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Abstract. We extend the Pirogov-Sinai theory in such a manner that it applies
to a large class of models with small quasiperiodic interactions as perturbations
of periodic ones. We find general diophantine conditions on the frequency
module of the quasiperiodic interactions and derivability conditions on the
interaction potentials. These conditions allow to prove that the low temperature
phase diagram is a homeomorphic deformation of the phase diagram at zero
temperature.

1. Introduction and Main Results

The standard Pirogov-Sinai theory studies the low temperature phase diagram
for discrete spin systems on a lattice described by hamiltonians with finite
range of interactions which are translational invariant or periodic. Namely, for
hamiltonians having a finite (m + 1) number of constant or periodic ground states
and satisfying the Peierls condition, the Pirogov-Sinai theory asserts that the
topological structure of the phase diagram at sufficiently low temperature is the
same as that of the diagram at zero temperature [15] (see [18,19] for pedagogical
expositions).

In order to study the structure of the phase diagram, the original hamiltonian
Ho which is assumed to have exactly m + 1 ground states, is perturbed by small
additional terms associated to a vector of coupling constants ξ = (ξ1,..., ξm)eUm.
For example one could consider

m

Hξ = Ho + ]Γ ξiHi
i= 1

(non-linear dependence of Hξ is also possible). One requires the perturbations Ht

to remove the degeneracy of the hamiltonian Ho. The phase diagram at zero
temperature is obtained by minimizing Hξ in the space of the parameters ξ. In
general, this phase diagram has the following topological structure: there is a point
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of coexistence of m + 1 ground states in the space of the parameters (which is
isomorphic to (Rm); from this point emanate: m + 1 half-lines on which m ground
states coexist, two dimensional linear surfaces having pairs of the previous lines
as boundaries on which m—1 ground states coexist, etc. The theorem of [15]
states that the phase diagram at sufficiently low temperature is obtained as a
homeomorphic transformation of the diagram at zero temperature, hence, its
topological structure is completely preserved.

In the last years many developments and generalizations were done on the
original Pirogov-Sinai theory. Without being exhaustive let us mention a few of
them: a generalization to P(φ)2 models in field theory [9], generalization to
continuous spin systems [6], extension to a class of interactions having an infinite
number of ground states [3], to rapidly decaying infinite range interactions
(excluding Coulomb potentials) [14]. In [20] the completeness of the phase diagram
is shown.

Some alternative versions of Pirogov-Sinai theory also appeared. In [20] the
technical intermediate steps are treated in a different manner avoiding the
introduction of a parametric polymer model. In [7] the rigorous renormalization
group approach was used; moreover this powerful generalization extends the
Pirogov-Sinai theory to cover the case of complex interactions. Analyticity of the
Pirogov-Sinai diagram was proved in [1,21].

As applications of the theory one can mention recent work on interfaces [8]
and models such as ANNNI, Potts, etc... [5,10,4].

What all the above approaches have in common, is the hypothesis of translation
invariance (or periodicity) of the Hamiltonian. This assumption is used in many
steps of the proofs and at a first glance it is not at all obvious whether it can be
relaxed.

This paper is an extension of Pirogov-Sinai theory to the case of discrete and
finite spin models on the lattice with finite range interactions, some of them being
quasiperiodic; we require moreover the hamiltonian to have a finite number of
periodic ground states. The main results without any proof were announced in a
letter [11]; here we give all the details. The assumption is that the quasiperiodic
part of the hamiltonian is a small perturbation of a periodic part. The extension
we study here is not only of mathematical interest. Certain recently discovered
alloys exhibit a quasiperiodic structure; it is interesting to understand the statistical
properties of these materials. Models for thin epitaxial layers of two different species
of adatoms on a quasiperiodic substratum fall into the class of interactions studied
here. A related extension for statistical models on quasiperiodic lattices seems even
more realistic; however, the statistical mechanics on such lattices is quite different
and is actually under investigation. The case of periodic hamiltonians having no
periodic ground states (see [16]) is treated by using Peierls argument in [13]; this
case is not considered here. It would be interesting to extend the theory in the
directions mentioned above.

One can think in terms of a concrete example where our extension applies.
However, the assumptions that will be imposed on the interactions in order to
prove the main theorem are valid on a much more general class of models. A
concrete example is provided for instance by an Ising model on Zv, v ^ 2 with
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hamiltonian

0,0 5

where the field fs on each site seZv is a quasiperiodic variable, for instance of the type

ft = αsin(2πω1 tx -f- ••• + 2πωvtγ)

with some small α and ωteU, for i = 1,..., v.
The paper is organized as follows: In Sect. 2 we recall some definitions on

quasiperiodic functions and give the definition of "gentleness." If the interaction
potentials of the hamiltonian are smooth enough, and the frequencies ωt are such
that Uncoil ^ l/K^n2 for every non-zero integer n, the underlying small divisors
problem can be treated in such a manner that a "gentleness" condition for the
local ground energy densities eq(t) of the form

can be proven. This fact is formalized by Lemma 1 of Sect. 2.
In Sect. 3 we recall the standard definitions of Pirogov-Sinai theory adapted

to our case (without translation invariance).
Finally, in Sect. 4 we prove the technical steps that are needed to extend the

Pirogov-Sinai theory to the case of quasiperiodic interactions. Lemma 1 of Sect. 2
is repeatedly used and we are able to prove the Main Theorem 5 as a corollary
of the technical tools developed so far. This theorem states in a precise manner
that the phase diagram at sufficiently low temperature is a homeomorphic
deformation of the diagram at zero temperature.

The Main Theorem imposes a generalized Peierls condition on the contour
weights. Assuming that the usual Peierls condition holds, only minor assumptions
are needed to guarantee also the validity of the generalized Peierls condition.
Rephrased in this way, the main theorem implies the following

Main Corollary. Consider a hamiltonian H = H° + H1 given by two classes
of interactions: i) the "unperturbed" translation invariant (or periodic) part
H° = Σ Φ°A(X>A\ anά n ) the "perturbation" H1 = £ &A(XA)> where Φ\ are

y4:diam^/ A.άiam^r

quasiperiodic potentials, all of them having the same frequency module generated by
a generator ω, and depending linearly on some vector parameter ξ = (ξl9..., ξm).

Let {xq}, qεQ be the family of all ground states of H° which are constant (or
periodic) configurations. Under the hypotheses:
HI. The Peierls condition

H°(x)-H°(x«)^C\B(x)l

with C > 0, holds, B(x) being the set of all "incorrect points" teZv of x (i.e. all points
teZv such that there is no xq satisfying the condition x — xq on the r-neighborhood oft);
H2. The quasiperiodic interactions, Φ\, are small for ξe^aM™ and sufficiently
smooth with respect to the quasiperiodicity, namely |^3Φ^/^(<^03 | = ε with a small
ε, where t is the lexicographically first element of A\
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H3. The frequency module generator ω, satisfies the diophantine condition || nωt || ^
1/Kn2, for some coordinate i= 1,..., v;
H4. The temperature T is sufficiently small;
we prove that:

There is a homeomorphism I'M -+<%, with °li a Um and ^U c [Rm, that maps the
stratum of the zero temperature phase diagram

EQ> = {ξe<tί\eq\ξ) = mineg(£) iff q'eQ'}
q

into the stratum

HQr = {ξe^ί'.q1 is stable for the hamiltonian H(ξ) at temperature T iff q'eQ},

for every subset Q c Q. By eq we denote the mean energy of xq and by "stability" of
q we mean that there is a q-like phase whose configurations attain the value xq in
most points of Zv.

2. Quasiperίodicity

In this section we summarize some definitions on quasiperiodic functions [2]. Let
us first introduce the notion of an almost periodic function.

Definition 1. A continuous function /:(R-»[R is called almost periodic if for each
ε > 0 there exists a positive number p = p(ε) such that any interval of the form
(f, t -f p) contains at least one s such that

\f(r + s) — f(r)\ gε, for — oo < r < o o .

According to Bohr's fundamental theorem, any almost periodic function f(r) on
the additive group of real numbers can be expressed as uniform limit of linear
combinations of the form £ C ; exp(2iπλ/) with λjβU,

The set Lf generated by linear combinations of A;'s with integer coefficients is
called the frequency module of /.

Definition 2. A function /:IR->R is quasiperiodic if it is almost periodic and its
frequency module is finitely generated.

Example. Let g:Un-^U be a periodic function of period 1 in each variable. Let
ωί9...9ωn be n irrational numbers. Then f(r) = g(ωί r,..., ωnr) is a quasiperiodic
function with frequency module Lf = {m1ω1 + ••• + mnωn\m{E7ί}.

The above definitions can be extended to quasiperiodic functions /:[RV—>[R.
Introduce the vector notation for m = (ml9...9mv) and similarly for ω91, the scalar
product (t9ω) = Yjωiti9 and the componentwise product mω = {m 1ω 1,.. .,m vω v}.

I

A function / : (Rv -> U is called quasiperiodic if it is quasiperiodic in each coordinate
of its argument teUv. Similar definitions hold for almost periodic (respectively
quasiperiodic) functions on Z v [17].

We need now to explain where the quasiperiodicity enters into the problem.
We state the relevant notions abstractly and give examples in terms of statistical
physics.
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A field φ is a function φ:Zv-+AcM (e.g. a spin configuration σ is a field,
assigning to every site seZ v a value σte{— 1,1J). For any set t^cz Zv, let(ί 1 ? . . .,ί)WΊ)
be the elements of W taken in the lexicographic order. A functional fw of the field
φ is called VF-local if it depends only on the values the field φ takes on W, i.e. it
can be written as fw\_φ~\ = /(φ(ίi),-••,φ{tm))> For example, the interaction
potentials ΦA are A -local functionals of the configurations.

Denote by Fin0 (Zv) the family of finite connected subsets of Z v having as their
lexicographically first element the point 0. Fix some WeFmo(Zv). For every seZ v,
denote by Ws the parallel translation of W by s. Consider a Ws -local functional
fWs = f(φ{t1 -s),...,φ(tm-s)). Let #:Fino(Z v) x Uv x [Rv->U be a function that
is periodic in the last vector variable with period P = (P1,..., Pv)e(Rv. In the sequel
we consider functions with period P = (l, . . . , l) only. We say that a W-local
functional fw is quasiperiodic with frequency module generated by a unique vector
generator ω, iff fWs can be written as fWt; = g(W,ω,o)s). We call g the modulating
function. As an example, consider the model defined in the Introduction. There,
the one-particle interaction potential ΦsAσ) is given by Φ,tX(σt) = ftσt, with
ft = a sin 2π(ω, ί); it is obviously a {ί}-local quasiperiodic function. Generalizations
to more complicated frequency modules are evident.

Remark. In order not to burden excessively the notation, it is understood in the
whole paper that all functions of geometrical objects have this dependence on three
variables. For instance if we write F(Γ) in the following, it will be thought as a
function of three variables. If t is the lexicographically first point of suppΓ, F(Γ)
means actually F(Γ, ω, ωt). By the derivatives of F with respect to ωt we mean the
n-tuple of partial derivatives with respect to ωttt.

We prove the following:

Lemma 1. Assume that the modulating function g(; , ):Fino(Zv) x Uv x [RV-+[R is
C 3 with respect to the third variable. Assume that for a given H^GFino(Zv) the third
derivative with respect to the third variable has its L00 norm bounded by some constant
Ko = K0(W) for WeFino(Zv). Moreover, suppose that there is a coordinate
;e{l,...5v} of ω such that the following diophantine condition

ι\ VκeZ\{0}

(where \\t\\ = dist(ί,Z)) is fulfilled1. Then, there are two constants K2 = K2(W,ω)eU
and K3 = K3(W,ω,K0,K1)eM + such that

Σg(W,ω,ωt)-K2\Λ\

Proof. Without Joss of generality one can assume that j = v in the diophantine
condition. For every vector ίeZ v, use the notation t to denote its v—1 first

1 This condition implies that there is a constant K\ slightly larger than KJπ such that |sm(nojJ π)|
^ 1/K[n2 for every non-zero integer
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coordinates; hence, t = (ί, ίv). Take the Fourier transform of g

g(W,ω,ωt)= Σ 0 w (^ω,ωί)exp(ϊπnω v ί v )
neZ

= go(W, ω, ωt) 4- Σ Qn^W^ω > wt) exp (ίπnωvtv).
nfO

Then, using the diophantine condition above we estimate

Σ exp(iπnωvίv) ^2|sii
ίve[α,fc]

and

Σl9(W,ω,ωt)-go{W,ω9ωt)'] ^ Σ
nfO

gn(W,ω,ωt) Σ exp(iπnωvtv)
fv:(ί,fv)e/l

t.3teλ

where JVf is the number of the vectors i, such that (ί, tv)edΛ for some tv.

^ s Σ ^ t = 13ΛI we can further estimate

Σ \9n\n2

nfO

The last inequality is a consequence of the following observations:

by Holder inequality and

Now, since the period P = {P1,..., Pv) = (1, . . . , 1) we can bound || d3g/d(ωvίv)
3 \\l2 ^

\\d3g/d{ωvtv)
3\\2

L* = K2

0.

Remark. The irrational numbers θ satisfying the typical condition \\nθ\\ ^ l /^ i ^
/

are called Diophantine numbers of type / (in contradistinction to Liouville's
numbers that are exponentially well approximated by rationals). The Diophantine
numbers are not exceptional, in fact the Lebesgue measure of the reals that are
not of Diophante's type is zero.

Definition 3. A function G:Fino(Zv) xZv->lR of the form

G{W,s) = g(W,θ)9ωs)

such that for g the hypotheses of the previous lemma are fulfilled and ω satisfies
Uncoil ^ 1/Kιn

2 for suitable j and every n / 0 , is called gentle, more precisely
(K0>£i)-gentle5 with Ko = K0(W) for WeFino(Z v).
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3. Notations and Definitions

Let us consider a discrete spin system on the lattice Zv(v ^ 2). A configuration x
is an element of the product space Sz . For every finite subset A c Zv, we denote
by xΛ the restriction of x on A.

The theory is defined by a family of interaction potentials {ΦA}A<ZZV> i e ^ o c a ^
functions of the type ΦA:S

A-^Uu{ + oo}. We consider only finite range potentials.
We do not ask all the potentials to be translationally invariant; some of them are
allowed to vary quasiperiodically as we explain later. Given a finite volume A and
a fixed boundary condition xΛC on /lc, the relative hamiltonian H(xΛ\xΛC) for every
configuration xΛ is defined by

H(xΛ\xΛC)= Σ *A(XA), (1)
AφΛc

and the corresponding partition function by

Z(Λ,xΛc)= X exp(-JF/(xΛ |xΛ,)).
xAeSΛ

The inverse temperature /? is included as a multiplicative factor in ΦA.
The hamiltonian will be now expressed in terms of contours. For a general

introduction to the contour machinery the reader may consult [18]. Here, some
additional definitions are given in order to include the case of non-translation
invariance.

The notion of reference configurations is defined in such a way that the finite
temperature states are obtained as small perturbations of some of these reference
configurations. There is no a priori restriction in their choice. However, the set of
reference states must include all the local ground states to insure that the Peierls
condition is fulfilled. The set of constant reference configurations obtained as the
ground states of the unperturbed periodic part of the hamiltonian, provides a
typical example.

Let {xq, qeQ} be the set of reference states with Q some index set. We require

ιe ι<oo.
Let some distance be defined on Zv. Denote by Bt(r) the sphere of radius r and

center t with respect to that distance, r being the range of interactions. A point
ίeZ v such that xt = x|, \/seBt(r) is called a q-correct point for the configuration x.
Consequently, a point teZv is an incorrect point for x if there is no qeQ for which
t is ^-correct. The set of all incorrect sites of x is denoted by B(x).

Definition 4. Let C be a finite connected component of B(x). A contour Γ for the
configuration x, is the pair Γ=(xc,C), where xc is the restriction of the
configuration x to the component C. C is usually denoted by supp Γ.

The hamiltonian (1) will now be reformulated in terms of contours. The contour
having ^-correct points as its exterior is denoted by Γq. Each finite component of
(suppi")c is characterized by some index q'eQ. The union of all components with
the same q' is denoted by mtq,Γ. We denote by intΓ= (J mlq,Γ and V(Γ) =

q'eQ

suppΓuintΓ, extΓ= V{Γ)C.
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For each reference state, the local energy densty eq(t) is defined by

and the contour weight is defined by

V \AnsuppΓq\ ^

Fix a boundary condition xq

Λc. Then, assuming that all contours Γt of xΛuxq

ΛC

satisfy the condition supp Γt a A, we have for the hamiltonian the expression [20]

H(xΛ\xq

Λc) = YJΦ(Γi)+ ]Γ Σ eq{t) -f const (A, q\

where

and Λ^ is the set of ^-correct points contained in A. We will replace H(xA\x\c)

by the quantity H(xA) = YjΦ(Γi) + Σ Σ ^'W everywhere in the following. As
i V'εQ teΛq,

H(xΛ\xq

Λc) — H(xΛ) = const (A, q) this substitution does not affect the values of the
Gibbs probabilities we will work with.

The family {Γ^ of contours associated with a given configuration has an
intrinsic partial order induced by the inclusion relation of the supports, in the
following sense: A contour Γλ is smaller than Γ2 if dist (supp Γ1, (int Γ2)

c) ί> 2. The
maximal elements in this ordering are called external contours of the given
configuration.

Definition 5. A contour weight Φ( ) satisfies the Peierls-Gertzik-Pirogov-Sinai
(P-GPS) condition if there is some large τ > 0 such that

Φ(Γ) > τ I supp ΓI for every Γ.

Remark. As the inverse temperature β is included in Φ, the parameter τ is a function
of β, and grows linearly with β.

A configuration xΛ is called q-diluted in A if its extension by xq on Zv has the
property that dist {V(Γ), Ac) ^ 2 for every contour Γ of the extended configuration
XA\JX\C. The corresponding partition function, i.e.

where the summation is over all the g-diluted configurations in A is called q-diluted
partition function in A.

We denote by

the partition function where the summation is over all configurations on V(Γ)
which can be extended by xq on Z v such that Γ is their unique external contour.

The reference partition function Zre{(Γq,H) is defined as the sum
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over all configurations on V(Γ) such that all the contours of the extended
configuration xV{Γ)c are disconnected from supp.Γ.

In the particular case where int Γq = intq Γ
q, it happens that Z(Γq,H) =

exp(— Φ(Γq))Zΐef(Γq,H). Hence Φ(Γ) is interpreted as the work needed to install
Γ. For a general JΓ, such an interpretation can be given to the following quantity:

Definition 6. For every contour Γ we define the physical contour functional

Fphysί-Π as

Fphysl Π = - log (Z(Γ, H)/Zre{(Γ, H)). (2)

Now we can define the abstract contour model.
Assume that some contour functional F, acting on all contours Γq, is given,

e.g. F = Fphys.

Definition 7. Let tf\ be the family of all ^-contours that are diluted in A in the
sense that dist (supp Γ, Λc) ̂  2, for VΓe Jf 9

Λ. Let 3F\ be the family of all forests of
contours in tfq

A (we say that a set W of contours is a forest if any two contours Γ9

Γ' in W have dist (supp Γ, supp Γ') ^ 2). Let k:Jfq

Λ->M be defined by k(Γ) =
Qxp( — F(Γ)). We define by Z\(F) the partition function of the abstract polymer
model by

z \ = Σ Π k(n (3)

The cluster expansion technique can be applied to the study of these contour
models, if F is a p-functional (i.e. F(Γ) §: p|supp.Γ| holds for every g-contour Γ)
with a sufficiently large p. Then, by using standard cluster expansion arguments
[12] the cluster expansion series for logZq

Λ converges if p is sufficiently large.
However, for a physical contour functional the cluster expansion does not converge
in general. To handle these difficulties we will introduce some metastable contour
model in Sect. 4 replacing the physical model.

4 Extension of the Pirogov-Sinai Theory

4.1. Basic Constructions and Estimates

We start by presenting without proof a theorem establishing the equivalence
between the physical model and the polymer model. This equivalence is established
only in the case of the physical contour functional. The proof can be easily done
by induction on the level of A (see [20]; some obvious changes are needed to get
rid of the lack of translation invariance). In the following, by a contour functional
F we mean a family of functionals Fq9 each Fq acting on all ̂ -contours Γq.

Theorem 1. If Fphys is the physical contour functional given by (2), then for each q
and each A with simply connected components we have

Zq(A, H) = exp - Σ e«(l) )Zq

A(FphyJ. (4)

Up to this point, the exposition was very similar to the standard Pirogov-Sinai
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theory. The lack of translation invariance introduced only minor apparent changes
(namely eq(t) is a function of the point t) and some hidden changes (namely all the
functions of contours Φ, F etc. depend not only on the shape of the contour and
the configuration on it but also on its position). The following technical steps allow
us to cope with the lack of translation invariance.

Lemma 2. Let Fq be a p-contour functional. Let moreover exp( — Fq(Γq)) be a gentle
function (see definition 3) whose derivatives up to the third order with respect to the
third variable are bounded by exp( — p\suppΓ\) with p sufficiently large. Then, for
every A we have

\\ogZ"Λ{Fq)-sq{Fq)\A\\^KA\δA\

and

where —sq(Fq) is the free energy of the polymer model defined by

ΛfZ" ' '

and i£4—>0 if ρ-> oo.

Proof Expand

zqΛ(F)= Σ Π exp(-F(Γ)) ,
We,3ΓΛΓeW

using standard cluster methods. Then \ogZ\ can be written as a sum over cluster
products,

log Z"Λ(F) = Σ fcτ,
7cf/l

where c c means connected subset of A which is disconnected from Ac and

^T ~ Σ Π e x P ( ~ ^ ( ^ ) ) ' ί^{T) is the collection of some chains (not to be

specified here; see e.g. [6,12] for details) of contours {Γ,} such that Ujsupp/^ = T
(we say a family {J^} of contours is a c/iαin if dist(supp jΓί5 u / < I supp Γj) S h f° r

all i ^ 2). We require moreover the collection 3Γ(T) to be invariant with respect
to the shifts i.e. 3~{T)S = &~(TS). (See e.g. [12] for details.) Now, the functions
exp( — F(Γ)) being (exp( —p|suppΓ|), KJ-gentle, the cluster products kτ will be
(exp( — (p — ζ)T)\i^J-gentle functions, where ζ = ζ(v). Put

and

sq(F) = lim - i - log Z^Λ(F) - lim - 1 - Σ sq{t, F)
ΛfZv\Λ\ ΛfZv\Λ \teΛ

(the mean value of sq(t,F)). Now apply Lemma 1; because | s u p p Γ | ^ 2v + 1 for

any contour Γ, both ŝ  and K4 are of the order Kx exp( — ((2v + \)p — ς)), where

C = C(v). D
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Unfortunately, it will not be possible, in general, to put Fq = F p h y s in the Lemma
(2) above. Some more careful choices of Fq will be needed. Before we define them,
we need the following

Definition 8. Assume that the P — GPS condition (Definition 5) is fulfilled. Choose
some τ1 < τ, to be specified later. A contour Γq will be called stable if the following
holds:

X (log Z*>(intqιΓ, H) - log Z*(intβlΓ, H))^i Isupp Γq| (5)

for any choice of q2 = g2(<h) Moreover, Γq will be called a small contour if it is
hereditary stable (i.e. it is stable and all the g-contours contained in its interior
are stable). The choice of τ t will be specified below.

Remark. For a typical contour Γq we have intΓq = int^ Γq for some q1 φ q. The
left-hand side of (5) is a measure of the volume gain for the free energy. By stability
of Γ we mean that this volume effect is "considerably smaller" than the energy of
the contour.

There are several possible variants of the notion of stability; what is uniquely
defined—and has a physical interpretation—is only the notion of a stable q (see
below).

Let us proceed in the discussion of those F which will be used in the following.
From now on, we shall consider a special class of contour functionals F satisfying
the following conditions:

i) F(Γ) = FphysCΠ f° r a nY small contour Γ.
ii) F is a p-functional with some large p.

iii) F ^ F p h y s for any Γ.
Later, we shall explain in detail the construction of such an F and show that
Fq = Fq

phys for stable q.

Define hq(t, F) = eq(t) — sq(t, F) and the mean quantities

Put h(F) = min hq(F) and introduce
Q

= hq(F)-h(F)

that will be interpreted as "parameters of instability." Those q for which aq = 0
will be called the stable q.

Definition 9. We say that a contour functional JF is (p, X1)-gentle if each exp (— F(Γ))
is a (exp( — p|supp,Γ|), X1)-gentle function of Γ.

The following theorem provides useful bounds on the partition functions.

Theorem 2. Let the function eq( ) be (K0,K^-gentle. Let F be a (p.K^-gentle
functional with sufficiently large p, such that F(Γ) ^ Fp h y s(i") for all contours Γ, and
F{Γ) = Fphys(Γ)for all small contours Γ. Then the free energy h(F) does not depend
on F. It equals the free energy h of the given model Moreover, the following assertions
are true:
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i) unstable contours satisfy the inequality:

α,(F) | int Γ« | ̂  (^ - 2ε) | supp Γ«|,

ii) Zq {Λ9H)^exp(-hq{F)\Λ\-ε\dΛc\)9

iii) Zq{A,H)^exp(-h(F)\A\+ε\δAc\)

with ε = ε(p) and lim e — 0.

Proof. First we prove ii). Write Zq(Λ,H) =exp( - £ eq(t) )Zq

Λ{F). The function

eq( ) being ( K Q , ^ ) - gentle, the use of Lemma 2 and Lemma 1 insures the validity
of ii).

Next we prove i). If Γq is unstable then by definition (5),

τt I supp Γ* I ̂  X (log Z*2(intβlΓ, H) - log Z*(intβ ̂  #))

for some #2 Using ii) and inductively iii) for smaller volumes we prove

(hq(F)-h(F))\mίΓq\>(τ1-2ε)\suppΓ\.

Now, we prove iii). For simplicity of the notations, we suppose that | Q \ = 2

(i.e.Q = {qί9q2}) and that only q2 is stable. Then aqι(F)>0. Fix the family of

external large contours {JHJ and write int = (J int Γh ext = /l\(J V{Γ^. Write

Zqί{Λ, {Γi}) = ̂  exp( —iί(x)), where the sum is over all configurations in A having
{rt} as their unique family of external large contours. We can use the equivalence
with the polymer model in the volume ext since only small contours can appear
there. The summation over the diluted configurations in ext is bounded by
exp( — hqi(F)\εxt\ + ε|dextc |) since it involves only small contours (use again the
assumption that F = Fphys for small Γ). The summation over the diluted configura-
tions in int is bounded by exp( — h(F)\ini\ 4- ε|θint c |) by using inductively the
relation iii) in a smaller volume. Then

• exp I 2ε ]T I supp Γt | -f ε | dΛc

V '•

Define Φ'(Γ) = Φ(Γ)- 2ε|suppΓ|, and suppose that Φ'{ ) fulfills the P-G.P.S.
condition with some new large τ 2 g τ. Now, Zqγ(A,H) can be estimated by the
following sum over the families of external large contours:

Σ ( - α(F)|ext|-£ Φ'(rΛ (6)

Using the Lemma 3 below we can bound

if a(F) > s(Φ'). The quantity —s(Φ')—not to be confused with —s(F)—is roughly
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speaking, the free energy of the polymer model with activities exp(—Φ'(Γ)) and
only with large contours permitted. This condition on a that is necessary for the
validity of Lemma 3, can be easily verified in our case. The proof is based on the
inductive assumption and the fact that exp( — τ1/a)«a. Thus

Zqι(Λ,H)^exp(-h{F)\Λ\ + ε\dΛc\). •

Let us state without proof [20] the lemma used at the last step of the previous
theorem.

Lemma 3. Define an auxiliary model of external contours by assigning to every
collection of compatible external contours {Γ^ in A a "hamiltonian"

with ext = A \\j-y{Γ^ and Φ'(Γ) > τ|supp Γ\ with τ large. Then, ifs(Φ') < a, we have

{Γt }

4.2. Construction of the Contour Functional

The problem which is not yet solved is how to find some F satisfying the conditions
of Theorem 2. Once such an F is found, we interpret hq(F) as the free energy of
some metastable contour model, the relation hq = h meaning that xq gives birth to
a stable phase. The questions asked above are answered by Theorem 3 of this
subsection that gives an explicit inductive construction of a contour functional F.
This functional turns out to be gentle and satisfies the assumptions of the Theorem
2; it has henceforth a reasonable physical meaning.

We remark that our functions of geometrical objects (e.g.exp(—Φ(Γ)))
although non-translation invariant have a translation invariant functional depend-
ence on their space-depending arguments. We introduce the symbolic notation
d/dλ for derivatives which have the following meaning: the operator d/dλ acts on
functions of geometrical objects and means derivatives with respect to ωs, where 5 is
the first point of the corresponding geometrical object.

The main result of this subsection is a generalization of the corresponding
theorem of [20] to our quasiperiodic situation. It is stated in the form of the following

Theorem 3, Let the function eq be (ε, K^-gentle. Let the potentials Φ be (τ, KJ-gentle,
i.e. the following generalized P-GPS condition

^exp(-τ|suppΓ|). (7)

holds for k = 0,1,2,3. Ifτ is sufficiently large (depending on K 0 , K x) then there exists a
functional F, such that F ̂  F p h y s for all contours, and F = Fphys for any small Γ.
Moreover, F can be chosen such that it is (p,Kλ)-gentle, namely

έ«p<-w) gexp(-p|suppΓ|) (8)

and l i m t ^ x p = + cc.
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Proof. We shall construct inductively F for larger and larger contours. Define
ΦΛ(Γ) (respectively FΛ(Γ)) as the finite volume regularisation of Φ (respectively F),
i.e.

_ ί φ ( Γ ) if V(Γ^ c A for some shift Γ* of Γ

A \ + oo otherwise

and similarly for FΛ. Denote by hΛ= minhq(FΛ) the free energy of the restricted
q

model with regularized interactions ΦΛ{Γ). We assume inductively that FΛ is given
in such a manner that the Theorem 2 can be applied to this restricted model.

Let int%Γq denote the set uq>fqmtq,Γ
q and define

exp(-Φ(Γ«))

QXΌ(-F(Γq))=

where τ\ >τ1 will be specified later and Ji(aΓ,bΓ) is a smooth version of the
maximum defined e.g. as a C3 function which is symmetric in its arguments and
such that Jί(anbΓ)^:max(anbΓ) and ,Ji(aΓ,bΓ) = aΓ if aΓ> exp(C|suppJΓ|)feΓ.
(Notice that τΊ must be sufficiently greater than τ l 5 approximately like τ'j ^ τλ + 2ε
to guarantee that Z7 = F p h y s for all small contours. On the other hand Jί ^ max
guarantees F ̂  Fp h y s.) We shall prove inductively

i) that F defined by (9) is gentle in the sense that it satisfies (8) with p ~ τ — τt and
ii) that (8) i.e. the gentleness of any new F(Γq) defined by the formula (9) at

the level A implies that the Theorem 2 is valid for the next greater volume.
We sketch the induction on the volume.

Step L Suppose that F(Γ) is a gentle functional satisfying the condition (8) above,
for all Γ such that V(Γ) c A. Then, for p sufficiently large we have

(10)

with small ε2 = ε2(
ε) I n fact> writing Zq(A,H) in terms of families of external

contours {Γt},

Z%A,H)= Σ exp - Σ Φ-Σ{ Σ Φ
{Γ} \ ίeext i \ίesupp/ί

•Π Π Z^intqιΠ,H). (11)
Q

Where Qxt = Λ\^JιV(Γ^ we use item iii) of Theorem 2 to bound Zq(A\H) by
Zq{Λf,H)\<^exp(-hΛ,\Λf\+ε\dΛ'c\). Then, using inductively (10) for all A' a A
we bound

dZq(A,H) ^ , A χ m A rτλ , n ^ y - r K Λ „ \γlzqί{{ntqΓH)zq{QχtΓH)

dλ

+ Σ - ^ 7^— exp(-Φ(Γ))Zg(extΓ,//)
r dλ
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+ 2 Σ exp(-(τ-fi)|suppΓ|)exp(-ΛΛ|yl|)
Γ:dist(suppΓ,Λc)^2

^exp{-hΛ\Λ\+ε\dΛ\). (12)

The higher order derivatives generate a sum of monomials of the type appearing
in (12); each monomial appearing in this case can be bounded as in (12) since it
refers to smaller volumes.
Step 2. We show that F(Γ) defined by (9) is bounded as in (8) if this is true for all
Γ that can fit in V(Γ). Write

Π ) (13)
q'fq J

exp(-Φ(Γ*))

hV(nIint, Γ"\ - τ\ |supp Γ"\)]2

J i ) , exp ( - hV(Γ) I int., Γ" | - τ\ \ supp Γ« \).

Estimate this by using (7) and (10). We don't care about signs but we bound by
the worst sum of positive terms. We bound άJtjάλ by

Hence we need bounds on dhV{Γ)/dλ or equivalently on ds(FV{Γ))/dλ in addition
to the bound (10). But

^ dλ ZΛ(F)

This derivative is bounded by Cexp( — (2v + l)p) (notice that | suppΓ | ^ 2v + 1)
by virtue of the inductive step of the proof of (8) for k = 1. Higher derivatives
generate the same kind of terms as in (13), some of them having higher and higher
powers in the denominator. The highest power in the denominator is 4, henceforth
it is enough to choose τι sufficiently smaller than τ/4, for example 2τ/9. If we
choose further τ\ >τx e.g. τ\ =4τ/17 and p~τ — kτ\,k being the power of the
denominator considered, all these terms can be bounded as above. This proves
the gentleness of exp ( — F(Γ)) up to the level defined by V(Γ). •

In order to obtain the phase diagram (in the next subsection) we need also
some control on the derivatives with respect to the external fields ξi9i= 1,..., m. In
the case where the external fields do not modify the frequency module we can
easily generalize the previous theorem into the following

Theorem 4. Suppose that the perturbed hamiltonian Hξ has the same frequency module
as the hamiltonian Hξ = 0. Let the functions dkdιejdλkdξ\, fc = O,...53,Z = O, 1 be
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(Kθ9K ^-gentle and dkeq/dλk be (ε,K ^-gentle. Let the functions διexp{- Φ(Γ))/dξι

h

/ = 0,1 satisfy the gentleness condition

dk d
- —exp(-Φ(Γ)) ^exp(-τ|suppΓ|).

.--exp(-F(Γ))

If τ is sufficiently large, then F defined by the relation (9) satisfies

with lim p! = -f oo.

τ—> oo

Proo/. The proof is some modification of the proof of Theorem 3 if one remarks
the similarities between ξ and / derivative in the course of the induction. Theorem
2 guarantees the existence of a "good functional" F under the assumption of the
(ε, K ̂ -gentleness of eq. In particular the partition function satisfies the bound of
item iii) of Theorem 2. Now, rewrite all the steps of Theorem 3 where the regularized
quantity hΛ is replaced by the real free energy of the model h. When we compute
derivatives of expression of the form exp( —/?|/1|), there appear terms that are
bounded by K0\Λ\ (instead of terms that appeared when deriving exp( — eq\Λ\)
that were bounded by c\Λ\ in Theorem 3). But even these bigger terms are beaten
when combined with expressions of the form exp( — τ|δ/l|) if the quantity Ko is
not excessively large. •

Corollary 1. Under the conditions of the previous Theorem 4 for the derivatives of
exp(— Φ(Γ)) and the densities eq(t), the quantities sq(F) and dsq{F)/dξi are bounded
by small constants.

43. The Phase Diagram

Suppose that the original hamiltonian admits m + 1 degenerate states. Then the
mean energy densities eq — lim (1/|Λ|) ]Γ eq(t) will be the same for qi,...,qm+1.

Λ]ZV teΛ

Hence, at zero temperature we have the coexistence of m + 1 states. We include
the inverse temperature into the hamiltonian. By "zero temperature" we mean the
limit case τ —• GO. To construct the phase diagram at zero temperature it is enough
to introduce a set of m external fields removing the degeneracy of the ground
states, i.e. to introduce a vector parameter ξ = (ξ1,..., ξm). However, we can only
deal with those external perturbations that leave the frequency module of Hξ

invariant for VξeUm.
The mean energy densities become functions of ς, eq = eq(ξ) and the degeneracy

eQi(0)= •" = eq (0) is removed in a sense explained in Theorem 5 below. The
phase diagram can be described by the quantities hq(ξ). We consider the low
temperature—large τ—case; then these quantities are well defined from the
previous considerations. In order to guarantee that we can continuously pass from
the zero temperature diagram to the corresponding one at finite (low) temperature,
the following two mappings

z : ^ c ( R m - > ί ) m , z{ξ) = (eqi-e,...9eqmήi-e), with e =
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and

/ : < # . = (hqι-K...9hqm+i-h\ with i = minhq,

where Dm = {(yl9...9ym+1)eUm + 1; minj^^O} must be such that the mapping
l~ι°z\6U -+% exists (for suitable % and %) and is a homeomorphism near the
identity. The homeomorphism /~1 °z transforms the zero temperature diagram into
the finite temperature one. Namely, if for some ξ9 N a Q is precisely the set of q
such that eq(ξ) = e(ξ)9 then for ξ = Γ1°z(ξ\N is also the set of q such that
hq(ξ) = h(ξ). We can prove the following

Theorem 5. Let \Q\ = m + \ and ξ be a vector parameter written in the form
(ξl9...9 ξm). Let eq(ξ) be all the same for ξ = 0 and the matrix

M =

with i — 2,..., m + 1 and] — l,...,mbe ίnvertίble. Assume moreover that \\M 11| g L
in some neighborhood °U ofO. Let the frequency module generator ω be an irrational
number satisfying the diophantine property \\nωj\\'^.l/K1n

2 for every non-zero
integer n and some coordinate je {1,..., v}. Let the derivatives of the contour weight
exp(— Φ{Γ)) be bounded

dk dι

dλk dξ\
7exp(-Φ(Γ)) ^exp(-τ|suppΓ|),

and the local energy densities eq(t) satisfy the bound

with exp(τ/5)K0

 : » 1, for ke{0,1,2, 3} and /e{0,1} and also the mild bounds

dk dι

Ξ X o for i = \,...,m.

If moreover τ = τ{ΰlί9 L) is sufficiently large and ε = εi^U, L) sufficiently small, then the
mapping

l(ξ) = (hqι-h,...,hqm+i-h)

is invertible and one-to-one between some slightly smaller set% ̂ °U and an open Ψ 30
in Dm. The map l~x °z, where z is given by z(ξ) = (eqi — e9..., eq — e) is moreover
smooth, and transforms the zero temperature phase diagram (given by Φ(Γ) = oo)
into the low temperature one.

The proof is an immediate consequence of the corollary (1) and the inverse
mapping theorem.

The interpretation of the previous theorem is the following: The relation hq = h
(and only this) means that there is a stable g-like phase Pq of the given hamiltonian,
having the following structure: Pq -almost any configuration x satisfies the
properties

i) all components of B(x) are finite
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ii) external contours do exist; any teZv is either an external point to all contours
of x or teV(Γ) for some external contour Γ of x.

iii) x = xq on ext - Z v \ l J a l l c o n t o u r s Γ o f x F ( Γ ) .

Intuitively, almost any configuration can be viewed as "a sea xq" with small, rare,
isolated islands (the external contours of xq) scattered uniformly over the whole
Zv. The statistical properties of the ensemble of external contours are described
exactly as in the corresponding ^-contour model with activity exp( —F p h y s ) and
F p h y s is a p-functional with a large p in this case.

As a concluding remark let us mention that apart from the possible extensions
that are under investigation, it is easy to generalize our results to take into account
larger sets of irrational ω's. However, the less restricting the conditions are on ω,
the more restricting the requirements should be on the derivability, i.e. if
|| nωt || ^ 1/Kχ n1 + α for some integer α, then to prove the theorem we need a control
on the derivatives dk/dλk up to the order 2 + α. We conjecture that the phase
diagram at low temperature is different from the one at zero temperature if the
control on derivatives stops to some order less than required by the diophantine
properties of ω.
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