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Abstract. In this paper, we describe a new broadcast encryption scheme for
stateless receivers. The main difference between our scheme and the classical
ones derived from the complete subtree paradigm is that the group of privileged
users is described by attributes. Actually, some real applications have been de-
scribed where the use of a more adaptable access structure brings more efficiency
and ease of deployment. On the other side, the decryption algorithm in so far
existing attribute-based encryption schemes adapted for broadcast applications
is time-consuming for the receiver, since it entails the computation of a large
number of pairings. This is a real drawback for broadcast applications where
most of the technological constraints are on the receiver side.
Our scheme can be viewed as a way to benefit at the same time from the
performance of decryption of the classical broadcast schemes and the manage-
ment easiness provided by the use of a more adaptable data structure based
on attributes. More precisely, our scheme allows one to select or revoke users
by sending ciphertexts of linear size with respect to the number of attributes,
which is in general far less than the number of users. We prove that our scheme
is fully collusion secure in the generic model of groups with pairing.

Keywords: Public-key broadcast encryption, Attribute based encryption, Generic
model of groups with pairing

1 Introduction

A broadcast encryption scheme [FN93] is used whenever an emitter wants to send
messages to several recipients using an unsecured channel. Such a scheme actually
allows the broadcaster to choose dynamically a subset of privileged users inside the
set of all possible recipients and to send a ciphertext, readable only by the privileged
users. This kind of schemes is helpful in numerous commercial applications such as the
broadcast of multimedia content or pay-per-view television.

Many schemes have been suggested to solve this problem regarding two main set-
tings. The first one deals with almost fixed sets of privileged users. In this case the
encryption is efficient but modifying the set of privileged users entails the sending of
a long message. The second setting is aimed at the management of very large or very
small sets of privileged users. Schemes designed for that purpose allow one to change
at no cost the set of privileged users but the size of the encryption grows linearly with
the size of the set of revoked users.

In this paper, we consider the real application where an emitter produces different
kinds of content for different categories of users. This is a natural problem to deal with
for a broadcaster which proposes to its customers several subscription packages, or for



different broadcasters using the same asymmetrical broadcast encryption scheme. In
this case, most of the time, the set of privileged users is very different from the set of
all users or the empty set. Moreover it is very possible that this set has to be changed
dramatically along with the type of the content. As the of privileged users can not be
considered as being particularly small or large, this situation is not covered by usual
broadcast encryption schemes.

Recently, a notion of attribute-based encryption has been introduced in [SW05].
This notion seems to address that kind of problem. In the paper [GPSW06], the au-
thors present a declination of these ideas with applications in “targeted” broadcast
encryption. In ciphertext-policy schemes, which is our concern here, each user is asso-
ciated with a set of attributes and its decryption key depends on this set. A ciphertext
contains an access policy based on these attributes: only users satisfying this policy may
obtain the plaintext, and even a collusion of other users can not obtain it. In broadcast
applications, the main drawback of this family of schemes is that the decryption may
require large computations which cannot be quickly achieved by low-cost decoders.

Our contribution In this paper, we propose a broadcast encryption scheme, with
attribute-based mechanisms: it allows the broadcaster to select or to revoke not only
single users, but groups of users defined by their attributes. This scheme can be seen as
an attribute-based encryption scheme, with efficient decryption and restriction of ac-
cess policy: the restriction of access policy (using AND and NOT functions) is enough
to provide broadcast encryption since the OR function can be simulated using concate-
nation, exactly like in the Subset-Cover framework.

The idea behind this scheme is the ability to compute a specific greatest common
divisor of polynomials. Each receiver is associated with a polynomial (with roots de-
pending on its attributes), and a ciphertext is associated with another polynomial (with
roots depending on required attributes and revoked attributes). A receiver in the access
policy defined by a ciphertext computes the greatest common divisor of its polynomial
and of the polynomial associated with the ciphertext: this divisor is the same for all
receivers in the access policy. A receiver not in this access policy would obtain a differ-
ent polynomial: this polynomial cannot be computed, or it cannot be used to decrypt
the ciphertext.

In this scheme, the size of the decryption key given to a receiver is linear in the
number of attributes associated with this receiver. The size of a ciphertext is linear
in the number of attributes used in the access policy. The public encryption key is
quite long: its size is linear in the total number of attributes used in the scheme.
This is not a real drawback for realistic situations where anyway the broadcaster must
have a database containing the list of users together with their attributes. Moreover,
a broadcaster which intends to use only a small set of attributes requires only an
encryption key with a size linear in the size of this small set.

This scheme has a new design, since it is not based on secret sharing like previous
attribute-based schemes. This design allows the decryption algorithm to use only a
fixed number (3) of pairing computations.

As a broadcast encryption scheme, it uses the subset-cover framework suggested
in [NNL01]. We prove the security of this scheme against full collusions in the generic
model of groups with pairings.

Another interesting feature in this scheme is that new decryption keys can be built
without any modification of previously distributed decryption keys: adding new decryp-
tion keys requires only to extend the public key to take new attributes into account.



1.1 Related work

Stateful broadcast schemes. The first broadcast schemes were based upon stateful
receivers, which means that the receivers have a memory that can store some infor-
mation about the past messages. Such receivers have the possibility to refresh their
decryption key using information given in broadcasted messages. This is the case of
“Logical Key hierarchy” (LKH) presented independently in [WGL98] and in [WHA99]:
users have assigned positions as leaves in a tree, and have keys corresponding to nodes
on the path from user’s leaf to the root. The key corresponding to the root is used to
encrypt messages to users. When users are revoked or when a new user joins, a rekey
occurs, using keys corresponding to internal nodes. These techniques have been later
improved in [CGI+99,CMN99,PST01].

These schemes are aimed at practical applications where the set of privileged users is
updated rarely and in a marginal way. The ciphertexts are very short and are computed
from a key known by all current users. In return, changing the set of privileged users
(add or exclude a user) is bandwidth-consuming and must be done on a per user basis:
each change entails the distribution of a new global key to privileged users. Moreover,
this can only be done if all users are on-line which is a strong limitation in some
applications. The frequent and important changes in the set of privileged users make
these schemes inappropriate for the previously mentioned applications.

Stateless broadcast schemes. A different kind of broadcast schemes have been
introduced later on: the goal is to avoid frequent rekeys. In [KRS99,GSW00], users
have different decryption keys, and each decryption key is known by a well-chosen
set of users. When the broadcaster wants to exclude a given set of users, it builds
ciphertexts corresponding to decryption keys that these specific users do not know.
Rekey occurs only after large permanent modifications of the privileged set of users.
The ciphertexts are longer than with the LKH schemes mentioned in the previous
paragraph.

Stateless receivers extend this last case: in [NNL01], the broadcaster can choose any
set of privileged users without any rekey, i.e. the receivers can keep the same decryption
keys during the whole life of the broadcast system. Theses schemes, called Complete
Subtree (CS) and Subset Difference (SD) are based on a binary tree structure, where
users are placed in the leaves. They have subsequently been improved in [HS02,GST04],
and an efficient extension to the public-key case based on hierarchical identity-based
encryption has been proposed in [DF02]. This extension has been confirmed in [BBG05]
with the first hierarchical identity-based encryption with constant-size ciphertexts.

The efficiency of these schemes are only proved when few users are revoked, but
the binary tree structure presented in [NNL01] and its following improvements may
be used to characterise groups of users by attributes: for example, the left subtrees of
the internal nodes at a given level may correspond to users with a given attribute, and
the right subtrees to users with this attribute missing. This seems doable, even if the
tree structure constrains the organization of the attributes (the binary tree must be
balanced to keep a good efficiency, so every attribute must concern about half of the
users). The following pictures (for the CS scheme) show that the selection of users with
a given attribute, or the revocation of users without this attribute, is efficient if the
attribute corresponds to a high level in the tree, but very inefficient when the attribute
is near the leafs.

As a consequence, the use of these schemes for selection or revocation of users
regarding to their attributes is not practical, since the size of ciphertexts may be linear
in the number of revoked users.
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Fig. 1. CS scheme: selection of the first attribute
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Fig. 2. CS scheme: selection of the last attribute

New public-key broadcast schemes with constant-size ciphertexts have been pro-
posed in [BGW05] (scheme 1) and in [DPP07] (scheme 2). In these schemes, a receiver
needs however the exact knowledge of the set of privileged users, which means the
transmission of an information with non-constant size, which is not mentioned in the
ciphertexts.

These schemes require moreover decryption keys of size linear in the number of
users (this is clearly stated in [DPP07]; in [BGW05], a receiver has a constant-size
private key, but needs the encryption key to perform a decryption). This storage may
be excessive for low-cost devices.

Broadcast scheme from HIBE with wildcards. Management of attributes can
be performed by the combination of the scheme given in [DF02] with a hierarchical
identity-based encryption scheme with wildcards, like presented in [ACD+06,BDNS06].
The resulting scheme would allow the selection of users with given attributes, i.e. build
ciphertexts addressed to intersections of groups. The revocation of all users with a fixed
attribute from the SD technique is however unclear, and its use is not efficient since
the size of the ciphertexts is not constant in the hierarchical identity based encryption
(see [BBG05]).

Attribute-based encryption. Attribute-based encryption has been suggested in
[SW05], and later developed in [GPSW06]. In a first version (later called key-policy
attribute-based encryption), the goal is to define access policies, and to allow a user to
obtain some information if the access policy associated with this user is valid for this
content. In this way, the decryption key given to a user depends on an access policy,
and the encryption of a content relies on attributes, which are used in the evaluation
of an access policy. Even a collusion of users with invalid access policies for a given
ciphertext should not be able to obtain the corresponding plaintext.



Later, in [BSW07], a new scheme is proposed, but with an inversion: the access
policy is defined with the content, and attributes are used to build decryption keys
given to users. These ciphertext-policy attribute-based encryption schemes have direct
applications for broadcast: the access policy defines a set of privileged users. With a
relevant distribution of attributes, any set of privileged users may be described by an
access policy.

In these schemes, an access policy is build using secret sharing techniques, like
Shamir’s one based on polynomials. An access policy is defined by a tree, where leaves
correspond to the presence of an attribute (the evaluation of a leaf is true if the corre-
sponding attribute is used) and internal nodes are threshold functions (in particular,
these nodes may be AND, or OR functions). With such structure, revocation is quite
difficult, since adding attributes can only provide a larger access to the content.

This problem is solved in [OSW07], where the access policy may be non-monotonic:
the use of NOT functions becomes possible. Combining results from [BSW07,OSW07]
gives rise to a ciphertext-policy attribute-based encryption which can be used for broad-
cast applications. The design of these schemes requires however a receiver to perform
a large number of pairing computations (linear in the number of attributes used in the
access policy). A low-cost receiver may not be able to compute so much pairings in
complex access policies.

Our scheme has a completely different design, and it allows only very specific access
policies. An access policy in this scheme is a disjunction (OR function, using the subset-
cover framework) of conjunctions (AND functions) of attributes and of negations of
attributes. Such access policy is more restrictive, but it is enough for practical broadcast
applications. In return, a receiver performs only 3 pairing computations whatever the
access policy is.

Dynamic broadcast encryption scheme. The notion of dynamic schemes has been
defined in [DPP07]. In such schemes, new users can be added without modification of
previously distributed decryption keys. The encryption key has only to be slightly
extended. This feature seems to be very useful in practical applications. The dynamic
schemes suggested in [DPP07] requires ciphertexts of size linear in the number of
revoked users. This feature is quite rare in broadcast schemes, and common in attribute-
based encryption schemes.

1.2 Organization

The paper is organized as follows. In section 2, we give a formal definition of groups
of users, and an associated definition of attribute-based broadcast encryption schemes.
In section 3, we describe our scheme and prove its correctness. In section 4, we prove
the security of our protocol.

2 Preliminaries

We give a formal definition of groups of users, and an associated definition of attribute-
based broadcast encryption schemes, deduced from the definition given in [BGW05].

2.1 Bilinear Maps

In the following definitions, we consider the symmetric setting of bilinear maps, like in
[Jou00,BF01]. Let G1 and G2 be two cyclic groups of prime order p. The group laws
in G1 and G2 are noted additively. Let g1 be a generator of G1. Let e : G1 ×G1 → G2

be a non-degenerate pairing:



– for all a, b ∈ (Z/pZ), e(a g1, b g1) = ab.e(g1, g1),
– let g2 = e(g1, g1), g2 is a generator of G2.

We make the assumption that the group laws in G1 and G2, and the bilinear map
e can be computed efficiently.

2.2 Groups of Users

In our applications, we have a large number of users, and a large number of groups (in
practice, we need for each user a group containing this single user). Each user belongs
to a few groups of users. We choose a description which takes advantage of this fact.

Let U be the set of all users. We represent an element of U by an integer in {1, . . . , n}.
A group of users is a subset G of U . From the inverse point of view, for a fixed number
l of groups of users, we can associate with a user u ∈ U the set of groups he belongs
to: B(u) = {i ∈ {1, . . . , l} / u ∈ Gi} ⊂ {1, . . . , l}.

2.3 Attribute-Based Broadcast Encryption Schemes

In this paragraph, we give a formal definition of an attribute-based broadcast encryp-
tion scheme. This model does not take into account the fact that the scheme could be
dynamic, like in [DPP07], even if our scheme seems dynamic. The following definitions
are just a slight adaptation of [BGW05,BSW07] to deal with group of users.

A public-key attribute-based broadcast encryption scheme with security parameter
λ is a tuple of three randomized algorithms:

– Setup(λ, n, (B(u))1≤u≤n): takes as input the security parameter λ, the number of
users n, and groups of users. It outputs an encryption key EK, and n decryption
keys (dku)1≤u≤n.

– Encrypt(EK,BN ,BR): takes as input the encryption key EK and two sets of groups
BN and BR. It outputs a header hdr and a message encryption key K ∈ K, where
K is a finite set of message encryption keys.

– Decrypt(dku, hdr): takes as input a decryption key given to a user u and a header
hdr. If the header hdr comes from an encryption using (BN ,BR) such that BN ⊂
B(u) and B(u) ∩ BR = ∅, then it outputs a message encryption key K ∈ K. In the
other case, it outputs ⊥.

In the encryption process, a message M is encrypted with a key K and the resulting
ciphertext C is sent together with the header hdr. Users in all groups mentioned in BN

(needed groups) and outside all groups mentioned in BR (revoked groups) can compute
K from the header hdr and their decryption key dku. Using the key K, a user recovers
M from C.

Note that in these definitions, the decryption key and the header are the only
elements that a user needs in the computation of the key K. The encryption key and
the knowledge of the set of privileged users is not necessary for decryption. In fact, in
our scheme, the knowledge of the set of privileged users is implicitly included in the
header, encoded in the attributes corresponding to the required and revoked groups.
The header corresponds then exactly to the cost of the broadcast scheme in terms of
transmission.

In this description, we do not allow an encryption for an arbitrary set of privi-
leged users, which is the usual definition of a broadcast encryption scheme. Any set
of privileged users can however be represented by an union of sets used in this “basic
encryption” for well-chosen groups of users (in fact, it is enough that each user belongs
to a group containing only this single user). Different basic encryptions are then used
to encrypt a common key, instead of a message. The full message can then be sent,
using this common key.



2.4 Security Model

We consider semantic security of attribute-based broadcast encryption schemes. The
adversary is assumed static, as in previous models: the only difference with standard
definitions is that the groups of users are given to the adversary before the beginning
of the game played by the challenger and the adversary A:

– The challenger and the adversary are given l fixed groups of users, defined by
(B(u))1≤u≤n.

– The adversary A outputs two sets of groups BN and BR corresponding to a con-
figuration it intends to attack.

– The challenger runs Setup(λ, n, (B(u))1≤u≤n) and gives to A the encryption key
EK, and the decryption keys dku corresponding to users that the adversary may
control, i.e. such that BN ∩ B(u) 6= BN or BR ∩ B(u) 6= ∅.

– The challenger runs Encrypt(EK,BN ,BR), and obtains a header hdr and a key
K ∈ K. Next, the challenger draws a random bit b, sets Kb = K, picks up randomly
K1−b in K, and gives (hdr, K0, K1) to the adversary A.

– The adversary A outputs a bit b′.

The adversary A wins the previous game when b′ = b. The advantage of A in this
game, with parameters (λ, n, (B(u))1≤u≤n), is:

Advind(λ, n, (B(u)),A) = |2 Pr[b′ = b] − 1|,

where this last probability is taken over the choices of b and all the random bits used
in the simulation of the Setup and Encrypt algorithms.

An attribute-based broadcast encryption scheme is semantically secure against full
static collusions if for all randomized polynomial-time (in λ) adversary A and for
all groups of users (B(u))1≤u≤n with at most l groups, Advind(λ, n, (B(u)),A) is a
negligible function in λ when n and l are at most polynomials in λ.

From such semantically secure schemes, we can build schemes secure in a stronger
model: the use of generic transformations, like the ones presented in [FO99a,FO99b,OP01]
has a negligible cost, and we obtain chosen-ciphertext security in the random oracle
model. This explains why our security model is limited to chosen-plaintexts attacks.

2.5 Well-Chosen Groups of Users

In real broadcast applications, one has often to deal with obvious groups of users,
because users are classified for instance by subscription package or subscription period.
These groups are easily managed by an attribute-based broadcast encryption scheme,
by simply using one attribute for each obvious group of users.

In some circumstances, it may happen that the group of privileged users does not
fit easily with a description based on these obvious groups of users. Even if rare, it is
preferable to be able to deal with such situations.

A solution consists in adding some extra attributes to the set of attributes cor-
responding to obvious groups. These new attributes describe a binary tree structure
over the users, and allows the same management of users as in the SD-scheme. More
precisely, we place users in the leaves of a binary tree, each node corresponds to a new
attribute and each user receives the attributes of its parent nodes. At most 2n new
attributes are added, and a user belongs to at most ⌈log2(n)⌉ + 1 new groups.

With this setting, there is an attribute for each user and this simple fact guarantees
that any subset of users can be described by attributes. Moreover, basic encryption



with privileged users corresponding to members of one group, excluding members of
another group give at least the same sets as in the SD-method presented in [NNL01].
The efficiency of the attribute-based broadcast encryption scheme is then at least as
good as in the SD-method, for any set of privileged users.

3 Construction

In this section, we describe a public-key attribute-based broadcast encryption scheme.

3.1 Setup Algorithm

From the security parameter λ, the first step of the setup consists in constructing a
tuple (G1, G2, g1, g2, e, p), where:

– p is a prime, the length of which is λ,
– G1 and G2 are two cyclic groups of prime order p,
– e is a non-degenerate pairing from G1 × G1 into G2,
– g1 is a generator of G1 and g2 = e(g1, g1).

Four elements (α, β, γ and δ) are randomly chosen in (Z/pZ)∗.
Each group of users Gi, mentioned in (B(u))1≤u≤n is then associated with an at-

tribute µi randomly chosen in (Z/pZ), such that all these attributes are pairwise dif-
ferent and different from α. Another attribute µ0 is randomly chosen with the same
constraints, corresponding to a virtual group containing no users.

The encryption key is:

EK =
(

g1 , β γ δ g1 , (µi)0≤i≤l ,
(

αi g1

)

0≤i≤l
,
(

αi γ g1

)

0≤i≤l
,
(

αi δ g1

)

0≤i≤l

)

.

For each user u ∈ U , su is randomly chosen in (Z/pZ)∗. Let Ω(u) be the set of
attributes corresponding to the groups he belongs to: Ω(u) = {µi ∈ (Z/pZ) / i ∈ B(u)}.
Let l(u) be the size of Ω(u), i.e. the number of groups containing u. Let Π(u) =
∏

µ∈Ω(u)(α − µ). The decryption key of u is:

dku =
(

Ω(u), (β + su) δ g1 , γ su Π(u) g1 ,
(

αi γ δ su g1

)

0≤i<l(u)

)

.

3.2 Encryption Algorithm

If BN ∩ BR 6= ∅, the encryption algorithm aborts and returns ⊥, since a user can not
be simultaneously inside and outside a given group of users.

Otherwise, let ΩN = {µi / i ∈ BN} and ΩR = {µi / i ∈ BR}. Let lN = |BN | be
the number of required groups and lR = |BR| be the number of revoked groups1. Let
ΠN =

∏

µ∈ΩN (α − µ), let ΠR =
∏

µ∈ΩR(α − µ) and let ΠNR = ΠNΠR. Let z be a
randomly chosen element of (Z/pZ)∗. The result of the encryption is:

hdr =
(

ΩN , ΩR, z ΠNR g1 , γ z ΠN g1 ,
(

αi δ z g1

)

0≤i<lR

)

,

K = β γ δ z ΠN g2.

All these elements can be computed by a sender, using only EK.

1 A slight modification occurs when BR is empty: in such case, the encryption considers that
the virtual group containing no users is revoked and then ΩR = {µ0}, lR = 1.



3.3 Decryption Algorithm

We consider here the decryption of a header hdr with a decryption key dku:

{

dku = (Ω(u), dk1, dk2, dk3,0, . . . , dk3,l(u)−1) ,

hdr = (ΩN , ΩR, hdr1, hdr2, hdr3,0, . . . , hdr3,lR−1) .

The receiver u is valid for this header if ΩN is contained in Ω(u) and if ΩR ∩Ω(u)
is empty. To decrypt the header, the valid receiver u uses first the extended Euclidean
algorithm over the polynomials

∏

µ∈(ΩN∪ΩR)(X − µ) and
∏

µ∈Ω(u)(X − µ). It obtains

two unitary polynomials, V (X) =
∑

0≤i<l(u) viX
i and W (X) =

∑

0≤i<lR wiX
i, in

(Z/pZ)[X ], such that:

V (X)
∏

µ∈(ΩN∪ΩR)

(X − µ) + W (X)
∏

µ∈Ω(u)

(X − µ) =
∏

µ∈ΩN

(X − µ).

From these polynomials, the receiver computes the key:

K(dku, hdr) = e(dk1, hdr2) − e





l(u)−1
∑

i=0

vi dk3,i , hdr1



 − e



dk2 ,

lR−1
∑

i=0

wi hdr3,i



 .

3.4 Proof of Correctness

If dku is the valid decryption key given to a user u, if hdr is a header built using the
encryption and if u is a valid user for hdr, then the decryption gives:

K(dku, hdr) = (β + su) γ δ z ΠN g2 − γ δ z su V (α)ΠNR g2 − γ δ z su W (α)Π(u) g2.

By definition of V and W , we have: V (α)ΠNR +W (α)Π(u) = ΠN . The computed
key is then exactly the key associated with the header in the encryption:

K(dku, hdr) = (β + su) γ δ z ΠN g2 − γ δ z su ΠN g2 = β γ δ z ΠN g2.

4 Security of the Protocol

The previous scheme can be proved in different ways. The usual strategy is first to
define some security assumption and to prove this assumption in the generic model of
groups with pairing. The reduction of the security of the scheme to this assumption
concludes the proof.

Following this strategy, we need a new security assumption which is an extension
of the decisional version of the General Diffie-Hellman Exponent (GDHE) problem,
precisely studied in the full version of [BBG05]. For the sake of simplicity, we prefer
here a more direct proof in the generic model of groups with pairing.

In this section, we define the decisional problem upon which our broadcast encryp-
tion mechanism is built. We assess its security in the framework of the generic model
of groups with pairing.



4.1 A Decisional Problem

Let G1 and G2 be two cyclic groups of prime order p and e be a non-degenerate pairing
from G1 ×G1 into G2. Let g1 be a generator of G1 and g2 = e(g1, g1). Let α, β, γ, δ, z
be elements of (Z/pZ)∗. For all i ∈ {0, . . . , l}, let µi be an element of (Z/pZ) different
from α and from µj where j < i.

The encryption key is:

EK =
(

g1 , β γ δ g1 , (µi)0≤i≤l ,
(

αi g1

)

0≤i≤l
,
(

αi γ g1

)

0≤i≤l
,
(

αi δ g1

)

0≤i≤l

)

.

For each user u ∈ U , Ω(u) is a subset of {µ1, . . . , µl}. Let l(u) = |Ω(u)| and let
Π(u) =

∏

µ∈Ω(u)(α − µ). The decryption key dku of the user u is:

dku =
(

Ω(u), (β + su) δ g1 , γ su Π(u) g1 ,
(

αi γ δ su g1

)

0≤i<l(u)

)

.

Let ΩN be a subset of {µ1, . . . , µl}, let ΩR be a non-empty subset of {µ0, . . . , µl}
such that ΩN ∩ΩR = ∅, let lR = |ΩR|. Let R be the set of revoked users for these sets:

R =
{

u ∈ U / Ω(u) ∩ ΩN 6= ΩN or Ω(u) ∩ ΩR 6= ∅
}

.

Let ΠN =
∏

µ∈ΩN (α − µ), let ΠR =
∏

µ∈ΩR(α − µ) and let ΠNR = ΠNΠR. The
header hdr and the key K are defined by:

hdr =
(

ΩN , ΩR, z ΠNR g1 , γ z ΠN g1 ,
(

αi δ z g1

)

0≤i<lR

)

,

K = β γ δ z ΠN g2.

Let b be a bit, let K1−b be an element of (Z/pZ)∗, let Kb = K. The decisional
problem is the following: guess b from the knowledge of EK, hdr, K0, K1 and all the
dku, where u ∈ R.

4.2 Interpretation in the Generic Model

In this section, we use the notations of the full version of [BBG05] in order to assess the
difficulty of the preceding decisional problem in the generic model of groups with pairing
model. This extends the classical model of generic groups presented in [Nec93,Sho97].

The first part of the proof consists in showing that there exists no formula giving
the key from the header, the encryption key, and the decryption keys corresponding to
revoked users. The second part details why an adversary can not distinguish the key
from a random element in the generic model of groups with pairing.

No Formula Let P be the ring of polynomials over the variables A, B, C, D, Z, {Su, u ∈
R}. Each of these variables represent an element picked at random in the decisional
problem and not explicitly unveiled: A is used for α, B for β, C for γ, D for δ, Z for
z and for all u ∈ U , Su is used for su.

Let D be the tuple of elements in P , corresponding to the exponents of elements in
G1 given to an adversary in the problem. The tuple D contains 1, B C D, Z ΠNR(A),
C Z ΠN(A) and the following polynomials:

• Ai , Ai C and Ai D for all i ∈ {0, . . . , l},
• (B + Su)D and C Su Πu(A), for all u ∈ R,

• Ai C D Su, for all u ∈ R and i ∈ {0, . . . , l(u) − 1},
• Ai D Z for all i ∈ {0, . . . , lR − 1},



where
ΠN (A) =

∏

µ∈ΩN

(A − µ), ΠR(A) =
∏

µ∈ΩR

(A − µ),

Πu(A) =
∏

µ∈Ω(u)

(A − µ), ΠNR(A) = ΠN (A)ΠR(A).

Lemma 1. Let M be the sub-Z-module of P generated by all products of elements of
D. If lR ≤ √

p/2 and for all u, l(u) ≤ √
p/2, the element B C D Z ΠN(A) is an element

of M with probability less than 1/
√

p, this last probability being taken over all possible
choices of the attributes µi in (Z/pZ).

Proof. This lemma is proved in appendix A.1.

Indistinguishability in the Generic Model In the generic model of groups with
pairing, we consider two injective maps ξ1 and ξ2 from (Z/pZ) into {0, 1}∗, also known
as encoding functions. The additive law on (Z/pZ) induces a group law over ξ1(Z/pZ)
and ξ2(Z/pZ), and the sets ξ1(Z/pZ) and ξ2(Z/pZ) together with these group laws are
respectively denoted by G1 and G2. Oracles corresponding to the group law and the
inverse law of each group are provided. A new law, corresponding to the pairing, is
also given as an oracle: for all x, y ∈ G1, e(x, y) = ξ2(ξ1

−1(x) × ξ1
−1(y)) ∈ G2. An

algorithm computing in this model has only access to these 5 oracles, and has no in-
formation about ξ1 and ξ2: its computations are based on queries to these oracles.

In our case, this model means that a challenger will use randomly chosen encoding
functions from (Z/pZ) into a set of p binary strings. The challenger randomly chooses
α, β, γ, δ, z, (µi)0≤i≤l, (su)u∈U following their constraints, and gives to the adversary:

– all values ξ1 (f(α, β, γ, δ, z, s1, . . . , sn)), where f is in the tuple D,
– ξ1(κ0) and ξ1(κ1), where κb = β γ δ zΠN and κ1−b is chosen randomly in (Z/pZ)∗.

The adversary makes queries to oracles and outputs its guess b′.

We use the following theorem, proposed and proved in the full version of [BBG05]
(theorem A.2):

Theorem 1. Let D be a subset of P of size k and suppose that for all f ∈ D,
deg(f) ≤ d. Let φ be an element of P such that φ is not is the sub-Z-module spanned
by the products of any two elements of D. We consider an adversary which receives the
set {ξ1 (f(α, β, γ, δ, z, s1, . . . , sn)) / f ∈ D}, ξ2(κ0) and ξ2(κ1), where κ1−b is chosen
randomly in (Z/pZ)∗ and κb = φ(α, β, γ, δ, z, s1, . . . , sn). All such adversary which is
allowed to issue at most q queries to the oracles can not guess the bit b with a probability
significantly better than 1/2 :

∣

∣

∣

∣

Pr[b′ = b] − 1

2

∣

∣

∣

∣

≤ max(2d, deg(φ)) (q + 2k + 2)2

2p
.

In our context, the set D contains at most nl + 3(n + l) + 7 elements. Moreover
these elements have degree less than l + 2 and the degree of φ = B C D R ΠN (A) is
less than l + 4. If φ is not in the span generated by the products of any two elements
of D, this lemma implies:

∣

∣

∣

∣

Pr[b′ = b] − 1

2

∣

∣

∣

∣

≤ (l + 2) (q + 2nl + 6n + 6l + 14)2

p
.

The results of lemma 1 and theorem 1 give the following theorem:



Theorem 2. In the generic model of groups with pairing, the advantage of an adver-
sary for the problem defined in 2.4 of the attribute-based broadcast encryption scheme
presented in 3, issuing at most q queries to the oracles is bounded by:

(l + 2) (q + 2nl + 6n + 6l + 14)2

p −√
p

,

where we recall that n is the number of users and l is the number of groups of users.

Proof. We only have to divide the maximum probability obtained by the theorem 1 by
the factor 1−1/

√
p which is a lower bound for the probability that the polynomial φ is

not in the sub-Z-module generated by products of elements of D which is a consequence
of the lemma 1. The condition on the degrees in the lemma 1 is verified, l being
polynomial in the security parameter λ whereas p is exponential in this same parameter.

The arguments that n, q and l are at most polynomials in the security parameter
λ, whereas p is exponential in λ, yield moreover that the given bound is a negligible
function of the security parameter. This concludes the proof of security of our attribute-
based broadcast encryption scheme.

5 Conclusion

In this paper, we have built a new public-key broadcast encryption scheme especially
interesting when dealing with groups of users defined by the conjunction and exclusion
of some attributes. We have described a practical application where none of previously
existing broadcast or attribute-based encryption schemes behave in a suitable manner.

We have given a generic way to use attributes in order to manage groups of users in
an efficient way. Finally, we have proved that our scheme is semantically secure against
full static collusions in the generic model of groups with pairing.

It would be interesting to investigate the possibility to improve the access structure
of our scheme by implementing efficiently the OR, or a threshold functionality. We also
believe that the underlying problem of our scheme, based upon the reconstruction of the
greatest common divisor of polynomials, may have some other interesting applications.
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A Proof of Lemma 1

A.1 Proof of Lemma 1

Let D′ be the set of elements of P which are products of pairs of elements of D. By
definition, D′ generates M.

Suppose that B C D Z ΠN (A) ∈ M. Then it is a linear combination with coefficients
in Z of elements of D′. Considering the elements of D′ as polynomials with respect to the
variable C, we see that B C D Z ΠN (A) can only be obtained as a linear combination
of terms linear in C. In the same way, it can only be obtained as a linear combination
of terms linear in the variables D and Z.

All elements in P are homogeneous of degree 0 or 1 in the variables B, {Su, u ∈
R}. Elements in D′ are then homogeneous of degree 0, 1 or 2 in B, {Su, u ∈ R},
and the polynomial B C D Z ΠN(A) can only be obtained as a linear combination of
homogeneous terms of degree 1.

These terms of D′ which are simultaneously linear in the variables C, D and Z,
and homogeneous of degree 1 in the variables B, {Su, u ∈ R} are listed in the four
following sets:

D′
1 =

{

B C D Z ΠNR(A)
}

,

D′
2 =

{

(B + Su)C D Z ΠN (A) / u ∈ R
}

,

D′
3 =

{

Ai C D Z Su Πu(A) / u ∈ R, i ∈ {0, . . . , lR − 1}
}

,

D′
4 =

{

Ai C D Z Su ΠNR(A) / u ∈ R, i ∈ {0, . . . , l(u) − 1}
}

.

The polynomial in D′
1 is not B C D Z ΠN(A), since ΩR 6= ∅. As B only appears in

polynomials in D′
1 and D′

2, at least one polynomial in D′
2 must be used in the linear

combination of elements of D′ which is equal to B C D Z ΠN(A).

We have to cancel linearly independent terms of the form Su C D Z ΠN (A) appear-
ing in the elements of D′

2 used in the linear combination. By considering only linear
terms in this specific Su in the sets D′

3 and D′
4, one can see that it is necessary to build

a relation of the form

ΠN (A) =
(

lR−1
∑

i=0

λi Ai
)

Πu(A) +
(

l(u)−1
∑

i=0

λ′
i Ai

)

ΠNR(A). (1)

By hypothesis, the user u is revoked. We have two cases:

– Either u is in a revoked group, and Ω(u) ∩ ΩR 6= ∅. We consider an attribute µ
in this intersection: the polynomial A − µ divides Πu(A) and ΠNR(A), and thus
it divides the right part of the equation. Since ΩN ∩ ΩR is empty, A − µ does not
divide ΠN (A), and the relation (1) can not exist.

– Either u is not in an imposed group, and ΩN is not included in Ω(u). So ΠN(A)

does not divide Πu(A). As ΠN (A) divides ΠNR(A), it divides (
∑lR−1

j=0 λ′
jA

j)Πu(A)
as well. It means that we have:

(

lR−1
∑

i=0

λiA
i
)

Πu(A) = ΠN (A) Q(A) πu(A),



where Q(A) is a strict divisor of
∑lR−1

i=0 λiA
i and πu(A) is divisor of Πu(A). So

equation (1) is equivalent to the following equation:

1 = Q(A)πu(A) +
(

l(u)−1
∑

i=0

λ′
iA

i
)

ΠR(A),

with deg(Q) < deg(ΠR) − 1. According to lemma 2 given in next section of this
appendix, such a relation does happen with probability less than 1/

√
p.

In one case the relation (1) does not exist, in the other case such a relation exists
with a probability less than 1/

√
p. So with probability greater than 1 − 1/

√
p there is

a contradiction with the hypothesis that B C D Z ΠN (A) is an element of M.

A.2 Lemma 2

Consider P1 and P2 two elements of the polynomial ring (Z/pZ)[X ] with deg P1 = d1

and deg P2 = d2. We suppose that P1 and P2 are relatively prime. By Bezout’s theorem,
there exists V1, V2 in (Z/pZ)[X ] unitary such that

V1P1 + V2P2 = 1, (2)

with deg V1 < d2 and deg V2 < d1. This last condition determines uniquely V1 and V2

satisfying (2). We are interested here in computing the probability that deg U1 < d2−1.
We have the following lemma:

Lemma 2. For all (d1, d2) ∈ (N∗)2, for all prime p such that p ≥ (d1 + d2)
2, the

probability taken over all the pairs of relatively prime unitary polynomials (P1, P2) in
(Z/pZ)[X ] with degree d1 and d2 that the pair (U1, U2) of unitary polynomials defined
uniquely by the relations (2) satisfy deg U1 < d2 − 1 is upper bounded by 1/

√
p.

Proof. For i = 1, 2, let Pi = Xdi +
∑di−1

i=0 X i be two unitary polynomials of (Z/pZ)[X ],
with degree d1 ∈ N

∗ and d2 ∈ N
∗. These two polynomials are relatively non primes if

and only if the Sylvester determinant of dimension d1 + d2 cancels:

det
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= 0.

By expending this determinant, one obtain a polynomials of degree d1 + d2 − 1
in the variables the d1 + d2 coefficients of P1 and P2 over (Z/pZ). By Lemma 1 of
[Sch80], the probability that this polynomial cancels taken over the values of all its
coefficients in (Z/pZ) is bounded by (d1 + d2 − 1)/p. As a consequence, there is less
than (p + 1− d1 − d2) pd1+d2−1 pairs of relatively prime unitary polynomials of degree
d1 and d2.



From now on, we suppose that P1 and P2 are relatively prime unitary polynomials.
Let (U1, U2) be defined by the relation (2), we suppose that deg U1 < d2 − 1. We have
immediately that deg U2 < d1 − 1. The relation (2) with these degree conditions in the
(Z/pZ) vector space (Z/pZ)[X ] implies that the following family is non free

(

1, {P1(X)Xk / k ∈ {0, . . . , d2 − 2}}, {P2(X)Xk / k ∈ {0, . . . d1 − 2}}
)

.

This property is captured by the cancellation of the following determinant of di-
mension d1 + d2 − 1 depending of the coefficients of P1 and P2:
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Expending this determinant, one obtains a polynomial of degree d1 + d2 − 3 in the
d1 + d2 coefficients of P1 and P2 over (Z/pZ). By using again Lemma 1 of [Sch80], the
probability taken over all values of its coefficients in (Z/pZ) that this polynomial cancels
is bounded by (d1+d2−3)/p. As a consequence, there exist at most (d1+d2−3) pd1+d2−1

pairs of relatively prime unitary polynomials of degree d1 and d2 such that the Bezout’s
equation returns a unitary polynomials U1 of degree strictly less than d2 − 1.

We just have to compute the quotient of the size of the two aforementioned set in
order to get the probability that a pair of relatively prime unitary polynomials verify
a Bezout’s equation (2) with deg(U1) < d2 − 1. If d1 + d2 ≤ √

p, this probability is
bounded by:

d1 + d2 − 3

p + 1 − d1 − d2
≤ 1√

p
.


