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Abstract. We study by Monte Carlo simulations, using two different algorithms, the Edwards 
walk in two dimensions and extract its critical exponents. We establish that the fractal 
dimension computed in terms of critical exponents is different from the HausdorR dimension 
computed by measure-theoretic methods. 

1. Introduction 

Random walks arise in many different areas of applied mathematics, physics and 
chemistry (see des Cloizeaux and Jannink (1987), Le Gall (1987), McKenzie (1976) 
and references therein). The ordinary random walks (ORW) are well understood because 
they arise as discretisation of Brownian motion. This is not the case, however, for 
random walks with constraints like self-avoiding walks (SAW), excluded-volume walks, 
restricted walks and so on. 

Random walks have non-trivial dimensional properties. For instance, two- 
dimensional ordinary (Brownian) walks, although topologically one-dimensional 
objects, are known to fill the plane. The Hausdorfl dimension was introduced by 
Hausdorfl (1919) and Besicovitch (1927) to describe this property. The Hausdorff 
dimension of random walks is usually identified with the inverse of their critical 
exponent v. The critical exponent v governs the asymptotic behaviour of the squared 
end-to-end Euclidean distance ( r 2 ) L  of a random walk after L steps, i.e. ( r 2 ) L -  L’”. 
The identification dH = 1/ v can be rigorously proved to be exact in the case of Brownian 
motion (i.e. for an ordinary random walk) where d ,  = 2 and v = f. In the case of 
constrained random walks it is only believed to be valid (heuristic arguments in favour 
of this conjecture are given in des Cloizeaux and Jannink (1987)). This belief is, 
however, so strong that, very often, values of 1/ v are reported in the literature as the 
Hausdorfl dimension, not even mentioning that 1/v is expected to be equal to the 
Hausdorfl dimension! In this paper we shall concentrate on a special kind of constrained 
random walk, known as the Edwards random walk (Edwards 1965). Very often the 
Edwards random walk is quoted as the weakly self-avoiding walk ( WSAW). 
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Roughly speaking, the Edwards walk arises by assigning a weight exp( - A N ( w ) )  
to each ordinary random walk w,  N ( w )  being the ‘number of self-intersections’ of the 
walk 0. The quotation marks are here to remind us that in the continuum this ‘number’ 
is not well defined since N ( o )  is an infinite quantity (in any dimension d 2)  which 
can be given a rigorous meaning by renormalisation only. 

In a more physical way, the Edwards walk provides a quite realistic model for 
polymers because the weight factor with positive A implements somehow the excluded- 
volume effect. (There exist many constrained walks like the ‘true’ self-avoiding walk 
(Amit er a1 1983), the polygonally restricted walk, the k-tolerant walk (Domb 1969) 
and so on; these objects are, however, distinct from the Edwards walk and must not 
be confused with it.) Moreover, the Edwards walk arises as a representation of quantum 
field theory, i.e. the Schwinger functions of lattice (4 - 4)2 theory can be expanded 
(in the limit N+O) in terms of sums over the Edwards random walks (Araglo de 
Carvalho et a1 1983, de Gennes 1972). 

Intuitively, the Edwards walk is an interpolation between ordinary ( A  = 0) and 
self-avoiding ( A  + 00) walks. However, this intuition is misleading for various reasons. 

(i)  The limiting behaviour depends crucially on the dimension, d, of the lattice. It 
is believed-and this belief is supported by renormalisation group arguments (see 
Brydges and Spencer (1985), Demda (1981), Duplantier (1986), Le Guillou and 
Zinn-Justin (1980), Hilhorst (1977) and references therein)-that for d = 2 or 3 and 
A > 0, the critical behaviour of the Edwards walk is governed by the critical exponents 
of the self-avoiding walk. In other words, if A > 0, no matter how small A may be, it 
is driven by the renormalisation group flow to A =CO. In particular, we expect the 
exponent v, associated with the end-to-end Euclidean distance, to be the same as for 
the SAW, i.e. U = a  in d = 2. 

(ii) The fractal properties (given by dH) of the Edwards walk are the same as for 
the ordinary random walk when d = 2 and A > 0. This assertion is strongly supported 
by a rigorous result of Varadhan (1969) concerning the weakly self-avoiding renor- 
malised random bridge (WSARB). This means (see $ 5 )  that the Hausdorff dimension, 
d H ,  of the Edwards random walk is expected to be 2. 

The previous remarks show why the intuition is misleading: in fact, the Edwards 
random walk behaves as an ORW with respect to its fractal properties and as a SAW 

with respect to its critical properties. This gives rise to an explicit contradiction because 
obviously 2 = d H  # 1/ U = $. 

It is firmly believed that the critical exponent v = for the SAW in two dimensions. 
A conjecture asserts it (Nienhuis 1982) and many subsequent numerical studies confirm 
it, such as exact enumeration results (Guttmann 1984), renormalisation group (Derrida 
1981) and Monte Carlo simulations (Berretti and Sokal 1985, de Forcrand et a1 1986). 
Although the critical exponents of the two-dimensional SAW are well known and 
calculated by many different methods, there is no explicit simulation of the Edwards 
walk in two dimensions. Some preliminary (poor) results for the Edwards walk in 
four dimensions are known (Guha and Roberts 1986) but they do not cover the 
two-dimensional case where the theoretical predictions are contradictory. The purpose 
of this paper is therefore twofold: 

(i)  to compute numerically the critical exponents for the Edwards walk in d = 2  
in order to numerically test the validity of the renormalisation group arguments, and 

(ii) to establish in a clearcut way whether the value v = (dictated by Hausdorff 
dimension equality) or v = (dictated by renormalisation group arguments) actually 
occurs. 
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The paper is organised as follows. In 0 2  we define the model and recall briefly 
the definitions of the critical exponents. In 0 3 we present two different Monte Carlo 
algorithms we used to simulate the Edwards walks both in grand canonical and 
canonical ensembles. In $ 4  we describe the results obtained with both methods. 
Finally in 0 5 we discuss the results and present some further developments. 

2. Definition of the model and the critical exponents 

Let us first introduce some notation and definitions. We consider an ordinary random 
walk, w,ontheZ21attice,i.e. amapw:  No+H2suchthat w(O)=Oand l o ( i ) - w ( i + l ) l =  
1, where 1 . 1  denotes the Euclidean distance on Z2 (by abuse of language we identify 
the walk with the map describing it). Io1 denotes the length of the walk w, i.e. the 
number of bonds ( w ( i ) ,  w ( i +  1)) in the walk. The number of self-intersections, N ( w ) ,  
o f a w a l k o  isdefinedas N ( w ) = c a r d { i ~ N ~ l 3 j > i s u c h t h a t  o ( j ) = w ( i ) } .  

The purpose of the model is to give a weight of the form exp(-AN(w)) to each 
ordinary random walk, thus suppressing walks with many self-intersections ( A  being 
a positive real constant). 

The probability on the space of discrete random walks is hence given by 

7 ~ p , ~ ( 0 )  =Z (p ,  A)-'/?'"' exp(-AN(w)) (1) 

Z(p,  A )  being the statistical sum Z(p ,  A )  =E,  p'"' exp(-AN(@)) at monomer activity 
p. The probability (1) completely determines the model in the sense that all the 
thermodynamic quantities can be computed as averages with respect to i ~ ~ , ~ .  For 
example, the mean length ( L ) p , A  of the walk is given by 

( L ) @ . A  =c T @ , A ( w ) I w I *  
W 

For every A, there is a critical pEr(A) such that 
The critical exponents are defined as usually. Let cL denote the weighted number 

of walks starting at the origin of the lattice, ending anywhere on the lattice, and having 
length L, defined as 

(L)@,* =CO. 

c L =  exp(-AN(w)). 
w : l w l = L  

The asymptotic behaviour of cL for large L is governed by a critical exponent y as 

cL - p L y -  

The mean end-to-end Euclidean distance (r2)' for walks of length L behaves, 
asymptotically for large L, as 

( r 2 ) L -  L'" 

and the mean number of self-intersections ( N ) ,  for walks of length L as 

(N)L - LP. 

Remark. The symbol ( 
length L, not to be confused with 
average. 

= Xw: lwl= ( )/ cL denotes the canonical average at fixed 
= X u  ( * ) 7 r p , A  that denotes the grand canonical 
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A priori, one expects the effective coordination number p and the critical exponents 
y, U and p to be functions of A. But the renormalisation group arguments attest that 
y and U do not depend on A, for A > 0. 

Finally, the fractal properties of the walk are supposed to be governed by the 
critical exponent U, in the sense that the Hausdo& dimension, d H ,  is equal to 1/ Y as 
explained in the introduction. 

Remark. The model described above is discrete (No and Z2 are discrete spaces), but 
it has of: course a continuous version. It is well known that an ordinary random walk 
has a continuous limit called the Brownian path. Similarly, a two-dimensional Edwards 
walk has a continuous version which could be called the Edwards path. In particular, 
if A is positive the probability (1) has (in a certain sense) a continuous limit which 
we shall call the Edwards measure by analogy with the Wiener measure which describes 
Brownian paths. It is this continuous limit which must be used to compute analytically 
the Hausdorfl dimension (see Koukiou er al (1988) for more details). 

3. The algorithms 

We use two different algorithms to simulate the Edwards walk on the two-dimensional 
lattice with coordination number q. In the grand canonical simulation neither the 
length L nor the number of self-intersections N is kept fixed. In the canonical 
simulation, L is kept fixed and N is allowed to vary. 

3.1. The grand canonical simulation 

We use a dynamical local algorithm to generate walks having (1) as their unique 
equilibrium distribution. The algorithm allows only two elementary moves: either add 
a link of the Z2 lattice at the end of the walk or delete the last link of the walk. Thus, 
the elementary moves are the same as for the algorithm of Berretti and Sokal (1985) 
for generating SAW; the transition probabilities are radically different, however. The 
algorithm can be described by the following flow chart. 

Begin from the empty walk anchored at the origin. Choose a monomer activity p S 1 
and a self-repulsion constant A. 
Repeat many times: 
{Choose a random number r uniformly distributed in [0,1]. 
If r > 4  

then try to append a link I in one of the q = 2d possible equivalent directions at the 
end of the walk w ;  
Compute 6 = N ( w  U I) - N ( w ) ;  
Choose a random number s E [0,1]; 
If s < A @ ,  A, 8)  

then change w to w'  = w U I ;  
else keep w once more, i.e. w ' = w ;  

else try to delete last bond; 
Choose a random number r E [0, I]; 
If r < S(p ,  A, 8 )  and w # 0 

then delete the last bond; 
else keep w once more.} 
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The functional forms of A(P,  A, 8) and S(p,  A, 8)  are not uniquely determined. A 
convenient choice is 

exp( - As) if A > O  
otherwise 

and 

Remark The algorithm described above allows spikes to occur, i.e. after a step we 
can have an immediate return thus forming a loop. An additional test can be included 
in the ‘insert’ part of the algorithm to prevent spikes. We verified that the suppression 
of spikes does not modify the critical exponents. The results quoted in 0 4 are for the 
algorithm without spikes. 

The previous algorithm defines a Markov process on the space of all possible walks 
with transition probability p ( w  + w ’ )  given by 

if w ’ =  w u 1 

fQPA(W)(l - ~ u i , O )  i fw’=w\m 

29 I 

1 
- p p B A ( w )  
29 

if w ’ =  w 
1 -E (1 - P P A ( w ) ) + t ( l  - QPA(w))(l -81u1,0)+tqu, ,0  I 0 otherwise. 

p ( 0  + a’) = 

In this formula 1 denotes one of the links adjacent to the last point of the walk; m is 
the last link (with respect to the natural ordering obtained by scanning the walk starting 
from the origin of the lattice) belonging to the walk. PpA ( U )  = A@, A, N ( w  U I) - N ( w  )) 
and = S(P, A, N ( w  U I )  - N ( w ) ) .  The matrix p ( w  + w ’ )  is a stochastic matrix 
because it has non-negative matrix elements and 

C p ( w + w ‘ ) = l .  
U’ 

It accepts r P , * ( w )  as left eigenvector with eigenvalue 1 (weak form of detailed 
balance), i.e. 

r P , A ( w ) p ( w  + = V@,A(w’) .  
w 

Moreover, the process is aperiodic and ergodic. Therefore r P , , ( w )  is the unique 
equilibrium distribution for the Markov process defined in terms of the stochastic 
matrix p ( w  + U ’ ) .  Henceforth, the empirical distribution obtained from the statistical 
sample converges to ( w ) for every initial condition. This remark guarantees that 
we can use this algorithm for a Monte Carlo simulation. 

Successive Monte Carlo steps are highly correlated; it is pointless to store on disk 
the data after every step. We can estimate, however, the Monte Carlo steps we have 
to skip for every datum stored. In fact, all memory is lost each time we reach the 
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empty walk. For a process with (L) as mean length this happens roughly every (L)’ 
MC steps, i.e. the autocorrelation time T- K(L)’. As pointed out in Berretti and Sokal 
(1985) this heuristic argument gives only a first estimate; the proportionality constant 
K may be rather large. We decided to skip 10000 MC steps for every stored walk. 
The resulting sample is still correlated but we analyse its statistical properties experi- 
mentally to determine the autocorrelation time as explained in 0 4. 

As data structure we used a matrix monitoring the site occupation with the corre- 
sponding multiplicity. Hence, the operations needed at each MC step are independent 
of the length of the walk. 

The advantage of this algorithm is that its overall complexity (de Forcrand et a1 
1988) is proportional to (L)’; therefore it allows us to approach the asymptotic regime 
within a reasonable computational time. 

3.2. The canonical simulation 

We use a dynamical algorithm related to the pivot algorithm of (La1 1969, Madras 
and Sokal 1987). In contrast to the grand canonical algorithm this one is non-local 
and it generates walks with a fixed length L. The equilibrium probability is given by 

r L ( w )  = ZL(A)-’ exp(-AN(w)) ( 2 )  

where 

ZL(A)  = 2 exp(-AN(@)). 
w : l w l = L  

The algorithm goes as follows. 

Begin from an arbitrary walk, U ,  of length L, with a given number, N ( w ) ,  of self- 
intersections. (Usually a straight rod with N ( w )  = 0.) Fix its zeroth point at the origin 
of the lattice and compute the number of its self-intersections N ( w ) .  
Repeat many times: { 
1.  Choose at random an integer k in the set (1,. . . , L- 1) and use the kth vertex of 
the walk as a pivot. This vertex divides the walk in two parts. Let S be the shortest 
part, i.e. the part of shortest length. 
2 .  Choose with equal probability one of the symmetry operations, g, of the symmetry 
group, G, of the Z2 lattice. 
3. Apply g to the shortest part S of the walk w to obtain a candidate walk wtria, with 
number of self-intersections N(wtri , , ) .  Compute the difference, 8, of the numbers of 
self-intersections, S = N(wtri, ,)  - N ( w ) .  
4. Draw a random number r uniformly distributed in [0, 11. 
If r =z min{ 1, exp( -AS)} 

then accept the trial, i.e. w ’ =  wtrial and parallel translate w ’  (if it becomes necessary 

else reject the trial, i.e. w ‘  = U , }  

to recentre it); 

Remark. The algorithm can be simplified in two respects. 
(i) G can be any subset of the full symmetry group of the lattice, provided that 

ergodicity is ensured. Here we assign equal weight to rotations of r / 2 ,  r and 3 r / 2 .  
A single rotation of * r / 2  would be sufficient, however. 
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(ii) The algorithm works equally for A < 0 or A > 0. However, for A > 0 it is much 
more efficient to take step 4 before step 3 in the algorithm. Then one can compute 
the maximum allowable number of self-intersections N,,,. As soon as the current 
count of N(utria,) exceeds N,,,, counting stops and wtrial is rejected. 

In a similar way as for the grand canonical algorithm the reader can convince 
him/herself that this algorithm is Markovian, ergodic and fulfils the weak form of 
detailed balance. It admits (2) as the unique equilibrium probability. 

The merit of this algorithm comes from its global moves, which decorrelate very 
quickly global observables such as the end-to-end distance. In fact, with the second' 
modification mentioned in the remark above (for A > O ) ,  the computer time per 
independent datum grows only slightly faster than L. Here we wanted to compare the 
two approaches and be able to extract results conveniently. 

4. Results 

We performed various simulations using both algorithms at different values of the 
parameters p and A. Since both the analysis and the addressed quantities differ in the 
two cases, we present the results separately. 

4.1. Grand canonical simulation 

For each A, we chose a /3 near p,,(A) such that ( L )  - 150 and we did approximately 
5 x lo9 MC steps, recording every lo4 steps. When analysing the results we always 
skipped the first 10 000 records, corresponding to 10' MC steps, to allow the system to 
thermalise. We use periodic boundary conditions for the monitoring matrix. For most 
simulations we used a monitoring matrix of 1 0 2 4 ~  1024; for the simulations very close 
to the critical point this matrix was 4096x4096. Thus this matrix is so huge that we 
can safely say that the walk never touches the borders during the simulation and in 
fact we simulate in an infinite box from the point of view of the walk. This simulation 
needs 72 ps per MC step on a VAX-8550 computer. 

The method we used to extract p, y, U from the data is described in Berretti and 
Sokal (1985) and de Forcrand et a1 (1986,1987). We simply mention that p and y 
are determined simultaneously by maximum likelihood fit and U by least squares fit 
as for the SAW. To extract p we used the same method as for v. The fit program allows 
us to select intervals of walk lengths of the form [Lmin, L,,,] and fit uniquely inside 
them to obtain an effective value of U. If the fitted values do not change significantly 
when this interval slides through all the obtained values of lengths, we say that the 
asymptotic regime is obtained. The asymptotic regime is attained for bigger and bigger 
L as A diminishes and we must go to L values as large as 2000 to attain the asymptotic 
regime for A = 0.1. 

The systematic errors are computed in the standard way (de Forcrand et a1 
1986,1987). 

To take into account the statistical correlation of the data we determined explicitly 
the autocorrelation time 7. This autocorrelation time is 7 - K ( L ) *  with K = 5.  It seems 
that the proportionality constant is somewhat smaller than the corresponding quantity 
for the SAW using the algorithm of Berretti and Sokal (1985). This may be due to the 
fact that the Edwards walk is less constrained than SAW and hence it decorrelates more 
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rapidly. The determination of this parameter is not so accurate to decide if there is a 
systematic trend with the variation of A. 

The naive errors of the fitting procedure are multiplied by 6 to give the statistical 
errors. 

Figure 1 plots f ln(r2)L against In L to give an idea of the quality of the simulation 
and table 1 summarises the results obtained for different A. 

As expected from the renormalisation group, the values of the critical exponents 
y and v do not show any systematic dependence on A. The values obtained lie within 
less than a standard deviation to the corresponding critical exponents for the self- 
avoiding walk. The effective coordination number p shows however a systematic 
variation with A and figure 2 exhibits this trend. The critical monomer activity, Po, 
is equal to 1 / p  and figure 2 allows us to read the critical activity as a function of A. 
A similar figure plotting the critical activity as a function of A for the Edwards walk 
in four dimensions is presented as the ‘phase diagram’ in Guha and Roberts (1986). 

4.2. Canonical simulation 

For each value of A we did five simulations with L fixed at 200, 400, 800, 1600 and 
3200. Each simulation consists of approximately 15 x lo6 MC steps. For all practical 

... 

0 2 I I 

6 

- Ln L 
Figure 1. Plot of the function In S = In J ( r Z ) ,  against In L for p = 0.365 and A = 0.5. 

Table 1. The values of the effective coordination number f i  and the critical exponents y, U 
and p for different values of A as computed by grand canonical simulation. The format 
is central value * statistical error * systematic error. Numbers in parentheses in the first 
column give the value of exp(-A). 

U P Y P A 

0.762i0.037*0.012 1.062 i 0.049 i 0.016 0.105 (0.9) 2.8993 *0.0001 *0.0010 1.329*0.002i0.076 
0.357 (0.7) 2.7847*0.0001 iO.0010 1.386*0.002+0.080 0.7501 0.010*0.012 0.987 * 0.005 i 0.009 

0.734 i0 .013  i 0.013 0.999i 0.010~0.011 0.693 (0.5) 2.7160i0.0001 iO.0010 1.431 i0 .003i0 .106  
1.203 (0.3) 2.6760 i O.ooO1 i 0.0006 1.249 * 0.025 i 0.052 0.743i0.011 *0.017 
2.303 (0.1) 2.6485i0.0001 iO.0011 1.321 iO0.025+O.027 0.772*0.012+0.030 0.999 i 0.020 * 0.056 
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I I I 

4 - 

0 1 2 

h 
Figure 2. The effective coordination number CL as a function of A. The value at A = O  is 
exactly known, p = 4, and the asymptotic value at A + w is known from independent works 
(Berretti and Sokal 1985). The small horizontal line at the right-hand bottom corner of 
the figure corresponds to p ( A  =E) = 2.6382. 

purposes the autocorrelation time estimated out of our data can be taken equal to 
40 000 MC steps (independent of L) .  This autocorrelation time proves unexpectedly 
large for this method. The first 2 x lo6 MC steps are discarded to allow the thermalisation 
of the system. Measurements are taken every 100 MC steps. 

For each L we compute ( r 2 ) r  and ( N ) L .  Then, assuming asymptotic formulae to 
be valid we extract effective values for vi and pi for the intervals [200 x 2 j - l ,  200 x 2'1, 
i = 1, . . . ,4 .  We observe that vi and pi tend to asymptotic values as i increases. The 
smaller A is the slower is the rate of convergence of the sequences of effective critical 
exponents. Figure 3 shows this sequence of values of vi for the worst case we simulated, 
corresponding to A = 0.1. 

t 1 
0.6L I I I 1  

0 1000 2000 3000 
L 

Figure 3. The sequence of effective values of v (computed in the intervals [ 100 x 2'- ' ,  lOOx 
2'1) plotted against the median values L of the corresponding intervals. The broken line 
at the end corresponds to the asymptotic value U = :. 
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Table 2. The critical exponents Y and p as computed by canonical simulation. 

A Y P 

0.1 0.746i0.050*0.010 1.004 *0.050* 0.010 
-0.1 0.05 f 0.05 f 0.01 1.066*0.050*0.010 

Table 3. T h e  acceptance rate for different values of A. 

A g 200 400 800 1600 3200 

-0.1 T I 2  0.7531 0.6085 0.4460 0.3149 0.2183 
-0.1 il 0.7030 0.5386 0.3652 0.2396 0.1582 
+0.1 T I 2  0.7215 0.6352 0.5534 0.4806 
+0.1 ?r 0.6424 0.5265 0.4150 0.3167 

Table 2 summarises the results (obtained by canonical simulation) for the critical 
exponents v and p and for two different values of A. The quoted values are those 
obtained for the effective exponents in the region [ 1600,32001. 

We also measured the acceptance fraction f L (g )  of the proposed transformation g 
(g from step 2 of the algorithm above) as a function of g and L. We confirm the 
disturbing fact, observed in Madras and Sokal (1987) for the SAW, that the asymptotic 
L behaviour of these acceptance rates depends on g. Specifically, we observed that 
fL( r / 2 ) / f L (  T )  keeps increasing with L, pointing to an unsuspected persistency in the 
orientation of the walk. The acceptance rates we measured are reported in table 3 for 
further investigation. The acceptance rate is expected to behave as fL - L - p  for large 
L. It turns out that the critical exponent p depends not only on g as pointed out in 
Madras and Sokal (1987) but also on A, i.e. p = p ( g ,  A ) .  We find p ( ~ ,  -0.1) =0.6 and 
p ( ~ / 2 , 0 . 1 )  = 0.2; the value obtained for p(n,  0.1) is in agreement with the value of 
y - 1 computed by grand canonical simulation. 

5. Discussion and further developments 

Results from the two different simulations are compatible and mutually supported. 
Comparing v and p for the two different simulations we conclude that, for A > 0, v = 
and p = 1. 

The value Y = $ is the one expected by renormalisation group arguments (Le Guillou 
and Zinn-Justin 1980) and even Flory-type arguments (Flory 1967). Our results 
completely support the renormalisation group arguments. 

Now, we can rigorously prove that the Hausdorfl dimension for the Edwards walk 
is dH = 2 .  The rigorous proof of this fact is outside the scope of this numerically 
oriented paper (see Koukiou et a1 (1988) for mathematical details). Intuitively we can 
say that the Hausdorfl dimension is a metric property of sets. That means that we can 
consider the trajectory of the Edwards walk as a subset of the real space without 
wondering about its statistical weight. Then we can define the Hausdorfl dimension 
of this set. Now the Edwards measure being absolutely continuous with respect to the 
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Wiener measure, the previous set surely occurs when considering Brownian motion 
instead of the Edwards walk. The Brownian path is known to have Hausdorff dimension 
equal to 2. We conclude that the Edwards path has also a Hausdorff dimension equal 
to 2. 

The obtained numerical results, strengthened by renormalisation group arguments, 
establish in a clearcut way that d H  # 1/ v for the Edwards walk in two dimensions. 

Some cases, mainly deterministic, are known in the literature where the various 
fractal dimensions do not coincide (Mandelbrot 1986). The Edwards walk provides 
a non-deterministic example where this discrepancy between the different fractal 
dimensions occurs. Although it is clear that l / v  has a physical meaning, since it 
describes the large-scale behaviour of the walk, it is not obvious whether this quantity 
has any sensible mathematical interpretation as a fractal dimension. 

The case A < O  is also very interesting to study; it corresponds to a self-attracting 
polymer. In this case one expects that the system collapses to a compact conglomerate. 
Intuitively one expects that the critical exponent Y = 0, i.e. the polymer does not expand 
to infinity but remains in a bounded domain. Actually v = 0 does not exclude an infinite 
extent of the polymer with logarithmic growth. We conjecture, and this conjecture is 
supported by some intuitive probabilistic arguments, that, for A slightly negative, the 
polymer extends to infinity logarithmically and for A negative enough, it remains with 
probability 1 inside a bounded domain. However, one has to remember that there is 
no theorem proving the existence of the ‘Edwards’ measure in the case A < O .  

As for the exponent p, we found that p = 1 for all A > 0. Following Varadhan 
(1969) one easily proves that, for Brownian paths on a finite time interval T, N ( w )  - T 
(in two dimensions). Hence, the critical exponent p is driven by the renormalisation 
group flow to its Gaussian value. 

Finally, we remark that the effective coordination number, p, varies in a systematic 
way with A. One need not be impressed, however, by this dependence. The value of 
p may be fixed arbitrarily to any positive value just by a finite renormalisation of the 
number of self-intersections. In the continuum the number of self-intersections is an 
infinite quantity and must be renormalised. Therefore the finite part of the renormalised 
number of self-intersections is defined only up to an additive constant. This finite 
renormalisation does not change the physical model but only the renormalisation 
condition. This arbitrariness is a well known phenomenon in quantum field theory 
(see de Calan (1982) for a pedagogical explanation). 
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