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This paper deals with the heat transfer between two
spherical grains separated by a small gap; dry air is located
around the grains and a liquid water meniscus is supposed
to be present between them. This problem can be seen as a
micro-scale cell of an assembly of solid grains, for which
we are looking for the effective thermal conductivity. For a
fixed contact angle and according to the volume of the liquid
meniscus, two different shapes are possible for the meniscus,
giving a “contacting” state (when the liquid makes a true
bridge between the two spheres) and a “non-contacting”
one (when the liquid is split in two different drops, separated
by a thin air layer); the transition between these two states
occurs at different times when increasing or decreasing the
liquid volume, thus leading to a hysteresis behavior when
computing the thermal flux across the domain.
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1 Introduction
Transport phenomena in porous media have been inves-

tigated for over 100 years for applications in materials, agri-
culture, archeology and engineering. Recently, more inter-
est has been focused on heat and mass transfer processes in
micro-porous media due mainly to their increasing impor-

tance in functional material design, fuel cell optimization and
even biomedical engineering [1, 2].

The effective thermal conductivity is one of the most im-
portant parameters characterizing the energy transport prop-
erties of porous media and has been studied extensively by
using both theoretical and experimental approaches. As is
well known, the effective thermal conductivity of porous me-
dia depends not only on the thermal property and the vol-
ume fraction of each constitute component, but on the micro-
structure (i. e. the spatial distribution of all components) of
the media as well. On the other hand, it is known that the
presence of water affects a lot the thermal properties because
the thermal conductivity of water is about 25 times that of dry
air. This has been mentioned by Chen [3] who emphasized
that a small increment in water contents around the contact
points will lead to rapid increment in the effective thermal
conductivity. Some papers [4, 5] deal with the prediction of
thermal conductivity in terrestrial soil media in the presence
of liquid water as a component but without specifying its spa-
tial localization. The paper [6] of Mitarai and Nakanishi con-
cerns the pendular regime (see figure 1) in which the liquid
content is small and where the water menisci form bridges at
each contact point (between the grains) thus inducing two-
body cohesive force so the study was restricted to the me-
chanical properties and not the thermal ones.

In this work, we consider a granular media constituted
by solid grains which are more or less spherical in shape.
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Fig. 1. Real granular medium in the “pendular regime”: dry air is
located around the grains (in white) whereas liquid water menisci (in
blue) are present as liquid bridges between them.

Four regimes of liquid content have been distinguished by
[7]: Pendular, Funicular, Capillary and Slurry regimes. We
are concerned with the pendular regime where we have a
small liquid content and where the liquid bridges are formed
at the contact points of grains due to the surface tension re-
sponsible for tendency of liquids to minimize their surface
area, giving rise to a membrane-like surface [8].

Figure 1 represents a real granular medium in pendu-
lar regime. This three component medium has no theoretical
model to calculate the effective thermal conductivity and it is
difficult to be discovered by experimental results. However,
a numerical value of this effective property can be found in
two stages, that is to say first finding the equilibrium shape of
the liquid meniscus for a given liquid volume, second solving
the steady-state heat equation over a small domain (supposed
to be representative enough of the whole domain) and deduce
the effective thermal conductivity, via the Fourier law, by us-
ing the thermal flux through the domain.

In this paper, we focus on the heat transfer between two
spherical solid grains of same radius in presence of dry air
and where liquid water is attached to the solid grains, with-
out gravity. Our model takes into account the role of the
contact angle between the liquid-gas interface in addition to
the surface tension (energy required to increase the surface
area of a liquid by a unit area) which enable the calculation
of the exact shape of the liquid meniscus. A simplification of
the grains’ assembly is represented in figure 2.

The present model implies many assumptions; there is
no doubt that some important characteristics of a real gran-
ular medium (especially the randomness of both shape and
position of the grains, and the roughness of their surface)
should affect the results obtained in this paper. On the other
hand, we can state that gravity doesn’t affect a lot the shape
of the liquid menisci (the Bond number, based on a reference
length chosen as the height of the meniscus, is of the order
of one thousandth for a grain of radius 1 mm). Nevertheless,
we think that our simple model has the worthiness to reveal
a very interesting behavior, that is the hysteresis during the

change in the liquid volume.

Fig. 2. Simplification of the grains’ assembly. The dashed rectangle
is the computational domain used in this paper.

2 Micro-scale Model
We want to solve the steady-state heat transfer in an el-

ementary cell containing only two spherical solid grains, a
few quantity of liquid water, and dry air. In a real situa-
tion, the liquid water should be in thermodynamic equilib-
rium with its vapor, so the surrounding gas should be a bi-
nary mixture of dry air and water vapor. In the present study,
the water vapor is neglected and we assume that there is no
adsorbed water on the grain surface. The computational do-
main (see figure 3) can be found using the symmetry planes
of the problem knowing the main direction of the heat flux –
for example, the bottom symmetry plane comes from the fact
that the gravity is neglected. Top and bottom sides are kept
at constant (but different) temperature whereas the vertical
ones are supposed to be isolated (this is related to the model
used by [3] in their study of thermal conduction in dry soils).

As stated in the introduction, the liquid meniscus is cen-
tered along the axis between the two spheres leading to an
axi-symmetric problem, so we can reduce the geometrical in-
dependent variables to the (r,z) cylindrical coordinates. Each
component (solid, liquid water and dry air) has a constant
thermal conductivity and the thermal contact between the
components is supposed to be perfect.

Because it is in mechanical equilibrium (actually, in a
quasi-static state because in a real situation a change of vol-
ume can be expected due to many reasons), the shape of the
liquid meniscus must have both a constant total curvature (it
is a minimum surface) and a prescribed contact angle with
the solid. The percentage of liquid water, i. e. the ratio of its
volume to that of the available space between the spheres is
called humidity.

The input parameters are:

R : the radius of the two solid spheres
ε : half the gap between the spheres
V : the volume of liquid water
γ : the surface tension between liquid water and air
θ : the contact angle between the liquid interface

. and the solid
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Fig. 3. Sketch of the cylindrical computational domain (taking into
account all the symmetries). Boundary conditions are of homoge-
neous Dirichlet type on top and bottom sides, and of zero Neumann
type on the external vertical sides.

In this study, the radius R is taken as the reference
length. The output variable of the problem is the (vertical)
flux q across the domain which is related to the effective ther-
mal conductivity of our composite medium (by Fourier law).
Note that in a complete model, the liquid volume V should
be related to the gas pressure (in a real situation, the total
mass of the water is fixed and then the repartition between
gas and liquid depends on the local pressure) but this is out
of the scope of this study.

Surface tension γ and contact angle θ are usually tem-
perature dependent and this dependence (which can be found
elsewhere in literature) is not so negligible. However, at the
scale of our elementary cell, we can state that the tempera-
ture difference is small so that these two parameters can be
treated as constants.

3 Equilibrium shape of the liquid meniscus
In physics, the Young-Laplace equation relates the pres-

sure difference to the shape of the interface [9]:

∆P = γ κ (1)

where ∆P is the pressure difference across the fluid inter-
face, γ is the surface tension and κ is the total curvature. At
micro-scale, ∆P has a constant value and this could be easily
demonstrated using the hydrostatic equation. Moreover, γ is
supposed to remain constant so according to equation (1), κ

is constant as well.

κ = κ1 +κ2 = constant (2)

where κ is the total curvature of the liquid meniscus
curve (C) and κ1 and κ2 are respectively its plane and
axi-symmetric curvatures.

Let {r(s),z(s)} be any parameterization of the curve (C)
in the axi-symmetric cylindrical coordinates then the total
curvature is given by:

κ =
r′z′′− z′r′′

(r′2 + z′2)
3
2
+

z′

r
(3)

where z′ = dz/ds, r′ = dz/ds, z′′ = d2z/ds2 and r′′ =
d2r/ds2. If we choose s such that it corresponds to the arc
length parameterization of curve (C) then:

r′2 + z′2 = 1 (4)

and thus equation (3) becomes:

r′z′′− z′r′′+
z′

r
= κ (5)

The geometrical shape of the liquid meniscus is obtained
by integrating the differential algebraic system formed of
equations (4) and (5) (indeed, after transforming the system
in a first order type, the former equation appears under an
algebraic form).

Regarding the initial conditions for this integration, the
following explanation should be emphasized: we already
mentionned in section 2 that both the volume V and the con-
tact angle θ was chosen as an input parameters; actually, it is
difficult to integrate the meniscus shape (equations (4-5)) un-
der these two constraints. We have prefered instead to define
a point in the (r,z) plane (point A in figure 4) which is the
beginning of the integration; the integration is then stopped
when the meniscus curve crosses the solid boundary, (point
B in figure 4). Please note that the point A is located on the r-
axis only for the “contacting” case; for the “non-contacting”
case, the point A must be located on the z-axis. The con-
straint concerning the prescribed contact angle at B, on the
contrary, is kept and the integration process is repeated by
trial and error until obtaining the good contact angle.

To summarize, the initial conditions for the integration
of (4-5) are as follows:

“contacting” case:

 r = r0
z = 0
z′ = 0

“non-contacting” case:

 r = 0
z = z0
r′ = 0

It is worth noting that since the contact angle is pre-
scribed, the total curvature κ and the meniscus volume V
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are conjugates in the sense where the knowledge of one of
them leads to that of the other. If we choose a value of V ,
the differential system (4-5) will be difficult to be integrated,
because of the presence of two constraints: the contact an-
gle θ and the liquid volume V . To simplify the integration,
we prefer to choose a value of the total curvature κ and de-
duce the volume V (the computation is detailed afterwards).
Anyway, the final curves of the thermal fluxes will be plotted
with respect to the volume V , as a control parameter.

3.1 The volume of the liquid water V
Figure 4 is a sketch used to demonstrate the calculation

of the volume of liquid water V . The volume of the hashed
slice of height dz is πr(z)2dz so the volume of both the blue

and the brown parts is Vb =
∫ zB

zA

πr(z)2dz. Earlier, we have

found the values of r(s) and z(s) so by a simple change of
variable we can say that the volume of these two parts can be

written in the form Vb =
∫ sB

sA

πr(s)2 dz
ds

ds and hence:

dVb

ds
= πr(s)2 dz

ds
(6)

Equation (6) is actually added to the system of equations (4-
5) and therefore Vb is a result of the integration process. To
find the volume of liquid water V we must subtract the vol-
ume of the spherical cap Vc (in brown) which is given by:

Vc =
πh2

3
(3R−h) where h = zB− ε and R = 1 (radius of the

grain). Finally, V =Vb−V c.

Fig. 4. A scheme of the liquid meniscus (solid grain in brown and
liquid water in blue). A is an arbitrary point defined as the beginning
of the integration process.

3.2 The contact angle θ between liquid and solid inter-
face

Figure 5 is a sketch to demonstrate the calculation of
the liquid and solid interface contact angle θ. Based on the

knowledge of the position (rB and zB) of point B and the inter-
section point between the liquid water and the solid grain, we
can easily calculate θ. Let ψ be the angle formed by the tan-
gent to the liquid meniscus at B then ψ = arctan(z′B/r′B) (the
prime denotes the derivative w.r.t. the curvilinear abscissa s)
and assume that ϕ is the angle formed by the tangent to the
solid grain at B then ϕ = arcsin(rB/R). Simply θ = ψ−ϕ.

B

O
r

z

ϕ

ψ

A

θ

Fig. 5. A zoom of the liquid-solid interface (solid grain in brown and
liquid water in blue).

The solution of our system of equations (4-5) is obtained
numerically by a shooting method over the starting position
of the integration (r0 in the “contacting” state or z0 in the
“non-contacting” state); this starting position is varied until
the prescribed contact angle θ is found. The family of the
curves obtained when we vary the total curvature κ, is drawn
in figures 6 and 7 for the two states.

4 Numerical Computation of the heat flux
Solving our problem numerically appears unavoidable:

some authors (resp. [10, 11]) have used analytical solutions
but they are respectively restricted to an asymptotic behav-
ior (so, adapted to a local geometrical zone) or to too crude
approximations.

Consider the steady state heat equation in 3D axisym-
metric cylindrical coordinates:

1
r

∂

∂r

(
k(r,z)r

∂T
∂r

)
+

∂

∂z

(
k(r,z)

∂T
∂z

)
= 0 (7)

with homogeneous Dirichlet boundary conditions on top and
bottom sides and zero Neumann boundary conditions (i. e.
isolated conditions) on the external vertical sides. This
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Fig. 6. This represents the family of the liquid meniscus when the
volume varies, in the “contacting” state. Each curve is the boundary
of the half of a bridge linking the two grains.

Fig. 7. This represents the family of the liquid meniscus when the
volume varies, in the “non-contacting” state. Each curve is the bound-
ary of a sessile drop, and the same symmetric drop is on the top of
the other grain (not represented).

steady state equation is solved using a Finite Volume scheme
applied on a regular structure mesh of rectangular cells. The
detailed discretization over an interior cell with node (i, j) is
explained below:

∫ i+ 1
2

i− 1
2

∫ j+ 1
2

j− 1
2

1
r

∂

∂r

(
k(r,z)r

∂T
∂r

)
r dr dz

=

(
ki, j + ki+1, j

2
ri + ri+1

2
Ti+1, j−Ti, j

∆r

−
ki, j + ki−1, j

2
ri + ri−1

2
Ti, j−Ti−1, j

∆r

)
∆z

and

∫ i+ 1
2

i− 1
2

∫ j+ 1
2

j− 1
2

∂

∂z

(
k(r,z)

∂T
∂z

)
r dr dz

=

(
ki, j + ki, j+1

2
Ti, j+1−Ti, j

∆z

−
ki, j + ki, j−1

2
Ti, j−Ti, j−1

∆z

)
ri ∆r

where ∆r and ∆z represents the distance between two
consecutive nodes in the r and z directions respectively. ki, j is
the value of the conductivity at the node of the specified cell
— a geometric test is done to specify the nature of the cell
(solid, water or air) to specify the value of the conductivity
at the requested cell.

After writing the discretization on the other boundary
cells, the equations will be written as a linear system and
the matrix of this linear system is stored in a sparse way and
the UMFPack linear sparse solver is used. Some tries have
shown that a 500 by 500 mesh is required to obtain a good
accuracy (see figure 9). Each numerical computation takes
about few seconds on a laptop (Intel Core i7 @ 2.7 GHz).

Now we have obtained by numerical simulations the
value of the temperature at the node of each cell. To calculate
the heat flux that flows through our domain, we need to sum
up the flux that flows through each cell on the top bound-
ary (for example). Let (i, j) be the node of a non-corner top
boundary cell (see figure 8).

Fig. 8. A representation of a top (non-corner) cell with its neighbor
cells.

The temperature gradient at cell (i,1) (top boundary cell
for which j = 1) is given by:
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∂T
∂z

∣∣∣∣
i
=

Ti,1−Ti,2

z2− z1

Recall that ri+ 1
2
=

ri + ri+1

2
and ri− 1

2
=

ri + ri−1

2
so the

flux that flows through the cell with node (i,1) is:

qi = π
ki,1 + ki,2

2
∂T
∂z

∣∣∣∣
i

(
r2

i+ 1
2
− r2

i− 1
2

)
(8)

Finally, to calculate the total flux which flows through
our computational domain we add up the flux at each top-
border cell.

Fig. 9. Example of contour curves of the temperature obtained after
a numerical computation on a 500x500 mesh, in the case ε/R =
0.1, θ = 30 deg. Due to Dirichlet boundary condition (bottom: T =
0 and top: T = 1), each contour line from bottom to top corresponds
to the temperature: T = 0.1,0.2, ...,0.9 respectively.

5 Heat flux with respect to water liquid volume
During the evaporation/condensation of water in a wet

granular medium, the liquid volume in each elementary cell
changes with time. It is interesting to know the variation of
the effective thermal conductivity with respect to the liquid
volume. By using the Fourier law on our computational
domain, the effective thermal conductivity is proportional to
the heat flux. This heat flux depends of course on the water
liquid volume because, as stated in the introduction, the
thermal conductivity of the water is much more important
than that of the dry air. Further, we expect a jump in the

heat flux curve because there are two possible geometrical
configurations for the liquid meniscus (the “contacting”
state and the “non-contacting” one, as described in figures 6
and 7).

The numerical values are the following:

thermal conduct. of water kw = 0.61 W m−1 K−1

thermal conduct. of dry air ka = 0.024 W m−1 K−1

thermal conduct. of solid ks = 1.52 W m−1 K−1

radius of the grains R = 1×10−3m
surface tension of water γ = 72×10−3N m−1

The computed heat flux is presented in figure 10, for
humidity (or liquid fraction, which is the ratio of the liquid
volume divided by the void volume) ranged from 0 to 0.18.
As expected, a hysteresis behavior is highlighted by our nu-
merical computations and is more visible in figure 11 which
presents an enlarged view of the previous one.
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Fig. 10. Thermal heat flux w.r.t. the liquid fraction, for the “contact-
ing” state (blue) and the “non-contacting” state (red). ε/R = 0.1,
θ = 30 deg. Note the great increase in the heat flux due to the
presence of water: about a factor of 5 when humidity is only 0.12.

Once the heat flux through the computational domain
has been obtained, it could be very easy to deduce the effec-
tive thermal conductivity ke by using the Fourier law applied
in a global manner to our domain. Actually ke is proportional
to the heat flux so it is not necessary to present the numerical
results for ke, as the main objective of this paper is to focus
on the hysteresis behavior.

The role of the parameters ε and θ is summarized in table
1. Refering to figure 11, we characterize the hysteresis by
defining the two following quantities:

− the Hysteresis Length which is the dimension of the hys-
teresis cycle along the x-axis;

− the Flux jump which is the other dimension along the
y-axis.
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Fig. 11. This zoom of figure 10 shows with more evidence the hys-
teresis behavior when liquid fraction is increasing or decreasing. The
jump in the heat flux occurs at the magenta dashed line; this jump
is more pronounced in the increasing case, i. e. when liquid water
increases. The arrows show the direction in the hysteresis cycle.

Table 1. Role of sphere distance ε and contact angle θ on the hys-
teresis

ε/R θ (degree) Hysteresis Length Flux jump

0.05 10 0.0192 0.165

0.05 30 0.002027 0.041026

0.05 45 0.0008265 0.021695

0.1 10 0.10684 0.285

0.1 30 0.013434 0.0881

0.1 45 0.005633 0.048

Table 1 shows that the hysteresis is more and more pro-
nounced as the distance ε increases. Moreover, it is more
pronounced for small contact angles. In the extreme geomet-
rical situation where the distance ε is zero (the solid spheres
are contacted themselves) the hysteresis disappears because
we obtain always the “contacting” state.

Figure 12 (resp. 13) shows the variations of the heat flux
curves with respect to the distance ε (resp. wrt θ). They show
clearly that the influence of the distance ε is more important
than that of the contact angle θ.

6 Conclusion
A strong hysteresis behavior for the effective thermal

conductivity has been revealed when changing the humid-
ity of a granular medium. It is due to a switch between two
different geometrical configurations of the liquid meniscus
attached to the two solid spheres as a bridge. In real situa-
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Fig. 12. Thermal heat flux w.r.t. the liquid fraction, for the “contact-
ing” state only, when θ = 30 deg. The curves show the influence of
the distance ε.
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Fig. 13. Thermal heat flux w.r.t. the liquid fraction, for the “contact-
ing” state only, when ε/R = 0.1. The curves show the influence of
the contact angle θ.

tions, this hysteresis behavior should remain present, despite
its attenuation due the randomness characteristics of both the
shape and position of the grains.
In this study, the heat transfer has been restricted to the
conduction phenomenon. It is evident that, according
to the problem treated, other types of transfer should be
taken into account, such as e. g. latent heat due to evapo-
ration/condensation at the gas-liquid interface, or radiation.
This may be included in a future work.
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[9] Guyon, É., Hulin, J.-P., Petit, L., and Mitescu, C., 2001.
Physical Hydrodynamics. Oxford University Press.

[10] Batchelor, G. K., and O’Brien, R. W., 1977. “Thermal
or electrical conduction through a granular material”.
Proc. of Royal Society of London A, 355, pp. 313–333.

[11] Garrett, D., and Ban, H., 2011. “Compressive pressure
dependent anisotropic effective thermal conductivity of
granular beds”. Granular Matter, 13, pp. 685–696.

List of Figures
1 Real granular medium in the “pendular

regime”: dry air is located around the grains
(in white) whereas liquid water menisci (in
blue) are present as liquid bridges between
them. . . . . . . . . . . . . . . . . . . . . . 2

2 Simplification of the grains’ assembly. The
dashed rectangle is the computational do-
main used in this paper. . . . . . . . . . . . . 2

3 Sketch of the cylindrical computational do-
main (taking into account all the symme-
tries). Boundary conditions are of homoge-
neous Dirichlet type on top and bottom sides,
and of zero Neumann type on the external
vertical sides. . . . . . . . . . . . . . . . . . 3

4 A scheme of the liquid meniscus (solid grain
in brown and liquid water in blue). A is an ar-
bitrary point defined as the beginning of the
integration process. . . . . . . . . . . . . . . 4

5 A zoom of the liquid-solid interface (solid
grain in brown and liquid water in blue). . . . 4

6 This represents the family of the liquid
meniscus when the volume varies, in the
“contacting” state. Each curve is the bound-
ary of the half of a bridge linking the two
grains. . . . . . . . . . . . . . . . . . . . . . 5

7 This represents the family of the liquid
meniscus when the volume varies, in the
“non-contacting” state. Each curve is the
boundary of a sessile drop, and the same
symmetric drop is on the top of the other
grain (not represented). . . . . . . . . . . . . 5

8 A representation of a top (non-corner) cell
with its neighbor cells. . . . . . . . . . . . . 5

9 Example of contour curves of the tempera-
ture obtained after a numerical computation
on a 500x500 mesh, in the case ε/R = 0.1,
θ = 30 deg. Due to Dirichlet boundary con-
dition (bottom: T = 0 and top: T = 1), each
contour line from bottom to top corresponds
to the temperature: T = 0.1,0.2, ...,0.9 re-
spectively. . . . . . . . . . . . . . . . . . . . 6

10 Thermal heat flux w.r.t. the liquid frac-
tion, for the “contacting” state (blue) and
the “non-contacting” state (red). ε/R = 0.1,
θ = 30 deg. Note the great increase in the
heat flux due to the presence of water: about
a factor of 5 when humidity is only 0.12. . . . 6

11 This zoom of figure 10 shows with more
evidence the hysteresis behavior when liq-
uid fraction is increasing or decreasing. The
jump in the heat flux occurs at the magenta
dashed line; this jump is more pronounced
in the increasing case, i. e. when liquid water
increases. The arrows show the direction in
the hysteresis cycle. . . . . . . . . . . . . . . 7

12 Thermal heat flux w.r.t. the liquid fraction,
for the “contacting” state only, when θ = 30
deg. The curves show the influence of the
distance ε. . . . . . . . . . . . . . . . . . . . 7

13 Thermal heat flux w.r.t. the liquid fraction,
for the “contacting” state only, when ε/R =
0.1. The curves show the influence of the
contact angle θ. . . . . . . . . . . . . . . . . 7

List of Tables
1 Role of sphere distance ε and contact angle

θ on the hysteresis . . . . . . . . . . . . . . . 7

HT-14-1599 Canot 8

COPY


