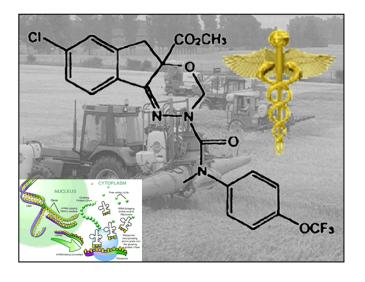


ANNÉE UNIVERSITAIRE 2010 / 2011

■ FACULTÉ

DES SCIENCES

Unité de formation


et de recherche

2, boulevard Lavoisier 49045 ANGERS cedex 01 Tél. 02 41 73 53 53 Fax 02 41 73 53 52 www.univ-angers.fr Service Scolarité Masters

MASTER 1

MENTION ECOLOGIE ENVIRONNEMENT PARCOURS ALTERATIONS DES SYSTEMES BIOLOGIQUES

Ecology Environment

Directeur de l'UFR Sciences : D. SCHAUB

Assesseur à la pédagogie : F. SAUBION

Responsable administratif: M. VERON

ACCUEIL DES ETUDIANTS

SCOLARITE / EXAMENS

Du lundi au vendredi De 9 h 00 à 12 h 30 et de 13 h 30 à 17 h 00

Rez de chaussée du bâtiment A

Planning M1 2010-2011

1 ^{er} SEMESTRE										
Réunion de rentrée	Lundi 6 septembre 2010 matin – 10h30									
Début des cours	Lundi 6 septembre 2010 après-midi – 14 h									
Vacances de la Toussaint du samedi 23 octobre après les cours au lundi 1 novembre 2010 au matin										
Fin des cours	Vendredi 17 décembre 2010 soir									
Vacances de Noël et du Jour de l'An du samedi 18 décembre 2010 après les cours au dimanche 2 janvier 2011 au matin										
Examens session 1 semestre 1	Du mardi 4 au vendredi 7 janvier 2011									
Jury session 1 semestre 1	Mardi 25 janvier 2011									
2 ^e SF	2 ^e SEMESTRE									
Début des cours	Lundi 3 janvier 2011									
	es d'hiver ours au lundi 7 mars 2011 au matin									
Fin des cours	Vendredi 30 mars 2011 au soir									
Examen session 1 semestre 2 & Examen session 2 semestre 1	Du lundi 4 au vendredi 8 avril 2011									
du 4 avril après les	ratoire/entreprise s cours au 5 juin 2011									
	s Printemps ours au lundi 9 mai 2011 au matin									
Jury Session 2 semestre 1 & Session 1 semestre 2	Mercredi 27 avril 2011									
Remise du rapport de stage	Vendredi 10 juin 2011 avant 17h									
Soutenances de stage	lundi 20 juin 2011									
Examen session 2 semestre 2	Du mercredi 31 août au vendredi 2 septembre 2011									
Jury session 2 semestre 2	Jeudi 9 septembre 2011									

Sous réserve de modifications mineures

Objectifs de la formation

Le Master mention **ENVIRONNEMENT ECOLOGIE** parcours Altérations des Systèmes Biologiques (ASB) se décline en une première année ou M1 dont certains modules sont mutualisés avec les parcours du même Master et le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé (M1STOS).

Les modules d'enseignement concernent les domaines de l'Environnement, de la gestion des risques, de la Toxicologie, de l'Endocrinologie et de la pharmacologie.

L'objectif général de cette 1^{ère} année est de préparer à l'entrée en M2 Altérations des Systèmes Biologiques, mais aussi à d'autres spécialités de M2 dans le domaine des sciences de la vie.

Le parcours Altérations des Systèmes Biologiques est une formation pluridisciplinaire unique dans la Région Pays de la Loire et qui répond à une forte demande nationale et/ou internationale. La protection durable de l'environnement, l'accroissement de la compétitivité de l'agriculture associée à la qualité des productions agricoles, ainsi qu'à la gestion des risques pour la santé publique, ont motivé la mise en place de cette formation. Dans ce contexte, il faut être capable de développer des stratégies qui à partir d'une meilleure connaissance des altérations des systèmes biologiques permettent de proposer des innovations en matière de gestion de l'environnement et des écosystèmes. La mise en place de telles stratégies nécessite une formation pluridisciplinaire de haut niveau à la fois théorique et pratique, dispensée sur un site qui offre toutes les garanties en terme de structures de formation et d'accueil pour les étudiants.

Sur la base du choix des étudiants, le total heures enseignement atteint environ 550h étudiants et l'obtention de 60 ects est validée par la remise d'un diplôme de Maîtrise Sciences du Vivant.

A la suite du M1 et à condition de valider les 2 premiers semestres et après analyse du dossier, les étudiants pourront s'orienter vers le M2 de la spécialité choisie préparant à l'exercice d'une activité de recherche et/ou professionnelle, notamment

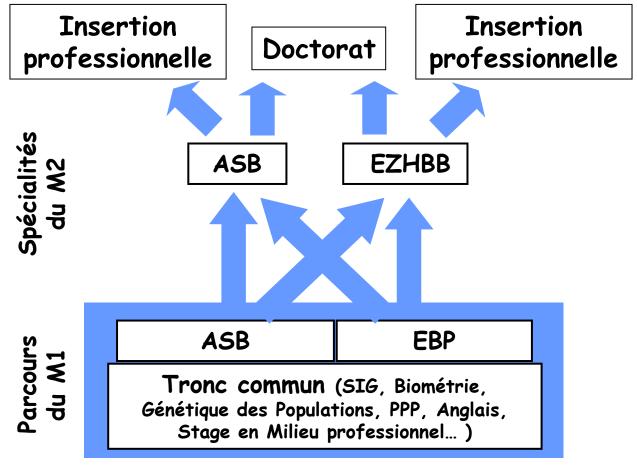
- la spécialité Recherche Altérations des systèmes biologiques
- vers la spécialité Professionnelle Eco-ingénierie des zones humides et biodiversité

Responsable du Parcours

Steeve H. Thany, Maître de Conférences 02.41.73.52.13 – <u>steeve.thany@univ-angers.fr</u>

Equipe de rattachement : Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM)

UPRES EA 2647 / USC INRA 2023, UFR Sciences


Site web: http://www.med.univ-angers.fr/discipline/labo_neuro

Débouchés de la formation

L'enseignement de M1 prépare les étudiants à l'accès à la deuxième année du master dans l'une des deux spécialités

- Eco-ingénierie des zones humides et biodiversité (recherche et professionnel)
- Altérations des systèmes biologiques (recherche)

Le parcours EBP présente donc une offre favorisant à la fois une insertion recherche et professionnelle.

Organisation du Master Ecologie Environnement

EZHBB : Eco-ingénierie des Zones Humides, Biodiversité, Bio-Indicateurs

SIG: Systèmes Informatiques Géographiques

PPP: projet professionnel personnalisé

Contenu des enseignements

SEMESTRE 1: 5 noyaux (18 ects) + 2 ou 3 options (12 ects)

Module	Contenu des enseignements	ECTS	CM	TD	TP	Total	
S1M-ASB1	Endocrinologie cellulaire et moléculaire	6	30	9	16	56	Noyau
S1M-ASB2	Pharmacologie générale	3	18	9		27	Noyau
S1M-ASB3	Application de la pharmacologie à la physiologie des régulations	3	18	9		27	Noyau
S1M-ASB4	Projet Personnel Professionnel	3		27		27	Noyau
S1M-ASB12	Méthode d'analyse et de contrôle qualité	3	20	7		27	Noyau
S1M-EBP1	Biologie et Dynamique des populations		10	6	8	24	Option
	Génétique des populations	6	16	8	8	32	
S1M-EBP3A	Biométrie	3	7.5		20	27.5	Option
S1M-EBP4	Ecologie des communautés, Interactions interspécifiques,		14	5	12	31	Option
	Ecologie comportementale	6	12	4	8	24	
S1M-EBP6	Bio-indicateurs	3	12	7	9	28	Option
S1M-BCM1	Biologie moléculaire de la transcription/traduction	6	35	10	10	55	Option

SEMESTRE 2: 6 noyaux (21 ects) + 2 ou 3 options (9 ects)

Module	Contenu des enseignements	ECTS	СМ	TD	TP	Total	
S2M-ASB5	Toxicologie générale	3	18	9		27	Noyau
S2M-ASB6	Toxicologie cellulaire et environnementale	3	18	9		27	Noyau
S2M-ASB7	Adaptation aux contraintes environnementales	3	21	6		27	Noyau
S2M-ASB10	Préparation à l'insertion Professionnel	3		27		27	Noyau
S2M-ASB9	Stage en laboratoire de recherche/entreprise	6			55	55	Noyau
S2M- EBP16/ASB11	Anglais scientifique	3		7	20	27	Noyau

S2M-ASB8	Les produits phytosanitaires : structure, mode d'action et utilisation	3	21	6		27	Option
S2M-EBP10	Structure et fonctionnement des écosystèmes	3	14	5	8	27	Option
S2M-BCM11	Prolifération cellulaire, apoptose et oncogènes	6	45	10		55	Option
S2M-BCM15A	Protéome et molécules naturelles	3	20	7		27	Option
S2M-BCM18	Modèles expérimentaux et biotechnologie animale	3	21	6		27	Option
S2M-EBP13A	Biogéochimie des environnements aquatiques	3	9	8	10	27	Option

Programme du Semestre 1

Objectif de l'ensemble du semestre :

Grâce à l'ensemble des modules d'enseignement proposé, l'étudiant va acquérir des connaissances scientifiques indispensables pour l'accès au M2 dans diverses disciplines, et notamment en Endocrinologie, en Pharmacologie, en Biologie Moléculaire et en Ecologie.

S1M-ASB1 Endocrinologie Cellulaire et Moléculaire (6 ects, noyau)

Intervenants: Alain Hamon, Christian Legros, Hélène Tricoire-Leignel

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** Aborder les aspects cellulaires et moléculaires des mécanismes impliqués dans la communication et la régulation intercellulaires. Comprendre les mécanismes de régulation de la réponse hormonale.

S1M-ASB2 Pharmacologie générale (3 ects, noyau)

Intervenants: Olivier Duval, Sébastien Faure, Christian Legros (MCU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** Comprendre l'action d'une molécule bioactive et son interaction sur son récepteur, sa distribution dans l'organisme. Acquérir la notion de médicament. Connaître les méthodes d'étude précliniques des molécules à potentiel thérapeutique.

S1M-ASB3 Application de la pharmacologie à la physiologie des régulations (3 ects, noyau)

Intervenants: Steeve Thany (MCU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** Comprendre la modulation des fonctions physiologiques au travers de l'étude des interactions molécule-récepteur. Connaître la pharmacologie du système nerveux et du système cardio-vasculaire.

S1M-EBP8/ASB4 Préparation à l'insertion Professionnelle (3 ects, noyau)

Intervenants: Intervenants extérieurs, SUIO

Mutualisé avec le parcours EBP

Objectif du module: Cette première partie doit aider l'étudiant à formuler son propre projet professionnel et personnel après avoir pris connaissance des métiers dans les domaines de l'environnement. Le but de ce module est d'aider et d'orienter l'étudiant dans ses choix pédagogiques dans l'optique d'une entrée en M2 et de mieux formuler son projet professionnel. Des intervenants extérieurs seront invité à présenter certaines organisations ou entreprises (organisation des grandes EPST, entreprises localisées sur le site Angerstechnopole). Il est demandé aux étudiants d'assister à ces conférences et de présenter à la fin du semestre un rapport écrit très court expliquant leurs choix d'orientation pour le M2. Des conseils techniques sur les méthodes d'élaboration de CV et de présentations seront également mis en place.

S1M-EBP1 Biologie et Dynamique des populations, Génétique des populations 6 ects

Intervenants: Christophe Lemaire, Olivier Pays, Jean Secondi

Mutualisé avec le parcours EBP

Objectif du module : Acquisition de solides bases en biologie et dynamique des populations. Solidifier les connaissances en génétique des populations. Maîtriser les différents types de calculs et de modèles. Savoir analyser la structure des populations animales et végétales.

S1M-EBP3A Biométrie (3ects, option)

Intervenants: Alain Pagano, Jean Secondi, Olivier Pays

Mutualisé avec le parcours EBP

Objectif du module: Solidifier les connaissances acquises en L3 (module biostatistique) afin de maîtriser les tests statistiques- Apprendre les concepts des techniques d'analyses statistiques avancées. Savoir sélectionner et appliquer les techniques statistiques.

S1M-BCM1 Biologie moléculaire de la transcription/traduction (6 ects, option)

Intervenants : Olivier Coqueret (PU) Eric Lelièvre (MCU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** A la fin de cet enseignement l'étudiant doit maitriser les principales connaissances sur la transcription (initiation, élongation, terminaison) ainsi que sur l'ARN interférence. Les compétences techniques concernent les technologies de PCR abordées lors de TP de génotypage, de clonage et d'expression de protéines recombinantes. Durée du TP : deux semaines.

S1M-ASB Méthode d'analyse et de contrôle qualité (3ects)

Intervenants: Exterieurs

Objectif du module : Connaître la réglementation sur les installations classées pour l'environnement. Connaître les différentes techniques utilisées pour l'analyse des molécules toxiques (HPLC, spectrométrie, électrophysiologie, pharmacologie...). Visite de laboratoire et d'entreprise afin de se familiariser à un environnement professionnel.

S1M-EBP6 Bio-indicateurs (EmmanuelleGeslin, Christophe Fontanier, Frans Jorissen)

Mutualisé avec le Master 1 EBP.

<u>IMPORTANT</u>: Les étudiants du M1 ASB ne suivront que les enseignements concernant la partie Bioindicateurs (Emmanuelle Geslin).

Objectifs du module : Ce module présente les marqueurs biologiques qui permettent de faire un diagnostique des perturbations du milieu. Définition d'un bio-indicateur et exemples. Calibration de proxies.

Il présente également les processus climatiques récents et leurs conséquences sur l'évolution des conditions de vie. Variations climatiques du Quaternaire et déglaciation

SEMESTRE 1: 4 noyaux (18ects) + 3 ou 4 options (12 ects)

Module	Contenu des enseignements	ECTS	СМ	TD	TP	Total									
								СС	Session 1	Session 2	DA	Coef			
S1M- ASB1	Endocrinologie cellulaire et moléculaire	6	30	9	16	56	Noyau	20%	Ecrit (60%)+TP (20%) 2 h 1 h	Ecrit /Oral 1h 30 (100%)	Ecrit 1h	1			
S1M- ASB2	Pharmacologie générale	3	18	9		27	Noyau		Ecrit 100% (2h)	Ecrit/Oral 1h (100%)	Ecrit 1h	0,5			
S1M- ASB3	Application de la pharmacologie à la physiologie des régulations	3	18	9		27	Noyau		Ecrit 100% (2h)	Ecrit/Oral 1h (100%)	Ecrit 1h	0,5			
S1M- ASB4	Préparation à l'Insertion Professionnelle	3		27		27			Présentiel	Ecrit/Oral 1h	Ecrit/Oral 1h				
S1M- ASB12	Méthode d'analyse et de contrôle qualité	3	20	7		27	Noyau	100 %		Ecrit/Oral 100% (1h30)		0,5			
S1M- EBP1	Biologie et dynamiques des populations	6	10	6	8	24	Option	25%	1h30 (75%)	Ecrit/Oral 1h (75%)	Ecrit 1h30	0,4			
	Génétique des populations		16	8	8	32		25%	Ecrit 2h (75%)	Ecrit/Oral 1h (75%)	Ecrit 2h	0,6			
S1M- EBP4	Ecologie des communautés, Interactions interspécifiques	6	14	5	12	31	Option	30%	Ecrit 2h (70%)	Ecrit 1h30 (70%)	Ecrit 2h	0,6			
	Ecologie comportementale		12	4	8	24		30%	Ecrit 1h30 (70%)	Ecrit 1h (70%)	Ecrit 1h30	0,4			
S1M- EBP6	Bio-indicateurs	3	12	7	9	28	Option	100 %		Ecrit/Oral 1h 100%	Ecrit 1h30	0,5			
S1M- BCM1	Biologie moléculaire de la transcription/traduction	6	35	10	10	55	Option		Ecrit 2h (80%)+TP(20%)	Ecrit 2h (80%)+TP(20%)		1			
S1M- EBP3A	Biométrie	3	7.5		20	27.5	Option	40%	Ecrit 1h30 (60%)	Ecrit 1h30 (60%)	Ecrit 1h30	0,5			

Programme du Semestre 2

Objectif de l'ensemble du semestre :

L'objectif général de ce semestre est de finaliser l'acquisition des bases fondamentales pour l'accès en M2. Ce semestre est marqué par le stage qui donnera à l'étudiant une véritable expérience professionnelle.

S2M-ASB5 Toxicologie Générale (3 ects, noyau)

Intervenants: Steeve Thany, Hélène Tricoire-Leignel

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module** : Connaître les concepts fondamentaux de la toxicologie

S2M-ASB6 Toxicologie Cellulaire et Environnementale (3 ects, noyau)

Intervenants: Vincent Leignel, Jerôme Bove, Thomas Guillemette, Justine Marchand

Objectif du module : **Comprendre les** grands principes, méthodes et applications de l'Ecotoxicologie. Les toxines fongiques: structures chimiques et biosynthèse, rôles, modes d'actions. La dernière partie concerne l'impact sur l'environnement et les applications possibles.

S2M-ASB7 Adaptation aux contraintes environnementales (3 ects, Noyau)

Intervenants: Hélène Tricoire-Leignel, Vincent Leignel

Mutualisé avec le parcours EBP

Objectif du module : Etude des mécanismes biologiques impliqués dans l'adaptation et l'anticipation des organismes en réponse aux modifications des facteurs environnementaux.

S2M-ASB8 Les produits phytosanitaires : Structure, mode d'action et utilisation (3 ects, option)

Intervenants: Steeve Thany, Hélène Tricoire-Leignel, Christian Legros

Objectif du module : Connaître les principaux produits phytosanitaires, leur mode d'action, leur cible et leur utilisation ; connaître les problèmes liés à leur utilisation, leur impact sur l'environnement et la santé humaine.

S2M-ASB9 Stage en laboratoire de recherche (6 ects, novau)

Intervenants: Enseignant-chercheur, chercheur

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** s'impliquer dans un projet professionnel ou de recherche, effectuer un stage court de professionnalisation au sein de structures spécialisées (durée minimale 1mois et demi) qui donne lieu à la rédaction d'un mémoire de recherche et à une soutenance orale devant un jury dès la première session d'examen du 2nd semestre. Ce stage peut être réalisé dans des laboratoires labellisés ou en entreprise. Le stage de deux mois et demi est un stage classique de découverte d'un projet de recherche, sanctionné par un rapport écrit et un oral.

S2M-ASB10 Préparation à l'insertion Professionnelle (3 ects, noyau)

Intervenants: Intervenants extérieurs, SUIO

Mutualisé avec le parcours EBP

Objectif du module : Connaître les bases de la communication écrite ; Maîtrise de la prise de parole. Maîtriser les outils de communications (outil informatique). Approfondir la communication scientifique en anglais.

S2M-ASB11 Anglais Scientifique (3 ects, noyau)

Intervenants: Robert Adams (PRAG)

Mutualisé avec le parcours EBP

Objectif du module: Approfondir les connaissances en anglais, maîtrise la prise de parole en anglais et compréhension de la littérature scientifique. Le but est l'acquisition du niveau européen B2, l'étudiant pouvant comprendre le contenu essentiel de sujets concrets ou abstraits dans un texte complexe, y compris une discussion technique dans sa spécialité. Ce module vise aussi à donner la possibilité à l'étudiant de se préparer au TOEFL/TOIC.

S2M-EPB10 Structure et fonctionnement des Ecosystème (6ects, option)

Intervenants: Alain Pagano (MCU)

Mutualisé avec le parcours EBP

Objectif du module : Approfondir les connaissances acquises sur la structure et le fonctionnement des écosystèmes. Connaître la dynamique les flux de matières et d'énergie

S2M-BCM11 Prolifération cellulaire, apoptose et Oncogènes (6 ects, option)

Intervenants: Olivier Coqueret (PU), Christian Legros (MCU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** Description approfondie des mécanismes moléculaires régulant la prolifération cellulaire et ses dérégulations. Présentation des principaux oncogènes, gènes suppresseurs de tumeurs et mécanismes de protection apoptotique.

S2M-BCM15A Protéome et Molécules Naturelles (3 ects, option)

Intervenants : Catherine Guette (MCU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé **Objectif du module :** Cet enseignement vise à donner les bases techniques et théoriques de la protéomique et à montrer le potentiel important de cette technologie en biologie. L'illustration est la caractérisation des interactions entre les composés thérapeutiques et leurs cibles protéiques.

S2M-BCM18 Modèles expérimentaux et biotechnologie animale (3 ects, option)

Intervenants: Dominique Couez (PU)

Mutualisé avec le parcours Biologie et Santé du master Sciences, Technologie et Organisation de la Santé

Objectif du module : Cet enseignement, à but appliqué, doit permettre à l'étudiant de maitriser les interêts technologiques des principaux modèles animaux comme le xénope, C. Elegans, drosophile et mutagénèse, transgénèse animale.

S2M-EBP13A Biogéochimie des environnements aquatiques

Intervenants:

Mutualisé avec le parcours EBP

Objectif du module : Ce module aborde les processus chimiques à plusieurs échelles de temps et d'espace, qui contrôlent les milieux de vie.

Processus chimiques à l'interface eau/sédiments : diagénèse précoce, chimie de l'eau, méthodes d'étude de terrain et laboratoire. Etudes de cas : lacs, rivières

SEMESTRE 2 : 5 noyaux (21 ects) + 2 ou 3 options (9 ects)

	Contanu des angeignements ECTS CM TD TD Total														
Module	Contenu des enseignements	ECTS	СМ	TD	TP	Total	Modalités d'évaluation								
								СС	Session 1	Session 2	DA	Coef			
S2M- ASB5	Toxicologie générale	3	18	9		27	Noyau		Ecrit 2h (100%)	Ecrit/Oral 1h30 (100%)	Ecrit 1h	0,5			
S2M- ASB6	Toxicologie cellulaire et environnementale	3	18	9		27	Noyau		Ecrit 100% (2h)	Ecrit/Oral 1h30 (100%)	Ecrit(100%) (1h)	0,5			
S2M- ASB7	Adaptation aux contraintes environnementales	3	21	6		27	Noyau	20%	Ecrit 2h (80%)	Ecrit/Oral 1h (100%)	Ecrit 100% (1h)	0,5			
S2M- ASB10	Préparation à l'Insertion Professionnel	3		27		27			Présentiel	Ecrit/Oral 1h	Ecrit/Oral 1h				
S2M- ASB9	Stage en laboratoire de recherche/Entreprise	6			55	55	Noyau		Mémoire (60%) + Soutenance (40%)	Mémoire (60%) + Soutenance (40%)		1			
S2M- EBP16/AS B11	Anglais scientifique	3			27	27	Noyau	100%		Ecrit / Oral 1h	Ecrit 1h	0,5			
S2M- ASB8	Les produits phytosanitaires : structure, mode d'action et utilisation	3	21	6		27	Option		Ecrit 100% (1h)	Ecrit ou oral (100%) (1h)	Ecrit 100% (1h)	0,5			
S2M- EBP10	Structure et fonctionnement des écosystèmes Cycles d'énergie	3	14	5	8	27	Option	30 %	Ecrit 2h (70%)	Ecrit/Oral 2h (70 %)	Ecrit (2h)	0,5			
S2M- BCM11	Prolifération cellulaire, apoptose et oncogènes	6	45	10		55	Option	20%	Ecrit 80% (2h)	Ecrit ou oral 100% (2h)	Ecrit 100% (2h)	1			
S2M- BCM15A	Protéome et molécules naturelles	3	20	7		27	Option	20%	Ecrit 80% (1h)	Ecrit 100% (1h)	Ecrit 100% (1h)	0,5			
S2M- EBP13A	Biogéochimie des environnements aquatiques	3	9	8	10	27	Option	100%		Ecrit 1h (60%)	2h	0,5			
S2M- BCM18	Modèles expérimentaux et biotechnologie animale	3	27			27	Option	20%	Ecrit 80% (1h)	Ecrit 100% (1h)	Ecrit 100% (1h)	0,5			

LMD – Règles communes d'inscription, de fonctionnement général et de contrôle de connaissances

Les présentes règles communes de contrôle des connaissances s'inscrivent dans le cadre réglementaire national défini par les textes suivants :

Décret n° 2002-481 du 8 avril 2002 relatif aux grades et titres universitaires et aux diplômes nationaux ;

Arrêté du 23 avril 2002 relatif aux études universitaires conduisant au grade de licence ;

Arrêté du 25 avril 2002 relatif au diplôme national de master ;

Arrêté du 25 avril 2002 relatif aux études doctorales.

NB:

* Pour le niveau L, les dispositions existantes avant la publication de l'arrêté du 23 avril 2002 (arrêté BAYROU) ne sont pas abrogées et viennent se combiner aux nouvelles modalités.

Pour les licences professionnelles, les modalités de contrôle des connaissances sont définies par référence prioritaire au texte réglementaire qui leur est spécifique (arrêté du 17 novembre 1999). Les règles communes proposées ci-dessous ne s'appliquent pas dans ce cas.

En revanche, ces dispositions s'appliquent à la licence d'administration publique.

* Pour le niveau M, les dispositions existantes avant la publication de l'arrêté du 25 avril 2002 étant abrogées, les nouvelles modalités s'y substituent.

Ces règles communes sont à compléter par les dispositions spécifiques mentionnées dans le règlement propre à chaque formation. Toutes font partie intégrante du dossier d'habilitation.

Niveau M

Préalable : L'organisation du master est semestrielle. Les examens sont obligatoirement organisés à l'issue de chaque semestre d'enseignement.

Inscription

L'inscription administrative est annuelle, conformément aux dispositions nationales.

L'inscription pédagogique est faite par semestre

Le nombre d'inscriptions en M1 n'est pas limité.

Sessions

Pour les étudiants assidus, les aptitudes et l'acquisition des connaissances sont appréciées par un contrôle continu et régulier, par des dossiers de travail, des mémoires ou par un examen terminal. Le contrôle continu consiste en un minimum de deux évaluations effectuées pendant le semestre.

Pour les étudiants dispensés d'assiduité, le contrôle se fait exclusivement par des examens terminaux ou dossiers ou mémoires (sauf dispositions particulières).

Le nombre d'examens terminaux est impérativement limité à six par semestre, écrits et oraux inclus, pour la première session.

L'organisation d'une deuxième session est obligatoire en M1 et M2 :

Deux sessions de contrôle des connaissances sont organisées pour chaque semestre. La 1^{ère} session a lieu à la fin de chaque semestre. La 2^{nde} session a lieu à la fin du second semestre pour le 1^{er} semestre juste après la 1^{ère} session du 2nd semestre. En septembre pour le 2nd semestre. (sauf dispositions particulières votées au sein de l'UFR)

L'obligation est faite à l'étudiant de se présenter en 2^{ème} session à toutes ses épreuves, sinon il est déclaré défaillant et dans ce cas il ne peut conserver sa note de 1^{ère} session.

Dans le cadre d'un semestre non validé, l' étudiant repasse en 2^{ème} session tous les éléments constitutifs pour lesquels la note obtenue est inférieure à 10 dans les UE non acquises.

La note attribuée en 2^{ème} session à une UE est la meilleure des deux notes de cette UE entre la 1^{ère} et la 2^{ème} session. Si l'étudiant a été défaillant en 1^{ère} session, seule sa note de 2^{ème} session est prise en compte.

ECTS

Les crédits ECTS (European credits transfer system : système européen de transfert de crédits) sont affectés aux UE (Unités d'enseignement) et aux EC (Eléments constitutifs) en nombre entier.

Validation - capitalisation - compensation

Sous réserve de l'existence de « notes planchers » (cf. paragraphe concerné), les règles suivantes s'appliquent :

- Un **élément constitutif** d'une UE n'est pas capitalisable d'une année universitaire à l'autre. Les règles de conservation, d'une session à l'autre d'une même année, des résultats d'un EC sont précisés dans le règlement propre à chaque formation.
- Une **unité d'enseignement** est acquise par compensation des éléments constitutifs qui la composent, affectés de leur coefficient.

Elle est alors définitivement acquise et capitalisée, sans possibilité de s'y réinscrire et confère un nombre de crédits européens préalablement défini. Elle peut être transférable dans un autre parcours, sous réserve de l'acceptation de l'équipe pédagogique et de comptabilité avec le parcours envisagé. Le nombre de crédits européens qui lui est attribué peut alors varier.

Une unité d'enseignement peut être compensée au sein du semestre de référence et permet l'obtention de ce semestre. Elle n'est pas acquise pour un autre parcours.

• Un **semestre** est validé dés lors que l'étudiant valide chacune des UE qui le composent (moyenne de l'UE égale ou supérieure à 10/20) ou par compensation entre ces UE (moyenne des moyennes des UE affectées de leurs coefficients, égale ou supérieure à 10/20).

Il n'y a aucune contrainte particulière sur les coefficients affectées aux UE pour le calcul de la moyenne semestrielle. A défaut c'est le nombre d'ECTS par UE qui fait office de coefficient.

• Une **année** (M1 ou M2) est validée après la 2^{ème} session des deux semestres dès lors que la moyenne des deux semestres la composant est supérieure ou égale à 10.

La compensation est donc possible aux différents niveaux suivants :

- au sein de l'UE, entre les différents EC ou entre les différentes épreuves de l'UE;
- au sein du semestre entre les différentes UE du semestre ;
- au sein de l'année M1, M2 entre les deux semestres la composant après la 2ème session.

Notes planchers

Le règlement propre à chaque formation de M1 et M2 peut définir l'existence de notes planchers pour une ou plusieurs UE, ou pour un semestre, sous réserve de délibération contraire du jury.

Dans le cas où l'étudiant obtient une note inférieure à la note plancher définie, les conséquences sont les suivantes :

- l'UE concernée ne peut être validée, quelle que soit sa moyenne ;
- la compensation au sein du semestre ne peut être effectuée.
- la compensation au sein de l'année ne peut être effectuée ;

L'étudiant doit à nouveau se présenter à l'UE et à toutes les UE inférieures à 10 (la compensation ne se calculant pas).

En revanche, les modalités de progression (cf. paragraphe concerné) demeurent inchangées.

<u>Progression – redoublement</u>

L'inscription en M2 n'est pas de droit.

Le redoublement en M2 n'est pas de droit. Il est subordonné à la décision du jury.

En cas de redoublement, obligation est faite à l'étudiant de se présenter à toutes ses épreuves pour bénéficier de la conservation de la meilleure note sur les UE.

Jury (article 30)

Un jury est nommé par semestre.

Le jury délibère et arrête les notes des étudiants au minimum à l'issue de chaque session de chaque semestre. Il se prononce sur l'acquisition des UE, la validation des semestres ou la validation de l'année, en appliquant le cas échéant les règles de compensation (cf. paragraphe concerné).

A la demande de l'étudiant, il pourra être délivré une attestation de réussite de diplôme (maîtrise, master) en dehors des jurys de diplôme.

Obtention du diplôme intermédiaire de maîtrise

Sans demande expresse de l'étudiant, la validation du M1 entraîne de droit l'obtention de la maîtrise.

En cas d'obtention, le diplôme est édité suite à la demande écrite de l'étudiant avant une date fixée annuellement par les composantes.

Obtention du diplôme final de master

La validation du M2 entraîne de droit l'obtention du master.

Mentions de réussite

Les conditions de mentions sont précisées dans le règlement propre à chaque formation.

La moyenne prise en compte pour l'attribution d'une mention est celle de la dernière année du diplôme :

- moyenne générale du M1 (semestres 7 et 8) dans le cadre de l'obtention de la maîtrise.
- moyenne générale du M2 (semestres 9 et 10) dans le cadre de l'obtention du master.

<u>Inscription par transfert (valable pour le M1 uniquement)</u>

Les modalités de prise en compte du parcours réalisé par l'étudiant dans l'établissement d'origine sont définies par le règlement propre à chaque formation.

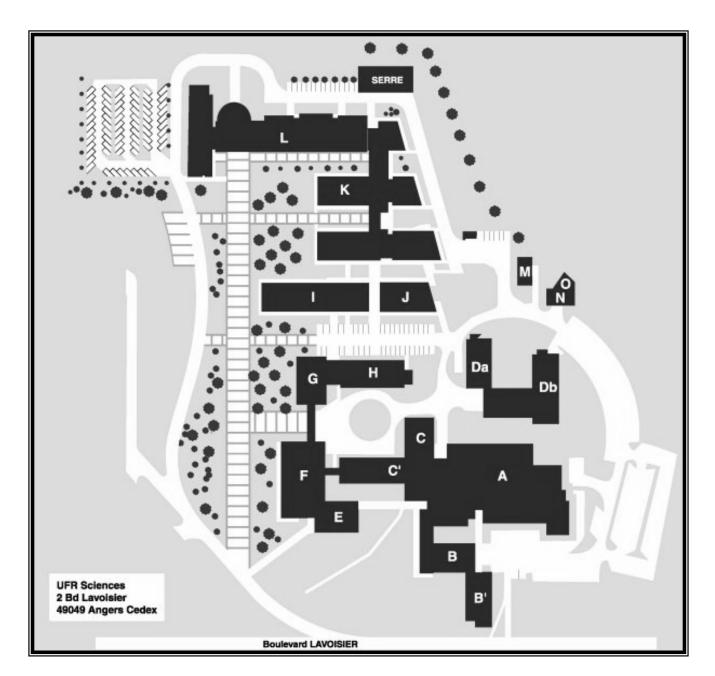
Inscription par validation d'acquis professionnels (décret du 23 août 1985), validation des acquis de l'expérience (décret du 24 avril 2002) ou validation d'études supérieures accomplies en France ou à l'étranger (décret du 16 avril 2002)

La validation d'enseignements se fait par UE entières, sous la forme de dispenses, avec attribution d'une note, dans la mesure du possible. Les crédits ECTS correspondants sont acquis.

Absence

Le traitement de l'absence aux épreuves de contrôle de connaissances est défini dans la charte des examens.

En cas de défaillance non justifiée, seul le jury appréciera, au cas par cas, cette notion et décidera ou non d'affecter la note 0 pour une matière et une session seulement.


Régime spécial

L'étudiant peut demander à bénéficier de l'étalement de sa formation en réalisant chaque année d'études en deux années universitaires. Dans ce cas, au titre de chaque année universitaire il ne s'inscrit qu'à la moitié des UE de l'année d'études. Le jury ne statue sur la validation de l'année d'études, en appliquant le cas échéant les règles de compensation, qu'à l'issue de deux années universitaires.

Notamment pour les formations dans le cadre du M2, faisant intervenir une mise à distance, il est possible de s'inscrire deux années consécutivement avec une troisième année de redoublement.

Dispositions votées au CA du 15 décembre 2004

Modification des règles d'évaluation (contrat 2008-2011) votées au CA du 6 juillet 2007.

Bât. A: Administration, Scolarité, Enseignement.

Bât. B: Biologie végétale / Physiologie végétale – Travaux pratiques biologie.

Bât. B': Travaux pratiques biologie.

Bât. C: Travaux pratiques chimie 1^{er} cycle.

Bât. C' : Recherche environnement – Recherche géologie – Recherche neurophysiologie.

Bât. D: Travaux pratiques physique 1^{er} cycle.

Bât. Da : Département de physique – Enseignement / Travaux pratiques.

Bât. Db : Département de physique – Recherche : Laboratoire des Propriétés Optiques des Matériaux et Applications (POMA).

Bât. E: Travaux pratiques biologie.

Bât. F: Recherche biologie - Travaux pratiques biologie.

Bât. G-H: Département Informatique – Recherche Informatique (LERIA) – Travaux pratiques géologie.

Bât. I : Département Mathématiques – Recherche Mathématiques.

Bât. J : Chimie enseignement – Travaux pratiques.

Bât. K : Chimie Ingénierie Moléculaire et Matériaux d'Angers.

Bât. L: Espace multimédia – Enseignement – Espace congrès – Salle d'examen.