Introduction
Exemples de mesure
Canaux quantiques et opérations
Résultats
Quelques développements en cours

Pertinence de marches aléatoires classiques pour l'étude des transformations complètement positives

Dimitri Petritis

Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR 6625)

Cergy, 5 décembre 2013

Variables aléatoires I

- Espace mesurable abstrait (Ω, \mathcal{F}) .
- Espace mesurable concret (X, X).
- V.a. à valeurs dans X application $(\mathcal{F}, \mathcal{X})$ -mesurable $X : \Omega \to X$.
- Mesure de probabilité $\mathbb{P} \in \mathcal{M}_1(\mathcal{F})$.

Remarque

 ${\mathbb P}$ n'intervient pas directement dans définition de X. Induit cependant **loi** de X :

$$\mathcal{X} \ni A \mapsto \mathbb{P}_X(A) := \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\}).$$

Remarque

Important dans définition de X: espace concret X, pas espace abstrait Ω .

$$\mathbb{X} = \{0,1\}, \mathcal{X} = \mathcal{P}(\mathbb{X}), \mathbb{P}_{X} = \frac{1}{2}(\delta_{0} + \delta_{1}).$$

Question primordiale : Comment joue-t-on au « pile ou face »?

Réponse du mathématicien

- D'après Kolmogorov : il existe
 - ullet un espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$ et
 - une variable aléatoire $X:\Omega\to\mathbb{X}$,

tels que
$$\mathbb{P}(\{\omega \in \Omega : X(\omega) = 0\}) = 1/2$$
.

- Il est même capable de vous donner des exemples explicites d'espaces (Ω, F, P) et de variables X!
- On peut jouer au « pile ou face » mais comment joue-t-on vraiment?

Réponse de l'informaticien

• On appelle indéfiniment générateur de nombres aléatoires (U_n) (uniformément distribués sur [0,1]). On construit la suite

$$X_n = \begin{cases} 0 & \text{si } U_n < 1/2\\ 1 & \text{si } U_n \ge 1/2. \end{cases}$$

 (X_n) est une suite i.i.d. de « pile ou face » honnêtes.

- Exemple d'un « bon » générateur de nombre aléatoires :
 - Choisir entier N_0 arbitraire entre 1 et m, où $m = 2^{31} 1$.
 - Construire, pour $n \ge 0$, récurrence $N_{n+1} = 16807 N_n \mod m$.
 - Retourner $U_n = N_n/m$.
 - (U_n) est la suite des uniformes sur [0,1] de l'informaticien.
- Mais comment joue-t-on vraiment au « pile ou face »?

Réponse du physicien (classique) I

- Pièce de monnaie = corps solide ⇒ suit équations de Newton.
- Sol approximativement plastique ⇒ pièce s'immobilise.
- $\Omega = (\mathbb{R}^2 \times \mathbb{R}_+ \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2)$ muni de sa tribu borélienne $\mathcal{B}(\Omega)$.
- Pièce lancée avec condition initiale distribuée selon $\mathbb P$ à « petit support », suit flot newtonien.
- $T = \inf\{t > 0 : Z_t = 0, \mathbf{V}_t = 0, \mathbf{M}_t = 0\}.$

$$X = \begin{cases} 0 & \text{si } \mathbf{N}_T \cdot \mathbf{e}_3 \le 0 \\ 1 & \text{si } \mathbf{N}_T \cdot \mathbf{e}_3 > 0. \end{cases}$$

• Donc aléa classique = réductible.

Réponse du physicien (classique) II

[Diaconis, Holmes, Montgomery, Dynamical bias in the coin toss, SIAM Review 2007.]

Mais comment joue-t-on vraiment au « pile ou face »?

Réponse de Kolmogorov

Définition

 $\mathbb{B} = \{0,1\}, \ \mathbb{B}^* = \cup_{n \in \mathbb{N}} \mathbb{B}^n, \ \mathcal{T}$ machines de Turing, $K : \mathcal{T} \to \mathbb{B}^*$ leur codage en binaire. Complexité de Kolmogorov de $\beta \in \mathbb{B}^*$:

$$C(\beta) := \inf\{|K(t)\alpha| : t \in \mathcal{T}, t \text{ sur entrée } \alpha \text{ s'arrête donnant } \beta\}.$$

Suite β est dite **aléatoire**, si

$$C(\beta) = \mathcal{O}(|\beta|).$$

Corollaire

Il n'existe

- ni d'algorithme informatique
- ni de système physique (classique) fini

permettant de jouer au « pile ou face ». Réductibilité de l'aléa classique.

Systèmes quantiques

On joue au « pile ou face » à l'aide d'un GQVNA.

- Systèmes classiques = cas particulier des systèmes quantiques.
- Aucune expérience n'a mis la mécanique quantique en défaut.
- 1/3 de l'économie mondiale basée sur phénomènes quantiques.
- Théorie riche et intéressante mais fortement contre-intuitive.
- Localité, contextualité, irréductibilité de l'aléa quantique, perturbation irréversible de l'état par la mesure, certains états purs ont des marginales non extrémales, etc.
- Plusieurs tentatives de faire rentrer MQ dans cadre probabiliste classique (variables cachées).

 RENNE

Inégalités de Bell

Si variables cachées ⇒ théorie de Kolmogorov valide.

Proposition (Inégalité de Bell à quatre variables)

 X_1, X_2, Y_1, Y_2 quadruplet arbitraire de v.a. à valeurs dans $\{0,1\}$. Alors

$$\mathbb{P}(X_1 = Y_1) \leq \mathbb{P}(X_1 = Y_2) + \mathbb{P}(X_2 = Y_2) + \mathbb{P}(X_2 = Y_1).$$

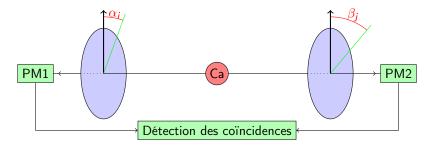
Démonstration.

Les v.a. étant à valeurs dans $\{0,1\}$, suffisant de vérifier sur les 16 réalisations possibles du quadruplet $(X_1(\omega),X_2(\omega),Y_1(\omega),Y_2(\omega))$ que

$$\{X_1 = Y_1\} \subseteq \{[X_1 = Y_2] \lor [X_2 = Y_2] \lor [X_2 = Y_1]\}.$$

L'expérience d'Orsay

[Aspect, Dalibard, Roger. Experimental test of Bell's inequalities using time-varying analyzers, Phys. Rev. Lett., 49: 1804–1807 (1982).]



Expérience admet explication quantique mais pas classique. Établit impossibilité de description classique de l'aléa quantique sans violation de localité.

Réfutation expérimentale de l'hypothèse de variables cachées

- $X_{\alpha} := 1 \Leftrightarrow \{\text{photon gauche traverse si polariseur orienté } \alpha\}.$
- $Y_{\beta} := 1 \Leftrightarrow \{\text{photon droit traverse si polariseur orienté } \beta\}.$
- Fait expérimental : $\mathbb{P}(X_{\alpha} = Y_{\beta}) = \sin^2(\alpha \beta)$.
- Inégalités de Bell :

$$\mathbb{P}(X_{\alpha_1}=Y_{\beta_1}) \leq \mathbb{P}(X_{\alpha_1}=Y_{\beta_2}) + \mathbb{P}(X_{\alpha_2}=Y_{\beta_1}) + \mathbb{P}(X_{\alpha_2}=Y_{\beta_2}).$$

• En choisissant $\alpha_1=0$, $\alpha_2=\pi/3$, $\beta_1=\pi/2$ et $\beta_2=\pi/6$:

$$\sin^2(\pi/2) \le \sin^2(-\pi/6) + \sin^2(-\pi/6) + \sin^2(\pi/6);$$

autrement dit $\Rightarrow 1 \leq 1/4 + 1/4 + 1/4$.

Mesure physique . . .

... vue comme modèle statistique abstrait

Postulat

- Soient S un ensemble abstrait d'états et O un ensemble abstrait d'observables.
- Pour toute observable $M \in \mathbf{O}$ il existe un ensemble $^a \mathbb{X} \subseteq \mathbb{R}$ de valeurs possibles de M.
- **Mesurer** M dans état ρ signifie déterminer mesure de probabilité $\pi := \pi_M^{\rho}$ sur $(\mathbb{X}, \mathcal{X})$.
- a. X peut être non-dénombrable; pour cet exposé, X dénombrable (fini or infini).

Remarque

À M et ρ fixés, pour toute valeur possible $x \in \mathbb{X}$ de l'observable,

 $\pi_{M}^{\rho}(x) = \mathbb{P}(\text{observable } M \text{ prend valeur } x \text{ tandis que système dans état } \rho).$

Rappel sur noyaux stochastiques I

Définition

 (Ω,\mathcal{F}) et (\mathbb{X},\mathcal{X}) espaces mesurables. Application

$$K:\Omega\times\mathcal{X}\to[0,1]$$

est un **noyau stochastique** de (Ω, \mathcal{F}) dans $(\mathbb{X}, \mathcal{X})$ si

- $\forall \omega \in \Omega, K(\omega, \cdot)$ probabilité sur \mathcal{X} et
- $\forall A \in \mathcal{X}, K(\cdot, A)$ fonction mesurable.

Rappel sur noyaux stochastiques II

• $K(\omega,\cdot)$ probabilité; définit foncteur contravariant $b\mathcal{X}\ni f\mapsto Kf\in b\mathcal{F}$ par

$$Kf(\omega) := \int_{\mathbb{X}} K(\omega, dx) f(x).$$

• $K(\cdot, A)$ fonction mesurable (bornée); définit foncteur covariant $\mathcal{M}_1(\mathcal{F}) \ni \mu \mapsto \mu K \in \mathcal{M}_1(\mathcal{X})$ par

$$\mu K(A) := \int_{\Omega} \mu(d\omega) K(\omega, A).$$

$$b\mathcal{F} \qquad \stackrel{b(K):=K}{\longleftarrow} \qquad b\mathcal{X}$$

$$b \uparrow \qquad \qquad \uparrow b$$

$$(\Omega, \mathcal{F}) \qquad \stackrel{K}{\longrightarrow} \qquad (\mathbb{X}, \mathcal{X})$$

$$\mathcal{M}_{1} \downarrow \qquad \qquad \downarrow \mathcal{M}_{1}$$

$$\mathcal{M}_{1}(\mathcal{F}) \xrightarrow{\mathcal{M}_{1}(K):=K} \mathcal{M}_{1}(\mathcal{X}).$$

Parier avec un dé classique l

- dé montre face $\omega \in \Omega := \{1, 2, \dots, 6\}.$
- Gain net du parieur déterminé par v.a.

$$X(\omega) = [(\omega - 1 \mod 3) - 1] \in \mathbb{X} := \{-1, 0, 1\}.$$

- Deux manières de représenter information véhiculée par X :

 - comme vecteur 6-dimensionnel V,
 comme matrice 6 × 3 stochastique déterministe $K(\omega, x) := K(\omega, \{x\})$:

$$V := \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}; K = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Parier avec un dé classique II

Observable X équivalente à la famille $M=(M_x)_{x\in\mathbb{X}}$ d'observables élementaires

$$M_{\mathbf{x}}(\omega) := K(\omega, \mathbf{x}) = \mathbbm{1}_{\mathbf{x}}(X(\omega)) = \mathbbm{1}_{\mathbf{X}^{-1}(\{\mathbf{x}\})}(\omega) = \delta_{\mathbf{X}(\omega)}(\{\mathbf{x}\}).$$

$$M_{-\mathbf{1}} := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}; M_{\mathbf{0}} := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; M_{\mathbf{1}} := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Remarque

- $\forall x \in \mathbb{X}$, $\omega \in \Omega$, $M_x(\omega) \ge 0$ et $M_x^2(\omega) = M_x(\omega)$. (i.e. M_x projections).
- $\sum_{x \in \mathbb{X}} M_x = 1$. $((M_x)_{x \in \mathbb{X}}$ résolution de l'identité).
- $X = \sum_{x \in \mathbb{X}} M_x x$. (« Décomposition spectrale » de X).

Définition

Mesure physique ci-dessus appelée franche.

Parier avec un dé classique III

États

$$\textbf{S} \simeq \mathsf{PV} := \{ \rho \in \mathbb{R}_+^{\mathsf{card}\Omega} : \sum_{\omega \in \Omega} \rho(\omega) = 1 \} \simeq \mathcal{M}_1(\Omega) = \{ \sum_{\omega \in \Omega} \rho(\omega) \delta_\omega, \rho \in \mathsf{PV} \}.$$

S convexe; $\mathbf{S}_{p} := \operatorname{Extr} \mathbf{S} \simeq \{\delta_{\omega}, \omega \in \Omega\} \simeq \{\rho \in \operatorname{PV} : \exists \omega_{0}, \rho(\omega_{0}) = 1\}.$

• Mesure physique détermine probabilité $\pi_M^{
ho} \in \mathcal{M}_1(\mathbb{X})$ par

$$\pi_{M}^{\rho}(x) = \rho(\{\omega \in \Omega : X(\omega) = x\}) = \sum_{\omega \in X^{-1}(\{x\})} \rho(\omega)$$
$$= \sum_{\omega \in \Omega} \rho(\omega) M_{x}(\omega) = \langle \rho, M_{x} \rangle.$$

• Mesure avec filtrage = probabilité conditionnelle :

$$\rho_{\mathsf{x}}(\omega) := \frac{M_{\mathsf{x}} \rho M_{\mathsf{x}}}{\langle \rho, M_{\mathsf{x}} \rangle}(\omega) = \mathbb{P}(\mathsf{le} \ \mathsf{d\'e} \ \mathsf{montre} \ \mathsf{face} \ \omega | X = x).$$

Parier avec un dé classique IV

• Exemple de 2 préparations différentes du système « dé » :

$$\rho_1 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}); \ \rho_2 = (\frac{1}{32}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2})$$

• Probabilités correspondantes dans $\mathcal{M}_1(\mathbb{X})$:

$$\pi_M^{\rho_1} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}); \ \pi_M^{\rho_2} = (\frac{5}{32}, \frac{9}{32}, \frac{18}{32}).$$

• Espérance de gain $\mathbb{E}_{
ho}(X) = \sum_{x \in \mathbb{X}} \pi^{
ho}_{M}(x) x$:

$$\mathbb{E}_{\rho_1}(X) = 0; \ \mathbb{E}_{\rho_2}(X) = -\frac{5}{32} + \frac{18}{32} = \frac{13}{32}.$$

Parier stochastiquement avec un dé classique l

Gain net du parieur (observable) $\leftrightarrow K$, mais maintenant K matrice stochastique non-déterminisite, ex.

Remarque

$$V(\omega) = \mathbb{E}(X|\text{d\'e montre face }\omega).$$

Parier stochastiquement avec un dé classique II

Remarque

- $\forall x \in \mathbb{X}$, $\omega \in \Omega$, $M_x(\omega) \ge 0$ mais $M_x^2(\omega) \le M_x(\omega)$. (i.e. M_x ne sont pas de projections).
- $\sum_{x \in \mathbb{X}} M_x = 1$. ($(M_x)_{x \in \mathbb{X}}$ résolution de l'identité).
- $\pi_M^{\rho}(x) = \langle \rho, M_x \rangle = \sum_{\omega \in \Omega} \rho(\omega) M_x(\omega)$. (Mais (M_x) ne fournissent pas décomposition spectrale de X).
- Mais espérance de gain dans état ρ exprimé par $\mathbb{E}_{\rho}X = \sum_{\mathbf{x} \in \mathbb{X}} \pi_{M}^{\rho}(\mathbf{x})\mathbf{x}$.

Définition

Famille $M = (M_x)$ avec M_x variables ≥ 0 mais non nécessairement des projections appelée **mesure floue ou probabiliste**.

Parier stochastiquement avec un dé classique III

Avec ρ_1 and ρ_2 précédents :

$$\pi_{M}^{\rho_{1}} = \rho_{1}K = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \begin{pmatrix} \frac{1}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \frac{1}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \end{pmatrix} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3});$$

$$\pi_{M}^{\rho_{2}} = \rho_{2} K = \left(\frac{1}{32}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right) \begin{pmatrix} \frac{4}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \frac{4}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{6} & 0 & \frac{4}{5} \end{pmatrix} = \left(\frac{38}{160}, \frac{45}{160}, \frac{77}{160}\right).$$

$$\mathbb{E}_{\rho_1}(X) = 0; \mathbb{E}_{\rho_2}(X) = \frac{39}{160}.$$

Mesures quantiques de von Neumann (i.e. projectives) I

Observables opérateurs auto-adjoints sur \mathbb{H} . e.g. $\mathbb{H}=\mathbb{C}^2$, $X=\begin{pmatrix}1&2i\\-2i&-2\end{pmatrix}$. Élémentaire de calculer

Valeurs propres	Vecteurs propres	Orthoprojections
X	\mathbf{u}_{x}	$M_x = \mathbf{u}_x\rangle\langle\mathbf{u}_x $
-3	$\frac{1}{\sqrt{5}}\begin{pmatrix} -i\\2 \end{pmatrix}$	$\frac{1}{5}\begin{pmatrix} 1 & -2i \\ 2i & 4 \end{pmatrix}$
2	$\frac{1}{\sqrt{5}}\begin{pmatrix} 2i\\1 \end{pmatrix}$	$\frac{1}{5} \left(\begin{array}{cc} 4 & 2i \\ -2i & 1 \end{array} \right)$

Vérifier

- $M_x \ge 0$ (donc auto-adjoints) et $M_x^2 = M_x$ (i.e. M_x orthoprojections).
- $\sum_{x \in \text{spec } X} M_x = I_{\mathbb{H}}$ (résolution de l'identité).
- $X = \sum_{x \in \text{spec } X} M_x x$ (décomposition spectrale).

Mesures quantiques de von Neumann (i.e. projectives) II

• États correspondent à des opérateurs densité :

$$S = \{ \rho : \rho \in \mathcal{B}(\mathbb{H}), \rho^* = \rho, \rho \geq 0, \mathsf{tr}(\rho) = 1 \} = \mathcal{D}(\mathbb{H}).$$

S convexe;
$$S_{\rho} := \operatorname{Extr} S = \{ \rho \in \mathcal{D}(\mathbb{H}) : \rho^2 = \rho \} \subseteq \mathcal{P}(\mathbb{H}).$$

• Mesure $(M_x)_{x \in \operatorname{spec} X}$ dans état ρ détermine π_M^{ρ} sur $\mathbb{X} = \operatorname{spec} X$:

$$\pi_{M}^{\rho}(x) = \operatorname{tr}(\rho M_{x}) = \langle \rho, M_{x} \rangle.$$

ullet Espérance de X dans état ho :

$$\mathbb{E}_{\rho}(X) = \sum_{x} \pi_{M}^{\rho}(x) x = \sum_{x} \operatorname{tr}(\rho M_{x}) x = \operatorname{tr}[\rho(\sum_{x} M_{x} x)] = \operatorname{tr}(\rho X) = \langle \rho, X \rangle.$$

• Loi conditionnelle avec filtrage à M_x dans état ρ :

$$\rho_{\rm x} = \frac{M_{\rm x} \rho M_{\rm x}}{\langle \rho, M_{\rm x} \rangle} \quad \text{(très contre-intuitive malgré similitude avec classique)!}$$

Mesures quantiques de von Neumann (i.e. projectives) III

Définition

- Résolution de l'identité en famille d'orthoprojections orthogonales $M = (M_x)_{x \in \mathbb{X}}$ est dite mesure quantique franche.
- À toute mesure franche correspond operateur auto-adjoint X admettant famille M comme décomposition spectrale X = \(\sum_{X \in \mathbb{N}} M_X x \).

Remarque

Comme en classique,

$$X \leftrightarrow (M_{\times})_{\times \in \mathbb{X}},$$

où maintenant $\mathbb{X} = \operatorname{spec} X$.

Mesures à valeurs operateurs positifs (MVOP)

Définition

- $M=(M_{\times})_{{\times}\in\mathbb{X}}$ famille d'opérateurs auto-adjoints de $\mathcal{B}(\mathbb{H})$
 - formant résolution de l'identité (i.e. $\sum_{x \in \mathbb{X}} M_x = I_{\mathbb{H}}$)
 - en termes d'opérateurs a $M_{x} \geq 0$
 - appelée mesure floue ou MVOP.
- ullet Dans état $ho\in \mathbf{S}$, mesure floue détermine probabilité $\pi_{M}^{
 ho}$ sur $\mathbb X$ par

$$\pi_{M}^{\rho}(x) = \operatorname{tr}(\rho M_{x}).$$

 $\sum_{x \in \mathbb{X}} \pi_M^{\rho}(x) x$ correspond à l'**espérance** de l'observable M.

a.
$$B \ge 0 \Leftrightarrow \operatorname{spec} B \subseteq \mathbb{R}_+ \Leftrightarrow \forall \psi \in \mathbb{H}, \langle \psi \mid B\psi \rangle \ge 0 \Leftrightarrow \exists A \in \mathcal{B}(\mathbb{H}) : B = A^*A$$
.

Transformation de Kraus I

Remarque

Mesures franches \subseteq des mesures floues \subseteq des mesures floues généralisées (i.e. ne vérifiant pas $\sum_{\mathbf{x}} M_{\mathbf{x}} = I_{\mathbb{H}}$).

- $M_x \geq 0 \Leftrightarrow \exists A_x \in \mathcal{B}(\mathbb{H}) : M_x = A_x^* A_x$.
- $\pi_M^{\rho}(x) = \operatorname{tr}(\rho M_x) = \operatorname{tr}(\rho A_x^* A_x) = \operatorname{tr}(A_x \rho A_x^*).$
- État conditionné à ce que observable prenne valeur x: $\rho_x = \phi_x(\rho) := \frac{A_x \rho A_x^*}{\operatorname{tr}(A_x \rho A_x^*)}.$
- État moyenné : $\Phi(\rho) = \sum_x \pi_M^{\rho}(x) \phi_x(\rho) = \sum_x A_x \rho A_x^*$.
- Second mesure dans état ρ_X . État conditionnel à valeur observée y: $A_{X}\rho_XA_{x}^A = A_{X}A_{X}\rho A_{x}^AA_{x}^A$

$$\rho_{xy} = \frac{A_y \rho_x A_y^*}{\operatorname{tr}(A_y \rho_x A_y^*)} = \frac{A_y A_x \rho A_x^* A_y^*}{\operatorname{tr}(A_y A_x \rho A_x^* A_y^*)}.$$

• État moyenné : $\Phi(\Phi(\rho)) = \Phi^{\circ 2}(\rho) = \sum_{x,y} A_y A_x \rho A_x^* A_y^*$.

Transformation de Kraus II

• Φ définie initialement sur $\mathcal{D}(\mathbb{H})$ peut-être étendue à $\mathcal{B}(\mathbb{H})$:

$$\mathcal{B}(\mathbb{H})\ni T\mapsto \Phi(T):=\sum_{x\in\mathbb{X}}A_xTA_x^*\in\mathcal{B}(\mathbb{H}).$$

- $\Phi > 0$ signifie $T > 0 \Rightarrow \Phi(T) > 0$.
- Φ complètement positive (cp) signifie¹

$$\mathsf{id}_{\textit{k}} \otimes \Phi : \mathbb{M}_{\textit{k}} \otimes \mathcal{B}(\mathbb{H}) \to \mathbb{M}_{\textit{k}} \otimes \mathcal{B}(\mathbb{H}) \geq 0, \forall \textit{k} \geq 1.$$

Théorème (de Kraus pour applications cp)

 $Si \Phi : \mathcal{B}(\mathbb{H}) \to \mathcal{B}(\mathbb{H})$ est normale et cp, il existe famille $(A_x)_{x \in \mathbb{X}}$ in $\mathcal{B}(\mathbb{H})$, t.q.

$$\Phi(T) := \sum_{x \in \mathbb{Y}} A_x T A_x^*.$$

1. En dimension finie, Φ est cp ssi matrice de Choi C_k^{Φ} de Φ :

$$C_k^{\Phi} := \mathrm{id}_k \otimes \Phi(\sum E_{ij} \otimes E_{ij}) = \sum E_{ij} \otimes \Phi(E_{ij}) \geq 0, \forall k \geq 1.$$

Transformations de Kraus III

Définition

- Famille (A_x) appelée famille **d'opérateurs de Kraus** de l'application cp Φ .
- $\mathcal{A} = \text{vect}(A_x, A_x^*, x \in \mathbb{X}).$ $\mathcal{A}' = \{ T \in \mathcal{B}(\mathbb{H}) : [T, A_x] = [T, A_x^*] = 0, \forall x \in \mathbb{X} \}.$
- Φ préserve l'identité si $\sum_{x} A_{x} A_{x}^{*} = I_{\mathbb{H}}$.
- Φ préserve la trace si $\sum_{x} A_{x}^{*} A_{x} = I_{\mathbb{H}}$.
- préserve l'unité = opération quantique ou Markovienne;
 préserve l'identité et la trace = canal quantique.
- Frontière de Poisson de Φ : Fix (Φ) := $\{T \in \mathcal{B}(\mathbb{H}) : \Phi(T) = T\}$.

Remarque

- $\Phi(T) = \sum_{x \in \mathbb{X}} A_x T A_x^*, M_x = A_x^* A_x$
- $\rho \in \mathbf{S}$. Définir $S_0 = \rho \in \mathbf{S}$, récursivement $S_{n+1} = \Phi(S_n)$.
- S_n converge-t-elle? Si oui, en quel sens? Quelle relation avec Fix(Φ)?

Intermède

pour mesures projectives

Commencer par état initial $S_0 \in \mathbf{S}$, répéter mesures projectives (P_x) pour obtenir suite d'états moyennés S_1, S_2, \ldots après mesure.

• Classiquement (pour $\Omega \simeq \mathbb{X}$) (S_i) sont mesures de probabilité avec

•
$$S_0 = \mathbb{P}$$
 et $S_1 = \sum_x \mathbb{P}(\cdot | X = x) \mathbb{P}(X = x) = \mathbb{P}(\cdot)$,

• Donc
$$\mathbb{P} = S_0 = S_1 = S_2 = \dots$$

- Quantiquement S_i sont opérateurs densité avec
 - $S_0 = \rho$ et $\rho' = \sum_x P_x \rho P_x$ (diagonale i.e. probabilité classique exprimée comme matrice densité) et $S_n = S_1$, $n \ge 1$.
 - Donc $S_0 = \rho$ et $\rho' = S_1 = S_2 = \dots$
- Inintéressant tant classiquement que quantiquement.

Intermède pour mesures floues

- Classiquement
 - $S_0 = \mathbb{P}$ et $S_1 = \sum_{\mathsf{x}} \mathbb{P} M_{\mathsf{x}}(\cdot) = \mathbb{P}(\cdot)$,
 - Donc $\mathbb{P} = S_0 = S_1 = S_2 = \dots$ (inintéressant).
- Quantiquement S_i sont opérateurs densité avec
 - $S_0 = \rho$ et $S_1 = \sum_x A_x \rho A_x^* (\rho \text{ et } A_x \text{ ne commutent pas!})$
 - Donc $S_n = \sum_{x_1, ..., x_n} A_{x_n} \cdots A_{x_1} \rho A_{x_1}^* \cdots A_{x_n}^*$

Transformation de Kraus IV

- En écrivant $\Phi(\rho) = \sum_{x} \pi_{M}^{\rho}(x) \phi_{x}(\rho)$,
- on observe que (S_n) est une chaîne de Markov classique sur S:

$$P(\rho,B) := \mathbb{P}(S_{n+1} \in B | S_n = \rho) = \sum_{\mathbf{x}} \pi_{\mathbf{M}}^{\rho}(\mathbf{x}) \delta_{\phi_{\mathbf{x}}(\rho)}(B).$$

• Introduire chaîne de Markov augmentée $Z_n := (S_n, X_n) \in \mathbf{S} \times \mathbb{X}$.

$$Q((\rho,x),B\times J):=\mathbb{P}(Z_{n+1}\in B\times J|Z_n=(\rho,x))=\sum_{y\in\mathbb{X}}\pi^\rho_M(B)\delta_{\phi_{\boldsymbol{y}}(\rho)}(B)\delta_y(J).$$

 (X_n) est une chaîne de Markov cachée :

$$\mathbb{P}(X_{n+1} = y | Z_n = (\rho, x)) = \pi_M^{\rho}(y).$$

Résultats I

La suite (S_n) ne converge pas en général. Cependant.

Théorème

Soit $\tau_n^{(m)} = \operatorname{tr}(S_n^m) \in [0,1]$, avec $m \geq 2$. Pour $m \geq 2$ fixé, la suite $\tau_n^{(m)}$ est une sousmartingale uniformément bornée. Il existe v.a. $\tau^{(m)}$ à valeurs dans [0,1] t.q.

$$\lim_{n\to\infty}\tau_n^{(m)}\stackrel{p.s.,L^1}{=}\tau^{(m)}.$$

Remarque

 $\mathbb{P}_{\rho}(\tau^{(m)}=1)=1\Leftrightarrow \text{purification}$ asymptotique de l'état initial ρ . Sinon suite (S_n) non purifiante.

Dimension finie: Maassen-Kümmerer (2006).

Dimension infinie : thèse de Jacques-Bunrith Lim (2011) tel-0063763.

Résultats II

Théorème (ergodique)

Il existe v.a. $S \in Fix(\Phi) \subset \mathbf{S}$ t.q.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}S_{n}\stackrel{w^{*}ot}{=}S\ p.s.$$

Monoïdes et marches aléatoires

Structure combinatoire algébrique

• Alphabet
$$\mathbb{A} = \{E, N, W, S\}$$
; $\mathbb{A}^* = \bigcup_{n=0}^{\infty} \mathbb{A}^n$, où

$$\mathbb{A}^0 = \{()\}, \ \mathbb{A}^n = \{w = (w_1, \dots, w_n), w_i \in \mathbb{A}\}, n \in \mathbb{N}.$$

 (A*, ∘) où w ∘ u concaténation des mots w est u un monoïde combinatoire.

Exemple:
$$e = ()$$
, $u = NWSWE$, $v = ESEEN$

$$e \circ u = u = u \circ e$$
.

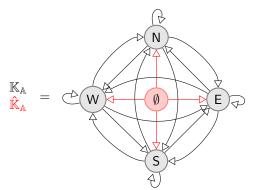
$$e \circ v = v = v \circ u$$
.

$$u \circ v = NWSWE | ESEEN,$$

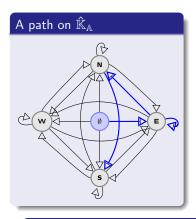
$$v \circ u = ESEEN|NWSWE$$
.

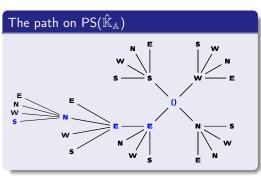
The complete graphs $\mathbb{K}_{\mathbb{A}}$ and $\hat{\mathbb{K}}_{\mathbb{A}}$

$$\mathbb{A} = \{E, N, W, S\}.$$



Path space tree generated by a finite automaton $\mathbb{K}_{\mathbb{A}}$





The path on \mathbb{A}^*

()EENS

Monoïdes et marches aléatoires Structure probabiliste

 ν probabilité supportée par A.

$$P(\alpha, \beta) = \mathbb{P}(X_{n+1} = \beta | X_n = \alpha) = \begin{cases} \nu(a), & \text{if } \beta = \alpha a \\ 0, & \text{sinon.} \end{cases}$$

Représentation de S_n en termes des marches aléatoires

- Poser $\mathbb{A} = \mathbb{X}$ (considérer uniquement cas fini).
- $\xi \in \mathbb{X}^* \Rightarrow \exists n \geq 0 : \xi \in \mathbb{X}^n$.
- $\bullet \ \mathbb{X}^n = \{(x_1,\ldots,x_n) : x_i \in \mathbb{X}\}.$
- Pour $\xi = (x_1, \dots, x_n)$, définir
 - $A_{\xi}^* = A_{x_1}^* \cdots A_{x_n}^*$ et $A_{\xi} = A_{x_n} \cdots A_{x_1}$.
 - $\bullet \ \phi_{\xi \upharpoonright_{n-1}}(\rho) = \phi_{x_{n-1}} \circ \cdots \circ \phi_{x_1}(\rho).$

Théorème

Soient $\rho \in \mathbf{S}$ et $S_n = \Phi^{\circ n}(\rho)$. Alors

- $\forall n \geq 1, S_n = \sum_{\xi \in \mathbb{X}^n} A_{\xi} \rho A_{\xi}^*$.

Remarque

Processus (S_n) déterminé uniquement par trajectoire combinatoire ξ ; (X_n) par marche aléatoire dynamique sur \mathbb{X}^* avec probabilité de transition $\phi_{\xi_{|\xi|-1}}(\rho)$.

Généralisation aux semi-groupoïdes Graphes dirigés

Example

- Graphe dirigé: $\mathbb{G} = (\mathbb{G}^0, \mathbb{G}^1, s, t)$ avec \mathbb{G}^0 et \mathbb{G}^1 ensembles dénombrables (finis ou infinis) de sommets (trajectoires de longueur 0) et d'arêtes (trajectoires de longueur 1) et $s, t : \mathbb{G}^1 \to \mathbb{G}^0$ les applications source et terminus.
- Pour $n \ge 2$ définir

$$\mathbb{G}^{n} = \{\alpha = \alpha_{n} \dots \alpha_{1}, \alpha_{i} \in \mathbb{G}^{1}, s(\alpha_{i+1}) = t(\alpha_{i})\} \subseteq (\mathbb{G}^{1})^{n},$$

et $PS(\mathbb{G}) = \bigcup_{n \geq 0} \mathbb{G}^n$ l'espace des trajectoires de \mathbb{G} . s, t s'étendent trivialement sur $PS(\mathbb{G})$.

 En définissant Γ = PS(G), Γ² = {(β, α) ∈ Γ × Γ : s(β) = t(α)} et · : Γ² → G la concaténation admissible gauche, (Γ, Γ², ·) est un semigroupoïde avec unités G³.

Représentation hilbertienne de $PS(\mathbb{G})$

- Graphe dirigé localement fini : $\mathbb{G} = (\mathbb{G}^0, \mathbb{G}^1, s, t)$ (donc $PS(\mathbb{G})$),
- Mots de $PS(\mathbb{G})$ non libres \Rightarrow contextualité.
- Espace de Fock : $\mathbb{H}_{\mathbb{G}} = \ell^2(\mathsf{PS}(\mathbb{G}))$, avec $(\psi_{\alpha})_{\alpha \in \mathsf{PS}(\mathbb{G})}$ b.o.n.
- Pour $\beta \in PS(\mathbb{G})$, $a \in \mathbb{G}^1$ et $v \in \mathbb{G}^0$, définir

$$L_{\mathsf{a}}|\psi_{\beta}\rangle = \left\{ egin{array}{ll} |\psi_{\mathsf{a}\beta}\rangle & \mathsf{s}(\mathsf{a}) = \mathsf{t}(\beta), \\ 0 & \mathsf{sinon}, \end{array}
ight. \ L_{\mathsf{v}}|\psi_{\beta}\rangle = \left\{ egin{array}{ll} |\psi_{\mathsf{v}\beta}\rangle = |\psi_{\beta}\rangle & \mathsf{v} = \mathsf{t}(\beta), \\ 0 & \mathsf{sinon}. \end{array}
ight.$$

• Algèbre semigroupoïdale gauche libre :

$$\mathfrak{L}_{\mathbb{G}} = \overline{\mathsf{Alg}}^{\mathsf{wot}} \{ L_{\mathsf{v}}, L_{\mathsf{a}}, \mathsf{v} \in \mathbb{G}^{0}, \mathsf{a} \in \mathbb{G}^{1} \}.$$

Représentation de $PS(\mathbb{G})$

• Pour $a \in \mathbb{G}^1$, et $v \in \mathbb{G}^0$,

$$L_{a} = \sum_{\beta \in t^{-1}(s(a))} |\psi_{a\beta}\rangle \langle \psi_{\beta}|, \quad L_{v} = \sum_{\beta \in t^{-1}(v)} |\psi_{\beta}\rangle \langle \psi_{\beta}|.$$

- L_{ν} est auto-adjoint, positif, $L_{\nu}^*L_{\nu}=L_{\nu}^2=L_{\nu}$ (projection).
- L_a^* est un opérateur d'annihilation ; $L_a^*L_a=L_{s(a)}$.
- La est une isométrie partielle.
- $L_a L_a^* = \sum_{\beta \in t^{-1}(s(a))} |\psi_{a\beta}\rangle \langle \psi_{a\beta}|$, donc $\sum_{a \in t^{-1}(v)} L_a L_a^* = L_v$.

C*-algèbre de Cuntz-Krieger de G

• Soient $\{R_a, a \in \mathbb{G}^1\}$ isométries partielles et $\{P_v, v \in \mathbb{G}^0\}$ projections t.q. :

$$u, v \in \mathbb{G}^{0}, u \neq v \quad \Rightarrow \quad P_{u}P_{v} = 0,$$

$$a, b \in \mathbb{G}^{1}, a \neq b \quad \Rightarrow \quad R_{a}^{*}R_{b} = 0,$$

$$a \in \mathbb{G}^{1} \quad \Rightarrow \quad R_{a}^{*}R_{a} = P_{s(a)},$$

$$a \in \mathbb{G}^{1} \quad \Rightarrow \quad R_{a}R_{a}^{*} \leq P_{t(a)},$$

$$v \in \mathbb{G}^{0}, |t^{-1}(v)| \neq 0, \infty \quad \Rightarrow \quad \sum_{a \in t^{-1}(v)} R_{a}R_{a}^{*} = P_{v}.$$

• Alors il existe C^* -algèbre universelle de \mathbb{G} , $C^*(\mathbb{G})$, l'algèbre de Cuntz-Krieger.

[Cuntz-Krieger (1980), Raeburn-Szymański (2004)].

• For $\alpha \in PS(\mathbb{G})$, $|\alpha| \geq 1$, $R_{\alpha} = R_{\alpha_{|\alpha|}} \cdots R_{\alpha_1}$.

Causalité quantique

[Markopoulou-Smolin (1997), Kribs-Markopoulou (2005), Malyshev (2001).] Soit $\mathbb{G} = (\mathbb{G}^0, \mathbb{G}^1, s, t)$ acyclique et $u, v \in \mathbb{G}^0$.

Ordre partiel induit :

$$[u \prec v] \Leftrightarrow [\exists \alpha \in \mathsf{PS}(\mathbb{G}) : s(\alpha) = u, t(\alpha) = v],$$

Structure causale quantique :

- À tout $v \in \mathbb{G}^0$ associer \mathbb{H}_v fini-dimensionnel.
- If u ≠ v and v ≠ u, alors u ~ v (u et v sont non-reliés causalement); espace de Hilbert conjoint ℍu⊗ℍv.
- $\forall a \in \mathbb{G}^1$, il existe canal quantique $\Phi_a : \mathbb{M}_{s(a)} \to \mathbb{M}_{t(a)}$, où \mathbb{M}_v l'algèbre des matrices agissant sur \mathbb{H}_x .
- Ensemble parallèle : ξ ⊂ G⁰ t.q. ∀u, v ∈ ξ ⇒ u ~ v. Algèbre des matrices M_ξ = ⊗_{v∈ξ}M_v agit sur H_ξ = ⊗_{v∈ξ}H_v.
- Si ξ et ζ ensembles parallèles t.q. toute trajectories vers le futur de ξ intersecte ζ et toute trajectoire émanant du passé arrivant à ζ a nécessairement intersecté ξ, correspondent à l'évolution d'un système premé : U_{ξ,ζ} : ℍ_ξ → ℍ_ζ.