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Abstract. Groups with pairing are now considered as standard buildiagks for
cryptographic primitives. The security of schemes based ch gmoups relies on
hypotheses related to the discrete logarithm problem. Asetigpotheses are not
proved, one would like to have some positive security argurfeerthem. It is usual
to assess their security in the so called generic group mottetiuced by Nechaev
and Shoup. Over the time, this model has been extended inetiffdirections to
cover new features.

The relevance of this model is nevertheless subject to ieritis: in particular,
the fact that the answer to any fresh query is a random biigsts not what one
expects from a usual group law.

In this paper, we develop a generic group model with pairingctvigeneralizes
all the models seen so far in the literature. We provide a ggifemework in order
to prove difficulty assumptions in this setting. In order to noye the realism of
this model, we introduce the notion of pseudo-random famifegoups. We show
how to reduce the security of a problem in such a family to theisty of the same
problem in the generic group model and to the security of aredyishg strong
pseudo-random family of permutations.

Keywords. Generic groups, Bilinear Diffie-Hellman assumptions, PagiDiscrete
logarithm, Pseudo-random permutations

Introduction

The discrete logarithm problem is a general way to builddmg functions for asym-
metric cryptographic protocols. It can be used as long ascandind a family of cyclic
groups satisfying certain properties:

e one would like to be able to compute quickly the group law @ consequence,
the exponential map using for instance the square and riyudtigorithm,

e it is also necessary for the discrete logarithm problem tanbectable in the
considered family of groups.

There is no family of groups for which this last property i®ped. Nevertheless, on
the practical side, there is no known algorithm better thengeneric ones (for instance
Pollard’s Rho [MOVO01]) to compute the discrete logarithnolgiem in the family of ra-
tional points of elliptic curves defined over a finite field.eBe generic algorithms are
of exponential time complexity. Some widely used cryptésyss, for instance Diffie-
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Hellman key agreement and its derivative [DH76,MTI186], ElrEal encryption [EIG85a,
EIG85b] or DSA and related signature schemes [FIPS186 B@EG85b,Sch91], actu-
ally implement trapdoor functions such that their securétjes on the intractability of a
discrete logarithm related problem.

Generic group model.This situation is not really satisfying, and one would expec
at least some positive argument for the discrete logarithtohlpm to be intractable. The
generic group model designed by Nechaev and Shoup is suppm§i# that gap. More
precisely, the papers [Nec94,Sho97] define the notion afége algorithms” which are,
roughly speaking, automatons with memory which can onlyquar group operations.
The authors managed to prove that the fastest algorithmgahe discrete logarithm
problem and the Diffie-Hellman problems are in exponenimétin this model of com-
putation. In a modern formulation, in the generic group mpddversaries are Turing
machines dealing with bit strings instead of group elemantsare unable to compute
group operations. These group operations are provideddnies defined in the follow-
ing way:

e all queries are stored in a list;
e when a new query is similar to a former one, the oracles re¢hgrsame answer;
e when a new query is fresh, the oracles return a randomly chioisstring.

At the end of the game, the challenger verifies that the sitiomlgrovided by these
oracles is coherent with discrete logarithm values drawrdoanly for each initial bit
string submitted to the adversary and by checking that nigszmt occurs.

This general framework has subsequently been improveddardo take into ac-
count new group properties used in protocols such as paifBg04b,YWO05]. As a mat-
ter of fact, the generic group model is now a standard todiltferproof of cryptographic
protocols. It is used either directly to compute runningdilower bounds for breaking a
given protocol [Bro05a,Bro05b,LS08], or more generallyonder to assess the security
of a new computational or decisional hypothesis upon whichaised the security of a
protocol [Jou00,BB04a,BB04b].

Limitations and criticisms. Because of the widespread use of the generic group

model, a natural and important question is the relevancaisfrhodel. As pointed out

in [MFQ7], this model has some evident limitations which métkmore restricted than
the case of a full-fledged Turing Machine with access to graugh pairing oracles. For
instance, when receiving a bit string from an oracle, arckétamay flip a certain bit and
use the resulting bit string to submit a new query. Intultivéhis type of query will not
improve the probability of success of the attacker but skitbuld be taken into account,

in an extension of the model.

Actually the generic group model has been the target of nausseriticisms [Den02,
SPMS02,NSS04] some of which have been turned down [KMO¥]ifstance, because
the oracles answer with random bit strings to fresh quetiesgeneric group model is
then often compared with the random oracle model. Such rarzhavior of the generic
group model is not what one expects to modelize real groilgsijtlwas pointed out in
[KMO7].

Our contribution. In this paper, we first revisit the generic group model. Wespre
a complete mathematical background on groups and painmgsler to define precisely
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the families of groups corresponding to a generic model. Mgude extensions like the
possibility for an adversary to use bit strings which havelmeen given as an input of
the considered problem, nor as an answer to a query from ateok&e follow moreover
a more natural approach in the analysis of a given problerthdrusual generic group
model, the answer of the group law oracles is just a randomeseg of bits for any
fresh query and it does not take into account any underlylgghaaic structure. The
group structure is only used at the end of the game in ordehéalcthe presence of a
collision. In contrast, in our model, the group law is randpohosen at the beginning of
the game. We study the set of group laws that remain indigiiigble from this specific
law during the whole game, and we compute a probability basetthis set. This subtle
difference will become very clear in the discussion at the eiPart 4.

In this way, the answers to oracle queries are formally natiomly chosen during
the game, but really computed from a pre-determined groupHawever, this is still not
satisfying: the group law used in the computations is iljtimndomly chosen amongst
all possible group laws, which is far from being realistic.

In order to improve the realism of the model, we introduce rib&on of pseudo-
random groups: a pseudo-random group is a group where tligosdedw is provided by
the way of a strong pseudo-random permutation. As the faafirandom permutations
is a particular case of strong pseudo-random permutatitiegasy to see that our model
is a generalization of the generic group model. The mainlre$this paper shows that
every result that can be proved in the generic group modelatsm be proved in the
pseudo-random group model. In other words, we can consigheities of groups where
the group laws, provided by oracles, are drawn following dniteary distribution. The
security of an hypothesis over such a family can be reducdtigaobustness of this
family as a pseudo-random family of groups, through the sgoof this same hypothesis
in the generic model.

Organization of the paper. In Parts 1 and 2, we give a definition for the generic
families of cyclic groups and generic families of cyclic gps with pairings. In Part 3,
we develop the technical tools to assess the security of ldgaroin the generic group
model. In Part 4, we define the pseudo-random families oficygrbups and explain
how to prove the difficulty of a problem in a pseudo-random ifaraf cyclic groups
by reduction upon the generic group model and the securithelinderlying pseudo-
random permutation family.

1. Cyclic groups and their representations
1.1. A unique cyclic group of order

The cyclic groups are classified up to isomorphisms by theie i.e. two cyclic groups
are isomorphic if and only if they share the same order. Iti@aar, a cyclic grougs is
of ordern € N* if and only if it is isomorphic to the additive group/nZ. Of course,
there can be several isomorphisms betw&emdZ/nZ, but one can consider the unique
isomorphism, from G with a generatoy, into Z/nZ, such thai(g) = 1.

It should be remarked that for all € G, I(z) is nothing butlog,(z), and then
computing the isomorphisinis the same thing as computing the discrete logarithm map
of G in basey.
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1.2. Inherited structure of group

Let A be a set of: elements. Any bijective applicatiofy from Z/nZ into A, providesA
with a structure of group, where the group law4) and the inverse law-{;) are given
by the following rules:

V(z,y) € A% o 45 y=f(f )+ () and —pz=f(—f"'(x). (1)

We denote by ; the setA together with the group structure given By Then f(0) and
f(1) are respectively the neutral element and a generatdr;of

1.3. Generic family of cyclic groups

Let F(A) be the set of all bijective applicatiorf§ from Z/nZ into A. For any subset
S C F(A), one can consider the familfs = {Ay, f € S}. This family is a set of
representations of the same grofdipnZ over the setA. In the following, we use the
generic family of cyclic groups, corresponding to the déim given in [Sho97] and
defined by

Definition 1 (Generic family of cyclic groups)Let B(n) be the set of binary represen-
tations of integers ig0,...,n—1}. The faminB(n,)F(B(n)) is called generic family of
cyclic groups of ordef:. The union overn € N* of the generic families of cyclic groups
of ordern is called the generic family of cyclic groups.

Using the square and multiply algorithm, the applicatfonZ /nZ — B(n)f can be
computed in at mostlog(n) group operations from the knowledge ff1). As log(n)
is the complexity parameter, the data-of is stronger than the data gfin the class of
polynomial time algorithms.

In the opposite direction, the applicatigr! is the canonical isomorphism (calléd
in Section 1.1) associated to the gronn)f together with the generatgi(1). We have
seen before that this applicatigit! is exactly the discrete logarithm map Bﬁ(n)f.
Thus, when the computation of the discrete logarithm is egpg to be hard in this
group, an algorithm can not efficiently compute the group lesmg the rule (1).

1.4. Representations of cyclic groups

Definition 2 (Family of representations of cyclic groups)et L. be a language over
{0,1}, i.e. a subset of0, 1}*. A family of representations of cyclic groups over this
languagel is the data of:

e adenumerable system of parameters, which can also be egpeeidby an infinite
set of binary stringg?, together with a functiorr : Q@ — N* computable in
polynomial time, such thatN € N, Ja € Q /¢(a) > N,

e for eacha € Q, afinite subseL,, of L, of sizec(«), together with two laws+,
and—,, computable in polynomial time, and two elementd.in 0, andg,. We
require(L,, +) to be a cyclic group of ordef(«) with group law+,, inverse
law —,,, and such thai,, andg,, are respectively the zero element and a generator
of this group. We suppose moreover thatx{|x|,z € L,} = O(logs(c())).
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In the previous definition, we require thét(a)).cq is not upper-bounded. This
means that the family contains groups of arbitrarily larggeos so that we can obtain an
asymptotic complexity for an adversary using this familye Yéquire moreover that the
elements of a group in the family have short representatiotize languagé..

Examplel. Consider the family of all elliptic curves of prime order oVeldsF, where

p is a prime number larger thag An elliptic curve E in this family can be represented
by a7-uple(p, a1, az, as, as, ag, g) defining its Weierstrass equatigh + a; vy + azy =

z3 + agz? + asx + ag overF, and a generatqy of E(F),).

The functionc computing#E(F,) from a parametery = (p, a1, a2, as, a4, as, g)

is based on the polynomial-time algorithm due to Schoofnitbe Hasse theorem,
|#E(F,) —p — 1| < 2,/p. There are thus curves of arbitrary large sizes in this fam-
ily. An element of E(F,) can be coded as a pdir,y) € (F,)? verifying its Weier-
strass equation. The group laws, the generatand the neutral oE(F,) are directly
deduced from a parameter= (p, a1, as, as, a4, ag, g). From these properties, we de-
duce that the set of parametéfs a1, as, a3, ay, ag, g), together with the cyclic groups
{(z,y) = Ag/ X\ € N}, is a family of representations of cyclic groups.

Example2. According to Section 1.3, an element of the generic familgyadic groups is
defined by an ordet and two laws;- y and— ;. To connect this family with the definition
of family of representations of cyclic groups, we use théofeing presentation:

e the parameter associated to an element of the generic fafndyclic groups is
an integem, together with two elements @(n) corresponding t6; andg; we
have an obvious function: (n,0;, gs) — n, computable in polynomial time,

e the set of group elements associated to the parartetey, g5) is B(n),

e two oracles+; and—, are built (see Section 1.2) from a functigrrandomly
chosen inF(B(n)) such thatf(0) = 07 and f(1) = gy.

The difference with the definition of a family of represerdas of cyclic groups is that
the group laws can not be immediately deduced from the paesnihese group laws
are only given through oracles.

1.5. Some standard problems

We state now some standard problems for families of reptatens of cyclic groups:

Definition 3. Let (€2, (L. )acq) be a family of representations of cyclic groups over a
languageL. In this family,

e an algorithm solving the discrete logarithm problem coregltg, (z) in the
groupL,, from the inputsy € Q, = € L;

e an algorithm solving the Diffie-Hellman problem computes, () .y in the
groupL,, from the inputsy € Q, (x,y) € (L)%

e an algorithm solving the decisional Diffie-Hellman probletecides if z is
log,, (z) .y in the groupL,, from the inputsy € Q, (z,y, 2) € (La)®.

Following Example 2, we can extend these definitions to tmege family of cyclic
groups. An algorithm solving one of these problems in theegenfamily of cyclic
groups has the same input and output. The only restrictitmaisit must use oracles to
access the group laws.
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2. Case of cyclic groups with pairing
2.1. Perfect pairings

Let G be a cyclic group of orden. It comes with a canonical structure @fmodule:
V(k,z) e Nx G, k.x = z+x+...+xand(—k).z = —(k.z). We denote by the dual
of G, i.e. the group ofZ/nZ-linear forms onG. A pairing is aZ/nZ-bilinear map from
a pair of cyclic groups into another cyclic group, wherés the common order of the
three groups involved. There exists a pairing fréin< G into Z/nZ, called canonical
pairing of G and defined byv(z,v) € G x G, e.(z,v) = v(x).

Let G, G’ andG” be three cyclic groups of order. A pairinge : G x G/ — G" is
said to be perfect if it is isomorphic as a pairing to the cacarpairing ofG, i.e. there
exists three isomorphisms : G — G, m’ : G’ — G andm” : Z/nZ — G” such that
V(z,y) € G X G, e(z,y) = m"(ec(m(z),m'(y))).

G X G/ G//

e e

GXGT)Z/TLZ

Let A be a set of, elements. Letf,h) € F(A)?, we would like to describe all
possible perfect pairings from ¢ x Ay into A;. By definition, such a pairing is deduced
from three isomorphismsn, m’ andm”.

e

Af XAf Ah

m \L \L m’ T m’’

Af x Ay —= Z/nZ

Without loss of generality, we can fix = id, m” = handm’ = f~o i o f1,
wherei is any isomorphism fronZ /nZ into Z/nZ is any isomorphism, and wherfis

the dual isomorphism of, i.e. f : v € G —wvo f € G. The description of a perfect
pairing is then equivalent to the data of an isomorphism

Remarkl. The perfect pairing is uniquely determined by the value eff (1), f(1)).
The isomorphismi is then determined as well whelf (1), f(1)) is fixed. Thus, for all
(f,h) € F(A)?, there exists a unique perfect pairiaguch that(f(1), f(1)) = h(1).

In the following, we will only consider cyclic groups with gdiect pairinge such that
e(f(1), f(1)) = h(1). The pairing defined byz,y) € A;* — h(f~'(z).f (y)) €
Ay, verifies this property. Since it is a perfect pairing, it i®thnique perfect pairing
mentioned in the previous remark.

2.2. Generic family of cyclic groups with pairing

Like in Section 1.3, we consider a sétof n elements, and the s&t(A) of all bijective
applications fromZ/nZ into A. For any subset C F(A), let P(A,S) be a family
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of two representations of groups and a pairing parametiigethe set{(f,h) € S?}.
From a pair(f,h) € S?, we deduce the groupd; and A, following Equation (1).
Moreover, we consider the perfect pairiafrom Ay x Ay into A, defined by V(z,y) €

(Af)?, e(x,y) = h(fHz). ().

Definition 4 (Generic family of cyclic groups with pairing)Let B(n) be the set of
binary representations of integers{f,...,n — 1}. The familyP(B(n), F(B(n))) is
called generic family of cyclic groups of orderwith pairing. The union oven € N* of
the generic families of cyclic groups of ordemwith pairing is called the generic family
of cyclic groups with pairing.

Like previously, the morphismg andh can be computed from the group laws in
B(n), andB(n),,. Inthe opposite direction, if the discrete logarithm peshlis assumed
to be hard in these groups, the inverse mapsandh—! are not efficiently computable.

2.3. Representations of cyclic groups with pairing

Definition 5. Let L andM be two languages ovéo, 1}. A family of representations of
cyclic groups with pairing, over these languadesand M, is the data of: two families
of representations of cyclic groupd;, (L) cr) over L and(A, (Ms)sca) overM, a
parameter spac@ C T' x A, and for alla = (v,d) € , a perfect pairinge,, from
L., x L. into Ms, computable in polynomial time, such that(g-, g1) = gs.

When(2; (respectively2;) denotes the set of left (respectively right) parts of eletae
of Q, such family is denoted by (2, (L, )yca,, (Ms5)sc0,, (€a)acn)-

Example3. We go on with the example of elliptic curves. Now, we consiaerlliptic
curve E defined over a finite fieldf, of characteristip. Let! > 2 be an integer prime
to p. Let k be the smallest integer such thadividesg¢* — 1. ThenF . is the smallest
extension off, which contains thé'" roots of unity. One can consider the Weil pairing
ew: E[l] x E[l] — F (see [Sil86]).

As the Weil pairing is a skew symmetric form dtj[{], one has to consider a maximal
isotropic subgroug:( E[{]) of E[l] and an isomorphism with its dual to obtain a modified
bilinear non trivial pairing? : G(E[l]) x G(E[l]) — F, such that ifP is a generator of
G(E[l]) thené(P, P) is a generator of the group ¢f* roots of units inF .

This perfect pairing can be computed in probabilistic polymal time using Miller's
algorithm [CFO5]. It is easy to see that one can obtain froi¢bnstruction a family of
representations of cyclic groups with pairing.

Exampled. We already saw in example 2 that the generic family of cyalaugs is close

to a family of representations of cyclic groups o§ér 1}*. In the same way, the generic
family of cyclic groups with pairing can be seen as a familyegresentations of cyclic
groups with pairing over the languagfs 1}* and{0,1}*.

The generic family of cyclic groups is used twice as a famflyepresentations of cyclic
groups. The system of parameters is defined by the set of @air8¢, g¢), (n,0x, gn))
wheren is in N*. Like the group laws, the pairing is given through an oractemputed
from the functionsf andh used to build the cyclic groups, as explained in Section 2.2:

(z,y) = h(f~H (@) f~H ().
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2.4. Bilinear Diffie-Hellman problems

We can now state the bilinear Diffie-Hellman problems in fbisnalism:

Definition 6. Let (2, (L )~veq,, (Ms)sea,, (ea)acn) be a family of representations of
cyclic groups with pairing over two languagésand M. In this family,

e an algorithm solving the bilinear Diffie-Hellman problemnoputes the element
log, (w).e(y,s5(z,y) in the groupM; from the inputs(v,d) € Q, (w,z,y) €
(Ly)%

e an algorithm solving the decisional bilinear Diffie-Hellmproblem decides it
islog, (w).e(,,s(z,y)inthe groupM; from the inputs(y, §) € €2, (w,z,y) €
(L,Y)S, z € Ms.

Like previously, an algorithm solving one of these problémshe generic family
of cyclic groups with pairing has the same input and outgunust only use oracles to
access the group laws and the pairing, as explained in Exanpl

From now on, in order to express time and space complexitgheese the compu-
tational model of Turing Machines that have access to somees, like in [Pap94] pp.
36. We define the time cost of a call to an oracle as one unitra.ti

We remark that there exists a straightforward polynomiauction of the bilin-
ear Diffie-Hellman problem over the discrete logarithm peolvin L.,, provided by the
Square and Multiply algorithm. As a consequence, using therishm given by Pol-
lard in [Pol78] and the method proposed by Pohlig and HellindfPH78], the bilinear
Diffie-Hellman problem can be solved with a complexity in theler of ,/p wherep
is the largest prime divisor df_|. The following part states that there does not exist
a better algorithm to solve the bilinear Diffie-Hellman plexin in the generic family of
representations of cyclic groups with pairing.

3. Complexity analysis
3.1. A general framework

In this section, we present a general framework in order sess the difficulty of a
problem in the generic family of cyclic groups with pairingn algorithm A solv-
ing a problem in this family is provided at the beginning witre following inputs:
n € N*, (04,97,0n,91) € (B(n))*, arg-uple (z1,...,2,,) € (B(n))™ and asy-
uple (y1,-..,¥s,) € (B(n))*°, whererg + so is the number of parameters of the given
problem andz1, ..., 2z, y1,- .-, Ys,) defines the instance of the problem.
Moreover, A has access to oracles computing the group kawand+, the inverse
laws —y and —j, and the pairing:. All these oracles are built using two bijectioyfs
andh randomly chosen itF(B(n)), but not given ta4. The bijectionsf and~ must be
compatible with(Oz, g7, 0, gn): f(0) =0y, f(1) = gy, g(0) = Op, g(1) = gn.

We suppose that the algoriths is a probabilistic Turing machine. We assess its
running time by the number of calls to the group and pairiractes. We want to measure
the asymptotic behavior of the average success probabflityasn goes to infinity, the
probability being taken for a fixed over the set of pairéf, h) € F(B(n))>.
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In order to analyze the algorithtd, we maintain two series of list® andS, with
values inB(n) x (Z/nZ)(X1,..., Xn, Y1,...,Yn) Where(Z/nZ)(Xq,...,Y,) is the
field of rational functions in the variableX, ..., X,,Y1,...,Y,. The listsR, andS,
represent the “knowledge” ofl after & queries to the oracles. The integefsand s,
index the number of variables used in the li8s andS;. We setp, and oy, to the
cardinalities ofR;, andS;. When .4 makes a new call to an oracle, 1, sk+1, Pr+1s
0k+1, Rk+1 @andSy 1 are initialized with the values ofy, sk, pr, ok, Rx andS; and
updated as follows:

e in the case of a calt +; b, —a or e(a, b), if the element: (resp.b) is not the
second member of a pair iR, we increaser,; andp,; by one, we define
Ty, = a(resp.b) and addz,,  ,, X, ) 0O Ry41,

e in the case of a call +,, b or —jq, if the element: (resp.b) is not the second
member of a pair ib,, we increase;, ;1 ando1 by one, we defing,, ., = a
(resp.b) and addys, . ,, Ys, () 10 Sk1,

e whencis a fresh answer to the calk-; b (resp.— ya), the pair(c, P, + P,) (resp.
the pair(¢, —P,)) is added iRy 1, where(a, P,) and(b, P,) are inR, and we
increasepy1 by one,

e whenc is a fresh answer to the calk-;, b (resp.—a), the pair(c, P, + P,) (resp.
the pair(c, —P,)) is added irSy41, where(a, P,) and(b, P) are inSy, and we
increaser; 11 by one,

e whenc is a fresh answer to the calla, b), the pair(c, P,.P,) is added irSy 1,
where(a, P,) and(b, P,) are inR;, and we increase; 1 by one.

We remark that the previous rules imply that, 1 + o1 < pr + ok + 3.

Definition 7 (Compatibility). A pair of bijections(f, k) € ]—'(B(n))2 is said to be com-
patible with(Ry,, S,) if:

e Y(vr, Pr) € R, Pr(f~Y(z1),..., [ (xr), " (y1),- .., h 1 (ys,)) is defined
and equal tof 1 (vg),

. V(”S’a PS) € Sk, PS(fil(xl)a R fﬁl(xrk% hil(yl)v LR hil(ySk)) is defined
and equal td ! (vg).

We consider the algorithrd after i calls to oracles. By definition 7, the group and
pairing oracles initialized with any paitf, h) € F(B(n))* compatible with(Ry,Sy)
would have produced the same answers to the calls of theithigd. The basic idea
behind definition 7 is that the algorithm, afterk calls to the oracles, has no mean to
distinguish the problems defined by two different pairs gédtions compatible with
(R, Sk)-

In order to state and to prove our main lemma, we need to ddimedtions of
collision and of coherence:

Definition 8 (Collision). We say that there is a collision {iRg, Sx) if there exists some
pair ((vi, P1), (v2, P2)) in (Rg)? orin (S)? such thatv; = vy andP; # Ps.

Definition 9 (Coherence)A (r+ s)-uple(ay, ..., o, f1,...,0s) € (Z/nZ)"+* is said
to be coherent with a sét of rational functions iNZ/nZ)(X4, ..., X, Y1,...,Y5) if:
VP e 1I, P(al,...,ar,ﬁl,...,ﬂs) is defined andV(Pl,PQ) S 1_[27 (P1 # P, =

P1<O[17"'5a7‘7ﬂ17"'aﬁ8) #PQ(Oélv"'7arvﬂl7"'aﬁs))'

9
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Lemma 1. Suppose that = p* for p a prime number. For a fixed#, we consider a
collision-free pair of listg Ry, S), and somék + 1)™ call to an oracle. Writing all the
elements oR;, andSy, in reduced form, letl; be the maximum degree of nhumerators of
Ry andSy, ds be the maximum degree of denominatorR pandS,, and letd = d, +do.
Whenpy, + o < +/2p/3d, the probability over all pairs of bijections compatibletiwi
(Rg, Si) that a new call leads to a pair of listRy1, Sk+1) with collision is bounded

by

6d (px, + o)
2p — 3d (pr, + o1,)*

Proof. We consider the s&t of (r4+1 + si+1)-uples which are simultaneously coherent
(see Definition 9) with the set of rational functionsRp and the set of rational functions
in Sk.

For all pair of bijections(f, h) compatible with(Rg,Sk), the (rx+1 + sk+1)-uple
(fH 1), T @y )s h (W), - -, b (s, ) iSINC, since there is no collision
in (Rg, Sk). Reciprocally, foranyo, ..., o, B1,-- -, Bs,,,) inC, we can build com-
patible pairs of bijectionsf, #) such thatf~!(x;) = «; andh™'(y;) = B3;. To these
rip+1 fixed values forf and s, fixed values forh, the compatibility condition adds
pr — T other fixed values fof andoy, — s, other fixed values foh.. Then, we have
exactly(#C)(n+ i — re+1 — pr)!(n+ sx — sp+1 — ox)! pairs of bijections compatible
with (R, Sk)-

Even if the setRR; ., andS,, are not fully defined since the answer to ttie+ 1)th
call is unknown, the rational functions RR;; and inSy,, are already given by the
new call. We can thus define the §80f (ry41 + sk+1)-uples which are simultaneously
coherent with the set of rational functions Ry, and the set of rational functions in
Sk+1. Following the same enumeration as previously, we havetlx@gC’)(n + ry, —
Tr+1—pk)(n+ sk —sk+1— oy )! pairs of bijections compatible witfRy, Si) and leading
to some collision-fre¢Ry 1, Sk+1)-

The probability that thék + 1)™ call to an oracle leads to a pair of listRx 1, Sk+1)
with collision, is then(#C — #C') /#C. As previously mentioned, thg + 1) call to an
oracle corresponds to at most three new paiiin; and inS,_; with only one of them,
whose polynomial is called, resulting in a possible collision. If there is such a new
pairinRy1, then(ay, ..., ap,, ., 01, .., B, ) is simultaneously coherent with the set
of rational functions irRy, and not coherent with the set of rational functionRin, ;:
there is soméuvg, Pr) € Ry, such that(P — Pg)(a1,...,an,B1,...,0s.,) = 0.
We can consider at mogy, differencesP — Pg of rational functions. Each one of the-
ses differences, in the reduced form, has a numerator withcgt (d.n"++1+5k+1 /p)
roots, using [Sch80] Lemma 1. The number(ef; + sx+1)-uples coherent witlRy,
and not coherent wittR,; is then bounded bypy, .d.n"*+1T5+1 /p). In the same
way, the number of(ry11 + sxt1)-uples coherent wittb,, and not coherent with
Si41 is bounded by(oy . d.n"+1+5k+1 /p). The probability that the(k + 1)™ call
to an oracle leads to a pair of list®1,Sk+1) with collision, is then bounded by
d.n"tse (o + o) /(p. #C).

Using again [Sch80] Lemma 1 over thex(pr — 1) + or(ox — 1))/2 numerators of
differences of rational functions iR, orin Sy, we obtain:

10
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n! d.n"k+1tSk4

(N — Thit — Sps1)! — (pr(pr — 1) + or(or — 1)) 2%

#C >

Sinceryy1 + skr1 < /1, Using a straightforward computation, we get

n! nTk-,+1+Sk,+1

(n —7The1 — ska1)! 3

We obtain thenp. #C;, > n™+1t%+1 (p/3 — d (px + 0%)?/2). The probability that
the (k + 1)th call to an oracle leads to a pair of ligiRx1, Sk+1) with collision is then
bounded by:

6d (pr. + o)
2p — 3d (pg + o1)?"

3.2. lllustration with the bilinear Diffie-Hellman problem

We now consider the bilinear Diffie-Hellman problem over g@neric family of cyclic
groups with pairing, described as a family of representestiaf cyclic groups with pairing
in example 4.

In the two following corollaries, we assume thatis a prime powern = p’.
The case of a general composite order is considered latd@héorem 1. Let4 be an
algorithm solving the bilinear Diffie-Hellman problem. litsput isn € N*, together
with (0¢,gf,0n,9n) € B(n)* and (21, 22,25) € B(n). At the beginning, we set
Ro = {(0f7 0)’ (gfv 1)) (mlaXl)’ (x2ﬁX2)> (.%‘3,X3)} andSy = {(0}“0), (ghv 1)}

Corollary 1. For a fixedn = p*, letk < (\/p/3 — 5)/3. WhenR; and S;, contain
polynomials of degree at most equatXahe probability that the pair of listéRy, Si.) is
with collision afterk calls to the oracles is bounded by (3k + 4)2/(p — 3 (3k + 4)?),
where the probability is computed over all pairs of bijeaacompatible witl{Ry, S).

Proof. In each call to an oracle, at mastnew pairs are added iR, U S;. We obtain
then that for alli, p; + o; < 3i + 7. We deduce that6 (p; + o;)/(p — 3 (p; + 0:)?) is
upper-bounded bys (3i +7)/(p — 3 (3i + 7)2).

The probability that the pair of listRy, Sy ) is collision-free afte: calls to the oracles
is equal to the product of probabilities that the pair ofdi®; 1, S;+1) is collision-free,
knowing that(R;, S;) is collision-free, wheré € {0,...,k—1}. Sinced < 6 (3k+4) <
p — 3 (3k + 4)2, we can give a lower bound for this probability of no-coltisiafterk
calls using Lemma 1.

k—1

H(1 6(3i+7) )><1 6(3k+4) 2>k>1 2 (3k + 4)*
g ) 2 P3Gkt A2)

oV p3BiET) p-3(3k+4 TP _33k+4)2

The probability that the pair of listRy., Si.) is with collision afterk calls to the oracles
is then bounded by2 (3k + 4)2/(p — 3 (3k + 4)2). O

11
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Corollary 2. Let.A be an algorithm solving the bilinear Diffie-Hellman problémthe
generic family of cyclic groups with pairing. Whén< (/2p/9 — 7)/3, the probability
of success for4 after k calls to the oracles, over groups of siz&, when(R;,, S) is
collision-free, is less tham8 (3k + 7)/(2p — 9 (3k + 7)?).

Proof. Let z be the answer given by the algorith#y afterk calls to oracles leading to a
collision-free pair of list§Ry, Sg).

If there is no P, such that(z, P,) € S, thenz is indistinguishable from any other
element ofB(n) with the same property (i.e. not in a pairSp). Thus, the answergiven

by the algorithmA is valid with a probability less thab/(p — o) < 1/(p — 3k — 2).
Else, if the answet is correct, a “virtual” call to an oracle corresponding te gholyno-
mial X;.X5.X3 would lead to a collision i5;;. We can then reuse Lemma 1 to obtain
the following bound for the probability of such an event:

18(pr+ok) _  18(3k+7)
2p—9(pp +0x)2  2p—9(3k+7)2

The probability that4 solves the problem is then bounded by the maximum of the two
previously given probabilities, which is obviously the sad one. O

We obtain then the following theorem:

Theorem 1. Let.4 be an algorithm solving the bilinear Diffie-Hellman problémthe
generic family of representations of cyclic groups withripgj. .4 is supposed to have
unbound computational power, and be able to call the groups gairing oracles in a
probabilistic manner. Aftek calls to the oracles, over groups of order divisible by a
prime numbep, whenk < (1/2p/9 — 7)/3, the probability that4 succeeds is bounded
by:

2 (3k + 4)* 18 (3k +7)
p—30Bk+4)2 2p—9Bk+T7)2

Proof. Let n be the common order of the groups. First supposethat p* with p a
prime number. An algorithm4 may output a valid answer aftér calls to oracles in
two cases{(Ry,Sy) is with collision, or collision-free. The first case is comsied in
Corollary 1, the second one is considered in Corollary 2.

We consider now the case of a general composite ordet p*q, wherep does not
divide ¢. From any algorithm4,, solving the bilinear Diffie-Hellman problem in groups
of ordern, we build an algorithmA,,» solving the bilinear Diffie-Hellman problem in
groups of ordep?, with at least the same probability of success:

1. A, randomly chooses two bijections , ¢» : B(p*) x Z/qZ — B(n), and3
elementsy;, as, a3 in Z/qZ,
2. A, obtains(0y, g, 0, gn) € B(p*)*, and(z1, z2,23) € B(p*)?,
3. A, computes)s = ¢1(0y,0), 05, = ¢2(05,0), g = ¢1(95, 1), g1, = d2(gn, 1),
Ty = ¢1(w1, 1), 15 = ¢1(22,2), andry = ¢ (w3, a3),
. Ay usesA,, with the following input:(0%, g%, 03, g;,) and(z7, 25, 23%),
. whenA, outputsz’ = ¢1(z,a), A,» outputsz.

[

12
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For stepl, we remark that there is a natural bijection Z/p*Z x Z./qZ. — 7./nZ given
by ¢(a,b) = a+ p*b, so that this step boils down to choosing random permutstiver
B(n).

A, uses the oracles ¢, — ¢, +r, —n, ande to build the following oracles:

o i (¢1(ar,b1), ¢1(az, b)) € B(n)? — ¢1(ar +5 ag, by +b2) € B(n),
o —:¢1(a,b) € B(n) — ¢1(—ra,—b) € B(n),

o 4 : (d2(a1,b1), pa(az, b)) € B(n)? — ¢a(ay +n az, by + ba) € B(n),
e —) 1 ¢s(a,b) € B(n) — ¢a(—na,—b) € B(n),

o ¢ (¢1(a1,b1),¢1(a2,b2)) S B(n)2 — gbg(e(al,ag),bl.bg) S B(n)

The setB(n) has a structure of group with the laws, and—’;, where0’, is the neutral
element, an@} is a generator. The sé&(n) has another structure of group with the laws
+,, and—},, where0j, is the neutral element, ary is a generato’ is a perfect pairing
between these groups such théty’, %) = g;,.

If 2’ = ¢2(2, @) is the solution of the bilinear Diffie-Hellman problem givenA4,,, then

z is the solution of the bilinear Diffie-Hellman problem givemA,,», anda;asaz = «

in Z/qZ. The probability of success of,,» is then at least equal to the onedf. O

Remark2. As an immediate consequence of this last theorem, if the eufbf calls
to oracles is very small againgt then the probability thad succeeds is bounded by
O(k*/p).

Remark3. Using the polynomial reduction of the bilinear Diffie-Helm problem over
the discrete logarithm problem given in Section 2.3, thedfam 1 is immediately trans-
posed with the same success probability to the usual déstrgarithm problem in the
generic family of cyclic groups with pairing. In a way, theifidg does not help to solve
the discrete logarithm problem.

Remark4. Since there is also a polynomial reduction of the bilineaffi®iHellman

problem over the usual Diffie-Hellman problem, the Theoreimhediately implies the
difficulty of the computational Diffie-Hellman problem inalgeneric family of cyclic
groups with pairing even if it is proved in [Jou02] that thecd@onal Diffie-Hellman
problem is easy in this family.

3.3. Other problems

In fact, the technique described in Section 3.1 is quite ggn®@/e illustrate its ubiquity
by proving the difficulty of the;-BDHI problem, introduced in [BB04a].

Definition 10 (¢-BDHI problem) Let (2, (L, )~yecq,, (M5)seq,, (€a)aco) be a family
of representations of cyclic groups with pairing over twndaaged. and M, restricted
to prime order groups. In this family, an algorithm solvimg t-bilinear Diffie-Hellman
inversion ¢-BDHI) problem computes the elemefit/v) g5 in the groupM; from the

inputs(v,8) € Q, (v gy, 2 gy ..., v91gy) € (Ly)A.

Let.A be an algorithm solving thg-BDHI problem in the generic family of cyclic
groups with pairing. Its input is a prime numbgy together with(0Os, g7, 05, 9n) €
B(p)* and(vgy,...,v7gs) € B(p)? for v € (Z/pZ)*. We initialize the listsR, =

{(Of7 0)5 (gf’ 1)7 (ng7X)7 (V2 gf>X2)a R (Vq gf7Xq)} andS, = {(Oha 0)7 (gh> 1)}
This pair of lists is updated as described in Section 3.1.

13
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Corollary 3. For a fixed primen = p, letk < (v/p/3q¢ — ¢ — 5)/3. WhenR;, and S,

contain polynomials of degree at most equaltg the probability that the pair of lists

(Rk, Sk) is with collision, afterk calls to the oracles, is bounded by
2q.(3k+q+1)%/(p— 3¢ Bk +q+1)?).

Proof. The proof is exactly the same as the one of corollary 1. Apglyemma 1, we
obtain the following lower bound for the probability of cigliion

kl_[l(l— 6q(3i+q+4) )>(1_ 6q(3k +q+1) )’f
bl p—3q(3i+q+4)2) " p—3q(3k+qg+1)?

B 2q 3k 4+ q + 1)?
p—3q 3k +q+1)2

=

O

Corollary 4. Let.A4 be an algorithm solving the-BDHI problem in the generic family
of cyclic groups with pairing. Wheh < (1/2p/(6q + 3) — ¢ — 4)/3, the probability of
success ford after k calls to the oracles, over groups of prime sizevhen(Ry, Si) is
collision-free, is less than

6(2g + 1)(3k + q + 4)
2p—3(2q+ 1)(3k + g+ 4)%

Proof. Let z be the answer given by the algorith#) afterk calls to oracles leading to a
collision-free pair of listg Ry, Si). As in the proof of corollary 2, if there is n®, such
that(z, P,) € Sy then the answer is valid with a probability less thah/(p — 3k — 2).
Else, if z is a correct guess, a “virtual” call to the oracle correspogdo the rational
function 1/X would produce a collision ir5;;. The Lemma 1 gives the following
bound for the probability of such an event

6(2g+1)(px+0k) _ 62+ 1)(3k+q+4)
20 —312¢+ 1)(pp +01)2  2p—3 (2 + 1)(3k 4 g+ 4)2

This second bound is larger than the first one, which imphesésult. O
From Corollaries 3 and 4, one can immediately deduce thevitig theorem.

Theorem 2. Let A be an algorithm solving the-BDHI problem in the generic family
of cyclic groups with pairingA4 is supposed to have unbound computational power, and
able to call the groups and pairing oracles in a probabilisthanner. Afterk calls to

the oracles, over groups of prime ordgr whenk < (1/2p/(6¢ + 3) — ¢ — 4)/3, the
probability thatA succeeds is bounded by:

2q (3k +q + 1)* 6(2¢+1)(3k+q+4)
p—3¢Bk+q+1)2 2p—302¢+1)Bk+q+4)?%
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4. Pseudo-random family of cyclic groups

In this part, we introduce the notion of pseudo-random famiflcyclic groups. Naively
speaking a pseudo-random family of groups is the same théng generic family of
groups except that the group law is not drawn at random iné¢hefsall possible group
laws: the group law follows a specific distribution which igngputationally indistin-
guishable from a uniform distribution. We build a pseudnetam family of cyclic groups
from a strong pseudo-random family of permutations.

Let B be a set of permutations ovét(n). The notationf — P means thatf
is randomly and uniformly drawn ifi3. A distinguisherD is a Turing machine which
has access to permutations ovefr) through oracles and outputs a single bit. In the
context of strong indistinguishability between two famdiof permutation§3; and®3,
(see [LR88] for more details), a distinguistihas access tpandf—1, wheref «— P,
or f — P>. WhenD runs in timet and makeg oracles queries, its advantage is defined
by the following formula:

Spm — S AFY
Adv‘nh‘pz (Dit,q) = ffzrm[pf"q =1] fE‘I“Bg[IDt’q =1]|.

We say thaf3; and3, are(e, ¢, ¢)-strongly indistinguishable if for all distinguisher
D, the advantage AQY";, (D, , ¢) is upper-bounded by. We say thaf is a (e, ¢, q)-
strong pseudo-random family of permutations if it{&st, ¢)-strongly indistinguishable
from the setS,, of all permutations oveB(n).

Definition 11. Let ‘B be a(e, ¢, ¢)-strong pseudo-random family of permutations over
B(n). The pseudo-random family of cyclic groups associated s the set of groups
defined by the permutationysin 93, with neutral elemenf (0), generatorf (1) and laws
+7 and—y, as defined in Section 1.3.

Like in the generic family of cyclic groups, the group law @jiven only through
oracles. In this way, it is clear that a generic family of aggjroups is a pseudo-random
family of groups. As a consequence the notion of pseudoenarfamily of groups con-
stitutes a generalization of the notion of generic familgpélic groups.

We can now define the advantage of an adversary against atgidogarithm based
problem in a pseudo-random family of cyclic groups: Jebe an adversary, which has
access to group laws ovét(n) through oracles-; and— ;. WhenA runs in timet and
makesq oracle queries, its advantages over the discrete logaribiffie-Hellman and
decisional Diffie-Hellman problems are defined by:

AV (A, tg) = Pr A T (F(0), f(1), ) = log ) (2],
Advyl'(A.t,q) = Pr [Asg ™77 (£0), f(1), 2, y) = log 1) () -y,

f%B, (z,y)€B(n)?

AdvRPH (At q) = [Ap g 077 (£(0), £(1), 2, y,log ;) () ) = 1]

Pr
F—PB, (z,y)€B(n)?

[Aeg ™77 (f0), f(1), 2,9, 2) = 1]].

Pr
f—=PB, (z,y,2)€B(n)?

15
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The maximum of these advantages over all adversatiase respectively denoted
by Adviy (t, q), Advg!'(t, q), and AdR>"(t, q). Theorems 3 and 4 give bounds of these
probabilities, wher3 is a (¢, ¢, ¢)-strong pseudo-random family of permutations over
B(n).

Theorem 3. Let 3 be a (e, t, q)-strong pseudo-random family of permutations over
B(n). Then,

n<taQ/371)+€a

Advgy (t,q/3 — 1) < Ad
Advg’ (t,q/3 —2) +e.

B
AdR(t,q/3 — 2) < AdR
Proof. Let .4 be an adversary of the discrete logarithm problem over gspwith laws
given by the way of oracles built from a permutatigndrawn randomly irf3. From

this adversary4, we deduce a distinguish@& on the strong pseudo-random permuta-
tion family 3. This distinguishefD takes as input a permutatighover B(n) and its
inversef—!. This permutatiorf has been randomly chosen in the strong pseudo-random
permutation family}3 or in the seiS,, of all permutations.

From this permutation, the distinguishBrbuilds an instance of the discrete logarithm
problem for the adversary: it randomly chooses € Z/nZ and givesf(0), f(1) and

f(r) to the adversaryd. The distinguishef® builds the oracles corresponding to the
group laws: z+y = f (f~1(2) + [ 1)), —sz = f (—f ().

The adversaryd eventually outputs an answer to the discrete logarithm Iproblf its
answer is correct i.e. is equal tothe distinguisheD outputsl, else it outputs).

If the permutationf has been chosen randomly in the strong pseudo-random peromut
family B, the probability that the adversarg outputs a correct answer is exactly its
advantage for the discrete logarithm problem in the familgroups defined byj3.

In the other case, if the permutatighhas been chosen randomly in the &gt of all
permutations oveB(n), the probability that the adversai outputs a correct answer is
exactly its advantage for the discrete logarithm problerthéngeneric family of groups.
The advantage of the distinguishPris then exactly the difference of advantages4of

in the two cases. Thus, A runs in timet and can issue at mo§t/3 — 1) group oracle
queries, this advantage is bounded dpywhen 3 is a (e, ¢, ¢)-strong pseudo-random
permutation family. Thus, the advantage of an adversaggainst a discrete logarithm
problem in the family of groups defined By is bounded by the advantage of solving
this problem in the generic family of groups, plas

This proof can moreover be directly translated for the Diffiellman problem. O

Theorem 4. Let P be a (e, t, ¢)-strong pseudo-random family of permutations over
B(n). Then,

AdR (£, q/3 — 2) < AR (L, q/3 — 2) + 2e.

Proof. Let A be an adversary against the decisional Diffie-Hellman gmolih a family

of groups where the law is provided by oracles built from aypaation randomly drawn
either from the random family of permutatior®s,, or from a strong pseudo-random
family of permutationsp. Let b be the bit in the DDH problem which must be guessed
by the adversary. We have
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[At7q+f’_f = 1/b= 0]‘ .

AdvRPH (A, ¢, :‘ Pr[A,, " f=1/b=1]— Pr
3 (Atq) H3[ tq / ] A

Adv (AL, q) = ‘fpé A =1/b=1] - P A0 7 =1/b= o]‘.

From A, we build a distinguisheD against the strong pseudo-random family of per-
mutations. This distinguisher has access to an oracle gationi f and its inversef !
drawn either from3 or &,,. Using the oracleg and f—*, D can reply to the group law
queries issued byl. It draws at random a bitand two elements, y in B(n). If b =1

it submits to.A the input(f(0), £(1),z,y, f[f (). f~(y)]) and ifb = 0, it draws a
randomz € B(n) and submits tod the input(f(0), f(1), z,y, 2).

At the end of the gamel returns a bit’. The distinguisheD returnsl if ¥’ = b ando if

b’ # b. We have by definition

. . »
Advgsrfjgn (D,t,q) = ’ [Duqf-,f =1 - Pr [Dt7qf"f _ 1]‘ -

Pr
<3 <6,

With this distinguisher, this means

Advy’S, (D.t,q) = ‘ [Apgz 2t =1/b=1]+ fEﬁB[At,q/S—zﬂ’*f =0/b=0]

Pr
f<%B

— Pr [Aygpo™ i =1/b=1]-

T — —
[—6n fEén[Atyq/BfZ P =0/b= 0]‘ /2.

As a consequence,
AdViPE (D,t,q) > |Advg (At q/3 — 2) — Adv M (At q/3 - 2)| /2.

And thus, Ad®™(A,t,q/3 —2) < AV (A t,q/3—-2) +2AdvylE (Dt q). O

Remark5. Theorems 3 and 4 and their proofs should serve as an illigstrat/sing
the same kind of methods, one should be able to prove anyrablgoassumption in a
pseudo-random family of cyclic groups. It is moreover pbkesto define pseudo-random
families of cyclic groups with pairing from two strong pseusthndom families of per-
mutations: bilinear assumptions can then be proved in $esigo-random context.

In the two preceding proofs, the permutation is fixed at thgirbeng of the game in
the reduction. This is something essential if the permatais drawn from the pseudo-
random family. Actually in that case it is not possible toltuhis pseudo-random per-
mutation during the game by returning a random bit stringrty faesh query. This fact
contrasts with the usual generic group model and illustrateimportant feature of our
presentation of the generic group model where the groupddixed at the beginning of
the game.

There is some other subtle differences between the generigppgnodel and the
pseudo-random group model. For instance, it was mentianfdi07] that the generic
model of groups should be able to take into account the fatigusehavior of the adver-
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sary. A. Suppose thatl receives a bit string: € B(n) from a group oracle query then
A flips some bit, for instance the least significant bit, andtheeresulting bit string in

order to submit a new query. This kind of queries in not coslerethe original model

[Sho97] but it is easy to be convinced that these queriegguUsash bit strings do not
help to solve a given problem in the generic group model argdishwhat we prove in

Part 3. In contrast in the pseudo-random group model thid &frqueries may be used
to attack the underlying pseudo-random permutation faanilg it is an important point
to take them into account.

It should also be stressed that the pseudo-random groupgepralepends on the
computational power of the adversary. This situation asts with the usual generic
group model where all the result are of information thearatture.

5. Conclusion

We have revisited the notion of generic group in order to des@ model which contains
all the features already seen in the literature: the abititgubmit fresh bit strings and
gueries which correspond to rational functions of the exqm& are worth mentioning.
We have proved a bound on the problem of finding a collisiorhia model (Lemma
1). From this first bound, it is easy to derive precise bourmtsafl the usual discrete
logarithm related problems: we presented some examplesof@ms 1 and 2) to explain
how to use our framework in a systematic manner.

From this model, it is possible to derive the notion of psetmltdom groups and to
prove a reduction of some usual problems in the pseudo-rammgloup model to their se-
curity in the generic group model and to the strong pseuddam permutation hypothe-
sis. As a matter of fact, because of the reduction that wegptttve pseudo-random group
model does not bring new security insight. Still it condg&ian improvement because
it is more realistic than the usual generic group model. Kbedess it is still not really
satisfying. Actually, in the family of groups of interestényptography, the permutation
on the underlying sets induced by the different group lawiisrom being pseudo-
random. For instance, if the family of groups is the familyroéltiplicative elements
of finite field, for a given cardinality. there is only$(n) possible permutations, where
¢ is Euler’s totient function. It should be interesting to geadize further the notion of
pseudo-random groups in order to make it more realistic.
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