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Abstract. We consider the random variable: z = 1 + xl + xlxz + xlxzxj + . . . , where the x, 
are independent, identically distributed variables. We derive some asymptotic properties 
of the distribution of z, which are related e.g. to the low-temperature behaviour of the 
random field king chain. For a special class of distributions of the x,, exact solutions are 
presented. We also study the cases where the distribution function of z exhibits a power-law 
fall-off modulated by a ‘periodic critical amplitude’. 

1. Introduction 

Since the pioneering work of Dyson (1953), one-dimensional random systems have 
been of considerable interest. Besides the well known localisation problem (Schrodin- 
ger equation with a random potential or, equivalently, eigenmode equation of a 
harmonic chain with random masses and/or spring constants: see Lieb and Mattis 
(1966) for a review), other examples of disordered systems have been investigated 
recently. In particular we mention the hopping models of diffusion in a random 
medium (Alexander et a1 1981, Derrida and Pomeau 1982, Bernasconi and Schneider 
1983, Derrida 1983, Nieuwenhuizen and Ernst 1984) and the Ising chain in a random 
magnetic field (Derrida et al 1978, Brandt and Gross 1978, Bruinsma and Aeppli 1983, 
Gyorgyi and Rujan 1983, Normand et a1 1984). 

One of us (Nieuwenhuizen 1983, 1984a, b) recently introduced a method which 
allows us to find exactly soluble classes of the above mentioned problems. These very 
different situations share an interesting feature: they lead to linear recursion relations 
with random coefficients, just as in the study of infinite products of random matrices, 
where the quantity of particular interest is the (largest) Liapunov exponent of the 
infinite product. This problem has also been of much interest in probability theory 
(Kesten 1973, Kesten et a1 1975, Solomon 1975, Ruelle 1979, Sinai’ 1982, Key 1984). 
The close analogy between certain products of 2 x 2 matrices and physical systems has 
been pointed out by Matsuda and Ishii (1970), and Derrida and Hilhorst (1983). 

Randomness has two kinds of interesting effect on some of these systems: different 
physical quantities develop singularities at different points ; some quantities are singular 
in a whole range of parameters, and exhibit continuously varying critical exponents. 
Some particular distributions of random interactions may lead to a more spectacular 
phenomenon, namely the modulation of the usual power-law critical singularities by 
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oscillatory functions (Derrida and Hilhorst 1983, Bernasconi and Schneider 1983, 
Derrida 1983). On the other hand, the support of some quantities in the I D  random 
field Ising model is a fractal or Cantor set (Bruinsma and Aeppli 1983, Gyorgyi and 
Rujan 1983, Normand et a1 1984). 

In this paper we present a prototype of a I D  disordered system, which is simple 
enough to allow for a deep analytical and numerical study. It exhibits most characteris- 
tic features of more realistic models. 

Consider an infinite sequence of independent real random variables x,, x2, x3, .  . . , 
each xi being distributzd according to the same probability measure dp (x ) ,  the support 
of which is contained in an interval [a,  61 with O S  a < b < W .  Define the random 
variable z through 

z =  n x , = 1 + x , + x ~ x * + x , x * x ~ +  . . . .  
n a O  I s i s n  

The solution of this model consists of the determination of the measure dp(z)  
according to which z is distributed. Particular attention is paid to the large-z behaviour 
of the density R(z)  and the integrated density N ( z )  defined by 

J Z  

R ( z ) d z =  -N'(z)  dz=dp(z ) .  

These quantities generally have the following large-z behaviour (see § 2) 

N(z)-(C0/a*)z-"* 

R(z) - c0z-(l+a*) 
(1.3) 

where a* depends continuously upon the measure dp (x ) .  In some particular cases, 
the constant CO is replaced by a periodic function of In z (see § 5). 

Let as discuss briefly to what extent the present model is a prototype of I D  random 
systems. Although as far as we know the measure density R(z)  has no direct physical 
interpretation, its behaviour for large z is closely related to critical singularities of 
physical quantities, at least in the following two circumstances. The first one is the 
random field Ising chain at low temperature (Derrida and Hilhorst 1983). These 
authors express the quenched avcraged free energy as 

where E = e-2J1T ( J  is the nearest-neighbour coupling) and z, = e-2hj1r ( h ,  is the field 
acting on site i ) .  The critical point of this system is T =0,  i.e. E = 0. The small-s 
behaviour of F is in some cases 

F (  E )  - c, E Z U *  (1.5) 

where a* < 1 depends continuously upon the distribution of the hi. For some discrete 
distributions, the constant C, is replaced by a periodic function of /In E ]  = 2 J /  T.  The 
mathematical analogy between F ( E )  and our R ( z ) ,  discussed by Derrida and Hilhorst, 
will not be reproduced here. Disorder-dependent exponents and periodic amplitudes 
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also occur in the random hopping problem (diffusion on a random chain), where a* 
characterises the long-time behaviour of the mean position 

x(t)- C * P *  ( O <  a* < 1)  (1.6) 

in the range of parameters where the physical velocity vanishes (Derrida and Pomeau 
1982, Bernasconi and  Schneider 1983). The special case a*=O has been studied in 
more detail by Sinai' (1982) and  Golosov (1984). 

The plan of this paper is as follows. In § 2 we determine the asymptotic expansions 
of R(z )  and N ( z )  for large z, as well as for z close to its lower bound. Our method, 
based upon the Mellin transformation, gives systematically subleading terms (for z + CO, 

the leading term is known from probability theory). Section 3 presents closed formulae 
and algorithms to determine the amplitudes occurring in the large-z expansion of 
N ( z ) .  The cases where the exponent a* is an  integer happen to be particularly simple. 
In 0 4, we use the above mentioned method introduced by one of us (Nieuwenhuizen 
1983, 1984a, b) to solve the problem exactly for a three-parameter family of measures 
d p ( x ) .  We obtain an infinite product representation for the Mellin transform of a 
shifted version of dp (z ) .  Section 5 is devoted to the more exciting case of a class of 
discrete measures d p  ( x )  which give rise to oscillatory critical amplitudes. We present 
some pictures of these functions, and some conjectures concerning the support proper- 
ties of dp(z),  which are reminiscent of the Cantor sets found in the above cited papers 
on the random field Ising model. In § 6, we discuss the implications of our results for 
realistic models. As far as the periodic amplitudes are concerned, we show that, 
whenever the amplitude 4 of R ( z )  exhibits oscillations, the amplitude of the Ising 
free energy reflects this periodic structure in a much smoother way. 

2. Basic properties and asymptotic behaviour 

2.1. Behaviour at Z + W  

The random variable defined in ( 1 . 1 )  may also be written as 

z = 1 + x , y  (2.1 ) 
where 

y = 1 + x* + XZX) + x2x3xq + . . . . (2.2) 

Let us call d p  the probability measure for z, and R its density (if it exists): dp(z)  = 
R (  z) dz. From this definition the y and x variables are independent, and y is distributed 
according to the same measure, dp, as z is. If d p  has a density R, it satisfies the 
following Dyson-Schmidt-type integral equation (Dyson 1953, Schmidt 1957) 

(3 R ( z )  = I d p ( x ) x - ' R  

More generally, the mean value of any function F ( z )  must satisfy 

(2.3) 
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Now let us introduce the moments of both measures d p  and dp extended to complex 
values cy and p of the exponents 

F 

f and g are just the Mellin transforms of the densities of the measures d/-L and dp. 
They are of interest because their analytic properties are related to the asymptotic 
behaviour of the measures. If g is meromorphic for Re p < t 

where g l ( p )  is analytic for Re /3 S r, then we have 

(2.7) 

where dp, is integrable with any smooth function growing not faster than zr at infinity. 
If dp has a density R, then R is given by the inverse Mellin transform 

(2.9) 

When g ( p )  decreases fast enough for large values of Im p, the integral is absolutely 
convergent. By moving the integration path, using the assumed meromorphy (2.7) and 
the Cauchy theorem, we find 

R (  z) = g,z-@,-I + R I  (z)  

lRl(Z)l < Cz-'-l. 

I 

where 

(2.10) 

In the more general situation, the determination of the asymptotic expansion (2.10) 
amounts to the desingularisation of g (p ) ,  which will now be performed. 

Taking F ( z )  = zp  in (2.4), we use the Mellin representation 

(2.1 1 )  

with 

We restrict 
1 and has 
convergent 

Rep<R.u<O.  (2.12) 

ourselves to the physically interesting cases where dp  exists, is normed to 
[ l ,  +a[ as support. In these cases, the integral in (2.6) is absolutely 
for any negative value of Re p. On the other hand, the Euler function T(x) 

decreases exponentially for large values of Imx. Thus we can exchange the x,y 
and U integrations, and we obtain for g(  p )  the following integral equation 
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In order to find the meromorphy properties of g for higher values of Re p ,  we shift 
the integration path by crossing the simple pole of I?( u - p )  at U = p 

Equation (2.15) is the starting point for our analysis. Before using it, let us give our 
notation for the zeros of 1 -f(P). For real values of p, it is easy to verify that f(P) 
is a convex function. Of course 

f (0)  = d p ( x )  = 1, (2.16) 

but the zero of 1 - j  at p = 0 is cancelled by the pole of r( - p )  and does not give a 
singularity for g ( p )  at /3 =0, as should be, since 

5 
r 

g(0) = dp(z)  = 1 J (2.17) 

The variable z defined in (2.1) only takes finite values under the restriction 

(log x) = dp(x)  log x = f ( O )  < 0. (2.18) 5 
Therefore we are left with two possibilities 

(i)  f(p) remains smaller than 1 for any real positive value of p. Since 

(2.19) 

1 -f never vanishes. From equation (2.15), g ( p )  is also analytic in the half-plane 
Re p > 0 and for large z, R ( z )  decreases faster than any power. 

(ii) 1 -f vanishes for one real positive value p = a* (and only one, since f is 
convex). From (2.19), 1 -f does not vanish in the strip O <  Re p < a*. But 1 -f may 
vanish at other complex values, say p = a,, with Re a, 2 a*. For a very peculiar class 
of measures dp,  already exhibited by Derrida and Hilhorst (1983), there is an infinite 
set of zeros of 1 - A  all with Re a, = a*. This phenomenon appears only when 

d p / d x  = I € P  1 pJ(x - a ' )  (2.20) 

and will be studied in more detail in 0 5. For all other measures, all the complex zeros 
of 1 -f satisfy Re a, > a*. 

We restrict ourselves to case ( i i )  in the rest of this section and in § 3. In § 4 case 
(i) will also be considered. Let us come back to equation (2.15). It shows that for 
Re p < 1, the only singularities of g are the possible poles of (1 -f)-'. We can shift 
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the integration path by crossing the poles of g ( u )  and r( - U), without relaxing the 
inequalities Re p - 1 < R e  U < Re p. Iterating this procedure up to Re U = r for a given 
r we obtain a representation of g, valid for r < Re /3 < r + 1 

which shows that for Re /3 < r +  1,  g has the poles at p = a, we have mentioned already 
and new poles at p = a, + 1, with I = 1, 2, . . . . Shifting the integration to arbitrary high 
values of Re U, we obtain a proof of the meromorphy of g. I f  we call C,DtI, with 
D,, = 1, the residues o f the  poles of g at p = ut + 1, we have the corresponding asymptotic 
expansion for R ( z ) ,  when it exists, or more generally for the integrated probability 
N(z) (see equation (1.2)) 

(2.22) 

We show in the next section how to compute the coefficients of the asymptotic 
expansion. Let us note that, apart from the first real pole at p = a*, the other (complex) 
poles of g contribute in the asymptotic behaviour by oscillating terms: if a, is a complex 
pole, then 

(2.23) 

is also and we have terms like 

{ C, exp[ - i (  Im a , )  In z] +C exp[ i( Im a ! )  In z ] }  Z - R e  a, 

which lead to sine and  cosine functions of In z. 

2.2. Behaviour at the lower bound 

The same kind of method can be used to determine the behaviour of d p  at the lower 
bound of its support. Let 0 6  a < 1 [resp. b = 1/( 1 - a ) ]  be the lower bound of the 
support of d p  [resp. dp]. Then in a similar way as before the expansion of d p  in the 
neighbourhood of z = b is related to the meromorphy properties of the Mellin transform 

(2.24) k ( P )  = 1 d p ( z ) ( z  - b)-' 

for Re p z 0. Again using (2.41, we write 

W l = j  d p ( X )  d p ( y ) ( l  +xy-b ) -P  

and we introduce the Mellin representation, valid for Re p > 0 

(2.25) 

r ( p ) ( l + x y - b ) - P =  j 
Then by substituting (2.26) into (2.25) we find 

d l m  ur(, , \r(p - u ) x - ~ ( y - p ) - ~ b ~ - p ( , - a ) " - p .  
O<Re u < R e o  

(2.26) 

d Im U r( u ) r ( p  - U )  
k(u)b'-Ph( - U, U - p )  (2.27) 

r (p 1 
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where 

(2.28) 

( i )  Let us assume that d p  is integrable with a small negative power of x - a. Then 

R e p < R e u + E  (2.29) 

and arbitrary high values of Re U if a is not vanishing. By increasing simultaneously 
the values of Re U and Rep,  in such a way that (2.29) remains satisfied, equation 
(2.27) shows that k ( P )  is analytic for arbitrary high values of Re p. This implies that 
R ( z )  or N ( z )  decreases faster than any power of z -  b when z - ,  b. 

(ii) On the other hand, if a = 0, b = 1, (2.25) gives directly 

h is analytic for 

k ( P )  = g( - P ) f (  - P ) .  (2.30) 

Since g( - P )  is analytic for Re p > 0, k ( P )  has exactly the same singularities as f (  - p ) .  
The remarkable difference between cases (i)  and (ii) can be traced easily if we remember 
that from equation (1.1) z = b if and only if each xi  equals a, for a # 0. Conversely 
for a = 0, z = 1 if and only if x, = 0. 

(i i i)  Finally if d p  is not integrable with any negative power of x - a, the preceding 
argument does not apply and the exact singularity of dp at its lower bound has to be 
given explicitly. As an example, let us consider the following case 

d p ( x )  = p 6 ( x  - a )  dx + ( 1  - p )  dv(x)  (2.31) 

where the lower bound of the support of dv  is C > a. In the same way as before, we 
get 

x k (  u)bu-'I( - U ,  U - p )  

where 

I (  -U, U - p )  = dv(x)x-"(x - a)'-'. 5 
Now I is analytic, but k ( p )  has poles for pa-' = 1, or 

(2.32) 

(2.33) 

p = (log p + 2inr)l log a. (2.34) 

We shall consider in § 4 (case 3) an explicit example of such behaviour. 

3. Determination of the asymptotic expansion at z+oo 

A first equation giving the asymptotic expansion can be obtained from equation (2.15). 
By shifting the integration path to lower values of Re U, and crossing the poles of 
r ( u - p )  at u = p ,  p-1 ,  p - 2 ,  . . .  we find 
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Actually we shall use a simpler equation coming directly from equation (2.1). We write 

( x , y ) P  = ( z  - 1)P = ZP f (:)( - z ) - “ .  
n = O  

By taking the mean values of both sides, we find 

(3.2) 

(3.3) 

For real integer values of p, the RHS of equation (3.3) reduces to a polynomial, with 
a finite number of terms. Taking successively p = 1, 2, .  . . we find 

which provides a direct determination of the moments of dp, given the moments of dp .  
For non-integer values of p, the RHS of (3.3) is an infinite series. We may approxi- 

mate g ( P )  by the following approximation scheme 

Then g ( p  - N + I )  is given by the set of equations (3.3), taken for 1 = 0, 1, 2, . . . , N, 
and truncated by (3.5) and we find 

(3 .7)  

where SN is explicitly determined by the above computation. We want to determine 
the residues C, of g ( p )  at the different poles p = a,. Applying first equation (3.7) to 
the point /3 = 0 gives 

1 = d o )  = [ l / f ’ (0 ) l~SN(O) .  (3.8) 

For p = a* we find similarly 

co= -[i/r( a * I f ’ (  a *)lKSN ( a  * 1 (3.9) 

giving the first residue 

(3.10) 

In principle all the other coefficients in the asymptotic expansion (2.22) can be evaluated 
in the same way. But what is questionable is the convergence of such an algorithm 
when the order N of the approximation increases. By a computer calculation we find 
that the algorithm is convergent for the residue of the real pole, that is, for the dominant 
term in the asymptotic expansion. In the particular case of an integer value of a*, we 
even obtain an exact determination of CO by equation (3.4) in a closed form. For the 
complex poles, the convergence is more dubious, as can be seen from the following 
argument: from the above equations, we must have for d p  as in (2.20) and w = 27r/ln a 

g ( r + i w )  I-( N - r - iw)I-( - r )g(  r +  iw - N )  
= lim 

g ( r )  ~ - x  I - ( N - - r ) r ( - r - i w ) g ( r - N )  ’ 
(3.1 1 )  
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Now if g ( p  - N )  - b-N, we find that the RHS behaves like exp( - iw In N )  which has 
no limit. 

We shall study this case in $ 5 ,  where the complex poles contribute to the dominant 
behaviour, and see how singular the distribution may appear. 

Remark. Consider the case of a real dominant pole at p = a*. If we vary the parameters 
of the measure d p  in such a way that we tend to the limiting case a* = 0, we see from 
(3.10) that Cola* + 1. This is caused by the fact that the variable z becomes infinite 
with probability 1 

N(z)- 1 for all z. 
0*-0 

(3.12) 

The following logarithmic behaviour studied by Sinai' (1982) and Golosov (1984) is 
not present in our simple model. 

4. Exact solutions 

In this section, we consider a family of measures d p ( x )  for which the Mellin transform 
of dp(z)  can be obtained exactly through an infinite product representation. The 
method was introduced by one of us (Nieuwenhuizen 1983, 1984a, b) for Kronig- 
Penney, harmonic, X -  Y, tight-binding and hopping models and for diluted random 
systems. The basic idea is to search for distributions d p ( x )  such that the Dyson- 
Schmidt equation for the density R ( z )  can be transformed into a differential-difference 
equation. This is done as follows: we assume d p ( x )  = r(x) dx  where r is differentiable, 
and we employ the identity 

First we require that [xr(x)]' is proportional to r(x),  implying r (x)  - x'-' for some U. 

Moreover, we demand that one of the boundary terms in the RHS of equation (4.1) 
vanishes, implying either a = 0 or b = x. Following Nieuwenhuizen (1984b), we can 
also allow for an atom in d p ( x )  at the other boundary, and consider the more general 
distribution 

d p ( x ) = [ p t j ( x - a ) + r ( x ) ] d x  

According to the values of the three independent parameters (a, p ,  U), four cases 
can be considered: 

Case 1 ( a  > 1, U > 0,  J = [O; a]) is an example of the general case (finite index a*)  
discussed in the previous section. 

Case 2 ( a  = 1, ~7 > 0, J = [O;  I])  corresponds formally to an infinite order singularity 
(e* = m). It is of a particular interest, because we do not have asymptotic estimates 
of R(z)  for arbitrary measures in this case. 

Case 3 ( a  < 1, U > 0, J = [O; a])  does not exhibit any critical singularity, since the 
support of p is bounded, but shows an interesting behaviour in the vicinity of the 
upper bound. 
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Case 4 ( a  < 1 ,  a < 0, J = [ a ;  CO[) is an example of the general case with a support 
of p extending up to CO; the oscillations of case 3 are now present at the lower bound 
of the support of p. 

In the four cases, the moment function f( t )  reads 

f(t) = a ' ( a + p t ) / ( a +  t). (4.3) 

The moments of d p  given by (4.3) exist only for Re t >  -a in cases 1 ,  2, 3, and 
only for Re t < - a  in case 4. The derivative o f f ( t )  is given by 

(a+ t)(a +pt) In a - ( 1  -p )a  f'( t )  = a' 
(a+  t ) 2  

(4.4) 

Case 1 

a >  1 ,  a>0, asps 1 

SUPP P = [O,  a1 

SUPP p = [ I ,  a[. 

a In a + p  - 1 CO. 

Due to equation (4.4), the condition f ' ( 0 )  < 0 (see equation ( 2 . 1 8 ) )  reads 

(4.5) 

With our choice of measure d p ( x ) ,  equation (2.3) reads 

R ( z ) = !  U R ( y ) + / : $ r ( x ) R ( ? ) .  

From this we obtain, assuming that R has a derivative, 

We perform a partial integration, use the fact that 

x r ' ( x )  = (a- l ) r ( x )  

and delete the integral by again using (4.7). 
This leads to the following diff erential-diff erence equation 

( z - l ) R ' ( z ) - ( a - l ) R ( z ) = ( Z - l ) -  :2 RI(?)+ =a a R ( 7 ) .  2 - 1  

(4.6) 

(4.7) 

(4.8) 

Finally, one gets rid of the inhomogeneous term in the argument of R by putting 

R ( z )  = S ( Y )  with y = z +  l / ( a  - 1 )  (4.9) 

Define the shifted moment function of S (  y )  as 

(4.10) 

(4.1 1 )  

The lower bound is harmless for any t, since S(  y )  is identically zero for y < a / ( a  - 1) .  
Under the same assumptions as in § 2 ,  M(t)  is defined through (4.11) for Re t <0 .  
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Equation (4.10) implies therefore 

a 1 - p a ' - '  
M ( t )  = M ( t  - 1) - 

a - I 1 - p a '  + a( I - a ' ) /  t 
(4.12) 

for Re t < 0. 

M ( 0 )  = 1. It can be found by iteration to be the following infinite product 
M ( t )  is the unique solution of equation (4.12) analytic for Re t < O  and such that 

1 - p  - a h  a 
I - p a '  + ( a /  t ) (  1 - a ' )  

1 - p a r - "  
1 -pa -"  I -pa ' - "  +[a / ( t  - n ) ] (  I - a ' - " )  

1 - p a - "  - ( u / n ) ( l  - a - " )  
(4.13) 

Indeed, it can be checked that M ( t )  given by (4.13) decreases at fixed Re t and 
large / Im  t /  as 

(4.14) 

and hence any other solution of equation (4.12) would grow exponentially for / Im ti + a, 
which is not acceptable. 

This argument is also valid for cases 2, 3 and  4 below. 
Equation (4.13) defines M ( f )  as a meromorphic function in the whole plane, with 

poles located at 

t = u + n  

with n = 0, I ,  2 ,  

and U such tha t f (  U )  = I .  

In 9 2, we have emphasised that only those solutions o f f (  U )  = 1 with positive real 
part are actually poles of M (  t ) ,  while equation (4.13) suggests that possible solutions 
with negative real part are also poles. The contradiction is easily solved by checking 
that the equationf( U )  = 1 has no solution with Re U < 0 for d p  given by (4.2). Indeed, 
writing U = X + i Y ,  the condition /f( u) l  = I reads 

Y 2  = [aZX ( a + p X ) 2 -  ((7+ X)']/(l - p 2 a * X ) .  (4.15) 

This curve in the X -  Y plane has one 'physical branch' for a* s X s -In p / l n  a bearing 
an infinity of poles of M (  t ) ,  and a 'spurious branch' for X L  X G 0 with - a / p  s X L  s 
- a. The latter curve is closed, and is the pre-image of the unit circle by the conformal 
map cp: U +  I / f ( u ) .  f(u) therefore takes the value 1 only once. Since f ( 0 )  = 1 by 
definition, f( U )  = 1 has no solution for Re U < 0. 

The explicit form (4.13) of M ( t )  allows first for a cross-check of some results 
derived in the preceding sections. When a* is a positive integer, all terms in the infinite 
product (4.13) cancel except the first a* ones, and we easily reobtain the general results 
(3.4). When a* goes to zero, it is easy to check that C,/a*+ I .  

The exact solution we have derived here also furnishes some information which 
was not available in the general case. One interesting example is the behaviour of the 
leading amplitude CO when a* becomes large. This limit can be reached for fixed p 
and U by letting a go to unity. In this limit, the infinite product goes to the exponential 
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of a definite integral, and we easily obtain the following asymptotic formula 

CO-- by/;( - -y:,)"a*eum 

with 

ds (1 - p ) ' s  In s - (1 - s)'p In p 
( 1 - s ) ( l - p s ) l n s l n ( s / p )  

for fixed U and p # 0. 
When p = 0, we get a slightly different behaviour 

(4.16) 

(4.17) 

In both cases, CO grows very rapidly (roughly speaking like r(&*)). 

Case 2 

a = l ,  a>0, O s p < l  

SUPP P = [O, 11 
SUPP P = [ I ,  a[. 

In this case, we have to go back to equation (4.8) which now reads 

( z -  l )R ' ( z )  = ( z -  l)pR'(z - I ) + ( u -  l ) R ( z ) +  ( p  - a ) R ( z  - 1) .  (4.18) 

The adequate transform to solve this equation is now the Laplace transform 

F ( s )  = e-"R(z) dz (4.19) 

which exists at least for Re s > 0, under the same assumptions as in § 2. Equation 
(4.18) is equivalent to the following differential equation for F ( s )  

i: 
F ' ( s )  a(e- ' -1)-s  
F ( s )  s(1 - p  e-') = -- - (4.20) 

with the normalisation condition F ( 0 )  = 1. 
The function +( s)  has simple poles at s = s k  = In p -I- 27rik ( k  E Z), with residues 

Pk =[a(1 -p) /pskl -  1. (4.21) 

Therefore F ( s )  is analytic for Re s > In p ,  where we have 

F ( s )  = exp 1; $( t )  dt. 

It has branch points at s = s k  of the form 

(4.22) 

F (  s) - Fk( s - s k ) ' I .  (4.23) 

The density R(z )  is given by the inverse Laplace formula 

d Im t 
R ( z )  = eZ'F( 2 ) .  (4.24) 
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The branch points of F ( s )  at s = sk are responsible for the following asymptotic 
expansion of R ( z )  at large z 

(4.25) 

For z + 00, the sum is dominated by the Pk with smallest real part, which is k = 0 (for 

R ( ~ )  - G, e - z l l n p l Z ~ ( I - p ) l p l l n p l  (4.26) 

Unfortunately, we have not been able to find a generalisation of equation (4.26) 
for an arbitrary measure d p ( x )  with a support ending exactly at unity. The leading 
exponential e-zl'npl is very likely to be universal, but the subleading power of z is not 
easy to predict in general. We expect that the behaviour (4.26) remains valid for the 
class of measures which have an atom at x = 1 on top of a continuous density 

In the limit where U vanishes, equation (4.25) indicates that the exponential e-z'lnpl 
is modulated by a periodic function of z, since all P k  equal -1. The next section is 
devoted to a more general study of periodic amplitudes. 

U >  0) 

- (1  - xy-1. 

Case 3 

a < l ,  c r > O ,  O s p s l  

SUPP I-L = LO, a1 

SUPP P = [ 1 , 1 / ( 1  - a l l .  

In this case, equation (4.8) is still valid, and the convenient way to solve it is to 

(4.27) 

now define 

R(z )  = S( y)  withy = [ l / (  1 -a)]-  z. 

Equation (4.8) then becomes 

(4.28) 

Since S( y )  is non-zero only for 0 c y  s a / (  1 - a ) ,  its moment function, defined as 

M(t)=[omS(Y)YW, 

is analytic for Re t > 0, and equation (4.28) implies that 

a 1 -pa:-' M ( t )  = M ( t  - 1 )  - 
1 - a  l - p a ' + ( u / r ) ( l - a * )  

(4.29) 

for Re t > 0. 
In analogy with case 1, we deduce that M ( t )  is given by the infinite product 

). (4.30) 
1-P I -pa"  1 -pa '+"+[a / ( t+n)] (1  -a"") 

1 -pa"  + ( U /  n)( 1 - a " )  
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Consider first the case where p is non-zero. Then M (  t )  has poles at the following 
values of t 

t =  - p + i k w - 1  

w i t h I = O , l , 2  , . . .  ; k = O , i 1 , * 2  , . . .  

and p =In  p / ln  a > 0, 

(4.3 1) 

w = -27r/ln a > 0. 

Of special interest is the behaviour of R ( z )  for z close to its upper bound 1 / (  1 - a ) .  
This behaviour is dominated by the leading string of poles corresponding to 1 = 0 in 
(4.31). The associated residues 6 k  are given by 

1 - p  1 -pa"  1 - a" + [ a / (  n - p + ikw)]( 1 - a " / p )  -p+1kW 

(4.32) 

It is easy to check that the infinite product in (4.32) decreases as C(ikw)-" for large lkl, 

P k = ( k )  -G2 ,z7 -  1 - p a " + ( a / n ) ( l  - a " )  

This implies that we have 

(4.33) 

where P is a periodic function of period unity, and its Fourier coefficients are precisely 
P k  : 

(4.34) 

since lPki-ik~-", the derivative of P ( 5 )  of order [a] is singular (at one point per 
period). In particular, if 1 < a<2, R ( z )  is continuous but not differentiable; if a< 1 ,  
the integrated density N ( z )  is continuous but has no  derivative: R ( z )  is infinite 
somewhere. More generally, only the Holder-derivatives of N and R of order a and 
U - 1 respectively exist. 

In order to illustrate this behaviour by a numerical computation of P ( 5 ) ,  we first 
transform equation (4.34) into an exponentially convergent series representation for 
W 5 ) .  

Using the expression (4.32) for 4, we get 

where Q ( 5 )  is another periodic function, with Fourier coefficients ( j k  given by 

1 - p a "  1 - a" + [ a / (  n - p + z)]( 1 - a " / p )  ( j k  = S( ikw) ;  S ( z )  = n - 
n z l  1-a"  1 -pa"  + ( u / n ) (  I - a " )  

S ( z )  has poles at z = p - m ( m  3 1 ) .  (The origin is never a pole.) 
The function Q ( 5 )  is given by 

(4.35) 

(4.36) 

(4.37) 

where the contour encloses the imaginary axis, but does not contain poles of S ( z ) .  
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Shifting the contour, we get finally the following representation for 0 < 6 < 1 

Q(')=Zl ( I - a " ) [ l - p a m + ( a / m ) ( l - a m ) ]  
( 1  - p a " )  a 6 ( m - P )  

1 -pa"  1 - a " + ( + / ( n  - m ) ( l  - a " / p )  a--- 1 - a "  1 - p a n + ( a / n ) ( 1 - a " )  ' 

n f m  

5 1 5  

(4.38) 

Figures 1 to 3 show plots of the function Q ( 6 )  in three typical cases. Figure 1 
corresponds to p = 0.6, a = 0.5 and a = 0.5: R ( z ) ,  and therefore Q ( [ ) ,  becomes infinite. 

0 0 5  1 

5 

Figure 1. Plot of the period function Q ( [ )  over one period. Q ( 5 )  modulates the leading 
behaviour of the probability density R ( z )  in case 3 for z close to its upper bound ( 1  - a ) - ' .  
The parameters read: p = 0.6, a = 0.5 and U = 0.5. 

'. 

1 1 

0 0 5  1 
5 

Figure 2. The same as figure I ,  with p = 0.6, a = 0.25 and U = 1.5. 
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0 4 :  I I 
0 05 1 

I 

Figure 3. The same as figure 1 ,  with p = 0.6, a = 0.25 and v = 2.5.  

The function Q is defined such that the divergence occurs at integer values of 5. Figure 
2 corresponds to p = 0.6, a = 0.25 and (+ = 1.5: Q ( 5 )  is not differentiable at integer 
values of 5. The singular part of Q ( 5 )  is proportional to 5"2 when e+  O+. Figure 3 
corresponds to p = 0.6, a = 0.25 and U = 2.5: the singular part of Q ( 5 )  at the origin is 
proportional to t3". 

In 0 5, we shall consider another type of periodic amplitudes where even N ( z )  is 
not differentiable. It is therefore instructive to have an explicit example of a non-infinitely 
differentiable function. 

When p is zero, M ( t )  is analytic in the entire plane, and S ( y )  decreases more 
rapidly than every power of y as y+O,  as expected from § 2. In the present case, we 
can go further and determine the small-y behaviour of S ( y )  more precisely. From 
equation (4.29) we deduce that In M (  t )  behaves for Re t + - CD as 

In M (  t )  = - i t '  In a + t In( - t )  + ( K  - l) t+O[ln( - t ) ]  

K = 1 ~ [ ~ ~ / * / ( 1 -  

(4.39) 

with 

We can now use (4.39) to evaluate the inverse Mellin integral defining S 

S(  y )  = M (  t ) y - ' - '  d t  
2T 

using the saddle point method. It yields easily 

s(y)--exg{*[l+O( In( -In y )  )]} 
21na  In Y 

Case 4 

(4.40) 

(4.41) 
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In this last case, the condition f ' ( 0 )  < 0 reads 

a In a + p  - 1 > 0. (4.42) 

Since f( t )  diverges as t + - a-, the exponent a* is necessarily less than ( - a ) .  As in 
case 1, we define the shifted variable y through equation (4.9). Then the density 
R ( z )  = S (  y )  still obeys equation (4.10). Consider the Mellin transform of S( y )  defined 
as 

(4.43) 

Since the support of S ( y )  now ranges from 0 to 00, we do not have any a priori 
analyticity requirement for M (  t ) .  But the results of 9 2 ensure that M (  t )  is analytic 
for 0 S Re t < a *, and therefore we have as in case 1 

(4.44) 

provided a* > 1 and 1 6 Re t < a*. 
Before solving equation (4.44), let us remark that the equation f( t )  = 1 has only 

one solution for Re t > 0, namely the real solution a*. The proof of this fact is a 
straightforward extension of the analogous result for Re t S 0 in case 1. According to 
0 2, M ( t )  is expected to have poles for Re t > 0 only at a*, a* + 1 , .  . . . This suggests 
that to set 

M (  t )  = [sin m*/ s in  ~ ( a *  - t ) ] J (  t ) ,  (4.45) 

J (  t )  has to be analytic for Re t > 0 and has to obey 

J ( t ) / J ( t - I ) =  - c p ( t ) ;  J ( O ) = l  (4.46) 

which is more satisfactory than (4.44) since - c p ( t )  goes to the positive constant 
a / ( l  - a )  as Re t -00.  J ( t )  is therefore easily obtained as an infinite product, and 
M ( t )  finally reads 

sinrra* 1-p  
M ( t )  = (K)' 

1 - a  sin r ( a *  - t )  1 -pa'  

1 -pa" l - p a ' + " + u / ( t + n ) ( l - a ' + " )  
1 -pa" + ( (T/ n)( 1 - a" )  (4.47) 

The assumption a*> 1 can be removed, since the solution (4.47) can be analytically 
continued (for instance in a )  from a*> 1 to a* G 1. Moreover, it is easy to convince 
oneself that our solution has all desired analyticity properties. 

A particular feature of this last case is that one single expression for M (  t +  1)  
allows us to explore the behaviour of R ( z )  both for large z and for z close to 1/(1- a).  
The large-z behaviour is dominated by the poles at a*, a* + 1,.  . . in agreement with 
Q 2. The lower bound limit exhibits a periodic amplitude which is very similar to the 
upper bound limit of case 3, the only difference between equations (4.30) and (4.47) 
being the sine ratio and the sign of 7. 
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5. Periodic amplitudes 

We have pointed out in § 2 that a particular class of discrete measures d p  gives rise 
to a periodic 'critical amplitude' for N ( z ) .  These measures read: 

d p l d x =  2 p$(x-a ' )  
-@c<l<+oc 

where a > 1, and p I  are positive weights such that 

p I  # 0 at least for one 1 > 0 

C p , = l  

(5.1) 

(5.2) 

Ip, =f'(O)/ln a < 0. 
I 

In these cases, the leading behaviour of N(z) for large z is 

N(z) - z -"*+(5 )  (5.3) 

where + is a periodic function of 6 = In z/ln a, with period unity, and a* is the real 
positive solution of f ( P )  = 1 .  

This section is devoted to the periodic amplitude +. Its Fourier coefficients 4, are 
the residues of g ( P )  at the points 

CY, = a * + 2 ~ i n / I n  a. (5.4) 
The algorithms presented in § 3 allow us therefore to compute only the average I+&. 

Let us consider first one very simple limiting case of the family (5.1), given by 

d p / d x  = ( 1 - p ) i 3 ( ~ )  +@(x - U )  (5.5) 

with a > 1 and 0 < p < 1. This measure is formally given by (5.1) with only p ,  and pm 
different from zero. This case is exactly soluble: it is soon realised that z assumes only 
the values 

(5 .6 )  z, = 1 + a + .  . . a n  = ( a " + ' -  l ) / ( a  - 1 )  ( n z 0 )  

with probabilities qn = ( 1  - p ) p " .  

with 
We have therefore asymptotically N ( z )  given by (5.3), with a* = -In p/ln a, and 

(5.7) 

Note that this is nothing other than the (+ + 0 limit of case 1 in the previous section. 
The amplitude + has one discontinuity per period 

+ E  = aa'(a - I)-"* 

+ E  = ( a - l ) - " '  

) lim + m- 
E - 0 -  ( l n a  

1 lim J, m -  
E - O +  ( l n a  

ln(a - 1 )  

ln(a - 1) 

for every integer m ; the discontinuity strength therefore reads 

A J , = ( u " * - I ) ( u - ~ ) - " * .  

( 5 . 8 )  

(5.9) 
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At fixed a, A +  vanishes linearly in CY* for a* + 0, as expected from 0 2.  
Consider now the general oscillating case (5.1). In order to explore the properties 

dp/dx = ~ S ( X -  a- ' )+( I  - ~ ) S ( X - U )  (5.10) 

of II, numerically, we take measures for which only pP1 and are non-vanishing 

with a > 1 and b < p  < 1. The corresponding index cy* reads 

(5.11) 

The amplitude 4 is easily computed numerically by the following procedure: consider 
the sequence of random variables z(,,) defined through 

Z(0) = 1, Z ( n + l )  = 1 + Z(,)X" (5.12) 

where each x, is distributed with dp.  The z ( , )  are asymptotically distributed with dp 
when n + CO. Since z(,,) assumes only 2" values, one can extract approximants I/J[,,) of 
+. The stability of the approximants with respect to the order n provides a check of 
the convergence of the method. The values n = 18 and z E [IOO; IOOa] give + with a 
very good accuracy, except for small values of a*. 

Figures 4 to 7 show plots of the function 4(() over one period for the distribution 
(5.10) with a = 2.5 and a = 2 ,  2.5, 4 and 5 respectively. The most remarkable fact is 
that 4 seems to be discontinuous at a lot of points. Nevertheless we can show that + 
is continuous. Assume that N(z) has its largest discontinuity A at zo. Since N ( z )  
satisfies the equation 

N(z)=pN[a(z-l)]+(l--p)N[a-'(z-l)] (5.13) 

it follows that N ( z )  also has discontinuities of strength A at the pointsfl(zo) and f-](zO) 
with 

J ( z )  = a y z -  1) (5.14) 

Figure 4. Plot of the periodic function $([) over one 
period. $( 6) modulates the large-z behaviour of the 
integrated density N ( z )  for the binary distribution 
(5.10). The parameters read: a = 2.5 and p such that 
a*=2 .  

Figure 5. The same as figure 4, with a* = 2.5. 
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x10' 
8 ! " " " " " " " " '  ' 

-I 

i I 
0 '  2 4 6 8 10 o 2 4 6 8 10 

e- 

x10' x10-1 

Figure 6. The same as figure 4, with a* = 4. Figure 7. The same as figure 4, with a* = 5 .  

and, by induction, that N ( z )  has a discontinuity A at every point of the form 

A, .A, . . * . * * o A , ( z o )  (5.15) 

with I ,  = *l and N arbitrary. 
A subsequence of this set, namely 

Z k = ( f l O f - l ) k ( Z g ) = Z O - k ( l + a )  (5.16) 

lies for k great enough at the left of u/(u - 1). But in 1-00, a / ( u  - l ) ]  the function 
N ( z )  equals unity and A must be zero, implying that N ( z )  is continuous. The 
discontinuity (5.9) is therefore a peculiarity of the limiting case (5.5). 

Let us end this section with a conjecture on the location of the seemingly discon- 
tinuities of N ( z ) .  In the limiting case (5.5), they are real discontinuities located at 
( u " + I  - l ) / (a  - 1)  = ( f - l ) -"(  l), where 1 is the lower bound of the support of dp. We 
conjecture that, in the general oscillating case, dp  looks like a pure point measure, 
with atoms at the points 

(5.17) 

where zinf is the lower bound of the support of dp and Ii such that pl ,  # 0. This 
conjecture is strongly supported by the fact that the figures show one outstanding 
largest seemingly discontinuity (per period), at a location which always corresponds 
to (f-l)-"(zinf) with zinf = u / ( a  - 1). Nearby seemingly discontinuities, corresponding 
to longer and longer 'words' in (5.17), are expected to have smaller and smaller 
'strengths'. This behaviour is very reminiscent of the spectral density of a chain of 
harmonic oscillators with equal spring contants and random masses which take either 
a certain value or are infinite. Domb et a1 (1959) showed that the spectral density 
consists of a dense denumerable set of delta functions. 

6.  Discussion-relation to more realistic models 

The physical implications of the dependence of critical exponents upon disorder, and 
of the existence of several critical points in some I D  random systems, have already 
been discussed elsewhere (Derrida and Hilhorst 1983, Derrida 1983). We shall therefore 
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restrict the present discussion to another striking property of such disordered systems, 
namely the periodic amplitudes. 

We have shown in P 5 that our model exhibits critical amplitudes CC, which are 
periodic in In z ,  look discontinuous but are continuous. A question which naturally 
arises is to know which physical quantity may have such a support in realistic models. 
In the random field Ising model, the distributions of local field and local magnetisation 
are given by equations which are very similar to our Dyson-Schmidt equation (2.3). 
And these quantities are known to have a fractal or Cantor-like support in some cases 
(Groeneveld 1980, Bruinsma and Aeppli 1983, Gyorgyi and Rujan 1983, Normand et 
a1 1984). 

Let us now consider thermodynamical quantities, and in particular the free energy 
F ( E )  (1.4). It was argued by Derrida and Hilhorst that it exhibits a periodic amplitude 

(6 .1 )  

whenever N ( z )  does. We shall now compare briefly the functions CC, and (p, and begin 
with the soluble case (5.5), already considered by Derrida and Hilhorst. They found 
that the singular part of F(E) reads 

F ( E )  - E2"*(p(ln &'/In a )  

with 

A = ( a  - b) / (  1 - a b ) .  

The Fourier coefficients @k of the amplitude (p can be extracted from equation (6.2) 
by taking the Mellin transform of F S , ( & )  with respect to b 

M ( s )  = b'-'F,,(E) db. (6.4) lox 
This integral can be done exactly 

( I - P ) ~  A '  7T M ( s )  =- - 
p A s  - p  s s i n ( m )  

and therefore the coefficients +k read 

with a* = - Inp/ ln  a and w =257/ln a. The essential property of the +k is their 
behaviour at k + o o  

l $ k l  -exp(-27~'lkl/ln a ) .  (6 .7)  
This exponential decay corresponds to the fact that F ( E )  is analytic in the half-plane: 
Re E > 0. Indeed, the series 

converges only for (arg E /  < $57. 
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In the general oscillating case, the very same behaviour (6.7) of Gk at large k is 
expected. The easiest way to realise it is to follow Derrida and Hilhorst’s derivation 
of the analogy between F ( E )  and N ( z ) :  it is clear from their calculations that the 
partition function of a finite chain can only vanish for real negative e2, at least in the 
small-s limit, therefore F (  E )  is always analytic for larg E I  < $T. 

We have performed a numerical determination of the periodic amplitude cp for the 
binary distribution (5.10), just as we did in § 5 for 4, by enumeration of the 2” (up to 
n = 16) values of F ( E ) .  Figure 8 shows a plot of cp for a = 1000, a = 0.4. Notice that 
the magnitude of the oscillations, given roughly by 

is usually extremely small (4.10-13 for a = 2 ) .  That explains why we chose a very large 
value of a to draw figure 8. 

2 3 4 5 
X 

Figure 8. Plot of the periodic function (~(0, which modulates the power-law behaviour 
of the free energy in the random field Ising model. The parameters read: a* = 0.4 and 
a = 1000. 

Another example of smooth periodic critical amplitudes has been recently studied 
(Derrida et a f  1984) on hierarchical lattices. In their case, the oscillations are due to 
the discrete character of the exact renormalisation transform they use to solve the 
model. In the present situation, the oscillations reflect ‘resonances’, the physical 
interpretation of which remains somehow puzzling. The presence of such periodic 
functions implies that a critical behaviour is not necessarily characterised by pure 
power laws. It would be interesting to investigate whether Cantor-like supports and 
oscillatory amplitudes also occur in dimensions higher than one. 
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