
Communications in
Commun. Math. Phys. 103, 441^44 (1986) Mathematical

Physics
© Springer-Verlag 1986

Absence of Localization in a Class of Schrόdinger
Operators with Quasiperiodic Potential

Franςois Delyon and Dimitri Petritis
Centre de Physique Theorique*, Ecole Poly technique, F-91128 Palaiseau Cedex, France

Abstract. We prove that a class of discrete Schrodinger operators with a quasi-
periodic potential taking only a finite number of values, exhibits purely
continuous spectrum; in particular they cannot have localized eigenvectors.

Introduction

We consider discrete Schrodinger operators acting on / 2(Z):

Ψn + 1+Ψn.1+λVnΨn, (1)

where Vn is a quasiperiodic sequence. In [1], Kohmoto, Kadanoff and Tang
proposed a model where V is given by:

Vn = χΛ(nω + θ)9 (2)

where χA is the characteristic function of an interval A on the circle and the argument
of χA has to be understood mod 1. In their case ω was the golden mean, A was the
interval ] — ω 3 , ω 2 ] and θ was 0. In a subsequent paper by Kohmoto and Oono [2],
it is shown by renormalization arguments that for some values of λ the spectrum of
H is a Cantor set of zero Lebesgue measure. Furthermore these authors conjectured
that the spectral measure is singular continuous. In this paper A is an arbitrary
interval, ω an irrational number and we use the notation H(θ, λ) to take into account
the dependence of H on λ and θ. We prove below the following theorem:

Theorem 1. For Lebesgue almost every ω and for any A, then for Lebesgue almost
every θ, the spectral measure of H(θ, λ) is continuous for any value of λ.

Remark. The set of ω for which our proof is valid is described in Theorem 2; unlike
most of the works on the subject, this set does not contain the golden mean.

This theorem is obtained by showing that any solution Ψ of the eigenvalue
problem HΨ = EΨ cannot decay at infinity. More precisely it is shown that Ψ is
"recurrent" on a set of sites associated with the decomposition of ω in a continued
fraction. In some cases [2,3] the spectrum is expected to have no absolutely
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continuous component and the recurrent behaviour of Ψ on these sites may be
characteristic of the hierarchical structure of the generalized eigenfunctions of H [4].

Our approach is easily extended to the case where the potential is generated in
(2) by a piecewise constant function instead of the characteristic function of an
interval A.

Proof of Theorem 1

Our proof relies on an idea due to Gordon [5] and already used by Avron and
Simon [6] to prove the absence of point spectrum when V is generated by a conti-
nuous function and ω is a Liouville number. A straightforward adaptation of the
proof of Lemma 7.6 of [7] to matrices of determinant 1 provides the following
lemma:

Lemma 1. Let Ψbea solution of the eigenvalue equation HΨ = EΨ and suppose that
there exists an integer r such that Vn + ir= Vnfor i = — 1,1 and 0 < n ^ r (Hypothesis
HI), then we have for all E:

Max( || M. r ||, || ^11,11112, ||) ^ | |Mo H/2, (3)

where un is the vector (Ψn9 Ψn + 1).

Proof of Lemma 1. As in [7], let us call B the 2 x 2 transfer matrix which maps u0 on
ur; then B satisfies:

since the determinant of B is 1 (c is the trace of B). The result follows easily by
applying this equality to u-r (respectively u0) if \c\ is smaller (respectively larger)
than 1.

Hence if there exists, for a.e. ω and for a.e. 0, an infinite increasing sequence rn

satisfying the hypothesis HI of Lemma 1, then the theorem is proven. Indeed, since
in this case Max( || w_Γn ||, || ^ ||, || u2rn II) does not go to 0 as n goes to + oo, H(θ, λ)
cannot have eigenvectors in ί1 for a.e. θ and all λ. Thus the Theorem 1 is a mere
consequence of the following Lemma 2:

Lemma 2. For almost every ω there exists for almost every θ a sequence rn(θ) for
which the hypothesis HI of Lemma 1 is fulfilled.

Proof. Let pjqn be the nth principal convergent of the irrational number ω so that we
have:

Pn+l =anpn+pn-1,

where an is the nth partial quotient of the continued fraction of ω. The rate of
convergence of the pn/qn to ω is given by:

Iω - pjqn\^\pn + Jqn +1 - pjqnI = \/qnqn +1 ^ V(μnql). (4)

Now the set E(ή) of values of θ such that hypothesis HI is fulfilled with r = qn is given

by:



Absence of Localization in Schrδdinger Operators 443

Inf (\mω + θ-xi\)>qn\ω-pjqn\}, ( 5 )

0 < m ̂  qn

where xt (i = 1,2) are the two endpoints of the interval A. Indeed, (5) expresses the
fact that the argument mω + θ of χA(.) for m in [ l , g j must be distant from xf by at
least the phase shift corresponding to a translation of ± qn in order to ensure the
exact repetition of the potential considered in Lemma 1. Clearly we have:

μHEtμ))>\-2q2

n\ω-pJqn\, (6)

where μ is the Lebesgue measure on [0,1]; thus using (4):

μ(E(n)) ̂  1 - 4q2

n\ω - pjqn\ ^ 1 - 4/an. (7)

Now, it is known [8] that for a.e. ω we have:

lim sup αn = + cc, (8)
n-* oo

which yields that:

l imsupμ(£ n )=l, (9)
n—• o o

whence:

μ ( l i m s u p £ J = l . (10)
n~* oo

Consequently, for a.e. ω, there exists for μ a.e. θ an infinite sequence rk(θ) = qnk(θ)
such that HI is fulfilled. This ends the proof of Lemma 2 which, using Lemma 1,
provides Theorem 1.

Extensions

Extension to a larger class of irrational numbers. By the definition (5) of Et{n\ one can
easily check that these sets are asymptotically independent in the sense:

) n £ t (m))

as the ratio qjqm goes to 0 (or to + oo). Thus using Borel-Cantelli lemma,
lim sup an(ω) > 4 is sufficient to ensure that:

n-> + oo

μ (lim sup E(ή))= 1,
n—• + oo

which proves the following Theorem:

Theorem 2. For every irrational number ω such that limsupαπ(ω)>4 (an is the nth

n~* + oo

partial quotient of ω) and for any A, then for Lebesgue almost every 0, the spectral
measure of H(θ, λ) is continuous for any value of λ.
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The case of piecewise constant functions. In this case, the proof is similar except the
fact that factor 4 in (7) and in Theorem 2 has to be replaced by twice the number of
discontinuities of the function generating the sequences Vn.

References

1. Kohmoto, M., KadanoίT, L. P., Tang, C : Localization problem in one dimension: Mapping and
escape. Phys. Rev. Lett. 50, 1870 (1983)

2. Kohmoto, M., Oono, Y.: Cantor spectrum for an almost periodic Schrodinger equation and a
dynamical map. Phys. Lett. 102A, 145 (1984)

3. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. J., Siggia, E. D.: One-dimensional Schrodinger
equation with an almost periodic potential. Phys. Rev. Lett. 50, 1873 (1983)

4. Thouless, D. J., Niu, Q.: Wavefunction Scaling in a quasi-periodic potential. J. Phys. A 16, 1911 (1983)

5. Gordon, A. Ya.: Usp. Mat. Nauk 31, 257 (1976)
6. Avron, J., Simon, B.: Bull. Am. Math. Soc. 6, 81 (1982)

7. Simon, B.: Adv. Appl. Math. 3, 463 (1982)
8. Khinchin, A. Ya.: Continued fractions, p. 60. The University of Chicago Press 1964

Communicated by B. Simon

Received July 30, 1985




