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Abstract. We prove that the Hausdorff dimension of the two-dimensional Edwards‘ random 
walk is two with probability one. This result is in contradiction with the widely accepted 
conjecture that the HausdorfT dimension of a random walk is the inverse of the critical 
exponent U ;  actually, Y is $ for the two-dimensional Edwards’ random walk. 

1. Introduction 

The notion of Hausdorff dimension has in recent years become of increasing interest 
to physicists [ 1,2] .  It allows the precise characterisation of the dimensional properties 
of a set and  enables one to distinguish between sets of equal topological dimension 
or of equal Lebesgue measure. In most of the physically relevant situations, it turns 
out that a direct computation of the Hausdorff dimension d, is practically impossible. 
For this reason various physical characteristics, like critical exponents, have been used 
to try to estimate it. In this paper, we precisely investigate the use of such a critical 
exponent in the geometrical study of random walks. 

The critical behaviour of geometrical objects such as random walks, random 
surfaces, polymers in solution, percolation clusters and  so on, have been extensively 
studied of late. The large-scale behaviour of all these objects is governed by the 
exponent v. For example, the root-mean-squared Euclidean end-to-end distance r for 
random walks of length L behaves asymptotically as r -  L”. Similarly, the mean 
gyration radius r of a triangulated random surface containing L triangles behaves as 
r - L”. By asymptotic behaviour we mean that 

log r 
lim -- - v. 
L+.= log L 

An old conjecture, probably due to des Cloizeaux (see [3]), asserts that, for random 
walks, the inverse of v equals d,; or, equivalently, that d, is given by 1 /v .  This 
conjecture is by now widely accepted and used for all kinds of random geometrical 
objects, but it has been rigorously verified only in the case of ordinary random walks 
(ORW);  it has never been tested for more complicated objects because of the difficulty 
in estimating dH in such cases. Heuristic arguments in favour of the conjecture are 
given in [4]. 

The first and most difficult step in computing the Hausdorff dimension of a random 
walk is to construct its continuous limit. Until now, this has been done only for the 
d-dimensional ORW and, more recently, for the two-dimensional Edwards’ random 
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walk [5-71. We shall therefore concentrate on the two-dimensional Edwards’ walk: 
we show that its Hausdorff dimension can be rigorously computed; using the existing 
results on the critical exponent Y, we are able to get some insight into the conjecture. 
The Edwards’ random walk is, furthermore, of great physical interest because it provides 
a quite realistic model for polymers [8]. 

Roughly speaking, the Edwards’ walk (Ew)-known also as a weakly self-avoiding 
walk (WSAW) in the literature-is obtained by assigning to each ordinary random walk 
w a weight of the form exp(-gN(w)), where N ( w )  is formally the number of self- 
intersections of the walk w. For every g > 0 (no matter how small it may be) the critical 
behaviour of the Edwards’ walk is the same as that of the self-avoiding walk (SAW), 
i.e. the renormalisation group flow drives g to infinity. In particular, the critical 
exponent Y is expected to be a in two dimensions [9]. The renormalisation group 
computation of the critical exponent v is carried out in [ lo]  and is very strongly 
supported by direct numerical simulations [ 111 of EW establishing that Y = with very 
good accuracy. 

According to the conjecture, one would thus expect that the Hausdorff dimension, 
d H ,  of the Edwards’ random walk is !. Using the known construction of the continuous 
limit of Edwards’ walks, we shall however prove the following theorem. 

Theorem. The Hausdorff dimension of the two-dimensional Edwards’ path is almost 
surely two. 

This result is quite surprising since we know that Edwards’ paths differ qualitatively 
from the Brownian ones in the sense that almost every Edwards’ path can be decom- 
posed into a Brownian one plus a strictly non-vanishing square-integrable perturbation 
[12]. In spite of this qualitative difference, the Edwards’ and Brownian paths have 
the same dimension. Moreover, this result seemingly contradicts the conjecture. 

This paper is organised as follows. In 9 2 we recall the mathematical definition of 
the Hausdorff dimension. In 9 3 we define the Edwards’ model and briefly review its 
construction in the continuum. The theorem is proved in 9 4. In 9 5 we discuss our 
result and compare it with the conjecture; we state some related open problems. 

2. Hausdorff and spherical dimensions 

The Hausdorff dimension is an old, well defined mathematical notion which goes back 
to Hausdorff [ 131. Most of its mathematical properties were established by Besicovitch 
[14]. It has the peculiarity of not necessarily being an integer. Furthermore, two sets 
with the same topological dimension may have different Hausdorff dimensions. For 
example, a Brownian path has topological dimension one, like an ordinary curve. But 
it has Hausdorff dimension two, which means, intuitively, that in two dimensions it 
fills the plane. 

Let us now recall some mathematical definitions (see [15] for more details). Let 
A be a subset of R“. A 6 cover of A is a collection { Ui} of subsets of R” such that 

( i )  A c U U  

(i i)  IU,I=sup(lx-yl: x,yE U,}<S  V i. 
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Let s be a non-negative number. Define the Hausdorff measure T by 

where the infimum is over all S covers of A (2’ is actually not a measure but only an 
outer measure). This limit always exists but may be infinite. The Hausdorff dimension 
dH is then defined as 

dH(A) = inf{s: X ’ ( A )  = 0) = sup{ S :  %?(A)  = CO}.  ( 2 )  

s < d H ( A ) + p ( A )  =CO s > d , ( A ) J T ( A )  = 0. (3) 

Otherwise stated, d , ( A )  is the unique value for which 

Notice that X ’ H ‘ ~ ’ ( A )  may be zero, finite or infinite. 
It is worth noticing that the collection {U,} entering in the S covpr must be a 

cqllection of general subsets. However, it can be proven [16] that the collection can 
be restricted to convex sets, or open sets or closed sets always yielding the same (6 + 0 
limit) Hausdorff measure X’. If the collection {U,}  is restricted to balls then the limit 
measure is in general different; we denote it by Y’ and call it the spherical Hausdorff 
measure. The first example where a discrepancy between the two measures occurs is 
explicitly constructed in [14]. In the following, we reserve the symbol d H  to denote 
the Hausdorff dimension, obtained by using X’,  and the symbol S ,  to denote the 
spherical Hausdorff dimension obtained by using 9’. The merit of S ,  is that this 
dimension is more easy to handle and in fact intuitive arguments always use coverings 
by balls. It is therefore interesting to check whether dH and SH coincide in the case 
of random walks. Finally, note that dH and SH are defined for subsets of R“. So when 
speaking about the Hausdorff dimension of a random walk, what is actually meant is 
the dimension of its continuous limit. 

3. The Edwards’ model 

As explained above, the first step in computing the Hausdorff or spherical dimensions 
of a random walk is to construct its continuous limit. Let us briefly recall the 
construction of the Edwards’ probability measure in two dimensions. 

One would like to deFne on the Wiener space 0 = C([O, TI, R’), with O <  T < W ,  
a probability measure of the form 

dw(w) = Z - ’  exp(-gN(w)) dP(w)  (4) 
where g is a positive constaiit, Z is a normalisation constant and d P  denotes the 
Wiener measure. N (  w ) represents the number of self-intersections of the Brownian 
path w,  and is formally defined as 

N ( u ) = { , ~  { , T d s d t a ( w ( t ) - w ( s ) )  ( 5 )  

where S denotes the Dirac measure at the origin. 
Expression ( 5 )  is only formal because N ( w )  is divergent. It is, however, possible 

to render it finite by a procedure known as Varadhan renormalisation [5]. One can 
show that the renormalised quantity 
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is well defined and finite. E p [ - ]  means the expectation with respect to the Wiener 
measure P and 6, is a regularisation of 6 with lim,,o 6, = 6 in the sense of weak 
convergence. 

Remark. Actually, Varadhan studied the Brownian bridge; his proof extends without 
difficulty to the case of Brownian motion. Le Gall reformulated (for Brownian motion) 
the principal results of Varadhan, using the formalism of intersection local time [ 6 ] .  

The renormalised quantity N&w) has an acceptable meaning as the renormalised 
number of self-intersections. One has to note that, because of the renormalisation 
procedure, Nr(w) is no longer positive definite. However, the probability that N , ( w )  
is smaller than a negative constant can be shown to fall exponentially fast, i.e. 

P({w: N r ( w ) s  -a,  a>0})-exp(-.rra/8)/a2. 

Thus, it is possible to prove that exp(-gNr(w)) E L ' ( d P )  for every finite g. We can 
therefore define p by its Radon-Nikodim derivative with respect to the Wiener measure 

where Z ( g )  = Ep[exp(-gNr(w))]. Note that the L' integrability for every finite g of 
the Radon-Nikod9m derivative is equivalent to Lp integrability for every finite p .  

4. Proof of the theorem 

Before computing the Hausdorff and spherical dimensions of Edwards' paths, we need 
to prove the following simple lemma. 

Lemma. For every a with 0 < a < 4, the Edwards' paths are I*-almost surely Holder 
continuous of order a. 

Proof Using Holder's inequality and the integrability of exp(-gNr(w)), we prove that 
for every p < CO we have 

E , ( l w ( r +  h )  - W ( r ) l P ) s  Clhlp12 (8) 
for a positive constant C. Choose p > 2 and use the Kolmogorov-eentsov theorem 
(see, e.g., [17]). It follows that w is p a l m o s t  surely Holder continuous of order a 

U for every a E (0 ,  t ) .  

The following definition formalises the familiar notion of electrostatic energy of a 
charge distribution in a form useful in potential theory. Let p be a mass distribution 
on Rz (i.e. a measure with finite total mass). The integral 

is called the t energy of p. 

potential theory; we state it without proof. 
We shall now use a standard result which relates geometric measure theory to 



Hausdorf dimension jor the Edwards’ walk 1389 

Proposition. Let A be a Souslin subset of R“. If there exists some mass distribution p 
supported by A and whose t energy I , ( p )  is finite for some t ,  then d H ( A )  3 t. 

The proof of this proposition is originally due to Frostman [18] and Erdos and 

We are now able to prove the theorem of 0 1. 
Gillis [19]. A more recent exposition can be found in [20]. 

Proof of the  theorem. Let A = w ( [ O ,  TI ) .  It is clear that dH(A) G 2 since A is a subset 
of R2 (it would, however, be easy to prove this upper bound, using the lemma above). 
It remains to prove that d H ( A )  3 2. We choose as mass distribution on R2 the occupation 
measure p defined for every B c R2 by 

p ( B ) = T-l A { t : 0 t S T, w ( t ) E B }  (10) 

where A denotes the one-dimensional Lebesgue measure. p is supported (by construc- 
tion) by the path w. Using Holder’s inequality, the fact that exp(-gNr(w)) E L’(dP) 
for every finite g, and Fubini’s theorem, it is easy to verify that for every E > 0, I,( v )  
is finite V t  < 2 - E ,  for p-almost all w. Now, any Bore1 set is a Souslin set. Since both 
[0, TI and R2 are complete metric spaces, the almost surely continuity of the mapping 
U :  [0, T]+R2 proved in the previous lemma is enough to guarantee that Edwards’ 
paths are Souslin subsets of R2. We can thus conclude by the previous proposition. 

0 
We introduced in § 2 the notion of spherical dimension. It is easy to compute it 

as a corollary of the previous theorem. By taking the infimum only over S covers 
consisting of balls, one obtains a measure Y’ not smaller than the Hausdorff measure 
2’. Therefore, dH C SH. By virtue of the theorem, we have 2 s  SH C 2 (the second 
inequality is trivial because w([O,  T I )  is a subset of R’). We may thus conclude that 
SH=2.  So, the Hausdorff and spherical dimensions of the Edwards’ random walk 
coincide (the same is obviously true for the ORW). 

Remark. A notion related to the Hausdorff dimension is that of ‘capacity.’ For every 
compact set K c R“, denote by N (  E ,  K )  the minimum number of balls of same radius 
E needed to cover K. The capacity C ( K )  of K is defined as 

It can be seen that for every compact set K ,  d H ( K )  C C ( K ) .  Obviously, the capacity 
of almost every Edwards’ path is two, thus it coincides with the Hausdorff dimension 
for the two-dimensional Edwards’ paths. 

5. Discussion 

It is not difficult to understand aposteriori why the Hausdorff dimension of the Edwards’ 
path is two; if one looks carefully at the proof of the theorem, it is clear that dH is 
essentially a metric property of the path. The explicit Edwards’ probability measure 
enters only through Fubini’s theorem to ensure the almost sure finiteness of the energy 
integral. Thus, the details of this probability measure-contained in the factor 
exp(-gN,(w))-do not enter into consideration. Indeed, we verified that if a stochastic 
process has a Radon-Nikod9m derivative with respect to the two-dimensional Wiener 
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measure which is L p  integrable for every finite p ( p  3 l ) ,  then the Hausdorff dimension 
of its trajectories is almost surely two. It is however possible to imagine a fractal 
dimension where the characteristics of the probability measure are taken into account. 
It would be interesting to establish the mathematical properties of such a dimension; 
work in this direction is in progress. 

In view of the conjecture (which claims that d ,  = l / v ) ,  the theorem on dH proved 
in last section and the results on v quoted in 0 1 seem to be in contradiction. Of course 
this work does not provide a proof that the conjecture is false: we computed the 
Hausdorff dimension only for (arbitrarily large but) finite T whereas the exponent v 
is defined in the limit T + CO; note, however, that dH does not depend on T. Moreover 
we were not able to compute v analytically. 

In spite of the above remark some comments can be made against the conjecture. 
First, we proved that in the continuum the Edwards’ random walk has different short 
scale (Hausdofi  dimension) and large scale ( 1 /  v) behaviours. This phenomenon 
occurs as well in the study of the 44 field theory in two dimensions [21], and it is well 
known that Edwards’ random walks provide a representation of that same theory [22]. 
Thus, the field-theory results completely support ours. 

How does dH behave in the limit T + CO? This limit corresponds to the infrared- 
scaling limit of the 44 field theory. Such a ‘limit’ has never been proven. Roughly 
speaking, there are two possibilities. 

(i)  The limit measure is still an Edwards’ measure in the sense that it has the same 
form as the measure constructed in § 3. In that case, one may expect the Hausdorff 
dimension to be still two because, as explained above, the dimension does not depend 
on all the details of the measure. This would explicitly contradict the conjecture. 

(ii) In the opposite case, the limit measure does not describe Edwards’ walks (as 
constructed in § 3) any longer, but probably some kind of self-avoiding random walks. 
So the Hausdorff dimension computed with this limit measure is no longer the Hausdorff 
dimension of the Edwards’ random walk. This means that in this case the conjecture 
cannot be applied. Furthermore, since the unnormalised Edwards’ measure becomes 
singular with respect to the Wiener measure in the limit T + CO, it is expected that there 
is not a unique limit measure. 

The conclusion of the above reasoning is that Edwards’ random walks provide an 
example where either the conjecture is false (case (i))  or is not applicable (case (ii)). 

Our last comment is the following. Even if d H  = l / v  in some very special cases 
(e.g. Brownian motion), we claim that 1/ v cannot correspond to a Hausdorff dimension, 
or even to any fractal dimension in general. I t  is true that 1/ v gives information about 
the large-scale behaviour of the considered random geometrical object (walk, surface, 
percolation cluster, etc). It must be stressed, however, that it cannot be a dimension 
with all the mathematical physical or intuitive connotations the word ’dimension’ 
implies. In  fact, a quantity D can be reasonably called a dimension if 

( i )  it coincides with the topological dimension on regular objects, 
( i i )  it defines a transition point for some outer measure in the sense that some 

outer measure rn,, parameterised by s, is infinite if s < D and zero if s > D. 
A corollary of the latter property is that D is not decreasing, i.e. A c B J  D ( A )  s 

D ( B ) .  Now, these conditions are violated by 1/v.  For example, the Edwards’ walk 
with g < 0 in two dimensions has v = 0 [ 111. If 1/ v was a dimension then one would 
expect D = 00. Now, the dimension must be bounded above by 2 by virtue of (i)  and 
( i i )  which leads to the explicit contradiction 2 > C O !  In conclusion, it is vain to try to 
identify 1/ v with the Hausdofi dimension (or any other dimension). From a general 
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point of view, there is a lot of confusion about Hausdorff dimension. In the physical 
literature one can find several more or less physical quantities, related to the capacity 
but with the limit E + 0 replaced by E += 00, which are wrongfully used as 'definitions' 
of the Hausdorff dimension. Note, however, that the limit E + 03 equals 1/ U ;  it does 
not define some independent quantity that is later shown to be equal to 1/ v. Although 
the limits E += 0 and E += 03 coincide in the very special case of Brownian motion (g = 0), 
there is no reason for these limits to coincide in general. Most of the confusion stems 
from the fact that the trust in the conjecture is so strong that nowadays a lot of 
physicists, when speaking about Hausdorff dimension, mean in fact 1/v. We hope 
that this paper will help to clarify the situation. 
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