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The discrete logarithm problem

Let (G,+) be a cyclic group of order n. Let g be a generator of
(G,+).

Definition
For x ∈ G the unique k , 0 ≤ k < n, such that x = kg is called
the discrete logarithm of x in base g and denoted logg x .

Recovering k from the knowledge of g and x is the discrete
logarithm problem.
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Diffie-Hellman Protocol

Suppose that Alice and Bob want to share a common secret.
Alice (resp. Bob) chose a random integer α (resp. β) and
publish αg (resp. βg).

public data: (G,+), g, αg, βg.
secret data: α, β.

Alice computes αβg = α(βg).
Bob computes αβg = β(αg).

The common secret is αβg.
Recovering αβ.g from the knowledge of α.g and β.g is the
Diffie-Hellman problem.
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The discrete logarithm problem
Conditions to apply

In order to be able to use the preceding protocol, we need a
family of groups with the following properties

the groups law can be computed efficiently.
the discrete logarithm problem is difficult in this family of
groups.
the computation of the carnality of a group in the family is
easy.

In the preceding easy means polynomial time complexity and
difficult is for exponential time complexity.
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Known family of groups

There is not so many known family of groups which have the
preceding properties. Essentially,

the multiplicative groups of finite field Fpr .
the group of rational points of an elliptic curves over a finite
field Fpr .
the group of rational points of Jacobian of hyperelliptic
curves over Fpr .
other more exotics and less interesting families...
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Representation of a point

Let E be an elliptic curve over Fq (char(Fq) 6= 2,3) given by a
reduced Weierstrass equation:

Y 2 = X 3 + aX + b. (1)

A point of E is just a couple (x , y) ∈ F2
q satisfying 1. Actually, it

is possible to save memory by representing a point by its affine
coordinate x plus a bit b coding the sign of y . It appears that
the y coordinate does not play an important role in the difficulty
of the discrete logarithm problem in elliptic curves.
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Montgomery representation

The idea of the Montgomery representation is just to drop any
knowledge related to the y -coordinate. Let E be an elliptic
curve expressed in Montgomery form:

EM : By2 = x3 + Ax2 + x . (2)

Let P be a point of EM . Let n be any positive integer, there
exists formulas to computes x(nP) iteratively from the
knowledge of x(P).
So for the discrete logarithm problem on elliptic curves there is
no need to distinguish between a point and its inverse.
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Definition

Let Ak be an abelian surface over a field k . The Kummer
surface K associated to Ak is the quotient of Ak by the
automorphism −1.
If k is a field of characteristic 0 it can be shown that K has a
model in P3 given by an equation:

∆(x4 + y4 + z4 + t4) + 2Exyzt − F (x2t2 + y2z2)

−G(x2z2 + y2t2)− H(x2y2 + z2t2) = 0, (3)

where ∆, E , F , G, H are elements of k .
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Kummer surface over C

Let AC be an abelian surface over C. As an analytic variety AC
is isomorphic to C2/Λ with Λ = Z2 + ΩZ2 where Ω is symmetric
and ImΩ > 0.
It is possible to obtain a projective system of coordinate on AC
or KAC by the way of the theta functions.
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Theta Functions

The Riemann theta function associated to Ω is the holomorphic
function over C2 given the series

ϑ(z,Ω) =
∑
n∈Z2

exp
(
πi tnΩn + 2πi tn · z

)
.

More generally for a,b ∈ Q2, we define the theta functions with
rational characteristics as

ϑ[a; b](z,Ω) = exp
(
πi taΩa + 2πi ta · (z + b)

)
· ϑ(z + Ωa + b,Ω).
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A first important property of Theta functions with rational
characteristics is that they give a homogeneous coordinate
system and as such a projective embedding of AC.
For l ≥ 2, consider the application

z 7→ (ϑ
[

0
b/l

]
(z,Ω/l))b∈(Z/lZ)2 .

For l ≥ 3 this gives and embedding of AC in Pl2−1. For l = 2,
the image of the preceding application is exactly the Kummer
surface associated to AC.
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In this coordinate system it is possible to compute the group
law of the abelian variety by using the Riemann duplications
formulas (for application to Kummer surfaces see for instance
[CC86]): first, we have the following duplication formulas due to
Riemann [Fay73, p. 3], for z1, z2,∈ C2 and η, η′, ε ∈ 1

2Z2,

ϑ [ η
ε ] (2z1,2Ω)ϑ

[
η′
ε

]
(2z2,2Ω) =

1
4

∑
e∈(Z/2Z)2

(−1)4 tηeϑ
[

η+η′

ε+e

]
(z1 + z2,Ω)ϑ

[
η+η′

e

]
(z1 − z2,Ω),

(4)
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Riemann Duplication Formula

To ease the notations we let:

ϑ1(z) = ϑ[(0,0); (0,0)](z,Ω)

ϑ2(z) = ϑ[(0,0); (1
2 ,

1
2)](z,Ω)

ϑ3(z) = ϑ[(0,0); (1
2 ,0)](z,Ω)

ϑ4(z) = ϑ[(0,0); (0, 1
2)](z,Ω) .

Θ1(z) = ϑ[(0,0); (0,0)](z,2Ω)

Θ2(z) = ϑ[(1
2 ,

1
2); (0,0)](z,2Ω)

Θ3(z) = ϑ[(0, 1
2); (0,0)](z,2Ω)

Θ4(z) = ϑ[(1
2 ,0); (0,0)](z,2Ω) .
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Riemann Duplication Formula

The duplication formulas give:

ϑ1(z)ϑ1(0) = Θ1(z)2 + Θ2(z)2 + Θ3(z)2 + Θ4(z)2

ϑ2(z)ϑ2(0) = Θ1(z)2 + Θ2(z)2 −Θ3(z)2 −Θ4(z)2

ϑ3(z)ϑ3(0) = Θ1(z)2 −Θ2(z)2 + Θ3(z)2 −Θ4(z)2

ϑ4(z)ϑ4(0) = Θ1(z)2 −Θ2(z)2 −Θ3(z)2 + Θ4(z)2 ,

(5)

4Θ1(2z)Θ1(0) = ϑ1(z)2 + ϑ2(z)2 + ϑ3(z)2 + ϑ4(z)2

4Θ2(2z)Θ2(0) = ϑ1(z)2 + ϑ2(z)2 − ϑ3(z)2 − ϑ4(z)2

4Θ3(2z)Θ3(0) = ϑ1(z)2 − ϑ2(z)2 + ϑ3(z)2 − ϑ4(z)2

4Θ4(2z)Θ4(0) = ϑ1(z)2 − ϑ2(z)2 − ϑ3(z)2 + ϑ4(z)2 .

(6)
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Pseudo-doubling formulas

Doubling Algorithm: odd characteristic case [Gau07]
DoubleKummer(P)
Input: A point P = (x , y , z, t) on K;
Output: The double 2P = (X ,Y ,Z ,T ) in K.

1 x ′ = (x2 + y2 + z2 + t2)2;
2 y ′ = y ′0(x

2 + y2 − z2 − t2)2;
3 z ′ = z ′0(x

2 − y2 + z2 − t2)2;
4 t ′ = t ′0(x

2 − y2 − z2 + t2)2;
5 X = (x ′ + y ′ + z ′ + t ′);
6 Y = y0(x ′ + y ′ − z ′ − t ′);
7 Z = z0(x ′ − y ′ + z ′ − t ′);
8 T = t0(x ′ − y ′ − z ′ + t ′);
9 Return (X ,Y ,Z ,T ).
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Pseudo-addition formulas

Pseudo-addition Algorithm: odd characteristic case
[Gau07] PseudoAddKummer(P,Q,R)
Input: Two points P = (x , y , z, t) and Q = (x , y , z, t) on K and
R = (x̄ , ȳ , z̄, t̄) one of P + Q and P −Q, with x̄ ȳ z̄ t̄ 6= 0.
Output: The point (X ,Y ,Z ,T ) in K among P + Q and P −Q
which is different from R.

1 x ′ = (x2 + y2 + z2 + t2)(x2 + y2 + z2 + t2);
2 y ′ = y ′0(x

2 + y2 − z2 − t2)(x2 + y2 − z2 − t2);
3 z ′ = z ′0(x

2 − y2 + z2 − t2)(x2 − y2 + z2 − t2);
4 t ′ = t ′0(x

2 − y2 − z2 + t2)(x2 − y2 − z2 + t2);
5 X = (x ′ + y ′ + z ′ + t ′)/x̄ ;
6 Y = (x ′ + y ′ − z ′ − t ′)/ȳ ;
7 Z = (x ′ − y ′ + z ′ − t ′)/z̄;
8 T = (x ′ − y ′ − z ′ + t ′)/t̄ ;
9 Return (X ,Y ,Z ,T ).P. Gaudry, D. Lubicz Kummer surfaces
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Finite field of odd characteristic

Using the Lefschetz principle, the preceding formulas actually
work for any field of odd characteristic. In characteristic 2 they
are not anymore valid.
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Algebraic theta functions

Let A be an abelian variety over k . Let L be a degree d ample
line bundle on Ak . There exists an isogeny φL from Ak onto its
dual Âk defined by φL : Ak → Âk , x 7→ τ∗x L ⊗L −1. As L is
ample, the kernel K (L ) of φL is a finite group scheme. The
theta group G(L ) is by definition the set of pairs (x , ψ) where x
is a closed point of K (L ) and ψ is an isomorphism of line
bundle ψ : L → τ∗x L together with the composition law
(x , ψ) ◦ (y , φ) = (x + y , τ∗yψ ◦ φ). It is easy to see that G(L ) is a
group which is a central extension of K (L ) by Gm,k .
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The Heisenberg group

Let δ = (d1, . . . ,dl) be a finite sequence of integers such that
di |di+1, we consider the finite group scheme
Zδ = (Z/d1Z)k ×k . . .×k (Z/dlZ)k with elementary divisors
given by δ. For a well chosen δ, the finite group scheme
K (δ) = Zδ × Ẑδ where Ẑδ is the Cartier dual of Zδ is isomorphic
to K (L ) ([Mum70]). The Heisenberg group of type δ is the
scheme H(δ) = Gm,k × Zδ × Ẑδ together with the group law
defined on closed points by
(α, x1, x2).(β, y1, y2) = (α.β.y2(x1), x1 + y1, x2 + y2).
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Theta structures

A theta structure for (A,L ) is the data of the following diagram

0 // Gm,k //

��

H(δ) //

Θδ

��

K (δ) //

Θδ

��

0

0 // Gm,k // G(L ) // K (L ) // 0

The important thing about a theta structure is that it determines
a basis a global sections of L and as such a projective
embedding φ of A. The point φ(0) is called the theta null point
defined by the theta structure Θδ.
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Canonical lift

Let k be any finite algebraic extension of F2 and let W (k) be
the ring of Witt vectors with coefficients in k . Let Ak be an
ordinary abelian surface over k . Denote by A loc

Ak
the local

deformation space of Ak which is the set of isomorphism class
of abelian schemes AW (k) over W (k) whose special fiber is Ak .
There exists a distinguished element in A loc

Ak
called the

canonical lift Ac
W (k) of Ak . The canonical lift is uniquely defined

up to isomorphism by the property that all endomorphism of Ak
lift to a relative endomorphism of Ac

W (k).

P. Gaudry, D. Lubicz Kummer surfaces
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Theta null point of the canonical lift

Suppose that AW (k) is a canonical lift of its special fiber. By a
result of Carls [Car07] there exists a canonical theta structure
Θc

δ of type δ = (2,2) such the theta null point defined by Θc
δ

satisfy the following equations:

a2
u = ω

∑
v∈Z/2Z

σ(av+u)σ(av ), (7)

u ∈ (Z/2Z)2. As a consequence we have the

Lemma

if (au) ∈ W (k)Zδ is the theta null point of an element of A c
δ,Z2

then it reduces modulo 2 to the point with homogeneous
coordinates (1 : 0 : 0 : 0).

P. Gaudry, D. Lubicz Kummer surfaces
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A correspondence

Let Ak be abelian variety over a field k of characteristic 2. We
suppose that Ak comes wich a degree 2 totally symmetric
ample line bundle Lk . The following can be shown

Corollary

Let δ = (2,2). There is a one on one correspondence between
the set of isomorphism classes of triples (Ak ,Lk ,Θδ) and the
set of isomorphism classes of triples (Ac

W (k),L
c
W (k),Θ

c
δ).
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Model of a Kummer surface

Let W (k) be the ring of Witt vectors with coefficient in k . By a
preceding result, the model of a Kummer surface K over W (k)
has the following form.

∆(x4 + y4 + z4 + t4) + 2Exyzt − F (x2t2 + y2z2)

−G(x2z2 + y2t2)− H(x2y2 + z2t2) = 0. (8)

Because of the preceding lemma, the model has bad reduction
modulo 2. After a blowing-up of the origin point of the special
fiber, which correspond to the following change of variables:

X = 2.x ,Y = 2.y ,Z = 2.z,T = 2.t . (9)

P. Gaudry, D. Lubicz Kummer surfaces
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We obtain the equation

b′c′d ′XYZT + c′2b′2(X 2T 2 + Y 2Z 2)

+ b′2d ′2(X 2Z 2 + Y 2T 2) + c′2d ′2(X 2Y 2 + T 2Z 2) = 0 (10)

Because of the preceding correspondance this gives the model
for an ordinary Kummer surface over k .

P. Gaudry, D. Lubicz Kummer surfaces
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Model of a Kummer surface

Proposition

Let δ = (2,2). There is a bijective correspondence between
the set of triples (Ak ,Lk ,Θδ) where k is any finite algebraic
extension of F2, Ak is an ordinary abelian variety over k,
Lk a degree 2 totally symmetric ample line bundle and Θδ

a theta structure of type δ defined over k ′ an extension of k
and the set of triples of elements (b′, c′,d ′) ∈ k ′3

Let (b′, c′,d ′) ∈ k ′4, an equation for the Kummer surface
K(1:b′:c′:d ′) is given by

b′c′d ′XYZT + c′2b′2(X 2T 2 + Y 2Z 2)

+ b′2d ′2(X 2Z 2 + Y 2T 2) + c′2d ′2(X 2Y 2 + T 2Z 2) = 0.

P. Gaudry, D. Lubicz Kummer surfaces
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Doubling

Doubling Algorithm: DoubleKummer(P)
Input: P = (x : y : z : t) a k -point of K(1:b′:c′:d ′);
Output: The double 2P = (x ′ : y ′ : z ′ : t ′) in K(1:b′:c′:d ′).

1 x ′ = (x2 + y2 + z2 + t2)2;
2 y ′ = 1

b′ (xy + zt)2;
3 z ′ = 1

c′ (xz + yt)2;
4 t ′ = 1

d ′ (xt + yz)2;
5 Return 2P = (x ′, y ′, z ′, t ′).
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Pseudo-addition formulas

Pseudo-addition Algorithm: PseudoAddKummer(P, Q,
R)
Input: P = (x : y : z : t) and Q = (x : y : z : t) two k -points of
K(1:b′:c′:d ′) and R = (x̄ : ȳ : z̄ : t̄) one of the π(P + Q) or
π(P −Q).
Output: The point (x ′ : y ′ : z ′ : t ′) among π(P + Q) or
π(P −Q) which is different from R.

1 x ′ = (xx + yy + zz + t t)2/x̄ ;
2 y ′ = (xy + yx + zt + tz)2/ȳ ;
3 z ′ = (xz + zx + yt + ty)2/z̄;
4 t ′ = (xt + tx + yz + zy)2/t̄ ;
5 Return (x ′, y ′, z ′, t ′) = π(P + Q) or π(P −Q).
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Idea of the proof

In the duplication formula, we recognize the classical Borchardt
mean twisted by the action of the Frobenius morphism. More
precisely, because of the duplication formula, we have

ϑ2 [ 0
ε ] (2z,1/2Ω)ϑ2 [ 0

ε ] (0,1/2Ω) =

1
4

∑
e∈(Z/2Z)g

ϑ4
[

0
ε+e

]
(z,1/4Ω)ϑ4 [ 0

e ] (z,1/4Ω). (11)

We just need a way to relate ϑ4 [ 0
e ] (z,1/4Ω) with

ϑ4 [ 0
e ] (z,1/2Ω). Modulo 2 this relation is exactly given by the

action of Frobenius morphism.
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Some computations

Cost per bit of scalar multiplication
Elliptic, odd characteristic 3 M + 6 S + 3 D
Elliptic, even characteristic 5 M + 5 S + 1 D
Genus 2, odd characteristic 7 M + 12 S + 9 D
Genus 2, even characteristic 15 M + 9 S + 3 D
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Conclusion and Perspectives

On the theoretical side, quartic’s equation for a non ordinary
Kummer surface is given in [LP04]. But the question of the
pseudo-addition formulas on such non ordinary Kummer
surfaces is still open. When using Mumford’s coordinates and
Cantor-based formulas, the group law can be more efficient in
the non-ordinary case, so this is worth being investigated.
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