
A Secure Key Management Interface with
Asymmetric Cryptography

Marion Daubignard1,2, David Lubicz2, and Graham Steel3

1 ANSSI, 51 Bvd de La Tour-Maubourg, 75007 Paris, France
2 DGA.MI, BP 57419, 35174 Bruz Cedex, France

3 INRIA Team Prosecco, 23 Avenue d’Italie, 75013 Paris, France

Abstract. Cryptographic devices such as Hardware Security Modules are only
as secure as their application programming interfaces (APIs) that offer cryp-
tographic functionality to the outside world. Design flaws and implementation
errors in security APIs have been shown to cause vulnerabilities that may leak
secrets such as keys and PINs. Ideally, we would like to design such interfaces in
such a way that we can formally prove security properties, even in the presence
of some corrupted keys. In this work, we propose the first such provably secure
interface to support asymmetric key operations for key management: Cachin and
Chandran’s secure token interface supports asymmetric key operations only for
encrypting and signing data, but not for managing keys, while Cortier and Steel
handle only symmetric keys. Due to the fact that anyone can encrypt under a
public key, in order to secure integrity of the keys under management, we must
consider confidentiality and integrity properties separately and provide support
for classical operations of public key infrastructure (e.g. certification of public
keys).

1 Introduction

In a context of constant security threats combined with increasing heterogeneity
of platforms and applications, developers are turning more and more to solutions
based on secure hardware, whether it be a smartcard, Trusted Platform Module
(TPM), or Hardware Security Module (HSM). In a typical architecture, the
secure hardware contains cryptographic keys and the ability to perform some
basic crypto operations which can be leveraged to ensure security for the whole
system. However, designing the application programming interface (API) of such
a device is difficult: it must allow the user to manage the keys on the device and
access the crypto while preventing an attacker, who may in the worst case be
able to make arbitrary calls to the API, from obtaining secrets. Many attacks
have been found on the APIs of contemporary devices [2,3,5]. One promising
approach to solving this problem is to design APIs such that one can formally
prove security properties in the presence of a suitably powerful intruder. Such
an approach has been applied both in the standard cryptographic model [4] and
the symbolic or Dolev-Yao model [7]. However, neither of these designs present a

scheme for managing keys using asymmetric cryptography, which is widely used
in practice for the task since it provides a convenient way to bootstrap security
without any pre-shared secrets. The contribution of this paper is to present the
design for such an API with security proofs in the symbolic model. For the
symmetric key part of the API, we adapt slightly the API designed by Cortier
and Steel [7]. For the asymmetric key part, since anyone can encrypt under a
public key, we have to add an explicit mechanism for assuring the integrity of keys
to be imported to prevent so-called “Trojan key” attacks [6]. We add signature
keys for signing encryption under public keys and also separate certification
keys, the latter used to manage the public key infrastructure (PKI) of keys and
certificates. We show how to adapt the security labels given to keys by Cortier
and Steel to this new scenario, with separate labels for confidentiality of the
private key and integrity of the corresponding public key. This allows us to
account for corruption in our proof. As far as we are aware, this is the first such
design to be proposed with security proofs.

In the rest of the paper, we first introduce our symbolic model and explain
the features of our API design in Section 2. We describe the API rules formally
in Section 3, and then give the security properties and sketch proofs in Section 4.
We describe some experiments implementing protocols with the API in Section 5
and draw conclusions in Section 6. Full proofs are given in a technical report [9].

Related Work Cortier and Steel (CS) [7] proposed an API that supports only
symmetric key cryptography, but can nonetheless be used to implement any
secure symmetric key exchange protocol from the Clark-Jacob corpus. The main
principle is that keys are arranged in a hierarchy of levels. Each key is associated
to its level and the set of agents who are allowed to use it. This association is
made when storing the key on the device, by including it as metadata stored with
the key, and when encrypting the key for transfer, by tagging the encrypted key
with exactly this information. The API rules are designed such that keys may
only be encrypted by other keys which are higher in the hierarchy, i.e. they are
at least one level higher and assigned to a set of agents that is equal to or smaller
than the payload key. We generalise this notion slightly in our API. The CS API
includes a notion of freshness for imported keys enforced by nonces. It has also
recently been extended to accommodate key revocation [8]. Although we do not
include these mechanisms in our API, we do not foresee any obstacle to these
generalizations if needed.

Cachin and Chandran proposed an API with a quite different design [4]. They
rely on the fact that all keys are stored on a central key server. Instead of as-
signing security attributes such as levels and agent identifiers to keys at creation
time, they allow the key’s role to evolve over time by logging all operations, and
then disallowing operations that would be insecure by observing the log. They
allow asymmetric keys to be managed by symmetric key cryptography, but do
not allow asymmetric keys to be used for key management operations like export
and import.

Other work has investigated the foundations of models for secure key man-
agement APIs: Kremer, Steel and Warinschi give a model that can be interpreted

2

in the symbolic and computational cryptography worlds [12]. They show that
the possibility of key corruption requires strong assumptions to be made on
the key wrapping primitives in the computational model. Recent work by Kün-
nemann, Kremer and Steel investigates composable notions of security for key
management [11]. This is an appealing idea because it allows (almost) arbitrary
secure cryptographic primitives to be used with the keys under management
without having to repeat the security proofs, but currently only management
with symmetric keys is supported.

2 Design of the API

We present the design of our API in an abstract ‘Dolev-Yao’ style symbolic
model. We first describe the roles assigned to keys in our API. We then give the
syntax and informal semantics for the message algebra and introduce our notion
of key handles which extends previous designs.

2.1 Key Types

In order to limit the number of key roles in the API we consider that the asym-
metric keys are double keys, with one part for encryption/decryption, and one
for signature/verification. This means that the same key can be used as an
input of both an encryption and a signature scheme. Thus, we have encryp-
tion/verification public keys and decryption/signature private keys. It is clear
that in practice a double key can simply be obtained by the concatenation of
a signature and encryption key and that a simple key can be simulated by a
double key. Thus, we do not lose generality with this simplification. Moreover, it
makes sense from a security point of view since the encrypt and sign operation
is the minimal basic operation which ensures the confidentiality of message and
an authentication of the issuer, which is mandatory for the set up of our security
policy. Signature keys are used to sign encryptions of other keys or messages.
Asymmetric public keys are certified by certification keys (with a signature al-
gorithm). The list of key roles that we are going to manipulate is: symmetric
encryption/decryption keys, encryption/verification of signature double public
keys, decryption/signature double private keys, verification of certificates public
keys, certification private keys.

It is possible that the algorithm used to sign the certificates is the same as
the one used to sign the encrypted messages. Nonetheless, it is important to
distinguish the key roles to prevent a signature algorithm from being used as a
certification oracle by an adversary. The different key roles and their associated
types are summarised in the table 1. T denotes the set of key types.

2.2 Security Levels

The set of key security levels I is a finite set together with a partial strict order
relation denoted <. We suppose that there is a minimal element in I denoted by

3

Key Role Type
Priv Double decryption/signature private key privDecSign
Pub Double encryption/verification of signature public key pubEncVerif
Sym symmetric encryption key symEncDec
Pub Certif certificate verification key pubCertVerif
Priv Certif certificate signature key privCertSign

Fig. 1. Table of the set of key roles and types (T)

0. By definition, for all x ∈ I \ 0, we have 0 < x. The 0 element represents the
security level of public information. We are given a partition of I in two subsets:

– the levels I1 ⊂ I which correspond to the keys which can only deal with
regular messages;

– the levels I2 ⊂ I which correspond to the keys which can be used to transport
keys of level I1.

Note that for x ∈ I1 and y ∈ I2, if x and y are comparable with the relation <
then we have necessarily x < y. We set I>0 = I1tI2 = I−{0} (where t denotes
a disjoint union).

2.3 Message Algebra

Messages are represented by a term algebra. We suppose a given set of agents
Agent, a set of nonces Nonce and a set of keys Key. We are also given a set of
variables Var in which we distinguish a set of key variables VarKey and a set of
nonce variables VarNonce. All these sets are countably infinite. The term algebra
is given by:

Keyv ::= Key | VarKey | inv(Keyv)
Noncev ::= Nonce | VarNonce

Msg ::= Agent | Keyv | Noncev | I | T | {|Msg|}Keyv | {Msg}Keyv
| Σ(Msg,Keyv) | nhdl(Msg)| < Msg,Msg >

Handle ::= hαAgent(Noncev,Noncev,Msg, T , I,S ,S) | hAgent(Noncev,Msg)

where S is the set of subsets of Agent.
The set Keyv represents the set of keys and variable of keys. A term of the

form inv(k) with k ∈ Key represents the private key associated to the public key
k. The set Noncev is the set of nonces and variable of nonces. The terms of type
Msg are made of elements of Agent, Keyv, Noncev together with constructors
representing encryption, signature together with sets needed to represent the
attributes of the handles. More precisely,

– the term {|m|}k represents the symmetric encryption of the message m with
the key k;

– the term {m}k represents the asymmetric encryption of the message m with
the double key k;

4

– the term Σ(m, k) represents the signature of the message m with the double
key k;

– the term nhdl() allows one to encapsulate a regular message which does not
correspond to the transportation of a handle (see below);

– the term < m1,m2 > represents the pair of the two messages m1,m2 ∈ Msg.

For n > 0, < m1, < m2, < . . . ,mn >>> is shortened as m1, . . . ,mn.

2.4 Handles

The purpose of a key management API is to give access to cryptographic func-
tionalities without giving direct access to sensitive keys stored on the device.
Instead, an agent can manipulate the data by calling the API commands and
referring to the keys by identifiers called handles, of which we define two types
in our API:

– key handles used to protect integrity and confidentiality of the data on the
device. They are typically used for keys and secret nonces.

– integrity handles used to protect the integrity of data on the device. They
are typically used for certificates that have been verified.

Identifiers are meant to be a public way of referring to keys without re-
vealing their values. Thus, knowing an identifier does not mean knowing the
cryptographic value of a key. Then, to represent that an agent can use a key,
we write that she owns a handle referring to that key. Intuitively, it means that
there is a part of the memory of a secure device that the agent can make use
of, and that contains such a data structure. In our framework, much as in that
of [7], there is no mapping between memory owned by agents and secure devices;
this is totally abstracted away and translates only in the ownership of handles.
As a result, if two agents a and b share a key to communicate with one another,
they each own a handle referring to this key, but nothing in our model repre-
sents whether they use different physical devices. Neither do we capture that one
agent has all its handles on the same physical device. It might be the case that
an agent has handles spread over multiple devices. Even then, our abstraction
is sound from a security point of view in the sense that we consider operations
that may not be functionally possible, but do not overlook any feasible call.

Let us now formally describe the handles that we use. Key handles are terms
of the form hαa (N1, N2,m, T, i, S1, S2), with:

– the agent a ∈ Agent who owns the handle;
– the identifier N1 ∈ Nonce (unique in the whole system) of the handle;
– if m is a double private key, then N2 is the identifier of the associated cer-

tificate of the double public key, else N2 = Null;
– the message m ∈ Msg (usually m is a key or a nonce) associated to the

handle;
– the type T ∈ T of the message (see table 1 for a list of possible types);

5

– the triple (i, S1, S2) ∈ I × S × S is the security level of the handle (the
security policy of the API is based on this structure); the first element i
gives the role of the key (data encryption or key transport) while the second
(respectively third) element gives a set of agents who must be uncorrupted
for this key’s confidentiality (respectively integrity) to hold - this is explained
in details below.

– the label α ∈ {r, g} allows to distinguish the keys which have been generated
by a (α = g) from the keys which have been received and imported (α = r).

Integrity handles are terms of the form ha(N1,m) with an identifier N1 and a
message m ∈ Msg. They are meant to model the preservation of the integrity of
data by a signature : given as input a valid signature of a message m, the API
produces an integrity handle containing the message m. Public key certificates
usually refer to some signed public information. We are more precise than this
and distinguish two elements, the pre-certificate and the certificate which is a
signed pre-certificate. Indeed, the outcome of the certificate verification operation
is a new pre-certificate stored under an integrity handle in the device.

In the following, for clarity, we use the notation C(N1, N2, N3, k, T, i, S1, S2),
which is a synonym of the concatenation of the terms N1, N2, N3, k, T, i, S1, S2 ∈
Msg, to represent a pre-certificate of double public key. We emphasize that the
notation C(N1, N2, N3, k, T, i, S1, S2) does not imply requirements on the type
of the fields. Nonetheless, we say that a pre-certificate is well-formed if its fields
correspond to the following terms and types (we also give their semantics):

– the identifier N1 ∈ Nonce of the certificate;
– the identifier N2 ∈ Nonce of the associated private key;
– the identifier N3 ∈ Nonce of the certification public key which allows to

verify the certificate;
– a double public key k ∈ Key;
– the type T ∈ T of k ;
– the associated private key handle security level (i, S1, S2) ∈ I ×S ×S .

Thus, matching asymmetric double keys stored in a physical device are typ-
ically formalized as:

– a key handle hα. (N1, N2, k, privDecSign, i, S1, S2) for the secret part,
– an integrity handle h.(N2, C(N2, N1, N3, k, pubEncVerif, i, S1, S2)) for the

certificate of the public part.

We remark that we choose to trace the association of public and private part
of asymmetric key pairs via their identifiers. This requires us to have system-wide
identifiers for handles, in the sense that identifiers are independent of the secure
hardware they are stored in. As a result, when importing a pre-certificate, the
identifier cannot be generated at random. This explains why the pre-certificate
contains a field corresponding to its identifier.

6

2.5 API Rules

The model that we present is a transition system inspired by [7]. It represents
the evolution of the knowledge of the adversary and agents with the API calls.
We use a set of knowledge predicates P = {Pa|a ∈ Agent ∪ {int}}, where int is
a particular element representing the attacker. For term t, Pa(t) means that a
knows term t.

The system is formalized as a set of rules of the general form:

Pb1(u1), . . . , Pbk(uk)
N1,...,Nm
=⇒ Pbk+1

(uk+1), . . . , Pbl(ul),

where ui are terms, Ni are variables, bi ∈ Agent for i = 1, . . . , l and the Pbi
are predicates. The rules define how to derive knowledge predicates. They are
instantiated by substituting the variables by terms of the same type. In order
to explain that, let x1, . . . , xn be elements of Var and let t1, . . . , tn be a set of
terms. We denote by {x1 → t1, . . . , xn → tn} the substitution σ which replaces
the variables xi by the terms ti for i = 1, . . . , n. We say that σ is well-typed if
the variables xi and the terms ti have the same types. In the sequel, we only
consider well-typed substitutions. The application of the substitution σ on the
term t is denoted by tσ. Classically, given a set of rules, we say that a state S ′
is reachable from a state S if there exists an instantiated rule in the set allowing
to transition from S to S ′. The state therefore represents the set of terms known
to each agent (including the intruder) at a moment in time. We then generalize
this reachability definition to the transitive closure of a set of rules, which we
denote ⇒∗.

We let Sb be the part of a state indexed by b. Then, the state of the system
is given by the family {Sb|b ∈ Agent∪{int}}. The notations Pb(t) and t ∈ Sb are
equivalent. In the sequel, we provide two kinds of rules. Firstly, API rules only
deal with knowledge of a given agent. As a result, such a rule has the form :
Pa(u1), . . . , Pa(uk)

N1,...,Nm
=⇒ Pa(uk+1), . . . , Pa(ul) for some agent a different from

the intruder int. It models that the inputs provided by an agent to an API call,
i.e. u1, . . . , uk, result in the output of new terms uk+1, . . . , ul, which are added
to the agent’s knowledge. Secondly, other rules involve the adversary : they are
rules with at least one predicate Pint(.).

2.6 Adversarial model

As is usual in Dolev-Yao style models, the adversary is assumed to have complete
control of the network. We further assume that the host machines (such as a
desktop computer) in which the secure device might be embedded is also under
the adversary’s control. Therefore the interface between our trusted platform
and the attacker controlled network is just our API. It can be argued as over-
pessimistic, but it is sound from a security point of view to rely only on the trust
we place in the tamper-resistant devices. This modeling choice results in rules
translating direct transfers from the agent knowledge to the adversary knowledge
and vice versa. A consequence is that the intruder can execute any command he

7

likes on any device and use the result (or part of it) to form a command call to
any other device.

On top of network control, we empower the adversary with the ability to
statically corrupt agents. Formally, the set of agents is partitioned once and for
all into honest and dishonest agents, and every key referred to by a handle owned
at some point by a dishonest agent is leaked to the adversary. This models that
some keys stored on secure hardware might be lost, perhaps due to side channel
attacks or other abstracted events.

These choices are illustrated in Figure 3, in which the perimeter of control of
the attacker encompasses all the knowledge of honest agents, the network, and
dishonest agent devices. To simplify Figure 3, we have represented one agent per
device, which need not be the case in practice. However, all keys of a dishonest
agent are indifferently leaked to the adversary. This quite strong corruption
model could be relaxed to a key-by-key corruption model.

Our corruption model defines an order relation on the set of keys. To a key
k we can associate the set Sk of devices, the corruption of which implies that of
a key. A key k1 is more secure than k2 if Sk1 ⊆ Sk2 . In other words, a key that
relies on the integrity of just a few agents is considered more secure than one
that depends on the integrity of a large number of agents.

With such adversary capabilities, we stress that the only elements on which
we can state security results are those stored in the secure devices which we
have formalized. Indeed, these devices are our only source of trust and the whole
point of this security API is to protect the elements stored in these secure areas
from unwanted interaction with an adversary. Concretely, this means that the
elements on which we can prove security results are elements under handles, and
only them, i.e. key or certificate values. Of course, regular data can be encrypted
and decrypted using our API, but it is never hosted on a secure device : no handle
is created to refer to them. In our framework, regular data is thus modeled in
the form of messages coming unfettered from the network, on which we do not
aim to provide security guarantees. This choice to ’only’ protect keys makes
total sense. Firstly, there is only a limited amount of space in tamper-resistant
devices so that priorities have to be attributed. Secondly, if keys are suitably
protected, then so is the data that they in turn protect, because there usually
are intermediate workstations in which data is treated and hosted.

3 Symbolic Security of the API

3.1 Security ordering

In the rules of our API, we put to use an order relation on the set of triples
(i, S1, S2) ∈ I × S × S (recall that S is the set of subsets of Agent). Let
(i1, S1,1, S1,2) and (i2, S2,1, S2,2) be two elements of I ×S ×S , we write

(i1, S1,1, S1,2) ≺ (i2, S2,1, S2,2) if i1 < i2, S2,1 ⊆ S1,1 and S2,2 ⊆ S1,2,

(i1, S1,1, S1,2) � (i2, S2,1, S2,2) if i1 ≤ i2, S2,1 ⊆ S1,1 and S2,2 ⊆ S1,2.

8

HSM
Honest
agent

HSM
Honest
agent

HSM
Honest
agent HSM

Honest
agent

HSM
Dishonest
agent

HSM
Dishonest
agent

Network

Fig. 2. Corruption model

It is clear that � (resp. ≺) is an order relation (resp. a strict order relation).
This relation plays an important role in the definition of the security policy of
our API and the fact that it is strict ensures that we avoid cycles of encryption,
e.g. terms of the form {|{|{|. . .|}K1 |}K2 |}K1 .

This order relation may look complex but is in fact quite natural. The security
level of a handle is given by a set of agents S such that the corruption of any
member of S = S1 ∪ S2 would imply the corruption of the handle. In the API,
we want to guarantee that if a particular set S = S1 ∪ S2 of agents are honest,
then a handle cannot be corrupted. In the case of a public key API, the keys
are split into a public part (the certificate), whose value is known to everyone
but the integrity of which must be guaranteed, and the private part which must
be protected in confidentiality and integrity. The security of a key depends on
both parts, but still it is important to be able to distinguish between these two
aspects of security because we want to control the diffusion of the private key,
while the integrity of the public part may depend on a long chain of certification.

For asymmetric keys, it may well be the case that S1 is a rather large set (e.g.
tracing a certification chain back to a root certificate) and yet we still want S2 to
be as small as possible (possibly just the agent who generated the key). Finally,
it should be remarked that a key k which is wrapped by another asymmetric key
k′ should inherit from k′ the control sets S1 and S2 even if k is symmetric.

Dividing the agent sets into public key and private key parts also affects our
security properties. In the Cortier-Steel API, a secret key cannot be sent to an
agent a ∈ Agent outside of the control set S: indeed, it would be a violation of
the security property in the case that a is a corrupt agent. In our setting, the
security property guarantees the secrecy of a private key k if none of the agents
of S1∪S2 are corrupted. We also want to ensure that no agent in S1−S2 actually
obtains the value of k, which they should not since they are not legitimate agents

9

of the key. Both these security requirements appear in the statement of the main
result of this paper (see Theorem 1). Identifying legitimate agents constitutes
another important motivation for dividing the control set into two parts.

Note that agent identifiers do not need to be known in advance. If identifiers
come from a big enough space of possible values, one can always generate a
new key referring to an agent identifier that has not been used before. The only
restriction is that one cannot add the name of a new agent to the sets S of an
existing key, for obvious security reasons.

3.2 The rules of the generic asymmetric API

We describe the transition rules defining the security API. We recall that agents
are not supposed to know key values and instead use identifiers to refer to them.
However, as explained in 2.4, knowledge of an identifier N differs from ownership
of a data structure pointing to a key identified by N . An agent a should not be
able to use the value of a key if he does not own a handle h(N, . . .) referring
to it, a fact we denote as Pa(ha(N, . . .)). In other words, writing Pa(ha(N, . . .))
on the left-hand side of an API rule formalizes two things : the fact that agent
a performs the corresponding API call with input N and the fact that there
exists a handle ha(N, . . .) owned by agent a and identified by N . Symmetrically,
writing Pa(ha(N, . . .)) on the right-hand side of an API rule means that a new
handle is created, owned by a and with identifier N .

When an agent wants to export a key to which he owns a handle, he provides
its identifier as an input to the corresponding API function, which replaces this
latter by the value of the key and its attributes when computing the real pay-
load value to encrypt. Reciprocally, the injection functions must identify these
patterns and create the appropriate handle rather than output the key value as
a plaintext. Thus, we emphasize that there has to exist a distinction between
handle translations and regular messages, which we materialize by the message
container nhdl. Respect of the security ordering is enforced by appropriate checks
when encrypting and decrypting payloads.

In the following rules, Ni ∈ Noncev, Xk, inv(Xk), Yk, inv(Yk) ∈ Keyv, Si ⊆
Agent and i (possibly indexed by an agent name) denotes an element in I.

Symmetric key generation This rule allows the generation of key Xk of level
i and control sets containing (S1, S2) by the agent e for the set of agents S2,
which is modeled by the following handle creation:

Pe(i), Pe(S1), Pe(S2)
N,Xk
=⇒ Pe(h

g
e(N,Null, Xk, symEncDec, i, S1, S2∪{e}))

(Sym Gen)

Symmetric encryption This rule allows agent b to encrypt with the key
Xk (to which he has a handle), a payload consisting of messages and handles
m1, . . . ,mn, where handles are translated into key values and attributes.

Pb(h
α
b (N,Null, Xk, symEncDec, i, S1, S2)), Pb(m1), . . . , Pb(mn)

=⇒Pb({|m′1, . . . ,m′n|}Xk
), (Sym Encrypt)

10

with b ∈ S2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n :

– if mj = hαb (Nj , N
′
j , Xk,j , Tj , ij , Sj,1, Sj,2) with Xk,j = Keyv ∪ Noncev then

• if i ∈ I2, b ∈ Agent and (ij , Sj,1, Sj,2) ≺ (i, S1, S2) then we let
m′j = Nj , N

′
j , Xk,j , Tj , ij , Sj,1, Sj,2 ;

• else m′j = ∅.
– else m′j = nhdl(mj).

Symmetric decryption The following rule lets agent b, provided he knows a
handle pointing to key Xk, decrypt a ciphertext. Whenever a pattern consisting
of a key and attributes is identified, it results in a suitable handle creation.
Otherwise, the plaintext is output.

Pb(h
α
b (N,Null, Xk, symEncDec, i, S1, S2)), Pb({|m1, . . . ,mn|}Xk

)

=⇒Pb(m′1), . . . , Pb(m′n), (Sym Decrypt)

with b ∈ S2, mj ,m
′
j ∈ Msg and moreover for j = 1, . . . , n :

– if mj = Nj , N
′
j , Xk,j , Tj , ij , Sj,1, Sj,2, then

• if i ∈ I2, (ij , Sj,1, Sj,2) ≺ (i, S1, S2) then we set
m′j = hrb(Nj , N

′
j , Xk,j , Tj , ij , Sj,1, Sj,2);

• else m′j = ∅.
– else
• if mj = nhdl(tj) with tj ∈ Msg then m′j = tj ;
• else m′j = ∅.

Asymmetric encryption/signature double key generation The following
rule allows agent e, given a certification key pair under handles4, to generate
(Xk, inv(Xk)) of level i2 and control sets containing (S1, S2) for agent b. Note
that generation and certificate issue are part of a single rule. This allows us
to eliminate the need for a certification command, for which deciding the key
authenticity could raise a problem.

Pe(h
α
e (N1, N2, inv(Yk),privCertSign, i1, Se,1, Se,2)),

Pe(he(N2, C(N2, N1, Ncert, Yk,pubCertVerif, i1, Se,1, Se,2))),

Pe(i2), Pe(S1), Pe(S2), Pe(b)
N3,N4,Xk

=⇒
Pe(h

g
e(N3, N4, inv(Xk),privDecSign, i2, Se,1 ∪ Se,2 ∪ S1 ∪ {e}, {b, e} ∪ S2)),

Pe(Σ(C(N4, N3, N2, Xk,pubEncVerif, i2, Se,1∪Se,2∪S1∪{e}, {b, e}∪S2), inv(Yk))),
(Asym Gen)

with e ∈ Se,2, i1, i2 ∈ I>0, α ∈ {r, g} on condition that i2 < i1.
4 We require that both parts of the certification key exist in the creating agent’s
secure hardware. This is not a compulsory security constraint, in the sense that a
few modifications can be performed in the rules and proof to get rid of it. However,
it seems reasonable in practice to perform such a verification.

11

Asymmetric encryption with signature This API command enables an
agent b, owner of a handle pointing to an asymmetric key Yk, to encrypt and
sign a payload for agents in Sc,2, provided b has an integrity handle for a public
keyXk of agents in Sc,2. As in the symmetric case, handles in payloadm1, . . . ,mn

are translated into real values and attributes. Encryption and signature needs
to be an atomic command to enable the device to control what can be signed.

Pb(h
α
b (N1, N2, inv(Yk),privDecSign, ib, Sb,1, Sb,2),

Pb(hb(N3, C(N3, N4, N5, Xk,pubEncVerif, ic, Sc,1, Sc,2))),

Pb(m1), . . . , Pb(mn)=⇒Pb({m′1, . . . ,m′n}Xk
), Pb(Σ({m′1, . . . ,m′n}Xk

, inv(Yk))),
(Asym SignEncrypt)

with ib, ic ∈ I>0, b ∈ Sb,2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n :

– if mj = hαb (Nj , N
′
j , Xk,j , Tj , ij , Sj,1, Sj,2) with Xk,j ∈ Keyv ∪ Noncev then :

• if ib, ic ∈ I2, (ij , Sj,1, Sj,2) ≺ (ib, Sb,1, Sb,2) and (ij , Sj,1, Sj,2) ≺ (ic, Sc,1, Sc,2)
then m′j = Nj , N

′
j , Xk,j , Tj , ij , Sj,1, Sj,2;

• else m′j = ∅.
– else m′j = nhdl(mj).

Asymmetric decryption with signature verification The following rule
allows for decryption by the agent b of an authenticated ciphertext, using an
integrity handle pointing to a public key Yk to verify the signature and a handle
pointing to a key inv(Xk) to decrypt the ciphertext.

Pb(hb(N1, C(N1, N2, N3, Yk,pubEncVerif, ic, Sc,1, Sc,2))),

Pb(h
α
b (N4, N5, inv(Xk),privDecSign, ib, Sb,1, Sb,2)),

Pb({m1, . . . ,mn}Xk
), Pb(Σ({m1, . . . ,mn}Xk

, inv(Yk)))

=⇒Pb(m′1), . . . , Pb(m′n), (Asym VerifDecrypt)

with ib, ic ∈ I>0, b ∈ Sb,2, mj ,m
′
j ∈ Msg and for j = 1, . . . , n:

– if mj = Nj , N
′
j , Xk,j , Tj , ij , Sj,1, Sj,2 then

• if ib, ic ∈ I2, (ij , Sj,2, Sj,2) ≺ (ib, Sb,1, Sb,2) and (ij , Sj,2, Sj,2) ≺ (ic, Sc,1, Sc,2)
then m′j = hrb(Nj , N

′
j , Xk,j , Tj , ij , Sj,1, Sj,2);

• else m′j = ∅.
– if mj = nhdl(tj) for tj ∈ Msg then m′j = tj .

Certification key generation Given a certification key pair under handles,
this rule allows agent e to generate a certification key pair (Xk, inv(Xk)) for
agent b. As for asymmetric generation, generation and certificate issue are part
of an atomic call. It eliminates the need for a certification command, for which
deciding the key authenticity could raise a problem.

12

Pe(h
α
e (N1, N2, inv(Yk),privCertSign, ie, Se,1, Se,2)),

Pe(he(N2, C(N2, N1, Ncert, Yk,pubCertVerif, ie, Se,1, Se,2))),

Pe(ib), Pe(S1), Pe(S2)
N3,N4,Xk

=⇒
Pe(h

g
e(N3, N4, inv(Xk),privCertSign, ib, Se,1 ∪ Se,2 ∪ S1 ∪ {e}, {e, b} ∪ S2)),

Pe(Σ(C(N4, N3, N2, Xk,pubCertVerif, ib, Se,1∪Se,2∪S1∪{e}, {e, b}∪S2), inv(Yk))),
(Cert Gen)

with e ∈ Se,2 and ib < ie.

Verification of a certificate This rule allows an agent b, given an integrity
handle pointing to a verification key and a pre-certificate signed by the matching
certification key, to create the suitable integrity handle. ForΘ ∈ {EncVerif,CertVerif},

Pb(Σ(C(N1, N2, N3, Xk,pubΘ, ic, Sc,1, Sc,2), inv(Yk))),

Pb(hb(N3, C(N3, N4, N5, Yk,pubCertVerif, ie, Se,1, Se,2)))=⇒
Pb(hb(N1, C(N1, N2, N3, Xk,pubΘ, ic, Sc,1, Sc,2))), (Cert Verif)

with ic, ie ∈ I>0 and (ic, Sc,1,∅) ≺ (ie, Se,1 ∪ Se,2,∅).

3.3 Security rationale

Below we will formally prove security properties for our design, but first we
discuss the design features that prevent it from suffering from the kinds of attacks
seen in the literature [2,3,5]. First, we maintain consistent attribute values: the
attributes of a key are set once and for all when it is generated or imported onto
a device, and when transporting keys, we export all attributes along with the
value of the key and protect their integrity.

Second, we prevent ‘Wrap and Decrypt’ attacks [6, Alg.2] by the distinction
between the way keys and data are tagged for encryption: either as a concate-
nation of key and attributes or encapsulated in a container nhdl. In an imple-
mentation of our design, a suitable tagging scheme should be used to ensure this
distinction.

Key conjuring, i.e. the ability of the adversary to generate any number of
(possibly related) keys on the device, is critical to a number of attacks [2]. Care-
ful design of the decrypt command prevents this. The security proof includes an
enumeration of the terms which the adversary can successfully submit to a de-
cryption request (see (Sign) and (SymEnc)). Roughly, suitable terms are either
wrapped under compromised keys or result from an honest use of the encrypt
command.

Example In Figure 3 we show the ‘before’ and ‘after’ states for three agents
using the API in a typical configuration. In the ‘before’ state, there are no

13

CA

Alice

Bob

hCA(id1, id2, inv(KCA),privCertSign, 3, {CA}, {CA})
hCA(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hCA(id3, C(id3, id4, .,KA, pubCertVerif, 3, {A,CA}, {A}))
hCA(id5, C(id5, id6, .,KB , pubCertVerif, 3, {B,CA}, {B}))

hA(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hA(id3, C(id3, id4, .,KA, pubCertVerif, 3, {A,CA}, {A}))
hA(id4, id3, inv(KA), privCertSign, 3, {A,CA}, {A})

hB(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hB(id5, C(id5, id6, .,KA, pubCertVerif, 3, {B,CA}, {A}))
hB(id6, id5, inv(KA), privCertSign, 3, {B,CA}, {A})Before

After

CA

Alice

Bob

hCA(id1, id2, inv(KCA),privCertSign, 3, {CA}, {CA})
hCA(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hCA(id3, C(id3, id4, .,KA, pubCertVerif, 3, {A,CA}, {A}))
hCA(id5, C(id5, id6, .,KB , pubCertVerif, 3, {B,CA}, {B}))

hA(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hA(id3, C(id3, id4, .,KA, pubCertVerif, 3, {A,CA}, {A}))
hA(id4, id3, inv(KA), privCertSign, 3, {A,CA}, {A})
hA(id5, C(id5, id6, .,KA, pubCertVerif, 3, {B,CA}, {A}))
hA(id7,Null, inv(KAB), symEncDec, 2, {A,B,CA}, {A,B})

hB(id2, C(id2, id1, .,KCA, pubCertVerif, 3, {CA}, {CA}))
hB(id5, C(id5, id6, .,KA, pubCertVerif, 3, {B,CA}, {A}))
hB(id6, id5, inv(KA), privCertSign, 3, {B,CA}, {A})
hB(id3, C(id3, id4, .,KA, pubCertVerif, 3, {A,CA}, {A}))
hB(id7,Null, inv(KAB), symEncDec, 2, {A,B,CA}, {A,B})

Fig. 3. Operation of the API. See 3.3 for narration.

14

shared secrets. Alice and Bob both have accepted a copy of the CA’s public
key certificate and placed it under an integrity handle and they have generated
their own public-private keypairs. The CA has accepted public key certificates
for each of these pairs. Here we are using integers to label key levels, arbitrarily
assigning the long term keys the level 3.

To establish a shared secret, Alice and Bob first need to accept each others
public key certificates. This can be done by requesting them from the CA. The
CA uses the AsymEncryptSign command to sign the (public) message containing
the certificate. Now Alice and Bob can use the certificate verification command
to accept the certificates, generating new handles for them.

Now either Alice can generate a symmetric key (handle identified by id7) and
send it to Bob using AsymEncryptSign. Bob will use AsymDecryptVerify and
accept the key. Alice and Bob can then exchange messages using the new sym-
metric key. Note that the new symmetric key is confidential between Alice and
Bob, hence has a confidentiality control set S2 containing only these identifiers,
but for integrity it has inherited the dependence on the CA, hence S1 contains
the set of agents CA, Alice and Bob.

4 Security of the API in the symbolic model

4.1 Model of security

In this section, we describe the capacity of the attacker in the spirit of Dolev
and Yao [10], as formalized in [1].

Computation of new terms We denote by INTRUDER the set of rules which allow
the attacker to build new terms from the ones that it has already. See figure 4
for a description of the rules.

The transitive reflexive closure of the preceding rules can be interpreted as
the set of terms that an attacker can deduce from its knowledge at a certain
state. In the following, we say that m is deducible from a set of terms T , which
we denote by T ` m, if starting from the state S such that Sint = T and for
all a ∈ Agent, Sa = ∅, there exists a state S ′ such that S =⇒∗INTRUDER S ′ and
m ∈ S ′int. In the sequel, we slightly abuse notations as follows. If t is a term
and S is a state, we write t ∈ S (resp. S ` t) if t ∈ ∪b∈Agent∪{int}Sb (resp. if
∪b∈Agent∪{int}Sb ` t).

Control of the network and corruption A couple of rules allows the intruder to
control the network (see figure 4). He can intercept and forward or redirect at
will messages sent over network channels. Moreover, to formalize corruption of
agents (see beginning of Section 2.6), we suppose a given set H of honest agents.
The device corruption rule (in figure 4) models the possibility for an adversary
to open a device and retrieve all its information. A key-by-key corruption model
can also be considered, as is done in [8].

15

INTRUDER set of rules:
• Pair rules • Message container
Pint(m1), Pint(m2)⇒ Pint(< m1,m2 >) Pint(m)⇒ Pint(nhdl(m))
Pint(< m1,m2 >)⇒ Pint(m1), Pint(m2) Pint(nhdl(m))⇒ Pint(m)
• Symmetric cryptography • Signature
Pint(Xk), Pint(m1), ..., Pint(mn)⇒ Pint({|m1, ...,mn|}Xk) Pint(Σ(m,Xk))⇒ Pint(m)
Pint(Xk), Pint({|m1, ...,mn|}Xk)⇒ Pint(m1), ..., Pint(mn) Pint(Xk), Pint(m)
• Asymmetric encryption ⇒ Pint(Σ(m,Xk))
Pint(Xk), Pint(m1), ..., Pint(mn)⇒ Pint({m1, ...,mn}Xk)
Pint(inv(Xk)), Pint({m1, ...,mn}Xk)

⇒ Pint(m1), ..., Pint(mn)

CONTROL set of rules:
• Control of the network • Device corruption
Pa(m)⇒ Pint(m) Pa(h

α
a (N1, N2,m, T, i, S1, S2))

Pint(m)⇒ Pa(m) ⇒ Pint(m), where a /∈ H
In the above rules, m,mi ∈ Msg, Xk ∈ Keyv and H is the set of honest agents.

Fig. 4. Rules modeling the adversary abilities

4.2 Initial states

We impose a few requirements on the initial state of a device assuming they are
set up in a secure environment. These requirements seem realistic in practice and
allow us to start from states compatible with the security policy. In the initial
states, we assume that the attacker knows some public information like the set
of key levels and the set of agents.

Definition 1. A state S0 is said to be initial if it satisfies the following hypothe-
ses :

1. the set of terms known by the agents and the intruder are atomic : for all
a ∈ Agent ∪ {int}, Sa ⊆ Handle ∪ Key ∪ Nonce ∪ Agent ∪ T ∪ I ∪ S and
moreover T ∪ I ∪S ⊆ Sint.

2. all terms stored under handles are secret : for a ∈ Agent,
if hαa (N1, N2,m, T, i, S1, S2) ∈ Sa then for b ∈ Agent ∪ {int}, m /∈ Sb.

3. all key handles known by an agent point to an atomic element : for a ∈ Agent,
if hαa (N1, N2,m, T, i, S1, S2) ∈ Sa then m ∈ Key ∪ Nonce.

4. the owner of a key handle is in the set of legitimate agents for this handle.
More precisely, we impose that for all a ∈ Agent, if hαa (N1, N2,m, T, i, S1, S2) ∈
Sa then a ∈ S2.

5. any public key certificate under handle corresponds to a private key stored by
a rightful agent: ∀b ∈ Agent, if hb(N1, C(N1, N2, N3, Xk,pubΘ, i, S1, S2)) ∈
Sb, then there exists a ∈ S2 so that

hαa (N2, N1, inv(Xk),privΘ
′, i, S1, S2) ∈ Sa,

with (Θ,Θ′) ∈ {(EncVerif,DecSign), (CertVerif,CertSign)}.

16

6. the key handles form a coherent set: for all a, a′ ∈ Agent, hαa (N1, N2,m, T, i,
S1, S2) ∈ Sa and hα

′

a′ (N
′
1, N

′
2,m, T

′, i′, S′1, S
′
2) ∈ Sa′ we have N1 = N ′1, N2 =

N ′2, T = T ′, i = i′, S1 = S′1 and S2 = S′2.

We can now define the set of states for which we can prove a security property.

Definition 2. We say that a state S is accessible from an initial state S0 if
it is reachable by applying a finite number of times the rules of the set API,
INTRUDER and CONTROL to S0, i.e. if S0 ⇒∗API∪CONTROL∪INTRUDER S.

4.3 Security properties and sketch of proof

The security of the API should entail that given a state S, secret key values of
honest agents should not be known to the intruder. But we would also like to
ensure that these values are only used by rightful agents. Secret key values of
honest agents are messages m ∈ Msg for which there exists a handle of the form
hαa (., .,m, ., ., S1, S2) with a ∈ H and S1, S2 ⊆ H. As the set of legitimate users
of m is S2, the property that we want to prove is formalized as:

∀a ∈ H,∀m ∈ Msg,∀i ∈ I>0,∀α ∈ {r, g},∀S1, S2 ⊆ H,
S ` hαa (., .,m, ., i, S1, S2) ⇒ S 0 m and a ∈ S2 (Sec)

If this property is clearly something we want from a security API, it seems le-
gitimate to discuss whether we should require some other security results. Other
than confidentiality, security usually also comprises integrity or authenticity as-
pects. In our framework, this can translate into two different requirements. On
one hand, integrity of the attribute values amongst various handles owned by
honest agents pointing to the same key seems highly desirable. It can be formal-
ized as :

∀a ∈ H,∀b ∈ Agent,∀m ∈ Msg,

∀i, i′ ∈ I>0,∀α, α′ ∈ {r, g},∀S1, S2 ⊆ H,∀S′1, S′2 ⊆ Agent,

S ` hαa (N1, N2,m, T, i, S1, S2) ∧ S ` hαa (N
′
1, N

′
2,m, T

′, i′, S′1, S
′
2) ⇒

N1 = N ′1 ∧ N2 = N ′2 ∧ T = T ′ ∧ i = i′ ∧ S1 = S′1 ∧ S2 = S′2 (Intg)

On the other hand, since we consider an asymmetric cryptography setting,
an agent should be able to trust the value of an integrity handle he owns, on
condition it points to a public key certificate whose control sets S1 and S2 consist
of honest agents. More precisely, if S1, S2 contain only honest agents, then there
exists a private key handle associated to this certificate the attributes of which
are coherent with that of the certificate. This in turn is the meaning of the
following property :

∀a ∈ H,∀N1, N2, N3 ∈ Nonce,∀i ∈ I>0,∀S1, S2 ⊆ H with
S `∗ ha(N1, C(N1, N2, N3, Xk,pubΘ, i, S1, S2)) ⇒ ∃b ∈ S2 such that

S `∗ hαb (N2, N1, inv(Xk),privΘ
′, i, S1, S2). (Cert)

17

where (Θ,Θ′) ∈ {(EncVerif,DecSign), (CertVerif,CertSign)}.
We can now give the principal result of this paper, stating the security of our

API if it is correctly initialised.

Theorem 1 (Security of the API) Let S0 be an initial state and S be an
accessible state from S0. Then S satisfies the properties Sec, Intg and Cert.

Proof. We present a sketch of proof (details can be found in [9]). First we
consider a more powerful attacker with access to all values stored in compro-
mised hardware as well as to all messages m associated to handles of the form
hαa (., .,m, ., ., S1, S2) where S1, S2 (H even if a is honest. The classic adversary
can learn these terms anyway, and this extension ensures stability of intruder
knowledge when applying rules from INTRUDER ∪ CONTROL.

It yields a generalized deduction definition: we write that S `∗ t when
∪b∈Agent∪{int}Sb ∪ {m,N1, N2|hαa (N1, N2,m, ., ., S1, S2) ∈ S, S1 (H or S2 (
H, a ∈ Agent} ∪ {m,N1, N2|hαa (N1, N2,m, ., ., ., .) ∈ S, a /∈ H} ∪ {m|ha(.,m) ∈
S} ` t.

We then consider a stronger version of the property (Sec):

∀a ∈ H,∀m ∈ Msg,∀i ∈ I>0,∀α ∈ {r, g},∀S1, S2 ⊆ H,
S `∗ hαa (., .,m, ., i, S1, S2) ⇒ S 0∗ m, a ∈ S2 and m ∈ Key ∪ Nonce.

(Sec∗)

Intuitively, the property (Sec∗) means that the values stored in the handles of
honest agents are always of type Key or Nonce and are not deducible even with
the extended deduction rule `∗. It is clear that in order to prove the theorem, it
is enough to prove the same statement with the stronger version of the property
(Sec). In the technical report [9], we prove by induction that the property (Sec∗)
is invariant under the API rules. To prove this, we introduce four invariants : the
first, (SymEnc), states that the only well-formed symmetric encryption terms
that an adversary can build are either encrypted under a compromised key, or
results from an honest and well-formed request to the symmetric encryption
command:

∀ u, k ∈ Msg,S `∗ {|u|}k ⇒ S `∗ k
OR ∃S1, S2 ⊆ H , a ∈ S2 such that S `∗ h.a(., ., k, ., i, S1, S2) and u = u′1, . . . , u

′
p

with • either u′j = nhdl(mj)

• or u′j = Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2, (ij , Sj,1, Sj,2) ≺ (i, S1, S2)

and S `∗ h.a(Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2) (SymEnc)

The next invariant states that all asymmetric encryption terms deducible
from a reachable state have a payload deducible by the attacker or result from
an honest request to the asymmetric encryption command.

18

∀u, K ∈ Msg,S `∗ {u}K ⇒ S `∗ u
OR ∃Sc,1, Sc,2 ⊆ H, b ∈ Sc,2 such that

S `∗ hb(., C(., ., .,K,pubEncVerif, ic, Sc,1, Sc,2)) and u = u′1, . . . , u
′
p

with • either u′j = nhdl(mj)

• or u′j = Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2,

(ij , Sj,1, Sj,2) ≺ (i, Sc,1, Sc,2) and S `∗ h.b(Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2)

(AsymEnc)

We need a similar invariant for signed terms the adversary is able to obtain
(Sign). The invariant here is slightly more involved since we have to deal with
both the issue of certificates when generating asymmetric keys and asymmetric
wrapping commands:

∀ u, k ∈ Msg,S `∗ Σ(u, k)⇒ S `∗ k
OR ∃S′1, S′2 ⊆ H, e ∈ S′2 such that

S `∗ h.e(., ., k,privCertSign, i1, S′1, S′2)
and u = C(N4, N3, N2, Xk,pubΘ, i2, S1 ∪ {e}, S2 ∪ {b, e})
with S′1 ∪ S′2 ⊂ S1, e ∈ S′2, i2 < i1, Θ ∈ {EncVerif,CertSign}

OR ∃Sc,1, Sc,2 ⊆ H, b ∈ Sc,2 such that
S `∗ hb(., C(., ., .,K,pubEncVerif, ic, Sc,1, Sc,2)) and u = {u′1, . . . , u′p}K
with • either u′j = nhdl(mj)

• or u′j = Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2,

(ij , Sj,1, Sj,2) ≺ (i, Sc,1, Sc,2) and S `∗ h.b(Nj,1, Nj,2,mj , Tj , ij , Sj,1, Sj,2)

(Sign)

To conclude, we remark moreover that from its definition, an initial state
satisfies the properties (Sec∗), (Cert), (SymEnc), (AsymEnc), (Sign).

5 Experiments

We have used our API to implement some asymmetric key protocols based on
well-known examples from the Clark-Jacob corpus. Since we impose a secure
encryption and signature scheme, our versions of protocols are secure even when
the original is not. For example, our implementation of Needham-Schroeder pub-
lic key avoids Lowe’s attack because all messages are signed. Full details together
with a Prolog script for generating API commands from protocols are available
at http://www.lsv.ens-cachan.fr/~steel/genericapi/asym.

6 Conclusion

We have given the design for a key management API for cryptographic devices
that allows the use of asymmetric keys for managing keys, together with security

19

properties and proofs in the Dolev Yao model. This is the first such design with
security proofs as far as we are aware. In future work we will add more flexibility
to the API. In particular it should be easy to adapt the design to other security
orderings not necessarily based on agent identifiers.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. Mosses, and T. Ito, editors, Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics, volume
1872 of Lecture Notes in Computer Science, pages 3–22. Springer Berlin / Heidel-
berg, 2000.

2. M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the
3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’01), volume 2162 of LNCS, pages 220–234, Paris, France, 2001. Springer.

3. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS’10), pages 260–269, Chicago, Illinois,
USA, Oct. 2010. ACM Press.

4. C. Cachin and N. Chandran. A secure cryptographic token interface. In Com-
puter Security Foundations (CSF-22), pages 141–153, Long Island, New York, 2009.
IEEE Computer Society Press.

5. J. Clulow. The design and analysis of cryptographic APIs for security devices.
Master’s thesis, University of Natal, Durban, 2003.

6. J. Clulow. On the security of PKCS#11. In Proceedings of CHES 2003, pages
411–425, 2003.

7. V. Cortier and G. Steel. A generic security API for symmetric key management
on cryptographic devices. In M. Backes and P. Ning, editors, Computer Security
- ESORICS 2009, volume 5789 of Lecture Notes in Computer Science, pages 605–
620. Springer Berlin / Heidelberg, 2009.

8. V. Cortier, G. Steel, and C. Wiedling. Revoke and let live: A secure key revoca-
tion API for cryptographic devices. In 19th ACM Conference on Computer and
Communications Security (CCS’12), Raleigh, USA, October 2012. ACM.

9. M. Daubignard, D. Lubicz, and G. Steel. A secure key management interface with
asymmetric cryptography. Technical Report RR8274, INRIA, 2013. Available at
http://hal.inria.fr/hal-00805987.

10. D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–207, 1983.

11. S. Kremer, R. Künnemann, and G. Steel. Universally composable key-management.
IACR Cryptology ePrint Archive, 2012:189, 2012.

12. S. Kremer, G. Steel, and B. Warinschi. Security for key management inter-
faces. In Proceedings of the 24th IEEE Computer Security Foundations Symposium
(CSF’11), pages 266–280, Cernay-la-Ville, France, June 2011. IEEE Computer So-
ciety Press.

20

