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Motivation

Consider s.r.w. on X = Z. Define, for A ⊂ X
τ [B := inf{n ≥ [ : Xn ∈ A}, for [ = 0, 1,

h(x) := Px(τ00 <∞).

Obviously h(0) = 1 and for x 6= 0:

h(x) = Px(∪n≥0{τ00 = n}) =
∑
n≥0

Px(∪n≥0{τ00 = n})

=
∑
n≥1

[Px(X1 = x − 1)Px(τ00 = n|X1 = x − 1) + (x − 1→ x + 1)]

=
1
2

∑
n≥1

[Px−1(τ00 = n − 1) + Px+1(τ00 = n − 1)]

=
1
2

[h(x − 1) + h(x + 1)].

i.e. ∆h(x) = 0.
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Solution of the discrete equation ∆h = 0 in d = 1

Blackboard 2
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Harmonic functions

Dom(P) := {f : X→ R|∀x ,
∑
y

P(x , y)|f (y)| <∞}.

Definition

Let f ∈ Dom(P) and define Pf (x) :=
∑

y P(x , y)f (y). The function f is
called

harmonic if Pf = f ,
superharmonic if Pf ≤ f , and
subharmonic if Pf ≥ f .

Remark
Any constant function is harmonic.
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Elementary properties of harmonic functions

Lemma
For an irreducible matrix P, any bounded harmonic function that reaches
its maximum at some point z is constant.

Proof: Let M := supx∈X f (x) = f (z). Then

Pf (z) =
∑
y

P(z , y)f (y) = f (z) = M.

Hence∑
y

P(z , y)
(
M − f (y)

)
= 0⇒ f (y) = M,∀y : P(z , y) > 0. �

Lemma

f superharmonic implies (f (Xn)) supermartingale.

Proof:
E(f (Xn+1)|Fn) =

∑
y

P(Xn, y)f (y) ≤ f (Xn). �
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Lessons

Probabilistic (combinatorial and Fourier transform) estimates greatly
simplified by use of harmonic functions.
Harmonic functions appear in many other disciplines (especially in
electric networks). Probabiliistic quantities governed by same
equations as physical quantities. ⇒ probabilistic estimates obtained
by electrical intuition.
Transforming (Xn) by an harmonic function produces a martingale.
⇒ one expects semi-martingale techniques to be instrumental
(Lyapunov functions).

Therefore, instructive to explore the conditions under which harmonic
analysis on general graphs G is feasible and, if yes, study the
consequences.
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Past vs. future

Remark (Past and future are independent conditionally to present)

Let (Xn) ∈ MC(X,P, µ) and
Fn = σ(X1, . . . ,Xn); Tn = σ(Xn,Xn+1, . . .).

For all A ∈ Fn and all B ∈ Tn,
Pµ(A ∩ B|σ(Xn)) = Pµ(A|σ(Xn))Pµ(B|σ(Xn)).

Past and future play symmetric role w.r.t. conditioning.

Remark (Asymptotic behaviour is asymmetrical in time)

The following are equivalent (Blackboard 7):
The only bounded functions that are harmonic for the space-time
chain are constant.
For all µ, ν ∈M1(X) : limn ‖µPn − νPn‖ = 0.

If π the invariant probability (i.e. πP = π), ∀µ ∈M1(X), µPn → π.
Hence to restore symmetry, must initialise chain with π.
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Strong and weak reversibility

Theorem

Let X = (Xn)n∈N ∈ MC(X,P, µ) irreducible and µP = µ with
µ ∈M+(X). For any large integer N define Yn = XN−n forn = 0, . . . ,N.
Then (Yn)0≤n≤N ∈ MC(X,Q, µ) and πQ = π where

Q(x , y) := Q(P,µ)(x , y) = µ(y)
P(y , x)

µ(x)
.

Definition

The Markov chain as above (or equivalently (P, µ)) is
in detailed balance if ∀x , y ∈ X : µ(x)P(x , y) = µ(y)P(y , x),
weakly reversible if Q(P,µ) = P, with µ ∈M+(X),
srongly reversible if Q(P,µ) = P, with µ ∈M1(X).
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Strong and weak reversibility

Lemma

If (P, µ) with µ ∈M+(X) are in detailed balance, then µ is invariant
(µP = µ).

Lemma

If P irreducible and µ ∈M1(X), then equivalence between:
(P, µ) strongly reversible, and
(P, µ) in detailed balance.

Remark
A simple random walk on a directed graph can never be reversible
(Blackboard 9).
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Graphs revisited

Graph G = (G0,G1) comes with many other objects (for free):

s, t : G1 → G0 source and terminal functions. If α = (x , y) then
s(α) = x and t(α) = y .
∀n,Gn := {α = (α1, . . . , αn) : αi ∈ G1 & s(αi+1) = t(αi ),∀i}.
G∗ = ∪n∈NGn.
If α ∈ G∗, then

either ∃n ≥ 1 s.t. α = (α1, . . . , αn); define then s(α) = s(α1) and
t(α) = t(αn),
or n = 0 and α = x ∈ G0; define then s(α) = t(α) = x .

∀x , y ∈ G0:
G∗(x) = {α ∈ G∗ : s(α) = x},
G∗(x , y) = {α ∈ G∗ : s(α) = x , t(α) = y}.
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
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Strong and weak reversibility
Weighted undirected graphs

Directed graphs stemming from Markov chains

Let P stochastic matrix on X. Then there is a directed graph G := G(P)
defined by

G0 = X,
G1 = {(x , y) ∈ X× X : P(x , y) > 0},
Irreducibility of P ⇔ transitivity of G, i.e. ∀x , y ∈ G0,G∗(x , y) 6= ∅.
Any D ⊆ G0 inherits edges D1 from G1 and in turn becomes a
subgraph D = (D0,D1) with all derived objects (like D∗, D∗(x),
D∗(x , y), etc.).

Remark
Directed graph stemming from irreducible P is transitive but fails to be a
metric space. Connectedness does not hold in general.

(Blackboard 11)

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Directed graphs stemming from Markov chains

Let P stochastic matrix on X. Then there is a directed graph G := G(P)
defined by

G0 = X,
G1 = {(x , y) ∈ X× X : P(x , y) > 0},
Irreducibility of P ⇔ transitivity of G, i.e. ∀x , y ∈ G0,G∗(x , y) 6= ∅.
Any D ⊆ G0 inherits edges D1 from G1 and in turn becomes a
subgraph D = (D0,D1) with all derived objects (like D∗, D∗(x),
D∗(x , y), etc.).

Remark
Directed graph stemming from irreducible P is transitive but fails to be a
metric space. Connectedness does not hold in general.

(Blackboard 11)

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Directed graphs stemming from Markov chains

Let P stochastic matrix on X. Then there is a directed graph G := G(P)
defined by

G0 = X,
G1 = {(x , y) ∈ X× X : P(x , y) > 0},
Irreducibility of P ⇔ transitivity of G, i.e. ∀x , y ∈ G0,G∗(x , y) 6= ∅.
Any D ⊆ G0 inherits edges D1 from G1 and in turn becomes a
subgraph D = (D0,D1) with all derived objects (like D∗, D∗(x),
D∗(x , y), etc.).

Remark
Directed graph stemming from irreducible P is transitive but fails to be a
metric space. Connectedness does not hold in general.

(Blackboard 11)

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Directed graphs stemming from Markov chains

Let P stochastic matrix on X. Then there is a directed graph G := G(P)
defined by

G0 = X,
G1 = {(x , y) ∈ X× X : P(x , y) > 0},
Irreducibility of P ⇔ transitivity of G, i.e. ∀x , y ∈ G0,G∗(x , y) 6= ∅.
Any D ⊆ G0 inherits edges D1 from G1 and in turn becomes a
subgraph D = (D0,D1) with all derived objects (like D∗, D∗(x),
D∗(x , y), etc.).

Remark
Directed graph stemming from irreducible P is transitive but fails to be a
metric space. Connectedness does not hold in general.

(Blackboard 11)

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Directed graphs stemming from Markov chains

Let P stochastic matrix on X. Then there is a directed graph G := G(P)
defined by

G0 = X,
G1 = {(x , y) ∈ X× X : P(x , y) > 0},
Irreducibility of P ⇔ transitivity of G, i.e. ∀x , y ∈ G0,G∗(x , y) 6= ∅.
Any D ⊆ G0 inherits edges D1 from G1 and in turn becomes a
subgraph D = (D0,D1) with all derived objects (like D∗, D∗(x),
D∗(x , y), etc.).

Remark
Directed graph stemming from irreducible P is transitive but fails to be a
metric space. Connectedness does not hold in general.

(Blackboard 11)
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Undirected graphs from weakly reversible Markov chains
Let P stochastic matrix on X and µ ∈M+(X) s.t. (P, µ) weakly reversible. Let
G := G(P) be the graph of P.

Define weight κ ∈M+(G1) by
G1 3 α = (x , y) 7→ κ(x , y) := µ(x)P(x , y)

= µ(s(α))P(α) = κ(α) ∈ R+,

(P, µ) reversible ⇒ ∀α ∈ G1, ∃!α : s(α) = t(α) & t(α) = s(α)
(undirectedness of G).

(P, µ) reversible ⇒ κ(α) = κ(α) (symmetry of weights).

Irreducibility of P and invariance of µ⇒ ∀x , µ(x) > 0.

P irreducible implies, in particular,
∀x ∈ G0,∃α ∈ G1 : s(α) = x (no sink condition).

Combining the two above:
∀x ∈ G0, ∃α ∈ G1 : s(α) = x & κ(α) > 0.

In particular: ∀x ∈ G0 :
∑

α∈s−1({x}) κ(α) > 0.

α = (α1, . . . , αn) ∈ G∗ ⇒ κ(α1) · · ·κ(αn) > 0 (transitivity).
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Strong and weak reversibility
Weighted undirected graphs

Weakly reversible Markov chains from weighted undirected
graphs

Let (G, κ) be a transitive, undirected, graph with symmetric weight
κ ∈M+(G1).

Transitivity of G⇒ ∀x ∈ G0, µ(x) =
∑
α∈s−1({x}) κ(α) > 0.

∀α ∈ G1, define P(s(α), t(α)) := κ(α)
µ(s(α)) > 0.∑

y∈G0 P(x , y) =
∑
α∈s−1({x})

κ(α)
µ(x) = µ(x)

µ(x) = 1, hence P is a
stochastic matrix on X = G0.
Undirectedness of G and symmetry of κ imply detailed balance for
(P, µ).

Corollary

Bijection between irreducible weakly reversible Markov chains (P, µ) and
transitive undirected weighted graphs (G, κ) with symmetric weight
κ ∈M+(G1).
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
Electric circuit analogy
Isoperimetric and spectral tests for transience
Heat kernel estimates

Elementary topological properties of undirected graphs

(G, κ) undirected ⇒ graph distance defined by
dist(x , y) := inf{|α| : α ∈ G∗(x , y)} = dist(y , x).

Any D0 ⊆ G0 inherits subgraph structure D = (D0,D1) (and all
derived structures).
Subgraph D connected, if ∀x , y ∈ D0,∃α ∈ D∗(x , y) (and necessarily
α ∈ D∗(y , x) due to undirectedness).
Let D0 connected subset of G0. Vertex and edge boundaries:
∂0D0 := {y ∈ (D0)c : (x , y) ∈ G1, for some x ∈ D0}
∂1D0 := {α ∈ G1 : [s(α) ∈ D0 & t(α) 6∈ D0] ∨ [t(α) ∈ D0 & s(α) 6∈ D0]}.

D0 = D0 ∪ ∂0D0.
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
Electric circuit analogy
Isoperimetric and spectral tests for transience
Heat kernel estimates

Maximum principle

Bijection between (G, κ) and (P, µ) used repeatedly without notice. All
graphs considered row finite.

Theorem

Let D connected subgraph of G and f : D0 → R. Suppose
Pf = f on D0, and
f reaches its maximum at some z ∈ D0.

Then f is constant on D0.

Proof: (Blackboard 15) �
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Proof: (Blackboard 15) �
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Unicity

Theorem

Let D finite proper subgraph of G and f , g : G0 → R. Suppose
f and g harmonic on D0, and
f = g on (D0)c .

Then f = g on G0.

Proof: (Blackboard 16) �
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Consequences of unicity

Harmonicity of f on a finite set D and boundary conditions (i.e. the
values of f on the set where f is not guaranteed to be harmonic)
characterises f .
If f , f1, f2 harmonic on some proper subset D0 and f = a1f1 + a2f2
outside D0 for some real a1, a2, then f = a1f1 + a2f2 everywhere
(superposition principle).
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Existence

Theorem

D0 ⊆ G0 and g : (D0)c → R bounded. Then ∃f : G0 → R s.t.
f = g outside D0 and
f harmonic on D0.

Proof: Exercise.
Hint: For any x ∈ D0 start P-random walk (Xn) at x . Define

f (x) = Ex(1 {τ0
(D0)c

<∞}g(Xτ0
(D0)c

)).

Check (exercise!) that Pf = f on D0. �
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Vector spaces associated with graphs

Any transitive, undirected, weighted graph (G, κ) — already in
bijection with irreducible weakly reversible Markov chain (P, µ) — is
in bijection with electrical circuit composed solely from nodes and
resistances. Resistance of edge α : ρ(α) = 1

κ(α) .

Probabilistic quantities involving harmonic functions can be
estimated by electrical analogs.
Vector spaces: V0 := {f : G0 → R} and V1 := {f : G1 → R}.
Co-boundary and boundary operators d and d∗:

V0 3 f 7→ df ∈ V1; df (α) := f (t(α))− f (s(α))

V1 3 f 7→ d∗f ∈ V0; d∗f (x) :=
1

µ(x)

∑
α∈s−1(x)

f (α).
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Memories of your young days
on your lessons in electricity

Definition

A voltage v : G0 → R is harmonic at every vertex x ∈ G0 not
directly connected to an electric source.
A current i : G1 → R is associated with the voltage by Ohm’s law:

i(α) = ± κ(α)dv(α)⇔ dv(α) = ± ρ(α)i(α).

Remark

∀α ∈ G1 : i(α) = −i(α) (antisymmetry of current).
v harmonic at x ∈ G0 ⇒ Pv(x)− v(x) = 0, hence

0 =
∑
y∼x

κ(x , y)[v(y)− v(x)] =
∑

α∈s−1(x)

κ(α)dv(α) =
∑

α∈s−1(x)

i(α).

Kirchoff’s node law: if a node x not connected to source, total
outgoing current =

∑
α∈s−1(x) i(α) = 0.
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Flows

Definition

Let L and M be subgraphs of (G, κ). A function φ : G1 → R is a flow
between L and M if

∀α ∈ G1 : φ(α) = −φ(α), and
∀x 6∈ (L ∪M),

∑
α∈s−1(x) φ(α) = 0.

Remark
Current is a flow.

Exercise

Current satisfies Kirchoff’s cycle law: if α ∈ G∗ and α = (α1, . . . , αn)
with s(α) = t(α) (i.e. α is a cycle) not containing any source node, then∑n

i=1 ρ(αi )i(αi ) = 0.
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Equivalent circuits and their probabilistic interpretation

Let L = {z} and M ⊆ G0.
Interpret P(z �M) = Pz(τ0M < τ1z ) = P(∃ flow from z to M).
Apply voltage v(z) at z and 0 at M (and harmonic elsewhere).

By superposition principle: Px(τ0z < τ0M) = v(x)
v(z) . Establish then

P(z �M)
(Blackboard 22)

=
∑
y

P(z , y)[1− Py (τ0z < τ0M)]

=
∑
y

κ(z , y)

µ(z)
[1− v(y)

v(z)
]

=
1

v(z)µ(z)

∑
y

κ(z , y)[v(z)− v(y)]

= −
∑

y i(z , y)

v(z)µ(z)
.

v(z) = incoming current at z
µ(z)P(z�M) or Ceff(z �M) = µ(z)P(z �M).
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Other probabilistic quantities and their electrical counterpart

Exercise

Let Y be the two-element set Y := {z ,M}. Consider the Y-valued
Markov chain (Yn)n∈N with transition matrix

Π =

(
1− p p
0 1

)
, 0 ≤ p ≤ 1.

For y ∈ Y, let η(y) =
∑∞

k=0 1 {y}(Yk). Compute Ezη(z).
Consider (Xn)n∈N, the random walk stemming from the graph (G, κ)
that gets absorbed when attains the set M ⊆ G0 and denote
MG (z , z) its Green function. Use the previous question to establish
that

MG (z , z) =
1

P(z �M)
= µ(z)ρeff(z �M),

where ρeff(z �M) = 1
µ(z)P(z�M) .

(Blackboard 23)
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
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Isoperimetric and spectral tests for transience
Heat kernel estimates

Applications of electric networks

Theorem

The s.r.w. on Z1 is recurrent.

Proof: Exercise. Hint: compute ρeff(z �∞). �

Theorem

The s.r.w. on T3 (the homogeneous tree of constant degree 3) is
transient.

Proof: Exercise. Hint: compute ρeff(z �∞). �

Exercise (Side question)

We have seen that F2 (the free group with 2 generators and their
inverses) is isomorphic to T4 (the homogeneous tree of constant degree
4). Hence T4 is a group. What can you say about T3?

(Blackboard 24)
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
Electric circuit analogy
Isoperimetric and spectral tests for transience
Heat kernel estimates

A refinement on electric circuits

Definition

Let G transitive graph and L,M subsets of G0. A subset C of G1 is
called a cutset if every path from L to M contains an edge of C .

Theorem (Nash-Williams criterion)

Let (G, κ) be a transitive, undirected, locally finite, weighted graph and
(Cn)n∈N a sequence of finite disjoint cutsets, each Cn separating a given
reference vertex o ∈ G0 from ∞. Then

ρeff(o �∞) ≥
∑
n∈N

1∑
α∈ Cn

κ(α)
.

Corollary

The s.r.w. on Z2 is recurrent.

Proof: Exercise. Hint: minorate ρeff(o �∞). �
(Blackboard 25)
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
Electric circuit analogy
Isoperimetric and spectral tests for transience
Heat kernel estimates

Isoperimetric inequalities

Definition

Let ψ : [a,∞[→ R+ be defined for some a ≥ 0. (G, κ) satisfies
ψ-isoperimetric inequality (is IPψ) if

∀F ⊂ G0,F 6= ∅,F finite : κ(∂1F ) ≥ cψψ(µ(F )).

The maximal cψ for which IPψ holds is called isoperimetric constant.

Remark

Always assume ψ well-defined for a ≥ infx∈G0 µ(x).

Example

Zd for ψ(t) = t1−1/d , t > 0, is IPψ ≡ IPd .
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Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Probabilistic solution to Dirichlet’s problem
Electric circuit analogy
Isoperimetric and spectral tests for transience
Heat kernel estimates

Graph Hilbert spaces

Definition

Vertex Hilbert space H0 = `2(G0, µ).
Edge Hilbert space H1 = `2(G1, κ).
Co-boundary operator d : H0 → H1 defined by
df (α) = f (t(α))− f (s(α)).
Boundary operator d∗ : H1 → H0 defined by
d∗φ(x) = 1

µ(x)

∑
α∈s−1(x) κ(α)φ(α).

(d∗φ, f )0 = (φ, df )1.
∆f (x) = d∗df (x) = 1

µ(x)

∑
α∈s−1(x) κ(α)df (α) = (P − I )f (x).

Graph Laplacian L = −∆ = generator of Markov evolution.

Remark
For directed graph, Markov evolution expressed in terms of d∗

(reminiscent of Dirac operator), not L!
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Spectral estimates

Definition

For F ⊂ G0, finite, define CF = {f : F → R}, extended to G0 by
f (x) = 0 on F c .
For f ∈ CF define LF f (x) = f (x)−

∑
y∼x P(x , y)f (y).

Lemma
For all f , g ∈ CF :

(LF f , g)
(Blackboard 28)

=
1
2

∑
x,y∈F

κ(x , y)df (x , y)dg(x , y).

Remark

Since LF self-adjoint, specLF = {λ1 ≤ · · · ≤ λ|F |} and

λ1(F ) = inf
f∈CF\{0}

∑
x,y∈F κ(x , y)(df (x , y))2

2
∑

x∈F µ(x)f 2(x)
.
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Cheeger’s inequality

Definition

For F ⊂ G0, finite. Define the Cheeger’s constant

h(F ) := inf
∅⊂S⊆F

κ(∂1S)

µ(S)
,

i.e. the largest constant h(F ) s.t. κ(∂1S) ≥ h(F )µ(S).

Theorem (Cheeger’s inequality)

λ1(F ) ≥ h2(F )

2
.

Lemma

Assume (G, κ) be IPψ with ψ s.t. ψ(s)/s decreasing. Then ∀F ⊂ G0,
finite, 6= ∅,

λ1(F ) ≥ Λ(µ(F )),

with Λ(s) = 1
2 (ψ(s)

s )2. Graph satisfies (FK )Λ inequality (Faber-Krahn).
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Criteria for transience

Theorem

If (G, κ) satisfies:
∀α ∈ G1 : 1 ≤ κ(α) ≤ K,
∀x ∈ G0 : 1 ≤ d(x) ≤ D, then

IPψ,
∫ ∞ 1

ψ2(s)
ds <∞ ⇒ transience,

FKΛ,

∫ ∞ 1
s2Λ2(s)

ds <∞ ⇒ transience.

Example

The s.r.w. on Zd is transient for d ≥ 3.
(Blackboard 30)
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Heat kernel estimates

Blackboard 31

Theorem (Varopoulos 1985)

Let β ≥ 2 and r = 2β/(β − 2). If for any f ∈ c0(G0),
‖f ‖r ≤ C‖f ‖Dir,

(where ‖f ‖2Dir = 1
2

∑
x,y∈G0 κ(x , y)|f (x)− f (y)|2) then

sup
x,y∈G0

Pn(x , y)

µ(y)
= O(n−β/2).
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Theorem (de Loynes, thm 3.1.2 in PhD thesis (2012)a)

aAvailable at http://tel.archives-ouvertes.fr/tel-00726483.

The simple random walk on (adjacent edges of) a generic Penrose tiling
of the d-dimensional space is

recurrent, if d ≤ 2, and
transient, if d ≥ 3.

Idea of the proof: For technical reasons, not possible to show IPd for
Penrose graph but only for Fuzzk(G) (the graph with same G0 and G1 all
x , y ∈ G0 such that 1 ≤ dG(x , y) ≤ k) and k-fuzz leaves type invariant.

IPd ⇒ [‖f ‖d/(d−1) ≤ C‖f ‖Sob (Sobolev inequality), where
‖f ‖Sob = 1

2

∑
x,y∈G0 κ(x , y)|f (x)− f (y)|.

But
[‖f ‖d/(d−1) ≤ C‖f ‖Sob]⇒ [‖f ‖2d/(d−2) ≤ C ′‖f ‖Dir].

Varopoulos theorem allow then to conclude.
�
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Why heat kernel methods apply to groupoids?

The s.r.w. on Penrose is reversible!

Remark
Here crucial ingredients:

reversibility holds but not space homogeneity (⇒ not Fourier
transform),
quasi-isometric embedding of k-fuzz of Penrose lattice into Z2.
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Foster’s criteria

Here Markov chain X is MC(X,P, µ) on denumerable set X without
further condition on P beyond irreducibility.

Theorem (Transience)

If cardX = ℵ0, equivalence between:
X transient,
∃f ∈ Dom+(P) and ∃A ⊂ X s.t.

E(f (Xn+1)− f (Xn)|Xn = y) ≤ 0 for all y ∈ Ac ,
∃y ∈ Ac : f (y) < infz∈A f (z).

Theorem (Recurrence)

If cardX = ℵ0, equivalence between:
X recurrent,
∃f ∈ Dom+(P), f →∞ and ∃F ⊂ X finite s.t.

x ∈ F c ⇒ E(f (Xn+1)− f (Xn)|Xn = x) ≤ 0.
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Foster’s criteria (cont’d)

Theorem (Positive recurrence)

Equivalence between:
X positive recurrent,
∃f ∈ Dom+(P), ∃F ⊂ X finite, and ∃ε > 0 s.t.

x ∈ F c ⇒ E(f (Xn+1 − f (Xn)|Xn = x) ≤ −ε.

Definition

The function f ∈ Dom+(P), entering into the 3 above theorems, is called
a Lyapunov function for the Markov chain.
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Example

The s.r.w. on Zd is recurrent for d = 1, 2, transient for d ≥ 3.

Exercise
For each d, determine Lyapunov functions fd allowing to establish the
above result.

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Semimartingale techniques
Examples-Exercises

Example

Example

The s.r.w. on Zd is recurrent for d = 1, 2, transient for d ≥ 3.

Exercise
For each d, determine Lyapunov functions fd allowing to establish the
above result.

Bologna, version of 4 September 2012 Topics on random walks



Standard methods for random walks on groups
Reversibility

Transitive, undirected, weighted graphs
General Markov chains

Semimartingale techniques
Examples-Exercises

Exercises

Exercise (Easy problem, easily obtained result)

Let X = N and (ξn)n≥1 i.i.d. sequence of {−1, 1}-valued variables s.t.
P(ξ1 = −1) = 1− P(ξ1 = 1) = p ∈]0, 1[.

Define Xn+1 = (Xn + ξn+1)+, and λ = ln p
1−p . Show

λ > 0⇒ positive recurrence,
λ = 0⇒ (null) recurrence,
λ < 0⇒ transience.

Blackboard 37
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Exercises (cont’d)

Exercise (Hard (Salomon (1975), Sinai (1982)), easily obtained result)

Let X = N and (px)x∈X) i.i.d. sequence of [0, 1]-valued r.v. Let (ξn)n≥1
i.i.d. sequence of {−1, 1}-valued r.v. and define Xn+1 = (Xn + ξn+1)+,
cFn = σ(X0, . . . ,Xn), and

P(ξn+1 = −1|Fn) = 1− P(ξn+1 = 1|Fn) = pXn .

Let λ = E(ln p1
1−p1

). Show
λ > 0⇒ positive recurrence,
λ = 0⇒ (null) recurrence,
λ < 0⇒ transience.

Blackboard 38
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