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And when X is not a group?

What is the type problem for random walks?

@ How often does a random walker on a denumerably infinite graph X
returns to its starting point?
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Generalities on random walks
Introduction and motivation
And when X is not a group?

What is the type problem for random walks?

@ How often does a random walker on a denumerably infinite graph X
returns to its starting point?

@ It depends on X and on the law of jumps.

@ Typically a dichotomy
o either almost surely infinitely often (recurrence),
o or almost surely finitely many times (transience).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Recall the case X = Z¢

e X = Z9 is an Abelian group with generating set, e.g. the minimal
generating set

A={ej,—e1,...,eq,—eg}; cardA = 2d.
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Recall the case X = Z¢

e X = Z9 is an Abelian group with generating set, e.g. the minimal
generating set

A={ej,—e1,...,eq,—eg}; cardA = 2d.

@ 4 probability on A = probability on X with supp z = A.
Uniform: Vx € A: p(x) = L = 4.
Symmetric: Vx € A : p(x) = p(—x).
Zero mean: Y ., xu(x) = 0.
@ £ = (&n)nen i.i.d. sequence with & ~ p.
@ Define Xp = x € X and Xju1 = Xy + &nr1. Then

P(x,y) = P(Xps1 = y[Xo = x) = P(§ps1 =y — x) = ply — x).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Recall the case X = Z¢

e X = Z9 is an Abelian group with generating set, e.g. the minimal
generating set

A={ej,—e1,...,eq,—eg}; cardA = 2d.

@ 4 probability on A = probability on X with supp z = A.
Uniform: Vx € A: p(x) = L = 4.
Symmetric: Vx € A : p(x) = p(—x).
Zero mean: Y ., xu(x) = 0.
@ £ = (&n)nen i.i.d. sequence with & ~ p.
@ Define Xp = x € X and Xju1 = Xy + &nr1. Then

P(x,y) = P(Xps1 = y[Xo = x) = P(§ps1 =y — x) = ply — x).

@ Simple (=uniform on the minimal generating set) random walk.en: X \’n“
the X-valued Markov chain (X;)nen of MC(X, P, €) :
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Recall the case X = Z9? (cont'd)

Theorem (Georg Pélya?)

Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend
, Ann. Math.

For X = Z9 with uniform jumps on n.n.
d > 3: transcience,

d =1,2: recurrence.
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d > 3: transcience,
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Recall the case X = Z9? (cont'd)

Theorem (Georg Pélya?)

Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend
, Ann. Math.

For X = Z9 with uniform jumps on n.n.
d > 3: transcience,

d =1,2: recurrence.

Proof by direct combinatorial and Fourier estimates.
e P'(x,y) = Exl,...x,,,l P(Xo=x,X1 =x1,...,Xp=y) =
1w (y = x).
e For £ ~ p and p uniform,
x() = Eexp(i{t]€)) = 3, exp(i{t | x))u(x) = § 5y cos(ti).
C,

2n
n d
e P27(0,0) ~ ﬁ j—_— (% DOy cos(tk)> d9t ~ —# as

n — oo. NMERS “3"““
@ Conclude by Borel-Cantelli (d > 3) or renewal theorem (d < 2).

=
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@ Mathematical interest: simple models with three interwoven
structures:
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structures:

o low-level algebraic structure conveying combinatorial information,
o high-level algebraic structure conveying geometric information,
e stochastic structure adapted to the two previous structures.
@ Discretised (in time/space) versions of stochastic processes,
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Why simple random walk are studied?

@ Mathematical interest: simple models with three interwoven
structures:
o low-level algebraic structure conveying combinatorial information,
o high-level algebraic structure conveying geometric information,
e stochastic structure adapted to the two previous structures.
@ Discretised (in time/space) versions of stochastic processes,
numerous interesting mathematical problems still open.
e Modelling transport (of energy, information, charge, etc.)
phenomena
e in crystals (metals, semiconductors, ionic conductors, etc.)
e or on networks.
@ Intervening in models described by PDE's involving a Laplacian
hence in harmonic analysis
o classical electrodynamics,
o statistical mecharylcs, . . :‘Q\“
e quantum mechanics, quantum field theory, etc ENINES
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Short algebraic reminder

Groups, groupoids and semigroupoids

Let T #0. (T,-)is a
semigroup
if -:F'xl—TandVab,cel
(cb)a = c(ba)

0
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Short algebraic reminder

Groups, groupoids and semigroupoids

Let T #0. (T,-)is a

group semigroupoid
if :T'xl—=TandVa b cel ifIr2Crxlfand-:M2—=r
(cb)a = c(ba) (c,b),(b,a) e T? =

(cb, a), (c, ba) € T? and (ch)a = c(ba
Jlecl:ea=ae=a units not necessarily unique,

Jalel:aat=ala=e

0
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Short algebraic reminder

Groups, groupoids and semigroupoids

Let T #0. (T,-)is a

group groupoid
if :T'xl—=TandVa b cel ifIr2Crxlfand-:M2—=r
(cb)a = c(ba) (c,b),(b,a) e T? =
(cb, a), (c, ba) € T? and (ch)a = c(ba
Jlecl:ea=ae=a units not necessarily unique,
Jalel:aalt=ata=e Ja=t:(a )t =a,

(a,a "), (a ' a) € I'? and

(a,b) € T2 = a!(ab) = b;

(b,a) € I? = (ba)a~* = b. ’“
N
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Generalities on random walks

Introduction and motivation
And when X is not a group?

Monoidal closure of A

A={E,N, W,S}; A" =U2,A",
A% ={e}, A" ={a=(a1,...,ap),a; € A}
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Generalities on random walks

Introduction and motivation
And when X is not a group?

Monoidal closure of A

A={E,N, W,S}; A" =U2,A",
A% ={e}, A" ={a=(a1,...,ap),a; € A}

Proposition

(A*, 0) is a monoid, the monoidal closure of A.

aoe=coa=aqa. If a = EENNESW,; 3 = WSN then
ao = EENNESWWSN # WSNEENNESW = (o «.
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Introduction and motivation
And when X is not a group?

Combinatorial information # geometric information

@ A* ~ path space. Combinatorial information encoded into the finite
automaton FA. Paths define a regular language recognised by FA;.
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Introduction and motivation
And when X is not a group?

Combinatorial information # geometric information

@ A* ~ path space. Combinatorial information encoded into the finite
automaton FA. Paths define a regular language recognised by FA;.

@ Road map needed to translate into geometric information
E=a,W=a1N=bS=b"!and relations on reduced words.

72 = (A|R1): Ry = {aba=1b~! = e} (Abelian).
Fy = (A|R2): Ra =0 (free).

72 and F, have same combinatorial description but are very different
groups.
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Generalities on random walks

Introduction and motivation
And when X is not a group?

Combinatorial information # geometric information

@ A* ~ path space. Combinatorial information encoded into the finite
automaton FA. Paths define a regular language recognised by FA;.

@ Road map needed to translate into geometric information
E=a,W=a1N=bS=b"!and relations on reduced words.

72 = (A|R1): Ry = {aba=1b~! = e} (Abelian).
Fy = (A|R2): Ra =0 (free).

72 and F, have same combinatorial description but are very different
groups.

Geometric information encoded into the group structure I' = (A|R).
Natural surjection g : A* — T
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Generalities on random walks
Introduction and motivation
And when X is not a group?

The Cayley graph of finitely generated groups

Definition
Let T = (A|R). The Cayley graph Cayley(I', A) is the graph

@ vertex set [ and

o edge set the pairs (x,y) € ['? such that y = ax for some a € A.

Since A symmetric, graph undirected.

For A ={a,b,a~ !, b71},
o Cayley(F2, A) is the homogeneous tree of degree 4,

o Cayley(Z?, A) is the standard Z? lattice with edges over n.n. a3
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The probabilistic structure

® 1 :=(p1,...,Pcards) € M1(A) transforms FA into PFA.
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The probabilistic structure

® 1 :=(p1,...,Pcards) € M1(A) transforms FA into PFA.

||

e Path space A* acquires natural probability P*({a}) = [[;Z] Pa;-
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The probabilistic structure

® 1 :=(p1,...,Pcards) € M1(A) transforms FA into PFA.
o Path space A* acquires natural probability P*({a}) = Hli‘l Po; -
@ Due to the surjection g, PFA induces natural Markov chain (X,):

P(Xpt1 = y|Xn =x) = ,u({xily}) = pe-1y, X,y €T.
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Generalities on random walks
Introduction and motivation
And when X is not a group?

The probabilistic structure

® 1 :=(p1,...,Pcards) € M1(A) transforms FA into PFA.

Path space A* acquires natural probability P*({a}) = Hli‘l Pa; -

Due to the surjection g, PFA induces natural Markov chain (X,):

P(Xpt1 = y|Xn =x) = ,u({xily}) = pe-1y, X,y €T.

Probabilistic structure adapted to combinatorial /geometric structure
if suppp = A.

@ When u replaced by family (iux)xer not necessarily

supp ix = A, Vx € T (i.e. ellipticity can fail).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

The probabilistic structure

® 1 :=(p1,...,Pcards) € M1(A) transforms FA into PFA.
o Path space A* acquires natural probability P*({a}) = Hli‘l Po; -
@ Due to the surjection g, PFA induces natural Markov chain (X,):

P(Xpt1 = y|Xn =x) = ,u({xily}) = pe-1y, X,y €T.

@ Probabilistic structure adapted to combinatorial /geometric structure
if suppp = A.

@ When u replaced by family (iux)xer not necessarily
supp ix = A, Vx € T (i.e. ellipticity can fail).

@ Suppose there exist a € A and x,y € T, with x # y, such that

i({a}) = 0 and 1, ({a}) # 0.

Then combinatorial structure must be modified for (fx)xer to w0 B
remain adapted. The resulting ' may not be a group any longer."=NNES
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e Abelian group of finite type generated by supp u,
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How can we generalise?

e Distinctive property of simple r.w. on Z¢:

e Abelian group of finite type generated by supp u,
o i.e. graph on which r.w. evolves = Cayley(Z9, supp ).

o Generalisation to non-commutative groups:
o The three interwoven structures and harmonic analysis survive.

Very active domain (e.g. products of fixed size random matrices, random
dynamical systems, amenability issues, etc.).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

How can we generalise?

e Distinctive property of simple r.w. on Z¢:

e Abelian group of finite type generated by supp u,
o i.e. graph on which r.w. evolves = Cayley(Z9, supp ).

o Generalisation to non-commutative groups:
o The three interwoven structures and harmonic analysis survive.

Very active domain (e.g. products of fixed size random matrices, random
dynamical systems, amenability issues, etc.).

@ Space inhomogeneity: family of probabilities (pix)xex, with
px € Mi(A) >~ {p € R?rdA : ZaEA pa=1}.

P(Xnt1 = y[Xn = x) = px(y = x)-
(e.g. i.i.d. random probabilities (ux)).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

How can we generalise?

e Distinctive property of simple r.w. on Z¢:
e Abelian group of finite type generated by supp u,
o i.e. graph on which r.w. evolves = Cayley(Z9, supp ).
o Generalisation to non-commutative groups:
o The three interwoven structures and harmonic analysis survive.
Very active domain (e.g. products of fixed size random matrices, random
dynamical systems, amenability issues, etc.).

@ Space inhomogeneity: family of probabilities (pix)xex, with
Mx € Ml(A) = {P € ]RgrardA : ZaEA Pa = 1}'
P(Xn+1 = y‘Xn = X) - MX(.y - X)‘
(e.g. i.i.d. random probabilities (ux)).

o Combinatorial and geometric structures survive.
o If uniform ellipticity, probabilistic structure remains adapted.
e But harmonic analysis (if any) very cumbersome. NIVERSITE D '&\“
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Generalities on random walks
Introduction and motivation
And when not a group?

And when the graph is not a group?

R.w. on quasi-periodic tilings of RY of Penrose type: the groupoid case
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Generalities on random walks
Introduction and motivation
And when X is not a group?

And when the graph is not a group?

R.w. on quasi-periodic tilings of RY of Penrose type: the groupoid case

e Transport properties on quasi-periodic structures?.

Lintroduced as mathematical curiosities by Sir Roger Penrose (1974-1976),
observed in nature as crystalline structures of Al-Mn alloys by Shechtman (1982),r¢ st o ’p\“
Nobel Prize in Chemistry 2011, obtained by an algorithmically much more efficienB®ayNES
by Duneau-Katz (1985).
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And when the graph is not a group?

R.w. on quasi-periodic tilings of RY of Penrose type: the groupoid case

e Transport properties on quasi-periodic structures?.

@ Spectral properties of Schrédinger operators on quasi-periodic
structures.

Lintroduced as mathematical curiosities by Sir Roger Penrose (1974-1976),
observed in nature as crystalline structures of Al-Mn alloys by Shechtman (1982),r s ¢ o ’p\“
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Generalities on random walks
Introduction and motivation

And when X is not a group?

And when the graph is not a group?

R.w. on quasi-periodic tilings of RY of Penrose type: the groupoid case

e Transport properties on quasi-periodic structures?.

@ Spectral properties of Schrédinger operators on quasi-periodic
structures.

e Random walks on groupoids, non-random inhomogeneity.

Lintroduced as mathematical curiosities by Sir Roger Penrose (1974-1976),
observed in nature as crystalline structures of Al-Mn alloys by Shechtman (1982),r s o ’;\“
Nobel Prize in Chemistry 2011, obtained by an algorithmically much more efficienB®ayNES
by Duneau-Katz (1985).
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R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal
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And when the graph is not a group?

R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal

@ Hydrodynamic dispersion in porous rocks Matheron and Marsily
(1980), numerical simulations Redner (1997).
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And when the graph is not a group?

R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal

@ Hydrodynamic dispersion in porous rocks Matheron and Marsily
(1980), numerical simulations Redner (1997).

@ Propagation of information on directed networks (pathway signalling
networks in genomics, neural system, world wide web, etc.)
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Generalities on random walks
Introduction and motivation
And when X is not a group?

And when the graph is not a group?

R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal

@ Hydrodynamic dispersion in porous rocks Matheron and Marsily
(1980), numerical simulations Redner (1997).

@ Propagation of information on directed networks (pathway signalling
networks in genomics, neural system, world wide web, etc.)

o Differential geometry, causal structures in quantum gravity.
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Generalities on random walks
Introduction and motivation
And when X is not a group?

And when the graph is not a group?

R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal

Hydrodynamic dispersion in porous rocks Matheron and Marsily
(1980), numerical simulations Redner (1997).

Propagation of information on directed networks (pathway signalling
networks in genomics, neural system, world wide web, etc.)

Differential geometry, causal structures in quantum gravity.

Random walks on semi-groupoids (and their C*-algebras), failure of
the reversibility condition. s WQ\“
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Generalities on random walks
Introduction and motivation
And when X is not a group?

And when the graph is not a group?

R.w. on quadrants with reflecting boundaries

In the interior of the quadrant: zero drift, non-diagonal covariance matrix.

@ Many models in queuing theory.

@ No algebraic structure encoding the geometry survives.

e Studied by Markov chain methods.

@ Thoroughly studied with Lyapunov functions: Fayolle, Malyshev,
Menshikov (1994), Asymont, Fayolle Menshikov (1995),
Aspiandiarov, lasnogorodsli, Menshikov (1996), Menshikov, P. uuuess ::"““
(2002).
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Generalities on random walks
Introduction and motivation
And when X is not a group?

Results

For groupoids

Theorem (de Loynes, thm 3.1.2 in PhD thesis (2012)?)

Available at

The simple random walk on (adjacent edges of) a generic Penrose tiling
of the d-dimensional space is

@ recurrent, if d < 2, and
e transient, if d > 3.

Theorem (de Loynes (2014))

@ The asymptotic entropy of the simple random walk on generic
Penrose tiling vanishes,

@ hence, the tail and invariant o-algebras are trivial.

0
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http://tel.archives-ouvertes.fr/tel-00726483

Generalities on random walks

Introduction and motivation
And when X is not a group?

Results

For semi-groupoids

Theorem (Campanino and P., MPRF 2003)
The simple random walk

@ on the alternate 2-dimensional lattice is recurrent,

@ on the half-plane one-way 2-dimensional lattice is transient,

@ on the randomly horizontally directed 2-dimensional lattice, where
(x2)secz is an i.i.d. {0, 1}-distributed sequence of average 1/2, is
transient for almost all realisations of the sequence.

Various subsequent developments in relation with this model: Guillotin
and Schott (2006), Guillotin and Le Ny (2007), Pete (2008), Péne
(2009), Devulder and Péne (2011), de Loynes (2012).

0
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Generalities on random walks

Introduction and motivation
And when X is not a group?

Results (cont'd)

For semi-groupoids

Theorem (Campanino and P., JAP 2014, in press)

o f:Z — {-1,1} a Q-periodic function (@ > 2): 25:1 f(y)=0.
® (py)yez i.i.d. Rademacher sequence.

lyl?
large |y]|.
0 gy =(L=Ay)f(y)+ Aypy.

o (\))yez iid. {0,1}-valued sequence such that P(\, = 1) < for

@/f B < 1 then the simple random walk is almost surely transient.

@/f 3 > 1 then the simple random walk is almost surely recurrent.

A deterministic sequence with ||Alj1 < oo = recurrence. Nevertheless, A
there exist deterministic sequences with ||A||; = oo leading to recurrence. ||
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group?
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group?

o For alternate lattice, again a finite automaton, FA,, governs
combinatorics. E.g. starting at even, NSWWNW ¢ language.
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group?

o For alternate lattice, again a finite automaton, FA,, governs

combinatorics. E.g. starting at even, NSWWNW ¢ language.
@ Vertical projection of walk = Markov chain on Z with transitions
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group? (cont'd)

@ For alternate lattice = path space generated by finite automaton =
admissible paths form regular language.
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group? (cont'd)

@ For alternate lattice = path space generated by finite automaton =
admissible paths form regular language.

@ For half-plane lattice = path space generated by push down
automaton = admissible paths form context-free language.
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group? (cont'd)

@ For alternate lattice = path space generated by finite automaton =
admissible paths form regular language.

@ For half-plane lattice = path space generated by push down
automaton = admissible paths form context-free language.

@ For randomly horizontally directed lattice = path space generated
by linear bounded Turing machine = admissible paths form
context-sensitive language.
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Algebraic and probabilistic structures @t end) conftepeth

And when it is not a group? (cont'd)

@ For alternate lattice = path space generated by finite automaton =
admissible paths form regular language.

@ For half-plane lattice = path space generated by push down
automaton = admissible paths form context-free language.

@ For randomly horizontally directed lattice = path space generated
by linear bounded Turing machine = admissible paths form
context-sensitive language.

@ Vertical projection of walk = Markov chain on Z with transitions
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Algebraic and probabilistic structures @t end) conftepeth

Two archetypal examples of (semi)groupoids
Directed graphs

e Directed graph: G = (G° G, s, t) with G° and G! denumerable
(finite or infinite) sets of vertices (paths of length 0) and edges
(paths of length 1) and s, t : G — GO the source and terminal
maps.

@ For n > 2 define

G"={a=a...a1,0a; € G',s(a;y1) = t(a;)} C (GY)",
and PS(G) = Up>oG" the path space of G. Maps s, t extend
trivially to PS(G).

@ On defining I = PS(G), I = {(B,a) €T x T : 5(B) = t(a)} and
-: % — G the left admissible concatenation, (I',2,-) is a
semigroupoid with space of units GP°. A\
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Algebraic and probabilistic structures @t end) conftepeth

Two archetypal examples of (semi)groupoids

Admissible words on an alphabet

A alphabet, A = (Ap.a)apea with A, p € {0,1}, A° = {()},
A"={a=(ap - o), a; € A},
@ set of words of arbitrary length A* = U,enA" equipped with left
concatenation is a monoid,
0 Wa(A)={aeA*: Alojt1,ai) =1,i=1,...,|a|} (set of
A-admissible words) is a semigroupoid with (3, &) composable pair if
A(Bl,a‘od) =1.

Remark

| A

A semigroupoid is not always a category. Consider, for example,
1 1
A{a,b}andA(1 0). aS
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Constrained Cayley graphs and semi-groupoids

Sk o ot et

Directed lattices Sl o e

Constrained Cayley graphs

EW = WE =e, NS =SN = e,
E=a=W=atlandN=b=S=»b1.
A={aal b b1}

Let A finite be given (generating) and ' = (A|R). Let
c: T x A — {0,1} be a choice function. Define the constrained Cayley
graph G = (G° G') = Cayley (', A, R) by

e GO=r,

o G ={(x,xz) e xT:ze€A;c(x,z) =1}.

o dy =card{y €T : (x,y) € G'}.

.\
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Constrained Cayley graphs and semi-groupoids
Sk o ot et

Directed lattices et e il

Properties of constrained Cayley graphs

0 0 <dy <cardA.
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Constrained Cayley graphs and semi-groupoids
Sk o ot et

Directed lattices et e il

Properties of constrained Cayley graphs

0 0 <dy <cardA.

o If d7 =0 for some x, then x is a sink. All graphs considered here
have d > 0.
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Constrained Cayley graphs and semi-groupoids
Examples of semi-groupoids

Directed lattices et e il

Properties of constrained Cayley graphs

0 0 <dy <cardA.

o If d7 =0 for some x, then x is a sink. All graphs considered here
have d > 0.

o If c =1 then (G*)~! = G! (the graph is undirected).
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Constrained Cayley graphs and semi-groupoids
Sk o ot et

Directed lattices et e il

Properties of constrained Cayley graphs

0 <d; <cardA.

If d = 0 for some x, then x is a sink. All graphs considered here
have d > 0.

If c =1 then (G!)~! = G! (the graph is undirected).

The graph can fail to be transitive. All graphs considered here are

transitive i.e. for all x,y € G, there exists a finite sequence
(X0 = X, X1, ..., Xp = y) with (x;_1,x) € Gt forall i=1,...,n.
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Constrained Cayley graphs and semi-groupoids
Examples of semi-groupoids

Directed lattices Sl o e

Properties of constrained Cayley graphs

e 0 <d; <cardA.

o If d7 =0 for some x, then x is a sink. All graphs considered here
have d > 0.

o If c =1 then (G')~! = G (the graph is undirected).

The graph can fail to be transitive. All graphs considered here are
transitive i.e. for all x,y € G, there exists a finite sequence

(X0 = X, X1, ..., Xp = y) with (x;_1,x) € Gt forall i=1,...,n.
@ Algebraic structure of Cayley (I, A, R): a groupoid or a
semi-groupoid.
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@rracid] @iy cepknend comfraeth
Examples of semi-groupoids

Directed lattices Sl o e ahh

Examples of semi-groupoids

Vertex set X = 72, i.e. for all x € X, we write x = (x1, x2); generating
set A = {e1, —ej, e, —e2}.

Alternate lattice Half-plane one-way Random horizontal
c(x,e2) = c(x,—e2) =1 c(x,e2) = c(x,—e2) =1 c(x,e2) = c(x,—e2) =1
c(x,e1) =1,x2 € 2Z c(x,e1) =1,x2 <0 c(x,e1) = Ox,
c(x,—e1) =1,x2+1€2Z c(x,—e1)=1,x2 >0 c(x,—e1) =1—0x,

For all three lattices: Vx € Z2, d. =3.

Here G! ¢ G° x G°. Hence maps s, t superfluous. S )
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Constrained Cayley graphs and semi-groupoids

Sl o comth et

Directed lattices 5
Examples of groupoids

Example of groupoid

@ Choose integer N > 2; decompose RN = E @ E+

withdimE=d anddimE+* =N—-d,1<d < N. S
@ K the unit hypercube in RV. SEEA "
NS Ne'v g LN A
o 7:RY = E and n* : RN — E* projections. .""0."""0,"‘"':"0,",
B o S e A
@ For generic orientation of E and t € E let ""."".‘-.":-.’..'“,."

Ke:={xezZV: 7+ (E+t)e 7+ (K)}.
o 7(K:) is a quasi-periodic tiling of E 2 RY (of
Penrose type). Cayley (ZN, A)
@ For generic orientations of E, points in K¢ are in Cavl 7N AYi
bijection with points of the tiling. o Cayleyc(Z%, A) is
o A={te,... Fen}. e d_ can be made
® c(x,2z) = Liexie(x,x + 2), Z € A. arbitrarily large. A
RSITE DE T FY

undirected (groupoid).
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Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Decomposition

into vertical skeleton and horizontally embedded process

e Condition the Markov chain (M) on the directed version of Z? to
perform vertical moves.

0
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Decomposition

into vertical skeleton and horizontally embedded process

e Condition the Markov chain (M) on the directed version of Z? to
perform vertical moves.

@ The so conditionned process is a simple random walk (Y},) on the
vertical Z. Denote 7,(y) its occupation measure.

LG \)
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Decomposition

into vertical skeleton and horizontally embedded process

e Condition the Markov chain (M) on the directed version of Z? to
perform vertical moves.

@ The so conditionned process is a simple random walk (Y},) on the
vertical Z. Denote 7,(y) its occupation measure.

o Let (fﬁy))neN’yeZ be a doubly infinite sequence of geometric r.v. of
parameter p = 1/3.

0
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Decomposition

into vertical skeleton and horizontally embedded process

e Condition the Markov chain (M) on the directed version of Z? to
perform vertical moves.

@ The so conditionned process is a simple random walk (Y},) on the
vertical Z. Denote 7,(y) its occupation measure.

o Let (fﬁy))neN’yeZ be a doubly infinite sequence of geometric r.v. of
parameter p = 1/3.

© Xn =) cr8y Z?;T(y) {fy) is the horizontally embedded walk,
where ¢, direction of level y.

0
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Decomposition

into vertical skeleton and horizontally embedded process

e Condition the Markov chain (M) on the directed version of Z? to
perform vertical moves.

@ The so conditionned process is a simple random walk (Y},) on the
vertical Z. Denote 7,(y) its occupation measure.

o Let (fﬁy))neN’yeZ be a doubly infinite sequence of geometric r.v. of
parameter p = 1/3.

© Xn =) cr8y S a( )§§y) is the horizontally embedded walk,
where ¢, direction of level y.

Let T,=n+>_ vez St ) gﬁ” the instant after n'" vertical move.
Then

M1, = (Xn, Ya). G\
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Comparison

Let (0,) sequence of successive returns to 0 for (Yy).
e If(X,,) is transient then (M,) is transient.
o IfY 72  Po(Xs, =0|F VG) = oo then
Yo P(M; = (0,0)|F Vv G) = oc0.
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Decomposition
Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

. q .
x(0) = Eexp(it€) = 1= pexp(i0) = r(0) exp(ia(0)), 6 € [-m, 7],
where
_ _ q — H(—0)-
)= )| = s = (0)
a(f) = arctan % = —a(-0).

Notice that r(f) < 1 for 8 € [—m, 7]\ {0}.

Eexp(i0X,,) = Hx(t% )ten=2()
YEZ

—E |r(0)7 exp [ a(0)(> eymon1(n)) | | - N

YEZL

v,
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Alternate and half-plane lattices

o For alternate lattice:

ZneN P(Xa,., = 0) = Iim5_>02f: \/ﬁdﬁ = Q.
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Alternate and half-plane lattices

@ For alternate lattice:
ZneN P(Xa,., = 0) = Iim5_>02f6 \/ﬁdﬁ =0

e For half-plane lattice:
> nen B(Mo,, = (0,0)) = lime0 [ [2Re x(0) =257 —@yldf = C < oo
Notice that (X,,), are heavy-tailed symmetric R-valued variables.
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Alternate and half-plane lattices

@ For alternate lattice:
ZneN P(Xa,., = 0) = Iim5_>02f6 \/ﬁdﬂ =0

e For half-plane lattice:
> nen B(Mo,, = (0,0)) = lime0 [ [2Re x(0) =257 —@yldf = C < oo
Notice that (X,,), are heavy-tailed symmetric R-valued variables.

@ Quid for randomly horizontally directed lattice? Very technical.
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices
Proof of transience (8 < 1)

@ Introduce A, = A, 1 N A,, and B, with

max | Y| < n;+51}
<2n

An’lz{weﬂ:
0<k<

Ano = {w € Q:maxna-1(y) < n;+52} ,
YEZ

5

B,={weA,: Z€yﬂ2n—1(y) S pitds
yEL

o Estimate separately

Pn1 =P(Xon =0, Yo, =0; B,)

Pn2 =P(Xon =0, Y2, =0; Ay \ Bp)

pn3 =P(Xon =0, Y2, = 0; A}).
o Establish that > pn1 < 00;)_, pn3 < oo and for § < 1also "5 :‘H’f\s

> Pn2 < 00.
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices

Proof of recurrence (8 > 1)

0 70=0 and 7py1 =inf{k: k>7|Ye— Y| =Q} for n>0.

+Q +Q
<—R~> OfR*) (sl

0 71
_oUHHHEE o M
@ Periodise the lattice Zg = Z/QZ = {0,1,...,Q — 1} and define

No(¥) = Try s rn1(F) = St 1(V).
o EoNy(y) = ]Eo(Nl( )| Ve, = Q) =Eo(M(y) | Yr, = —Q) = B2,
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices

Proof of recurrence (3 > 1) cont'd

o If 3> 1then 3 P(\, =1) < occ.
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices

Proof of recurrence (3 > 1) cont'd

o If 3> 1then 3 P(\, =1) < occ.
@ Hence 3L := L(w) < oo s.t. Ay =0 for |y| > L.

Flon(w) = {k 10 < k< 20— 1Yoy (@)] < L@) Qi Yo,y () (@)] < L(w)

GLon(w) = {k 10 < k<20 — 1| Vo) ()] = L(@)Q: Yoy (@) = L(w
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices

Proof of recurrence (3 > 1) cont'd

o If 3> 1then 3 P(\, =1) < occ.
@ Hence 3L := L(w) < oo s.t. Ay =0 for |y| > L.

Flon(w) = {k 10 < k< 20— 1Yoy (@)] < L@) Qi Yo,y () (@)] < L(w)

GLon(w) = {k 10 < k<20 — 1| Vo) ()] = L(@)Q: Yoy (@) = L(w

o Write 0, = X;, | — X;, and observe that
2n—1
XTZn_ Zekz Z 9k+ Z eka
k=0 k€EFL 2n keGL 2n
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Decomposition

Comparison

Characteristic function of X,
Sketch of proofs Lattice dependent estimates

Randomly horizontally directed lattices

Proof of recurrence (3 > 1) cont'd

o If 3> 1then 3 P(\, =1) < occ.
@ Hence 3L := L(w) < oo s.t. Ay =0 for |y| > L.

Flon(w) = {k 10 < k< 20— 1Yoy (@)] < L@) Qi Yo,y () (@)] < L(w)

GLon(w) = {k 10 < k<20 — 1| Vo) ()] = L(@)Q: Yoy (@) = L(w

o Write 0, = X;, | — X;, and observe that
2n—1
XTZn_ Zekz Z 9k+ Z eka
k=0 k€EFL 2n keGL 2n
e Finally prove >, . Po (X5, =0,Y,, =0|G) =0 as. wvensire o= N
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