also weak. On the
contrary, when β is increased, low values of the packing

0 0.5
y*

0.4

0.6

φ

0 0.2 0.4 0.6 0.8 1

y*

0.55

0.6

φ

(a)

(b)

β increases

Λ decreases

Fig. 11 The variations of the packing fraction profiles versus y∗ is
found to be almost constant for the shear plane flow (a). The values
of Λ are Λ = 2.5, 5, 10, 20, 40 and 100. On the contrary, for the
Poiseuille flow, it displays important variations close to the sidewalls
for important pressure gradients (b)

fraction are found close to sidewalls. Therefore, the approach
used above is no more valid for those conditions (i.e. close
to boundaries at high values of β). As mentioned above
this was expected since the μ(I ) rheology does not take
into account the energy flux which are important close to
the boundaries. Note however that the aforementioned con-
clusions obtained in that geometry at low β remain fully
valid.
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