Generalities on random walks Symmetric random walk on \mathbb{Z}^d Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Topics on random walks

Introduction and main results Combinatorial, geometric, and probabilistic structures for random walks

Dimitri Petritis

Institut de recherche mathématique Université de Rennes 1 and CNRS (UMR 6625) France

Notes downloadable from URL http://perso.univ-rennes1.fr/dimitri.petritis/enseignement/markov/blq-topics-rw1.pdf

Bologna, September 2012

Generalities on random walks Symmetric random walk on Z^d

Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Type problem

 $\begin{array}{l} \mbox{Introduction and motivation}\\ \mbox{On } \mathbb{X} = \mathbb{Z}^d\\ \mbox{And when } \mathbb{X} \mbox{ is not a group} \end{array}$

- $\bullet\,$ How often does a random walker on a denumerably infinite set $\mathbb X$ returns to its starting point?
- $\bullet\,$ It depends on $\mathbb X$ and on the law of jumps.
- Typically a dichotomy
 - either almost surely infinitely often (recurrence),
 - or almost surely finitely many times (transience).

 $\begin{array}{c} \mbox{Generalities on random walks}\\ Symmetric random walk on <math display="inline">\mathbb{Z}^{d}\\ \mbox{Simple random walk on Cayley graphs of groups}\\ Directed lattices\\ Results presented in these lectures\\ \end{array}$

Introduction and motivation On $X = \mathbb{Z}^d$ And when X is not a group?

Example $\mathbb{X} = \mathbb{Z}^d$ with symmetric jumps on n.n.

Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Ann. Math. (1921).

The simple random walk on $\mathbb{X} = \mathbb{Z}^d$ is

- recurrent if $d \leq 2$,
- transient if $d \ge 3$.

Proof by direct combinatorial estimates and Fourier analysis.

Distinctive property of the simple random walk on \mathbb{Z}^d : Abelian group of finite type generated by the support of the law of the simple random walk.

 $\begin{array}{c} \mbox{Generalities on random walks}\\ Symmetric random walk on <math display="inline">\mathbb{Z}^d\\ \mbox{Simple random walk on Cayley graphs of groups}\\ Directed lattices\\ Results presented in these lectures \end{array}$

Introduction and motivation On $X = \mathbb{Z}^d$ And when X is not a group?

Why random walk are studied?

- Mathematical interest: simple models with three interwoven structures:
 - low-level algebraic structure conveying combinatorial information,
 - high-level algebraic structure conveying geometric information,
 - stochastic structure adapted to the two previous structures.
- Modelling transport phenomena in crystals (metals, semiconductors, ionic conductors, etc.)
- Intervening in all models described by differential equations involving a Laplacian (quantum mechanics, quantum field theory, statistical mechanics, etc.)
- Generalisable to non-commutative groups (random matrices, random dynamical systems, etc.)

 $\begin{array}{c} \mbox{Generalities on random walk}\\ Symmetric random walk on <math display="inline">\mathbb{Z}^{d}\\ \mbox{Simple random walk on Cayley graphs of groups}\\ Directed lattices\\ Results presented in these lectures \end{array}$

Introduction and motivation On $X = Z^d$ And when X is not a group?

And when the graph is not a group?

Alternate lattice	Half-plane one-way	Random horizontal

- Hydrodynamic dispersion in porous rocks Matheron and Marsily (1980), numerical simulations Redner (1997), persistence Majumdar (2003).
- Propagation of information on networks (pathway signalling networks in genomics, neural system, world wide web, etc.)
- Differential geometry, Dirac operators, causal structures in quantum gravity.
- Random walks on semi-groupoids, failure of the reversibility condition.

 $\begin{array}{c} \mbox{Generalities on random walks}\\ Symmetric random walk on <math display="inline">\mathbb{Z}^{d}\\ \mbox{Simple random walk on Cayley graphs of groups}\\ Directed lattices\\ Results presented in these lectures\\ \end{array}$

Introduction and motivation On $X = Z^d$ And when X is not a group?

And when the graph is not a group? (cont'd) Quasi-periodic tilings of \mathbb{R}^d of Penrose type

- Transport properties on quasi-periodic structures.
- Spectral properties of Schrödinger operators on quasi-periodic structures.
- Random walks on groupoids, non-random inhomogeneity.

Generalities on random walk Symmetric random walk on Z⁹ Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Simple symmetric random walk on $\mathbb{X} = \mathbb{Z}^d$

• $\mathbb{X} = \mathbb{Z}^d$ considered as an Abelian group.

$$\mathbb{A} = \{\mathbf{e}_1, -\mathbf{e}_1, \dots, \mathbf{e}_d, -\mathbf{e}_d\}, \ \ \mathsf{card}\mathbb{A} = 2d.$$

• μ probability measure on $\mathbb{A} \Rightarrow$ probability measure on \mathbb{X} with supp $\mu = \mathbb{A}$.

 $\begin{array}{ll} \mathsf{Symmetric:} & \forall x \in \mathbb{A} : \mu(x) = \mu(-x). \\ \mathsf{Uniform:} & \forall x \in \mathbb{A} : \mu(x) \equiv \frac{1}{\mathsf{card}\mathbb{A}} = \frac{1}{2d}. \end{array}$

• $\boldsymbol{\xi} = (\xi_n)_{n \in \mathbb{N}}$ i.i.d. sequence with $\xi_1 \sim \mu$.

• Define $X_0 = x \in \mathbb{X}$ and $X_{n+1} = X_n + \xi_{n+1}$. Then

$$P(x,y) = \mathbb{P}(X_{n+1} = y | X_n = x) = \mathbb{P}(\xi_{n+1} = y - x) = \mu(y - x).$$

Simple (totally) symmetric random walk on X is the X-valued Markov chain X = (X_n)_{n∈N} with transition probability P and initial measure ε_x: MC(X, P, ε_x)

Generalities on random walk Symmetric random walk on Z⁴ Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Combinatorial estimates for small d

Use of Stirling's formula
$$\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi nn^n} \exp(-n)} = 1$$
, we get
 $d = 1$: $P^{2n}(0,0) = \frac{1}{2^{2n}} {2n \choose n} \simeq \frac{c_1}{\sqrt{n}}$,
 $d = 2$: $P^{2n}(0,0) = \frac{1}{4^{2n}} \sum_{j=0}^n {2n \choose j,j,n-j,n-j} = \frac{1}{4^{2n}} \sum_{j=0}^n \frac{(2n)!}{j!j!(n-j)!(n-j)!} \simeq \frac{c_2}{n}$.

Generalities on random walky, Symmetric random walk on Z^G Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Fourier estimates

•
$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = \mu(x_1 - x_0) \cdots \mu(x_n - x_{n-1})$$

•
$$P^n(x,y) := \sum_{x_1,...,x_{n-1}} \mathbb{P}(X_0 = x, X_1 = x_1,...,X_n = y) = \mu^{*n}(y-x).$$

• For
$$\xi \sim \mu$$
 and μ uniform,
 $\chi(t) = \mathbb{E} \exp(i \langle t | \xi \rangle) = \sum_{x} \exp(i \langle t | x \rangle) \mu(x) = \frac{1}{d} \sum_{k=1}^{d} \cos(t_k).$

•
$$P^{2n}(0,0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} (\frac{1}{d} \sum_{k=1}^d \cos(t_k))^{2n} d^d t.$$

•
$$\sum_{n} P^{2n}(0,0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \left(\frac{1}{1 - (\frac{1}{d} \sum_{k=1}^d \cos(t_k))^2} \right) d^d t.$$

• For small
$$||t||$$
:
 $\frac{1}{d} \sum_{k=1}^{d} \cos(t_k) = \frac{1}{d} \sum_{k=1}^{d} (1 - 2\sin^2 \frac{t_k}{2}) \simeq 1 - \frac{||t||^2}{2d} \simeq \exp(-\frac{||t||^2}{2d}).$
• $P^{2n}(0,0) = \frac{2}{(2\pi)^d} \int_{[-\pi,\pi]^d} \exp(-\frac{||t||^2n}{d}) d^d t \sim \frac{c_d}{n^{d/2}} \text{ as } n \to \infty.$

Generalities on random walky, Symmetric random walk on Z^G Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Transience for $d \ge 3$

Lemma

$$\sum_{n\in\mathbb{N}} \mathcal{P}^{2n}(0,0) \quad \left\{ egin{array}{cc} =\infty & d\leq 2\ <\infty & d\geq 3. \end{array}
ight.$$

Corollary

The simple random walk on \mathbb{Z}^d is transient for $d \geq 3$.

Proof.

By Borel-Cantelli lemma,
$$\mathbb{P}_0(X_n = 0, \text{i.o.}) = 0$$
.

Generalities on random walky. Symmetric random walk on Z^G Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Recurrence for $d \leq 2$

 $\sum_{n\in\mathbb{N}}P^{2n}(0,0)=\infty$ not enough to prove recurrence (not independence). Renewal argument:

• Define
$$r_n := \mathbb{P}_0(X_n = 0)$$
 (obviously $r_0 = 1$) and

•
$$au_0^{\flat} := \inf\{n \ge \flat : X_n = 0\}$$
 for $\flat \in \{0,1\}$; $f_n := \mathbb{P}_0(\tau_0^0 = 0)$.

•
$$r_n = \mathbb{P}_0(X_n = 0) = \sum_{j=1}^n \mathbb{P}_0(\tau_0^0 = j) \mathbb{P}_0(X_{n-j} = 0) \stackrel{f_0 \equiv 0}{=} \sum_{j=0}^n f_j r_{n-j}.$$

•
$$\hat{f}(s) = \sum_{n \in \mathbb{N}} f_n s^n$$
.

•
$$\hat{r}(s) = \sum_{n \in \mathbb{N}} r_n s^n = 1 + \sum_{n \ge 1} \sum_{j=0}^n f_j r_{n-j} s^n = 1 + \hat{f}(s) \hat{r}(s).$$

Generalities on random walky. Symmetric random walk on 2^{er} Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

Recurrence for $d \leq 2$ (cont'd)

•
$$\hat{r}(s) = \frac{1}{1-\hat{f}(s)}$$
. Monotone convergence theorem guarantees
• $\lim_{s\uparrow 1} \hat{r}(s) = \hat{r}(1) = G^0(0,0) := \sum_{n\in\mathbb{N}} P^n(0,0)$.
• $\lim_{s\uparrow 1} \hat{f}(s) = \hat{f}(1) = \mathbb{P}_0(\tau_0^0 < \infty)$.
• Hence $\hat{f}(1) = \mathbb{P}_0(\tau_0^0 < \infty) < 1 \Leftrightarrow \hat{r}(1) = \sum_{n\in\mathbb{N}} P^n(0,0) < \infty$.

Corollary

Symmetric r.w. on \mathbb{Z}^d for $d \leq 2$ is recurrent.

Generalities on random walk on \mathbb{Z}^q Symmetric random walk on \mathbb{Z}^q Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Extensions

 \mathbb{A} can be not minimal (but always generating).

Example

•
$$\mathbb{A}_1 = \{e_1, -e_1, e_2, -e_2, e_1 - e_2, e_2 - e_1\}.$$

•
$$\mathbb{A}_2 = \mathbb{Z}^2 \setminus \{\mathbf{0}\}$$
 (unbounded jumps).

Theorem (Chung and Fuchs (1951))

Random walk on \mathbb{Z}^d is transient iff

$$\lim_{s\uparrow 1}\int_{[-\pi,\pi]^d}\mathsf{Re}\left(\frac{1}{1-s\chi(t)}\right)d^dt<\infty.$$

Simple symmetric random walk

Simple symmetric random walk

Type of general random walks on \mathbb{Z}^d

$$\widetilde{m}_k = \sum_{x \in \mathbb{Z}^d} \mu(x) \|x\|^k; \quad m = \sum_{x \in \mathbb{Z}^d} \mu(x) x.$$

Corollary

- d = 1: If $\tilde{m}_1 < \infty$ and m = 0 then r.w. recurrent.
- d = 2: If $\tilde{m}_2 < \infty$ and m = 0 then r.w. recurrent.
- *d* ≥ 3: always transient.

Remark

If the r.w. has general heavy tails standard theorems not available.

Generalities on random walky. Symmetric random walk on Z^G Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

What have we learnt so far?

- \mathbb{Z}^d is not only a set but an (Abelian) group.
- R.w. is a compound object of 3 interwoven structures: combinatorial, geometric, stochastic mutually adapted.
- Space homogeneity and group structure \Rightarrow brute force combinatorial estimates can be highly simplified by use of harmonic analysis (Fourier transform of μ^{*n}).

Generalities on random walky. Symmetric random walk on Z^G Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Simple symmetric random walk

How can we generalise?

- Generalisation to non-commutative groups: the three interwoven structures and harmonic analysis survive. Very active domain (only marginally touched in these lectures).
- Weakening of the group structure to groupoid.
- Further weakening to semi-groupoid.

Very instructive to see why standard methods fail to treat these new structures.

Combinatorial aspects Geometric aspects Probabilistic aspects

Monoids Algebraic combinatorial structure

• Alphabet $\mathbb{A} = \{E, N, W, S\}.$

Define

$$\begin{split} \mathbb{A}^0 &= \{()\} \\ \mathbb{A}^n &= \{\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_n), \mathbf{a}_i \in \mathbb{A}\}, n \in \mathbb{N}, \\ \mathbb{A}^* &= \bigcup_{n \in \mathbb{N}} \mathbb{A}^n. \end{split}$$

- If $a \in \mathbb{A}^*$, then $\exists n \ge 0 : a \in \mathbb{A}^n$; length |a| = n. The empty word e = () has length |()| = 0.
- If $a, b \in \mathbb{A}^*$, then $c = a \circ b \in \mathbb{A}^{|a|+|b|} \subset \mathbb{A}^*$.

$$c=a\circ b=(a_1,\ldots,a_{|a|},b_1,\ldots,b_{|b|})=(\circ_{i=1}^{|a|}a_i)\circ(\circ_{j=1}^{|b|}b_j).$$

(A^{*}, ○) where w ○ u is the concatenation of words w and u is a combinatorial monoid.

Combinatorial aspects Geometric aspects Probabilistic aspects

Example

Example

Let $\mathbb{A} = \{E, N, W, S\}$ and e = (), u = NWSWE, and v = ESEEN be elements of \mathbb{A}^* . Then

 $e \circ v = v = ()ESEEN = ESEEN,$

$$v \circ e = v = ESEEN() = ESEEN,$$

- $u \circ v = NWSWE | ESEEN,$
- $v \circ u = ESEEN|NWSWE.$

Path space

Combinatorial aspects Geometric aspects Probabilistic aspects

Definition

- A a finite alphabet.
- $\hat{\mathbb{K}} := \hat{\mathbb{K}}_{\mathbb{A}}$ the complete graph with source i.e. $\hat{\mathbb{K}} = (\hat{\mathbb{K}}^0, \hat{\mathbb{K}}^1)$, where $\hat{\mathbb{K}}^0 = \mathbb{A} \cup \{\emptyset\}$ the vertex set of $\hat{\mathbb{K}}$ and $\hat{\mathbb{K}}^1 = \mathbb{A} \times \mathbb{A} \cup \{\emptyset\} \times \mathbb{A}$ the edge set of $\hat{\mathbb{K}}$. The special vertex \emptyset is the source of the graph.
- The path space $\mathsf{PS}(\hat{\mathbb{K}}_{\mathbb{A}})$ is isomorphic to \mathbb{A}^* .

Combinatorial aspects Geometric aspects Probabilistic aspects

The complete graphs $\mathbb{K}_{\mathbb{A}}$ and $\hat{\mathbb{K}}_{\mathbb{A}}$

Combinatorial aspects Geometric aspects Probabilistic aspects

Path space tree

Combinatorial aspects Geometric aspects Probabilistic aspects

Groups of finite type Algebraic geometrical structure

$$\begin{split} & EW = WE = e, \ NS = SN = e, \\ & E = a \Rightarrow W = a^{-1} \ \text{and} \ N = b \Rightarrow S = b^{-1}. \\ & \mathbb{A} = \{a, a^{-1}, b, b^{-1}\}; \ \text{RedWords}(\mathbb{A}) = \text{set of reduced words of } \mathbb{A}^*. \end{split}$$

Examples

- $\Gamma = \langle \mathbb{A} \rangle$ the group \mathbb{F}_2 generated from RedWords(\mathbb{A}) with relation set $\mathcal{R} = \emptyset$, hence called free.
- $\Gamma = \langle \mathbb{A} | aba^{-1}b^{-1} \rangle$ the group \mathbb{Z}^2 generated from RedWords(\mathbb{A}) subject to the relation set: $\mathcal{R} = \{aba^{-1}b^{-1} = e\}$, hence Abelian.

Definition

If Γ is generated by RedWords(\mathbb{A}) subject to the relations \mathcal{R} , write $\Gamma = \langle \mathbb{A} | \mathcal{R} \rangle$. $\langle \mathbb{A} | \mathcal{R} \rangle$ is a presentation of Γ . If there exists a presentation of Γ for which both \mathbb{A} and \mathcal{R} are finite, the group is termed of finite type.

Cayley graph

Definition

Let $\Gamma = \langle \mathbb{A} | \mathcal{R} \rangle$ be a finitely generated group. Assume \mathbb{A} symmetric (i.e. $\mathbb{A}^{-1} = \mathbb{A}$) and $e \notin \mathbb{A}$. The associated Cayley graph Cayley $(\Gamma, \mathbb{B}, \mathcal{R})$ is the graph $\mathbb{G} = (\mathbb{G}^0, \mathbb{G}^1)$ with

Combinatorial aspects

Geometric aspects

Probabilistic aspects

• vertex set
$$\mathbb{G}^0 := \Gamma$$
 and

• edge set
$$\mathbb{G}^1 := \{(x, y) \in \Gamma^2, x^{-1}y \in \mathbb{A}\}.$$

Properties of the edge set \mathbb{G}^1 :

- $\mathbb{G}^1 := \{(x, y) \in \Gamma^2 : x^{-1}y = z \in \mathbb{A}\} = \{(x, xz) \in \Gamma^2 : z \in \mathbb{A}\}.$ In particular, $e \notin \mathbb{A} \Rightarrow (x, x) \notin \mathbb{G}^1$ (no self-loops).
- $(x, y) \in \mathbb{G}^1 \Rightarrow x^{-1}y = z \in \mathbb{A} \Rightarrow y^{-1}x = z^{-1} \in \mathbb{A} \Rightarrow (y, x) \in \mathbb{G}^1$ i.e. $(\mathbb{G}^1)^{-1} = \mathbb{G}^1$. The graph \mathbb{G} is undirected.
- $d_x^- = \operatorname{card}\{y \in \Gamma : (x, y) \in \mathbb{G}^1\} = \operatorname{card}\{(x, xz), z \in \mathbb{A}\} = \operatorname{card}_{\operatorname{Wersite de}}$

Combinatorial aspects Geometric aspects Probabilistic aspects

Examples of Cayley graphs

 $\begin{array}{c} \mbox{Generalities on random walks}\\ Symmetric random walk on <math display="inline">\mathbb{Z}^d\\ \mbox{Simple random walk on Cayley graphs of groups}\\ Directed lattices\\ Results presented in these lectures \end{array}$

Combinatorial aspects Geometric aspects Probabilistic aspects

Random jumps Probabilistic structure

Remark

- μ probability measure on \mathbb{X} with supp $\mu = \mathbb{A}$.
- $(X_n)_{n \in \mathbb{N}}$ is $MC(\mathbb{X}, P, \cdot)$ (of a very special type) with

$$P(x,y) = \mathbb{P}(X_{n+1} = y | X_n = x) = \mu(x^{-1}y), x, y \in \mathbb{X}.$$

- Graph of the stochastic matrix = Cayley graph of the underlying group.
- The combinatorial, geometric, and stochastic structures are mutually adapted.

Generalities on random walka Symmetric random walk on Z^d Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Constrained Cayley graphs and semi-groupoids Examples of semi-groupoids Examples of groupoids

Constrained Cayley graphs

Definition

Let \mathbb{A} finite be given (generating) and $\Gamma = \langle \mathbb{A} | \mathcal{R} \rangle$. Let $c : \Gamma \times \mathbb{A} \to \{0, 1\}$ be a choice function. Define the constrained Cayley graph $\mathbb{G} = (\mathbb{G}^0, \mathbb{G}^1) = \text{Cayley}_c(\Gamma, \mathbb{B}, \mathcal{R})$ by • $\mathbb{G}^0 = \Gamma$, • $\mathbb{G}^1 = \{(x, xz) \in \Gamma^2 : z \in \mathbb{B}; c(x, z) = 1\}$. • $d_x^- = \text{card}\{y \in \Gamma : (x, y) \in \mathbb{G}^1\}$.

Generalities on random walks Symmetric random walk on Z^d Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

Constrained Cayley graphs and semi-groupoids Examples of semi-groupoids Examples of groupoids

Properties of constrained Cayley graphs

- $0 \leq d_x^- \leq \operatorname{card} \mathbb{A}$.
- If d_x⁻ = 0 for some x, then x is a sink. All graphs considered here have d_x⁻ > 0.
- If $d_x^- < \operatorname{card} A$ for some x then there are genuinely directed edges.
- The graph can fail to be transitive. All graphs considered here are transitive i.e. for all $x, y \in \mathbb{G}^0$, there exists a finite sequence $(x_0 = x, x_1, \dots, x_n = y)$ with $(x_{i-1}, x_i) \in \mathbb{G}^1$ for all $i = 1, \dots, n$.
- Algebraic structure of Cayley_c(Γ, B, R): a groupoid or a semi-groupoid.

Constrained Cayley graphs and semi-groupoids Examples of semi-groupoids Examples of groupoids

Examples of semi-groupoids

Vertex set $\mathbb{X} = \mathbb{Z}^2$, i.e. for all $x \in \mathbb{X}$, we write $x = (x_1, x_2)$; generating set $\mathbb{A} = \{\mathbf{e}_1, -\mathbf{e}_1, \mathbf{e}_2, -\mathbf{e}_2\}$.

For all three lattices: $\forall x \in \mathbb{Z}^2, d_x^- = 3$.

Constrained Cayley graphs and semi-groupoids Examples of semi-groupoids Examples of groupoids

Example of groupoid

- Choose integer $N \ge 2$; decompose $\mathbb{R}^N = E \oplus E^{\perp}$ with dim E = d and dim $E^{\perp} = N d$, $1 \le d < N$.
- K the unit hypercube in \mathbb{R}^N .
- $\pi: \mathbb{R}^N \to E$ and $\pi^{\perp}: \mathbb{R}^N \to E^{\perp}$ projections.
- For generic orientation of E and $t \in E_{\perp}$ let $\mathcal{K}_t := \{x \in \mathbb{Z}^N : \pi^{\perp}(E+t) \in \pi^{\perp}(\mathcal{K})\}.$
- $\pi(\mathcal{K}_t)$ is a quasi-periodic tiling of $E \cong \mathbb{R}^d$ (of Penrose type).
- For generic orientations of *E*, points in \mathcal{K}_t are in bijection with points of the tiling.
- $\mathbb{A} = \{\pm \mathbf{e}_1, \ldots, \pm \mathbf{e}_N\}.$
- $c(x,z) = \mathbbm{1}_{\mathcal{K}_t \times \mathcal{K}_t}(x, x+z), z \in \mathbb{A}.$

 $\mathsf{Cayley}_c(\mathbb{Z}^N,\mathbb{A})$

- Cayley_c(ℤ^N, A) is undirected (groupoid).
- d⁻_x can be made arbitrarily large.

Generalities on random walks Symmetric random walk on \mathbb{Z}^d Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

For semi-groupoids For groupoids

Results For semi-groupoids

Theorem (Campanino and P. (2003))

The simple random walk

- on the alternate 2-dimensional lattice is recurrent,
- on the half-plane one-way 2-dimensional lattice is transient,
- on the randomly horizontally directed 2-dimensional lattice, where $(\theta_{x_2})_{x_2 \in \mathbb{Z}}$ is an i.i.d. $\{0, 1\}$ -distributed sequence of average 1/2, is transient for almost all realisations of the sequence.

Triggered various developments: Guillotin and Le Ny (2007), Pete (2008), Pène (2009), Devulder and Pène (2011), de Loynes (2012).

Generalities on random walks Symmetric random walk on Z^d Simple random walk on Cayley graphs of groups Directed lattices **Results presented in these lectures**

Results (cont'd)

For semi-groupoids

For semi-groupoids For groupoids

Theorem (Campanino and P. (2012), ArXiV:1204.5297)

- $f : \mathbb{Z} \to \{0,1\}$ a Q-periodic function $(Q \ge 2)$: $\sum_{y=1}^{Q} f(y) = 1/2$.
- $(\rho_y)_{y \in \mathbb{Z}}$ i.i.d. Rademacher sequence.
- $(\lambda_y)_{y \in \mathbb{Z}}$ i.i.d. $\{0,1\}$ -valued sequence such that $\mathbb{P}(\lambda_y = 1) = \frac{c}{|y|^{\beta}}$ for large |y|.

•
$$\theta_y = (1 - \lambda_y)f(y) + \lambda_y \frac{1 + \rho_y}{2}$$

•If $\beta < 1$ then the simple random walk is almost surely transient. •If $\beta > 1$ then the simple random walk is almost surely recurrent.

Generalities on random walks Symmetric random walk on \mathbb{Z}^d Simple random walk on Cayley graphs of groups Directed lattices Results presented in these lectures

For semi-groupoids For groupoids

Results For groupoids

Theorem (de Loynes, thm 3.1.2 in PhD thesis $(2012)^a$)

^aAvailable at http://tel.archives-ouvertes.fr/tel-00726504.

The simple random walk on (adjacent edges of) a generic Penrose tiling of the d-dimensional space is

- recurrent, if $d \leq 2$, and
- transient, if $d \ge 3$.

