Travaux dirigés de probabilités pour « Outils mathématiques 4 »

Intégrales doubles calculables par intégration itérée

1. Calculer les intégrales $\iint_D f(x, y) dx dy$ pour les choix suivants :

f(x,y)	D délimitée par
y-2x	(-1,1),(2,1),(2,4),(-1,4),
x-y	(2,9), (2,1), (-2,1),
xy^2	(0,0),(3,1),(2,1),
y+1	$y = \sin x, y = \cos x, x = 0, x = \pi/4,$
$x^3\cos(xy)$	$y = x^2, y = 0, x = 2,$
$\exp(x/y)$	y = 2x, y = -x, y = 4.

2. Dans la suite f désigne une fonction continue sur $D \subset \mathbb{R}^2$. Dans les cas où la région D est délimitée par les courbes dont les équations sont données ci-dessous, déterminer explicitement D et exprimer l'intégrale $\int \int_D f(x,y) dx dy$ comme une intégrale itérée.

(a)
$$8y = x^3$$
, $y - x = 4$, $4x + y = 9$,

(b)
$$x = 2\sqrt{y}, \sqrt{3}x = \sqrt{y}, y = 2x + 5,$$

(c)
$$x = \sqrt{3-y}$$
, $y = 2x$, $x + y + 3 = 0$,

(d)
$$y = \exp(x), y = \ln(x), x + y = 1, x + y = 1 + e,$$

(e)
$$y = \sin(x), \pi y = 2x$$
.

3. Pour chacune des intégrales itérées suivantes, calculer la valeur de l'intégrale en intervertissant l'ordre d'intégration.

(a)
$$\int_0^1 (\int_{2x}^2 \exp(y^2) \, dy) \, dx$$
.

(b)
$$\int_0^9 (\int_{\sqrt{y}}^3 \sin(x^3) \, dx) \, dy$$
.

(c)
$$\int_0^2 (\int_{y^2}^4 y \cos(x^2) dx) dy$$
.

(d)
$$\int_{1}^{e} (\int_{0}^{\ln x} y \, dy) \, dx$$
.

(e)
$$\int_0^8 (\int_{\sqrt[3]{y}}^2 \frac{y}{\sqrt{16+x^7}} dx) dy$$
.