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Abstract. Groups with pairing are now considered as standard buildingblocks for
cryptographic primitives. The security of schemes based on such groups relies on
hypotheses related to the discrete logarithm problem. As these hypotheses are not
proved, one would like to have some positive security argumentfor them. It is usual
to assess their security in the so called generic group model introduced by Nechaev
and Shoup. Over the time, this model has been extended in different directions to
cover new features.

The relevance of this model is nevertheless subject to criticisms: in particular,
the fact that the answer to any fresh query is a random bit string is not what one
expects from a usual group law.

In this paper, we develop a generic group model with pairing which generalizes
all the models seen so far in the literature. We provide a general framework in order
to prove difficulty assumptions in this setting. In order to improve the realism of
this model, we introduce the notion of pseudo-random familiesof groups. We show
how to reduce the security of a problem in such a family to the security of the same
problem in the generic group model and to the security of an underlying strong
pseudo-random family of permutations.

Keywords.Generic groups, Bilinear Diffie-Hellman assumptions, Pairings, Discrete
logarithm, Pseudo-random permutations

Introduction

The discrete logarithm problem is a general way to build trapdoor functions for asym-
metric cryptographic protocols. It can be used as long as onecan find a family of cyclic
groups satisfying certain properties:

• one would like to be able to compute quickly the group law and,as a consequence,
the exponential map using for instance the square and multiply algorithm,

• it is also necessary for the discrete logarithm problem to beintractable in the
considered family of groups.

There is no family of groups for which this last property is proved. Nevertheless, on
the practical side, there is no known algorithm better than the generic ones (for instance
Pollard’s Rho [MOV01]) to compute the discrete logarithm problem in the family of ra-
tional points of elliptic curves defined over a finite field. These generic algorithms are
of exponential time complexity. Some widely used cryptosystems, for instance Diffie-
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Hellman key agreement and its derivative [DH76,MTI86], El Gamal encryption [ElG85a,
ElG85b] or DSA and related signature schemes [FIPS186,ElG85a,ElG85b,Sch91], actu-
ally implement trapdoor functions such that their securityrelies on the intractability of a
discrete logarithm related problem.

Generic group model.This situation is not really satisfying, and one would expect
at least some positive argument for the discrete logarithm problem to be intractable. The
generic group model designed by Nechaev and Shoup is supposed to fill that gap. More
precisely, the papers [Nec94,Sho97] define the notion of “generic algorithms” which are,
roughly speaking, automatons with memory which can only perform group operations.
The authors managed to prove that the fastest algorithms solving the discrete logarithm
problem and the Diffie-Hellman problems are in exponential time in this model of com-
putation. In a modern formulation, in the generic group model, adversaries are Turing
machines dealing with bit strings instead of group elementsand are unable to compute
group operations. These group operations are provided by oracles defined in the follow-
ing way:

• all queries are stored in a list;
• when a new query is similar to a former one, the oracles returnthe same answer;
• when a new query is fresh, the oracles return a randomly chosen bit string.

At the end of the game, the challenger verifies that the simulation provided by these
oracles is coherent with discrete logarithm values drawn randomly for each initial bit
string submitted to the adversary and by checking that no collision occurs.

This general framework has subsequently been improved in order to take into ac-
count new group properties used in protocols such as pairings [BB04b,YW05]. As a mat-
ter of fact, the generic group model is now a standard tool forthe proof of cryptographic
protocols. It is used either directly to compute running time lower bounds for breaking a
given protocol [Bro05a,Bro05b,LS08], or more generally inorder to assess the security
of a new computational or decisional hypothesis upon which is based the security of a
protocol [Jou00,BB04a,BB04b].

Limitations and criticisms. Because of the widespread use of the generic group
model, a natural and important question is the relevance of this model. As pointed out
in [MF07], this model has some evident limitations which make it more restricted than
the case of a full-fledged Turing Machine with access to groupand pairing oracles. For
instance, when receiving a bit string from an oracle, an attacker may flip a certain bit and
use the resulting bit string to submit a new query. Intuitively, this type of query will not
improve the probability of success of the attacker but stillshould be taken into account,
in an extension of the model.

Actually the generic group model has been the target of numerous criticisms [Den02,
SPMS02,NSS04] some of which have been turned down [KM07]. For instance, because
the oracles answer with random bit strings to fresh queries,the generic group model is
then often compared with the random oracle model. Such random behavior of the generic
group model is not what one expects to modelize real groups, like it was pointed out in
[KM07].

Our contribution. In this paper, we first revisit the generic group model. We present
a complete mathematical background on groups and pairings in order to define precisely
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the families of groups corresponding to a generic model. We include extensions like the
possibility for an adversary to use bit strings which have not been given as an input of
the considered problem, nor as an answer to a query from an oracle. We follow moreover
a more natural approach in the analysis of a given problem. Inthe usual generic group
model, the answer of the group law oracles is just a random sequence of bits for any
fresh query and it does not take into account any underlying algebraic structure. The
group structure is only used at the end of the game in order to check the presence of a
collision. In contrast, in our model, the group law is randomly chosen at the beginning of
the game. We study the set of group laws that remain indistinguishable from this specific
law during the whole game, and we compute a probability basedon this set. This subtle
difference will become very clear in the discussion at the end of Part 4.

In this way, the answers to oracle queries are formally not randomly chosen during
the game, but really computed from a pre-determined group law. However, this is still not
satisfying: the group law used in the computations is initially randomly chosen amongst
all possible group laws, which is far from being realistic.

In order to improve the realism of the model, we introduce thenotion of pseudo-
random groups: a pseudo-random group is a group where the addition law is provided by
the way of a strong pseudo-random permutation. As the familyof random permutations
is a particular case of strong pseudo-random permutations,it is easy to see that our model
is a generalization of the generic group model. The main result of this paper shows that
every result that can be proved in the generic group model canalso be proved in the
pseudo-random group model. In other words, we can consider families of groups where
the group laws, provided by oracles, are drawn following an arbitrary distribution. The
security of an hypothesis over such a family can be reduced tothe robustness of this
family as a pseudo-random family of groups, through the security of this same hypothesis
in the generic model.

Organization of the paper. In Parts 1 and 2, we give a definition for the generic
families of cyclic groups and generic families of cyclic groups with pairings. In Part 3,
we develop the technical tools to assess the security of a problem in the generic group
model. In Part 4, we define the pseudo-random families of cyclic groups and explain
how to prove the difficulty of a problem in a pseudo-random family of cyclic groups
by reduction upon the generic group model and the security ofthe underlying pseudo-
random permutation family.

1. Cyclic groups and their representations

1.1. A unique cyclic group of ordern

The cyclic groups are classified up to isomorphisms by their order, i.e. two cyclic groups
are isomorphic if and only if they share the same order. In particular, a cyclic groupG is
of ordern ∈ N∗ if and only if it is isomorphic to the additive groupZ/nZ. Of course,
there can be several isomorphisms betweenG andZ/nZ, but one can consider the unique
isomorphisml, from G with a generatorg, into Z/nZ, such thatl(g) = 1.

It should be remarked that for allx ∈ G, l(x) is nothing butlogg(x), and then
computing the isomorphisml is the same thing as computing the discrete logarithm map
of G in baseg.
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1.2. Inherited structure of group

Let A be a set ofn elements. Any bijective applicationf , from Z/nZ into A, providesA
with a structure of group, where the group law (+f ) and the inverse law (−f ) are given
by the following rules:

∀(x, y) ∈ A2, x +f y = f(f−1(x) + f−1(y)) and −f x = f(−f−1(x)). (1)

We denote byAf the setA together with the group structure given byf . Thenf(0) and
f(1) are respectively the neutral element and a generator ofAf .

1.3. Generic family of cyclic groups

Let F(A) be the set of all bijective applicationsf , from Z/nZ into A. For any subset
S ⊂ F(A), one can consider the familyAS = {Af , f ∈ S}. This family is a set of
representations of the same groupZ/nZ over the setA. In the following, we use the
generic family of cyclic groups, corresponding to the definition given in [Sho97] and
defined by

Definition 1 (Generic family of cyclic groups). Let B(n) be the set of binary represen-
tations of integers in{0, . . . , n− 1}. The familyB(n)

F(B(n)) is called generic family of
cyclic groups of ordern. The union overn ∈ N∗ of the generic families of cyclic groups
of ordern is called the generic family of cyclic groups.

Using the square and multiply algorithm, the applicationf : Z/nZ→ B(n)f can be
computed in at most2 log(n) group operations from the knowledge off(1). As log(n)
is the complexity parameter, the data of+f is stronger than the data off in the class of
polynomial time algorithms.

In the opposite direction, the applicationf−1 is the canonical isomorphism (calledl
in Section 1.1) associated to the groupB(n)f together with the generatorf(1). We have
seen before that this applicationf−1 is exactly the discrete logarithm map inB(n)f .
Thus, when the computation of the discrete logarithm is supposed to be hard in this
group, an algorithm can not efficiently compute the group lawusing the rule (1).

1.4. Representations of cyclic groups

Definition 2 (Family of representations of cyclic groups). Let L be a language over
{0, 1}, i.e. a subset of{0, 1}∗. A family of representations of cyclic groups over this
languageL is the data of:

• a denumerable system of parameters, which can also be represented by an infinite
set of binary stringsΩ, together with a functionc : Ω → N∗ computable in
polynomial time, such that∀N ∈ N,∃α ∈ Ω / c(α) > N ,

• for eachα ∈ Ω, a finite subsetLα of L, of sizec(α), together with two laws,+α

and−α, computable in polynomial time, and two elements inLα: 0α andgα. We
require(Lα,+α) to be a cyclic group of orderc(α) with group law+α, inverse
law−α, and such that0α andgα are respectively the zero element and a generator
of this group. We suppose moreover thatmax{|x|, x ∈ Lα} = O(log2(c(α))).
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In the previous definition, we require that(c(α))α∈Ω is not upper-bounded. This
means that the family contains groups of arbitrarily large orders so that we can obtain an
asymptotic complexity for an adversary using this family. We require moreover that the
elements of a group in the family have short representationsin the languageL.

Example1. Consider the family of all elliptic curves of prime order over fieldsFp where
p is a prime number larger than3. An elliptic curveE in this family can be represented
by a7-uple(p, a1, a2, a3, a4, a6, g) defining its Weierstrass equationy2 +a1xy +a3y =
x3 + a2x

2 + a4x + a6 overFp and a generatorg of E(Fp).
The functionc computing#E(Fp) from a parameterα = (p, a1, a2, a3, a4, a6, g)
is based on the polynomial-time algorithm due to Schoof. From the Hasse theorem,
|#E(Fp) − p − 1| 6 2

√
p. There are thus curves of arbitrary large sizes in this fam-

ily. An element ofE(Fp) can be coded as a pair(x, y) ∈ (Fp)
2 verifying its Weier-

strass equation. The group laws, the generatorg and the neutral ofE(Fp) are directly
deduced from a parameterα = (p, a1, a2, a3, a4, a6, g). From these properties, we de-
duce that the set of parameters(p, a1, a2, a3, a4, a6, g), together with the cyclic groups
{(x, y) = λ g / λ ∈ N}, is a family of representations of cyclic groups.

Example2. According to Section 1.3, an element of the generic family ofcyclic groups is
defined by an ordern and two laws,+f and−f . To connect this family with the definition
of family of representations of cyclic groups, we use the following presentation:

• the parameter associated to an element of the generic familyof cyclic groups is
an integern, together with two elements ofB(n) corresponding to0f andgf ; we
have an obvious functionc : (n, 0f , gf ) 7→ n, computable in polynomial time,

• the set of group elements associated to the parameter(n, 0f , gf ) is B(n),
• two oracles,+f and−f , are built (see Section 1.2) from a functionf randomly

chosen inF(B(n)) such thatf(0) = 0f andf(1) = gf .

The difference with the definition of a family of representations of cyclic groups is that
the group laws can not be immediately deduced from the parameter. These group laws
are only given through oracles.

1.5. Some standard problems

We state now some standard problems for families of representations of cyclic groups:

Definition 3. Let (Ω, (Lα)α∈Ω) be a family of representations of cyclic groups over a
languageL. In this family,

• an algorithm solving the discrete logarithm problem computes loggα
(x) in the

groupLα from the inputsα ∈ Ω, x ∈ Lα;
• an algorithm solving the Diffie-Hellman problem computesloggα

(x) . y in the
groupLα from the inputsα ∈ Ω, (x, y) ∈ (Lα)2;

• an algorithm solving the decisional Diffie-Hellman problemdecides if z is
loggα

(x) . y in the groupLα from the inputsα ∈ Ω, (x, y, z) ∈ (Lα)3.

Following Example 2, we can extend these definitions to the generic family of cyclic
groups. An algorithm solving one of these problems in the generic family of cyclic
groups has the same input and output. The only restriction isthat it must use oracles to
access the group laws.
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2. Case of cyclic groups with pairing

2.1. Perfect pairings

Let G be a cyclic group of ordern. It comes with a canonical structure ofZ-module:
∀(k, x) ∈ N×G, k.x = x+x+ . . .+x and(−k).x = −(k.x). We denote bŷG the dual
of G, i.e. the group ofZ/nZ-linear forms onG. A pairing is aZ/nZ-bilinear map from
a pair of cyclic groups into another cyclic group, wheren is the common order of the
three groups involved. There exists a pairing fromG × Ĝ into Z/nZ, called canonical
pairing ofG and defined by:∀(x, v) ∈ G× Ĝ, ec(x, v) = v(x).

Let G, G′ andG′′ be three cyclic groups of ordern. A pairinge : G×G′ → G′′ is
said to be perfect if it is isomorphic as a pairing to the canonical pairing ofG, i.e. there
exists three isomorphismsm : G→ G, m′ : G′ → Ĝ andm′′ : Z/nZ→ G′′ such that
∀(x, y) ∈ G×G′, e(x, y) = m′′(ec(m(x),m′(y))).

G×G′

m

��
m′

��

e
// G′′

G× Ĝ
ec

// Z/nZ

m′′

OO

Let A be a set ofn elements. Let(f, h) ∈ F(A)
2, we would like to describe all

possible perfect pairings fromAf ×Af into Ah. By definition, such a pairing is deduced
from three isomorphisms:m, m′ andm′′.

Af ×Af

m

��
m′

��

e
// Ah

Af × Âf
ec

// Z/nZ

m′′

OO

Without loss of generality, we can fixm = id, m′′ = h andm′ = f̂−1 ◦ i ◦ f−1,

wherei is any isomorphism fromZ/nZ into Ẑ/nZ is any isomorphism, and wherêf is
the dual isomorphism off , i.e. f̂ : v ∈ Ĝ′ 7→ v ◦ f ∈ Ĝ. The description of a perfect
pairing is then equivalent to the data of an isomorphismi.

Remark1. The perfect pairinge is uniquely determined by the value ofe(f(1), f(1)).
The isomorphismi is then determined as well whene(f(1), f(1)) is fixed. Thus, for all
(f, h) ∈ F(A)

2, there exists a unique perfect pairinge such thate(f(1), f(1)) = h(1).

In the following, we will only consider cyclic groups with perfect pairinge such that
e(f(1), f(1)) = h(1). The pairing defined by(x, y) ∈ Af

2 7→ h(f−1(x) . f−1(y)) ∈
Ah verifies this property. Since it is a perfect pairing, it is the unique perfect pairing
mentioned in the previous remark.

2.2. Generic family of cyclic groups with pairing

Like in Section 1.3, we consider a setA of n elements, and the setF(A) of all bijective
applications fromZ/nZ into A. For any subsetS ⊂ F(A), let P(A,S) be a family
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of two representations of groups and a pairing parametrizedby the set{(f, h) ∈ S2}.
From a pair(f, h) ∈ S2, we deduce the groupsAf andAh following Equation (1).
Moreover, we consider the perfect pairinge from Af×Af into Ah defined by ∀(x, y) ∈
(Af )2, e(x, y) = h

(
f−1(x) . f−1(y)

)
.

Definition 4 (Generic family of cyclic groups with pairing). Let B(n) be the set of
binary representations of integers in{0, . . . , n − 1}. The familyP(B(n),F(B(n))) is
called generic family of cyclic groups of ordern with pairing. The union overn ∈ N∗ of
the generic families of cyclic groups of ordern with pairing is called the generic family
of cyclic groups with pairing.

Like previously, the morphismsf andh can be computed from the group laws in
B(n)f andB(n)h. In the opposite direction, if the discrete logarithm problem is assumed
to be hard in these groups, the inverse mapsf−1 andh−1 are not efficiently computable.

2.3. Representations of cyclic groups with pairing

Definition 5. Let L andM be two languages over{0, 1}. A family of representations of
cyclic groups with pairing, over these languagesL andM , is the data of: two families
of representations of cyclic groups,(Γ, (Lγ)γ∈Γ) overL and(∆, (Mδ)δ∈∆) overM , a
parameter spaceΩ ⊂ Γ × ∆, and for allα = (γ, δ) ∈ Ω, a perfect pairingeα from
Lγ × Lγ into Mδ, computable in polynomial time, such thateα(gγ , gγ) = gδ.
WhenΩ1 (respectivelyΩ2) denotes the set of left (respectively right) parts of elements
of Ω, such family is denoted by:(Ω, (Lγ)γ∈Ω1

, (Mδ)δ∈Ω2
, (eα)α∈Ω).

Example3. We go on with the example of elliptic curves. Now, we consideran elliptic
curveE defined over a finite fieldFq of characteristicp. Let l > 2 be an integer prime
to p. Let k be the smallest integer such thatl dividesqk − 1. ThenFqk is the smallest
extension ofFq which contains thelth roots of unity. One can consider the Weil pairing
eW : E[l]× E[l]→ Fqk (see [Sil86]).
As the Weil pairing is a skew symmetric form onE[l], one has to consider a maximal
isotropic subgroupG(E[l]) of E[l] and an isomorphism with its dual to obtain a modified
bilinear non trivial pairing̃e : G(E[l])×G(E[l])→ Fqk , such that ifP is a generator of
G(E[l]) thenẽ(P, P ) is a generator of the group oflth roots of units inFqk .
This perfect pairing can be computed in probabilistic polynomial time using Miller’s
algorithm [CF05]. It is easy to see that one can obtain from this construction a family of
representations of cyclic groups with pairing.

Example4. We already saw in example 2 that the generic family of cyclic groups is close
to a family of representations of cyclic groups over{0, 1}∗. In the same way, the generic
family of cyclic groups with pairing can be seen as a family ofrepresentations of cyclic
groups with pairing over the languages{0, 1}∗ and{0, 1}∗.
The generic family of cyclic groups is used twice as a family of representations of cyclic
groups. The system of parameters is defined by the set of pairs((n, 0f , gf ), (n, 0h, gh))
wheren is in N∗. Like the group laws, the pairing is given through an oracle,computed
from the functionsf andh used to build the cyclic groups, as explained in Section 2.2:
(x, y) 7→ h(f−1(x) . f−1(y)).
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2.4. Bilinear Diffie-Hellman problems

We can now state the bilinear Diffie-Hellman problems in thisformalism:

Definition 6. Let (Ω, (Lγ)γ∈Ω1
, (Mδ)δ∈Ω2

, (eα)α∈Ω) be a family of representations of
cyclic groups with pairing over two languagesL andM . In this family,

• an algorithm solving the bilinear Diffie-Hellman problem computes the element
loggγ

(w) . e(γ,δ)(x, y) in the groupMδ from the inputs(γ, δ) ∈ Ω, (w, x, y) ∈
(Lγ)3;

• an algorithm solving the decisional bilinear Diffie-Hellman problem decides ifz
is loggγ

(w) . e(γ,δ)(x, y) in the groupMδ from the inputs(γ, δ) ∈ Ω, (w, x, y) ∈
(Lγ)3, z ∈Mδ.

Like previously, an algorithm solving one of these problemsin the generic family
of cyclic groups with pairing has the same input and output. It must only use oracles to
access the group laws and the pairing, as explained in Example 4.

From now on, in order to express time and space complexity, wechoose the compu-
tational model of Turing Machines that have access to some oracles, like in [Pap94] pp.
36. We define the time cost of a call to an oracle as one unit of time.

We remark that there exists a straightforward polynomial reduction of the bilin-
ear Diffie-Hellman problem over the discrete logarithm problem in Lγ , provided by the
Square and Multiply algorithm. As a consequence, using the algorithm given by Pol-
lard in [Pol78] and the method proposed by Pohlig and Hellmanin [PH78], the bilinear
Diffie-Hellman problem can be solved with a complexity in theorder of

√
p wherep

is the largest prime divisor of|Lγ |. The following part states that there does not exist
a better algorithm to solve the bilinear Diffie-Hellman problem in the generic family of
representations of cyclic groups with pairing.

3. Complexity analysis

3.1. A general framework

In this section, we present a general framework in order to assess the difficulty of a
problem in the generic family of cyclic groups with pairing.An algorithmA solv-
ing a problem in this family is provided at the beginning withthe following inputs:
n ∈ N∗, (0f , gf , 0h, gh) ∈ (B(n))4, a r0-uple (x1, . . . , xr0

) ∈ (B(n))r0 and as0-
uple(y1, . . . , ys0

) ∈ (B(n))s0 , wherer0 + s0 is the number of parameters of the given
problem and(x1, . . . , xr0

, y1, . . . , ys0
) defines the instance of the problem.

Moreover,A has access to oracles computing the group laws+f and+h, the inverse
laws−f and−h, and the pairinge. All these oracles are built using two bijectionsf
andh randomly chosen inF(B(n)), but not given toA. The bijectionsf andh must be
compatible with(0f , gf , 0h, gh): f(0) = 0f , f(1) = gf , g(0) = 0h, g(1) = gh.

We suppose that the algorithmA is a probabilistic Turing machine. We assess its
running time by the number of calls to the group and pairing oracles. We want to measure
the asymptotic behavior of the average success probabilityof A asn goes to infinity, the
probability being taken for a fixedn over the set of pairs(f, h) ∈ F(B(n))

2.
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In order to analyze the algorithmA, we maintain two series of lists,R andS, with
values inB(n) × (Z/nZ)(X1, . . . ,Xn, Y1, . . . , Yn) where(Z/nZ)(X1, . . . , Yn) is the
field of rational functions in the variablesX1, . . . ,Xn, Y1, . . . , Yn. The listsRk andSk

represent the “knowledge” ofA after k queries to the oracles. The integersrk andsk

index the number of variables used in the listsRk and Sk. We setρk and σk to the
cardinalities ofRk andSk. WhenA makes a new call to an oracle,rk+1, sk+1, ρk+1,
σk+1, Rk+1 andSk+1 are initialized with the values ofrk, sk, ρk, σk, Rk andSk and
updated as follows:

• in the case of a calla +f b, −fa or e(a, b), if the elementa (resp.b) is not the
second member of a pair inRk, we increaserk+1 andρk+1 by one, we define
xrk+1

= a (resp.b) and add(xrk+1
,Xrk+1

) to Rk+1,
• in the case of a calla +h b or −ha, if the elementa (resp.b) is not the second

member of a pair inSk, we increasesk+1 andσk+1 by one, we defineysk+1
= a

(resp.b) and add(ysk+1
, Ysk+1

) to Sk+1,
• whenc is a fresh answer to the calla+f b (resp.−fa), the pair(c, Pa +Pb) (resp.

the pair(c,−Pa)) is added inRk+1, where(a, Pa) and(b, Pb) are inRk, and we
increaseρk+1 by one,

• whenc is a fresh answer to the calla+h b (resp.−ha), the pair(c, Pa +Pb) (resp.
the pair(c,−Pa)) is added inSk+1, where(a, Pa) and(b, Pb) are inSk, and we
increaseσk+1 by one,

• whenc is a fresh answer to the calle(a, b), the pair(c, Pa.Pb) is added inSk+1,
where(a, Pa) and(b, Pb) are inRk, and we increaseσk+1 by one.

We remark that the previous rules imply thatρk+1 + σk+1 6 ρk + σk + 3.

Definition 7 (Compatibility). A pair of bijections(f, h) ∈ F(B(n))
2 is said to be com-

patible with(Rk,Sk) if:

• ∀(vR, PR) ∈ Rk, PR(f−1(x1), . . . , f
−1(xrk

), h−1(y1), . . . , h
−1(ysk

)) is defined
and equal tof−1(vR),

• ∀(vS , PS) ∈ Sk, PS(f−1(x1), . . . , f
−1(xrk

), h−1(y1), . . . , h
−1(ysk

)) is defined
and equal toh−1(vS).

We consider the algorithmA afterk calls to oracles. By definition 7, the group and
pairing oracles initialized with any pair(f, h) ∈ F(B(n))

2 compatible with(Rk,Sk)
would have produced the same answers to the calls of the algorithm A. The basic idea
behind definition 7 is that the algorithmA, afterk calls to the oracles, has no mean to
distinguish the problems defined by two different pairs of bijections compatible with
(Rk,Sk).

In order to state and to prove our main lemma, we need to define the notions of
collision and of coherence:

Definition 8 (Collision). We say that there is a collision in(Rk,Sk) if there exists some
pair ((v1, P1), (v2, P2)) in (Rk)2 or in (Sk)2 such that:v1 = v2 andP1 6= P2.

Definition 9 (Coherence). A (r+s)-uple(α1, . . . , αr, β1, . . . , βs) ∈ (Z/nZ)r+s is said
to be coherent with a setΠ of rational functions in(Z/nZ)(X1, . . . ,Xr, Y1, . . . , Ys) if:
∀P ∈ Π, P (α1, . . . , αr, β1, . . . , βs) is defined and ∀(P1, P2) ∈ Π2,

(
P1 6= P2 =⇒

P1(α1, . . . , αr, β1, . . . , βs) 6= P2(α1, . . . , αr, β1, . . . , βs)
)
.

9
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Lemma 1. Suppose thatn = pλ for p a prime number. For a fixedk, we consider a
collision-free pair of lists(Rk,Sk), and some(k + 1)th call to an oracle. Writing all the
elements ofRk andSk in reduced form, letd1 be the maximum degree of numerators of
Rk andSk, d2 be the maximum degree of denominators ofRk andSk, and letd = d1+d2.
Whenρk + σk <

√
2p/3d, the probability over all pairs of bijections compatible with

(Rk,Sk) that a new call leads to a pair of lists(Rk+1,Sk+1) with collision is bounded
by

6d (ρk + σk)

2p− 3d (ρk + σk)2
.

Proof. We consider the setC of (rk+1 + sk+1)-uples which are simultaneously coherent
(see Definition 9) with the set of rational functions inRk and the set of rational functions
in Sk.
For all pair of bijections(f, h) compatible with(Rk,Sk), the (rk+1 + sk+1)-uple
(f−1(x1), . . . , f

−1(xrk+1
), h−1(y1), . . . , h

−1(ysk+1
)) is in C, since there is no collision

in (Rk,Sk). Reciprocally, for any(α1, . . . , αrk+1
, β1, . . . , βsk+1

) in C, we can build com-
patible pairs of bijections(f, h) such thatf−1(xi) = αi andh−1(yj) = βj . To these
rk+1 fixed values forf andsk+1 fixed values forh, the compatibility condition adds
ρk − rk other fixed values forf andσk − sk other fixed values forh. Then, we have
exactly(#C)(n+ rk − rk+1− ρk)!(n+ sk− sk+1−σk)! pairs of bijections compatible
with (Rk,Sk).
Even if the setsRk+1 andSk+1 are not fully defined since the answer to the(k + 1)th

call is unknown, the rational functions inRk+1 and inSk+1 are already given by the
new call. We can thus define the setC′ of (rk+1 + sk+1)-uples which are simultaneously
coherent with the set of rational functions inRk+1 and the set of rational functions in
Sk+1. Following the same enumeration as previously, we have exactly (#C′)(n + rk −
rk+1−ρk)!(n+sk−sk+1−σk)! pairs of bijections compatible with(Rk,Sk) and leading
to some collision-free(Rk+1,Sk+1).
The probability that the(k + 1)th call to an oracle leads to a pair of lists(Rk+1,Sk+1)
with collision, is then(#C−#C′)/#C. As previously mentioned, the(k+1)th call to an
oracle corresponds to at most three new pairs inRk+1 and inSk+1 with only one of them,
whose polynomial is calledP , resulting in a possible collision. If there is such a new
pair inRk+1, then(α1, . . . , αrk+1

, β1, . . . , βsk+1
) is simultaneously coherent with the set

of rational functions inRk, and not coherent with the set of rational functions inRk+1:
there is some(vR, PR) ∈ Rk such that(P − PR)(α1, . . . , αrk+1

, β1, . . . , βsk+1
) = 0.

We can consider at mostρk differencesP − PR of rational functions. Each one of the-
ses differences, in the reduced form, has a numerator with atmost (d.nrk+1+sk+1/p)
roots, using [Sch80] Lemma 1. The number of(rk+1 + sk+1)-uples coherent withRk,
and not coherent withRk+1 is then bounded by(ρk . d . nrk+1+sk+1/p). In the same
way, the number of(rk+1 + sk+1)-uples coherent withSk, and not coherent with
Sk+1 is bounded by(σk . d . nrk+1+sk+1/p). The probability that the(k + 1)th call
to an oracle leads to a pair of lists(Rk+1,Sk+1) with collision, is then bounded by
d . nrk+1+sk+1 (ρk + σk)/(p .#C).
Using again [Sch80] Lemma 1 over the(ρk(ρk − 1) + σk(σk − 1))/2 numerators of
differences of rational functions inRk or in Sk, we obtain:

10
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#C >
n!

(n− rk+1 − sk+1)!
− (ρk(ρk − 1) + σk(σk − 1)) .

d . nrk+1+sk+1

2p
.

Sincerk+1 + sk+1 6
√

n, using a straightforward computation, we get

n!

(n− rk+1 − sk+1)!
>

nrk+1+sk+1

3
.

We obtain then p .#Ck > nrk+1+sk+1 . (p/3 − d (ρk + σk)2/2). The probability that
the(k + 1)th call to an oracle leads to a pair of lists(Rk+1,Sk+1) with collision is then
bounded by:

6d (ρk + σk)

2p− 3d (ρk + σk)2
.

3.2. Illustration with the bilinear Diffie-Hellman problem

We now consider the bilinear Diffie-Hellman problem over thegeneric family of cyclic
groups with pairing, described as a family of representations of cyclic groups with pairing
in example 4.

In the two following corollaries, we assume thatn is a prime power:n = pλ.
The case of a general composite order is considered later, inTheorem 1. LetA be an
algorithm solving the bilinear Diffie-Hellman problem. Itsinput is n ∈ N∗, together
with (0f , gf , 0h, gh) ∈ B(n)

4 and (x1, x2, x3) ∈ B(n)3. At the beginning, we set
R0 = {(0f , 0), (gf , 1), (x1,X1), (x2,X2), (x3,X3)} andS0 = {(0h, 0), (gh, 1)}.

Corollary 1. For a fixedn = pλ, let k 6 (
√

p/3 − 5)/3. WhenRk and Sk contain
polynomials of degree at most equal to2, the probability that the pair of lists(Rk,Sk) is
with collision afterk calls to the oracles is bounded by2 (3k + 4)2/(p− 3 (3k + 4)2),
where the probability is computed over all pairs of bijections compatible with(Rk,Sk).

Proof. In each call to an oracle, at most3 new pairs are added inRk ∪ Sk. We obtain
then that for alli, ρi + σi 6 3i + 7. We deduce that6 (ρi + σi)/(p − 3 (ρi + σi)

2) is
upper-bounded by6 (3i + 7)/(p− 3 (3i + 7)2).
The probability that the pair of lists(Rk,Sk) is collision-free afterk calls to the oracles
is equal to the product of probabilities that the pair of lists (Ri+1,Si+1) is collision-free,
knowing that(Ri,Si) is collision-free, wherei ∈ {0, . . . , k−1}. Since0 < 6 (3k+4) <
p − 3 (3k + 4)2, we can give a lower bound for this probability of no-collision afterk
calls using Lemma 1:

k−1∏

i=0

(
1− 6 (3i + 7)

p− 3 (3i + 7)2

)
>

(
1− 6 (3k + 4)

p− 3 (3k + 4)2

)k

> 1− 2 (3k + 4)2

p− 3 (3k + 4)2
.

The probability that the pair of lists(Rk,Sk) is with collision afterk calls to the oracles
is then bounded by:2 (3k + 4)2/(p− 3 (3k + 4)2).

11
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Corollary 2. LetA be an algorithm solving the bilinear Diffie-Hellman problemin the
generic family of cyclic groups with pairing. Whenk < (

√
2p/9− 7)/3, the probability

of success forA after k calls to the oracles, over groups of sizepλ, when(Rk,Sk) is
collision-free, is less than18 (3k + 7)/(2p− 9 (3k + 7)2).

Proof. Let z be the answer given by the algorithmA, afterk calls to oracles leading to a
collision-free pair of lists(Rk,Sk).
If there is noPz such that(z, Pz) ∈ Sk, thenz is indistinguishable from any other
element ofB(n) with the same property (i.e. not in a pair inSk). Thus, the answerz given
by the algorithmA is valid with a probability less than1/(p− σk) 6 1/(p− 3k − 2).
Else, if the answerz is correct, a “virtual” call to an oracle corresponding to the polyno-
mial X1.X2.X3 would lead to a collision inSk+1. We can then reuse Lemma 1 to obtain
the following bound for the probability of such an event:

18 (ρk + σk)

2p− 9 (ρk + σk)2
6

18 (3k + 7)

2p− 9 (3k + 7)2
.

The probability thatA solves the problem is then bounded by the maximum of the two
previously given probabilities, which is obviously the second one.

We obtain then the following theorem:

Theorem 1. LetA be an algorithm solving the bilinear Diffie-Hellman problemin the
generic family of representations of cyclic groups with pairing. A is supposed to have
unbound computational power, and be able to call the groups and pairing oracles in a
probabilistic manner. Afterk calls to the oracles, over groups of order divisible by a
prime numberp, whenk < (

√
2p/9− 7)/3, the probability thatA succeeds is bounded

by:

2 (3k + 4)2

p− 3 (3k + 4)2
+

18 (3k + 7)

2p− 9 (3k + 7)2
.

Proof. Let n be the common order of the groups. First suppose thatn = pλ with p a
prime number. An algorithmA may output a valid answer afterk calls to oracles in
two cases:(Rk,Sk) is with collision, or collision-free. The first case is considered in
Corollary 1, the second one is considered in Corollary 2.
We consider now the case of a general composite order:n = pλq, wherep does not
divide q. From any algorithmAn solving the bilinear Diffie-Hellman problem in groups
of ordern, we build an algorithmApλ solving the bilinear Diffie-Hellman problem in
groups of orderpλ, with at least the same probability of success:

1. Apλ randomly chooses two bijectionsφ1, φ2 : B(pλ) × Z/qZ → B(n), and3
elementsα1, α2, α3 in Z/qZ,

2. Apλ obtains(0f , gf , 0h, gh) ∈ B(pλ)4, and(x1, x2, x3) ∈ B(pλ)3,
3. Apλ computes0′f = φ1(0f , 0), 0′h = φ2(0h, 0), g′f = φ1(gf , 1), g′h = φ2(gh, 1),

x′1 = φ1(x1, α1), x′2 = φ1(x2, α2), andx′3 = φ1(x3, α3),
4. Apλ usesAn with the following input:(0′f , g′f , 0′h, g′h) and(x′1, x

′
2, x
′
3),

5. whenAn outputsz′ = φ2(z, α),Apλ outputsz.

12
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For step1, we remark that there is a natural bijectionφ : Z/pλZ×Z/qZ→ Z/nZ given
by φ(a, b) = a+ pλb, so that this step boils down to choosing random permutations over
B(n).
Apλ uses the oracles+f ,−f , +h,−h, ande to build the following oracles:

• +′f : (φ1(a1, b1), φ1(a2, b2)) ∈ B(n)2 7→ φ1(a1 +f a2, b1 + b2) ∈ B(n),
• −′f : φ1(a, b) ∈ B(n) 7→ φ1(−fa,−b) ∈ B(n),
• +′h : (φ2(a1, b1), φ2(a2, b2)) ∈ B(n)2 7→ φ2(a1 +h a2, b1 + b2) ∈ B(n),
• −′h : φ2(a, b) ∈ B(n) 7→ φ2(−ha,−b) ∈ B(n),
• e′ : (φ1(a1, b1), φ1(a2, b2)) ∈ B(n)2 7→ φ2(e(a1, a2), b1.b2) ∈ B(n).

The setB(n) has a structure of group with the laws+′f and−′f , where0′f is the neutral
element, andg′f is a generator. The setB(n) has another structure of group with the laws
+′h and−′h, where0′h is the neutral element, andg′h is a generator.e′ is a perfect pairing
between these groups such that:e′(g′f , g′f ) = g′h.
If z′ = φ2(z, α) is the solution of the bilinear Diffie-Hellman problem giventoAn, then
z is the solution of the bilinear Diffie-Hellman problem giventoApλ , andα1α2α3 = α
in Z/qZ. The probability of success ofApλ is then at least equal to the one ofAn.

Remark2. As an immediate consequence of this last theorem, if the number k of calls
to oracles is very small againstp, then the probability thatA succeeds is bounded by
O(k2/p).

Remark3. Using the polynomial reduction of the bilinear Diffie-Hellman problem over
the discrete logarithm problem given in Section 2.3, the Theorem 1 is immediately trans-
posed with the same success probability to the usual discrete logarithm problem in the
generic family of cyclic groups with pairing. In a way, the pairing does not help to solve
the discrete logarithm problem.

Remark4. Since there is also a polynomial reduction of the bilinear Diffie-Hellman
problem over the usual Diffie-Hellman problem, the Theorem 1immediately implies the
difficulty of the computational Diffie-Hellman problem in the generic family of cyclic
groups with pairing even if it is proved in [Jou02] that the decisional Diffie-Hellman
problem is easy in this family.

3.3. Other problems

In fact, the technique described in Section 3.1 is quite general. We illustrate its ubiquity
by proving the difficulty of theq-BDHI problem, introduced in [BB04a].

Definition 10 (q-BDHI problem). Let (Ω, (Lγ)γ∈Ω1
, (Mδ)δ∈Ω2

, (eα)α∈Ω) be a family
of representations of cyclic groups with pairing over two languagesL andM , restricted
to prime order groups. In this family, an algorithm solving theq-bilinear Diffie-Hellman
inversion (q-BDHI) problem computes the element(1/ν) gδ in the groupMδ from the
inputs(γ, δ) ∈ Ω, (ν gγ , ν2 gγ , . . . , νq gγ) ∈ (Lγ)q.

LetA be an algorithm solving theq-BDHI problem in the generic family of cyclic
groups with pairing. Its input is a prime numberp, together with(0f , gf , 0h, gh) ∈
B(p)

4 and (ν gf , . . . , νq gf ) ∈ B(p)q for ν ∈ (Z/pZ)∗. We initialize the listsR0 =
{(0f , 0), (gf , 1), (ν gf ,X), (ν2 gf ,X2), . . . , (νq gf ,Xq)} andS0 = {(0h, 0), (gh, 1)}.
This pair of lists is updated as described in Section 3.1.
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Corollary 3. For a fixed primen = p, let k 6 (
√

p/3q − q − 5)/3. WhenRk andSk

contain polynomials of degree at most equal to2q, the probability that the pair of lists
(Rk,Sk) is with collision, afterk calls to the oracles, is bounded by

2q . (3k + q + 1)2 / (p− 3q (3k + q + 1)2).

Proof. The proof is exactly the same as the one of corollary 1. Applying lemma 1, we
obtain the following lower bound for the probability of collision

k−1∏

i=0

(
1− 6q (3i + q + 4)

p− 3q(3i + q + 4)2

)
>

(
1− 6q(3k + q + 1)

p− 3q(3k + q + 1)2

)k

> 1− 2q (3k + q + 1)2

p− 3q (3k + q + 1)2
.

Corollary 4. LetA be an algorithm solving theq-BDHI problem in the generic family
of cyclic groups with pairing. Whenk < (

√
2p/(6q + 3)− q − 4)/3, the probability of

success forA after k calls to the oracles, over groups of prime sizep, when(Rk,Sk) is
collision-free, is less than

6 (2q + 1)(3k + q + 4)

2p− 3 (2q + 1)(3k + q + 4)2
.

Proof. Let z be the answer given by the algorithmA, afterk calls to oracles leading to a
collision-free pair of lists(Rk,Sk). As in the proof of corollary 2, if there is noPz such
that(z, Pz) ∈ Sk then the answerz is valid with a probability less than1/(p− 3k − 2).
Else, if z is a correct guess, a “virtual” call to the oracle corresponding to the rational
function 1/X would produce a collision inSk+1. The Lemma 1 gives the following
bound for the probability of such an event

6 (2q + 1)(ρk + σk)

2p− 3 (2q + 1)(ρk + σk)2
6

6 (2q + 1)(3k + q + 4)

2p− 3 (2q + 1)(3k + q + 4)2
.

This second bound is larger than the first one, which implies the result.

From Corollaries 3 and 4, one can immediately deduce the following theorem.

Theorem 2. LetA be an algorithm solving theq-BDHI problem in the generic family
of cyclic groups with pairing.A is supposed to have unbound computational power, and
able to call the groups and pairing oracles in a probabilistic manner. Afterk calls to
the oracles, over groups of prime orderp, whenk < (

√
2p/(6q + 3) − q − 4)/3, the

probability thatA succeeds is bounded by:

2q (3k + q + 1)2

p− 3q (3k + q + 1)2
+

6 (2q + 1)(3k + q + 4)

2p− 3 (2q + 1)(3k + q + 4)2
.
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4. Pseudo-random family of cyclic groups

In this part, we introduce the notion of pseudo-random family of cyclic groups. Naively
speaking a pseudo-random family of groups is the same thing as a generic family of
groups except that the group law is not drawn at random in the set of all possible group
laws: the group law follows a specific distribution which is computationally indistin-
guishable from a uniform distribution. We build a pseudo-random family of cyclic groups
from a strong pseudo-random family of permutations.

Let P be a set of permutations overB(n). The notationf ← P means thatf
is randomly and uniformly drawn inP. A distinguisherD is a Turing machine which
has access to permutations overB(n) through oracles and outputs a single bit. In the
context of strong indistinguishability between two families of permutationsP1 andP2

(see [LR88] for more details), a distinguisherD has access tof andf−1, wheref ← P1

or f ← P2. WhenD runs in timet and makesq oracles queries, its advantage is defined
by the following formula:

Advs-prp
P1,P2

(D, t, q) =

∣∣∣∣ Pr
f←P1

[Dt,q
f,f−1

= 1]− Pr
f←P2

[Dt,q
f,f−1

= 1]

∣∣∣∣ .

We say thatP1 andP2 are(ǫ, t, q)-strongly indistinguishable if for all distinguisher
D, the advantage Advs-prp

P1,P2
(D, t, q) is upper-bounded byǫ. We say thatP is a(ǫ, t, q)-

strong pseudo-random family of permutations if it is(ǫ, t, q)-strongly indistinguishable
from the setSn of all permutations overB(n).

Definition 11. Let P be a(ǫ, t, q)-strong pseudo-random family of permutations over
B(n). The pseudo-random family of cyclic groups associated toP is the set of groups
defined by the permutationsf in P, with neutral elementf(0), generatorf(1) and laws
+f and−f , as defined in Section 1.3.

Like in the generic family of cyclic groups, the group laws are given only through
oracles. In this way, it is clear that a generic family of cyclic groups is a pseudo-random
family of groups. As a consequence the notion of pseudo-random family of groups con-
stitutes a generalization of the notion of generic family ofcyclic groups.

We can now define the advantage of an adversary against a discrete-logarithm based
problem in a pseudo-random family of cyclic groups: letA be an adversary, which has
access to group laws overB(n) through oracles+f and−f . WhenA runs in timet and
makesq oracle queries, its advantages over the discrete logarithm, Diffie-Hellman and
decisional Diffie-Hellman problems are defined by:

AdvDL
P (A, t, q) = Pr

f←P, x∈B(n)
[At,q

+f ,−f (f(0), f(1), x) = logf(1)(x)],

AdvDH
P (A, t, q) = Pr

f←P, (x,y)∈B(n)2
[At,q

+f ,−f (f(0), f(1), x, y) = logf(1)(x) . y],

AdvDDH
P (A, t, q) =

∣∣∣ Pr
f←P, (x,y)∈B(n)2

[At,q
+f ,−f (f(0), f(1), x, y, logf(1)(x) . y) = 1]

− Pr
f←P, (x,y,z)∈B(n)3

[At,q
+f ,−f (f(0), f(1), x, y, z) = 1]

∣∣∣.
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The maximum of these advantages over all adversariesA are respectively denoted
by AdvDL

P (t, q), AdvDH
P (t, q), and AdvDDH

P (t, q). Theorems 3 and 4 give bounds of these
probabilities, whenP is a (ǫ, t, q)-strong pseudo-random family of permutations over
B(n).

Theorem 3. Let P be a (ǫ, t, q)-strong pseudo-random family of permutations over
B(n). Then,

AdvDL
P (t, q/3− 1) 6 AdvDL

Sn
(t, q/3− 1) + ǫ,

AdvDH
P (t, q/3− 2) 6 AdvDH

Sn
(t, q/3− 2) + ǫ.

Proof. LetA be an adversary of the discrete logarithm problem over groups, with laws
given by the way of oracles built from a permutationf drawn randomly inP. From
this adversaryA, we deduce a distinguisherD on the strong pseudo-random permuta-
tion family P. This distinguisherD takes as input a permutationf over B(n) and its
inversef−1. This permutationf has been randomly chosen in the strong pseudo-random
permutation familyP or in the setSn of all permutations.
From this permutation, the distinguisherD builds an instance of the discrete logarithm
problem for the adversaryA: it randomly choosesr ∈ Z/nZ and givesf(0), f(1) and
f(r) to the adversaryA. The distinguisherD builds the oracles corresponding to the
group laws: x +f y = f

(
f−1(x) + f−1(y)

)
, −fx = f

(
−f−1(x)

)
.

The adversaryA eventually outputs an answer to the discrete logarithm problem. If its
answer is correct i.e. is equal tor, the distinguisherD outputs1, else it outputs0.
If the permutationf has been chosen randomly in the strong pseudo-random permutation
family P, the probability that the adversaryA outputs a correct answer is exactly its
advantage for the discrete logarithm problem in the family of groups defined byP.
In the other case, if the permutationf has been chosen randomly in the setSn of all
permutations overB(n), the probability that the adversaryA outputs a correct answer is
exactly its advantage for the discrete logarithm problem inthe generic family of groups.
The advantage of the distinguisherD is then exactly the difference of advantages ofA
in the two cases. Thus, ifA runs in timet and can issue at most(q/3 − 1) group oracle
queries, this advantage is bounded byǫ, whenP is a (ǫ, t, q)-strong pseudo-random
permutation family. Thus, the advantage of an adversaryA against a discrete logarithm
problem in the family of groups defined byP is bounded by the advantage of solving
this problem in the generic family of groups, plusǫ.
This proof can moreover be directly translated for the Diffie-Hellman problem.

Theorem 4. Let P be a (ǫ, t, q)-strong pseudo-random family of permutations over
B(n). Then,

AdvDDH
P (t, q/3− 2) 6 AdvDDH

Sn
(t, q/3− 2) + 2ǫ.

Proof. LetA be an adversary against the decisional Diffie-Hellman problem in a family
of groups where the law is provided by oracles built from a permutation randomly drawn
either from the random family of permutationsSn or from a strong pseudo-random
family of permutationsP. Let b be the bit in the DDH problem which must be guessed
by the adversary. We have
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AdvDDH
P (A, t, q) =

∣∣∣∣ Pr
f←P

[At,q
+f ,−f = 1 / b = 1]− Pr

f←P
[At,q

+f ,−f = 1 / b = 0]

∣∣∣∣ .

AdvDDH
Sn

(A, t, q) =

∣∣∣∣ Pr
f←Sn

[At,q
+f ,−f = 1 / b = 1]− Pr

f←Sn

[At,q
+f ,−f = 1 / b = 0]

∣∣∣∣ .

FromA, we build a distinguisherD against the strong pseudo-random family of per-
mutations. This distinguisher has access to an oracle permutationf and its inversef−1

drawn either fromP or Sn. Using the oraclesf andf−1, D can reply to the group law
queries issued byA. It draws at random a bitb and two elementsx, y in B(n). If b = 1
it submits toA the input(f(0), f(1), x, y, f [f−1(x) . f−1(y)]) and if b = 0, it draws a
randomz ∈ B(n) and submits toA the input(f(0), f(1), x, y, z).
At the end of the gameA returns a bitb′. The distinguisherD returns1 if b′ = b and0 if
b′ 6= b. We have by definition

Advs-prp
P,Sn

(D, t, q) =

∣∣∣∣ Pr
f←P

[Dt,q
f,f−1

= 1]− Pr
f←Sn

[Dt,q
f,f−1

= 1]

∣∣∣∣ .

With this distinguisher, this means

Advs-prp
P,Sn

(D, t, q) =

∣∣∣∣ Pr
f←P

[At,q/3−2
+f ,−f = 1 / b = 1] + Pr

f←P
[At,q/3−2

+f ,−f = 0 / b = 0]

− Pr
f←Sn

[At,q/3−2
+f ,−f = 1 / b = 1]− Pr

f←Sn

[At,q/3−2
+f ,−f = 0 / b = 0]

∣∣∣∣
/

2.

As a consequence,

Advs-prp
P,Sn

(D, t, q) >
∣∣AdvDDH

P (A, t, q/3− 2)− AdvDDH
Sn

(A, t, q/3− 2)
∣∣ /

2.

And thus, AdvDDH
P (A, t, q/3− 2) 6 AdvDDH

Sn
(A, t, q/3− 2)+2 Advs-prp

P,Sn
(D, t, q).

Remark5. Theorems 3 and 4 and their proofs should serve as an illustration. Using
the same kind of methods, one should be able to prove any reasonable assumption in a
pseudo-random family of cyclic groups. It is moreover possible to define pseudo-random
families of cyclic groups with pairing from two strong pseudo-random families of per-
mutations: bilinear assumptions can then be proved in this pseudo-random context.

In the two preceding proofs, the permutation is fixed at the beginning of the game in
the reduction. This is something essential if the permutation is drawn from the pseudo-
random family. Actually in that case it is not possible to build this pseudo-random per-
mutation during the game by returning a random bit string to any fresh query. This fact
contrasts with the usual generic group model and illustrates an important feature of our
presentation of the generic group model where the group law is fixed at the beginning of
the game.

There is some other subtle differences between the generic group model and the
pseudo-random group model. For instance, it was mentioned in [MF07] that the generic
model of groups should be able to take into account the following behavior of the adver-
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saryA. Suppose thatA receives a bit stringx ∈ B(n) from a group oracle query then
A flips some bit, for instance the least significant bit, and usethe resulting bit string in
order to submit a new query. This kind of queries in not covered in the original model
[Sho97] but it is easy to be convinced that these queries using fresh bit strings do not
help to solve a given problem in the generic group model and this is what we prove in
Part 3. In contrast in the pseudo-random group model this kind of queries may be used
to attack the underlying pseudo-random permutation familyand it is an important point
to take them into account.

It should also be stressed that the pseudo-random groups problem depends on the
computational power of the adversary. This situation contrasts with the usual generic
group model where all the result are of information theoretic nature.

5. Conclusion

We have revisited the notion of generic group in order to describe a model which contains
all the features already seen in the literature: the abilityto submit fresh bit strings and
queries which correspond to rational functions of the exponents are worth mentioning.
We have proved a bound on the problem of finding a collision in this model (Lemma
1). From this first bound, it is easy to derive precise bounds for all the usual discrete
logarithm related problems: we presented some examples (Theorems 1 and 2) to explain
how to use our framework in a systematic manner.

From this model, it is possible to derive the notion of pseudo-random groups and to
prove a reduction of some usual problems in the pseudo-random group model to their se-
curity in the generic group model and to the strong pseudo-random permutation hypothe-
sis. As a matter of fact, because of the reduction that we prove, the pseudo-random group
model does not bring new security insight. Still it constitutes an improvement because
it is more realistic than the usual generic group model. Nevertheless it is still not really
satisfying. Actually, in the family of groups of interest incryptography, the permutation
on the underlying sets induced by the different group laws isfar from being pseudo-
random. For instance, if the family of groups is the family ofmultiplicative elements
of finite field, for a given cardinalityn there is onlyφ(n) possible permutations, where
φ is Euler’s totient function. It should be interesting to generalize further the notion of
pseudo-random groups in order to make it more realistic.
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