
A SAGE IMPLEMENTATION OF DRINFELD’S
ARGUMENTS, AND SOME VARIATIONS

by

David Bourqui & Julien Sebag

Let us recall the following theorem, due to to M. Grinberg and D. Kazhdan in case
the base field is of characteristic 0 and to V. Drinfeld in general (see [5, 4] and also
[1]).

Theorem 0.1. — Let k be a field. Let V be a k-variety, with no connected component
isomorphic to Spec(k). Let γ ∈ L∞(V)(k) be a rational point of the associated arc
scheme, not contained in L∞(Vsing). If (L∞(V))γ denotes the formal neighborhood
of the k-scheme L∞(V) at the point γ, there exists an affine k-scheme S of finite
type, with s ∈ S(k), and an isomorphism of formal k-schemes:

L∞(V)γ ∼= Ss⊗̂kk[[(Ti)i∈N]]. (1)

1. A basic SAGE code in the case of affine plane curves

In [1], we show that it transpires from a detailed analysis of Drinfeld’s arguments
that they provide an explicit procedure for computing a pair (S, s) realizing isomor-
phism (1), once one has chosen an embedding of an affine neighborood of γ(0) into an
explicitely presented complete intersection and once one knows explicitely a suitable
truncation of the arc γ.

In this section, we illustrate this by providing a SAGE code ([3]) which computes
a suitable presentation of a pointed affine k-scheme (S, s) realizing isomorphism (1)
in case V is an affine plane curve defined by a polynomial F ∈ k[X,Y]. In fact, we
shall implement a slightly modified version of the algorithm suggested by Drinfeld’s
arguments which is somewhat better suited for effective computation.

More precisely, using the same notations as in section 4 of [1], let us write

x̃(T) = x̃1(T)T d + x̃0(T)

2000 Mathematics Subject Classification. — 14E18,14B05.
Key words and phrases. — Arc scheme, curve singularity.

2 DAVID BOURQUI & JULIEN SEBAG

where x̃1(T), x̃0(T) ∈ (k[T]≤d−1)N . Now for any test-ring A we consider the set B′(A)
whose elements are of the form

(zA(T), x̃0,A(T), x̃1,A(T), ỹA(T), qA(T))
in the set A[[T]]N × A[T]N≤d−1 × A[T]N≤d−1 × A[T]≤d−1 × W (A, d) and satisfy the
relations:

zA(T) = z(T) mod MA[[T]];
x̃0,A(T) = x̃1(T) mod MA[T]≤d−1;
x̃1,A(T) = x̃0(T) mod MA[T]≤d−1;
ỹA(T) = y(T) mod 〈T d,MA〉;
qA(T) divides (∂Y F)(x̃0,A(T), ỹA(T));
qA(T)2 divides
qA(T)

(∑
1≤i≤N x̃1,A(T)(i)(∂Xi

F)(x̃0,A(T), ỹA(T))
)

+ F (x̃0,A(T), ỹA(T)),

where x̃1,A(T)(i) is the i-th component of x̃1,A(T). Using Taylor’s formula, it is easy
to see that the map which associates with

(zA(T), x̃1,A(T), x̃0,A(T), ỹA(T), qA(T))
the element

(zA(T), qA(T) x̃1,A(T) + x̃0,A(T), ỹA(T), qA(T))
is a natural bijection B′(A)→ B(A). The conditions defining B′(A) have the compu-
tational advantage to depend only linearly on x̃1,A(T), that is to say, on the “higher
order coefficient” of x̃A(T). Let us emphasize that even with this modification the
algorithm c does not seem very efficient. In the case of the affine cusp X3 = Y 2,
the computation is very fast, even over the rational field. Other cases, including the
plane curve given by X5 = Y 3, take much more time, even over finite fields, and by
increasing the multiplicity, things turn even worse. For example, on our computer and
over k = F7, the computation took less than 0.1 second for the plane curve defined
by X3 = Y 2 and approximatively 40 minutes with X5 = Y 2. With X4 = Y 3, the
computation is not finished after 12 hours.

Here is the SAGE code. The arguments are, still using the same notations as
before, the polynomial F , the contact order d, and the truncated Puiseux expansions
x̃0(T), x̃1(T) and y(T) mod T d, denoted in the code respectively by F, cont_ord
puiseux_X_0, puiseux_X_1 and puiseux_Y. The output is the ideal of relations I
defining the k-scheme S.
An implementation of a slightly modified version
of Drinfeld’s algorithm for plane curves

field characterisic

p = 7
field = GF(p)
field = QQ

R.<X,Y,T>=field[]

A SAGE IMPLEMENTATION OF DRINFELD’S ARGUMENTS, AND SOME VARIATIONS 3

F = X^3-Y^2
cont_ord = 3
puiseux_X_0 = T^2
puiseux_X_1 = 0
puiseux_Y = 0

variables = [’x%i’ % i for i in [0..cont_ord-1]]
variables = variables + [’xx%i’ % i for i in [0..cont_ord-1]]
variables = variables + [’y%i’ % i for i in [0..cont_ord-1]]
variables = variables + [’q%i’ % i for i in [0..cont_ord-1]]
R1 = PolynomialRing(field,variables)
variables = variables + [’T’,’u’,’X’,’Y’]
R2 = PolynomialRing(field,variables)
R2.inject_variables()
F=F.substitute({R.0:X})
puiseux_X_0=puiseux_X_0.substitute({R.2:T})
puiseux_X_1=puiseux_X_1.substitute({R.2:T})
puiseux_Y=puiseux_Y.substitute({R.2:T})

x=puiseux_X_0+sum([R2.gen(i)*T^i for i in [0..cont_ord-1]])
xx=puiseux_X_1+sum([R2.gen(i+cont_ord)*T^i for i in [0..cont_ord-1]])
y=puiseux_Y+sum([R2.gen(i+2*cont_ord)*T^i for i in [0..cont_ord-1]])
q=T^(cont_ord)+sum([R2.gen(i+3*cont_ord)*T^i for i in [0..cont_ord-1]])

Fxy=F.subs(X=x,Y=y)
div_deg=Fxy.degree(T)-cont_ord

the following new variables will be used
when dealing with the condition "q(T) divides F(x(T),y(T))"

variables = variables + [’p%i’ % i for i in [0..div_deg]]
R3 = PolynomialRing(field,variables)
R3.inject_variables()
x=x.substitute({R2.0:x0})
xx=xx.substitute({R2.gen(cont_ord):xx0})
y=y.substitute({R2.gen(2*cont_ord):y0})
q=q.substitute({R2.gen(3*cont_ord):q0})
F=F.substitute({R2.gen(4*cont_ord+2):X})
Fxy=F.subs(X=x,Y=y)
dXF = F.derivative(X)
dYF = F.derivative(Y)
dYFxy=dYF.subs(X=x,Y=y)

4 DAVID BOURQUI & JULIEN SEBAG

dXFxy=dXF.subs(X=x,Y=y)

Computation of the ideal defined by the conditions
q(T) divides (\partial_Y F)(x(T),y(T))
and
q(T) divise F(x(T),y(T))
and
q(T) divise xx(T)*(\partial_X F)(x(T),y(T))+F(x(T),y(T))/q(T)

First step:
q(T) divides (\partial_Y F)(x(T),y(T))

N = q.degree(T)
qq = T^N-q
rem = dYFxy
while rem.degree(T)>N-1:
L1 = [rem.coefficient(T^n)*T^(n-N)*u for n in range(N, rem.degree(T)+1)]
L2 = [rem.coefficient(T^n)*T^n for n in range(0, N)]
L2[0] = rem.substitute({T:0})
rem = sum(L1)+sum(L2)
rem = rem.substitute({u:qq})
L=[rem.coefficient(T^n) for n in range(0, rem.degree(T)+1)]
L[0] = rem.substitute({T:0})
I=R1.ideal(L)

Second step:
q(T) divides F(x(T),y(T))
and computation of the quotient

pp=sum([R3.gen(i+4*cont_ord+4)*T^i for i in [0..div_deg]])
h = expand (Fxy-pp*q)
L = [h.coefficient(T^n) for n in range (0,h.degree(T)+1)]
L[0] = h.substitute({T:0})

one eliminates the p_i

ppp = [0 for n in range (0,div_deg+1)]
for i in [div_deg..0, step=-1]:

numer = -L[h.degree(T)+i-div_deg].substitute({R3.gen(i+4*cont_ord+4):0})
denom = L[h.degree(T)+i-div_deg].coefficient(R3.gen(i+4*cont_ord+4))
ppp[i] = numer/denom
L = [L[n].substitute({R3.gen(i+4*cont_ord+4):ppp[i]})
\ for n in range(0, h.degree(T)+1)]

I=I+R1.ideal(L)

A SAGE IMPLEMENTATION OF DRINFELD’S ARGUMENTS, AND SOME VARIATIONS 5

computation of the quotient F(x(T),y(T))/q(T)

quotient = sum([ppp[i]*T^i for i in range(0,div_deg+1)])

Third step:
q(T) divides xx(T)*dF/dx(x(T),y(T))+F(x(T),y-T))/q(T)

q=T^(cont_ord)+sum([R3.gen(i+3*cont_ord)*T^i for i in [0..cont_ord-1]])
N = q.degree(T)
qq = T^N-q
rem = xx*dXFxy+quotient
while rem.degree(T)>N-1:
L1 = [rem.coefficient(T^n)*T^(n-N)*u for n in range(N, rem.degree(T)+1)]

L2 = [rem.coefficient(T^n)*T^n for n in range(0, N)]
L2[0] = rem.substitute({T:0})
rem = sum(L1)+sum(L2)
rem = rem.substitute({u:qq})
L=[rem.coefficient(T^n) for n in range(0, rem.degree(T)+1)]
L[0] = rem.substitute({T:0})
I=I+R1.ideal(L)

2. An alternative and more efficient code for the generalized cusps

In this section we present an alternative code in the case of the curve C = {XN =
YM} and of the arc γ(T) = (TµM , TµN) where the integers N > M ≥ 2 are coprime
integers. This code is based on results of [2]. Its computational efficiency is much
better than the code presented in the previous section. Moreover, in case µ = 1, i.e.
for primitive arcs it allows an explicit computation of the nilpotency index mγ(C)
(see op. cit. for more details). Using this code, on our computer and over k = F7,
the computation took less than 0.4 seconds for the curve singularities X5 = Y 2 and
X4 = Y 3 (compare with the values obtained with the previous code)

The arguments are the integers M and N, and the multiplicity mu. The output is the
ideal of relations I1=I2=I defining the affine k-scheme S. The ideals I1 and I2 are
produced by two differents methods but coincides. The first method, producing I1, is
less efficient but has the advantage of imposing less restriction on the characteristic.

In case mu=1, the nilpotency index mγ(C) turns out to be equal to the smallest
integer n such that (

√
I)n ⊂ I, which is computable using SAGE or an other suitable

computer algebra system.
An implementation of an
alternative to Drinfeld’s algorithm
for generalized cusps

field characterisic

6 DAVID BOURQUI & JULIEN SEBAG

p=23
field = GF(p)
field = QQ

N = 5
M = 4
mu = 1

###
First method (p must be greater than M)
###

h = expand(y^M-x^N)
L = [h.coefficient(T^i) for i in range(0, mu*N*M)]
L[0] = h.substitute({T:0})

one eliminates the y_i in L

L_elim=L

for i in [mu*N-2..0, step=-1]:
numer = L_elim[mu*N*M-mu*N+i].substitute({R.gen(i):0})
denom = L_elim[mu*N*M-mu*N+i].coefficient(R.gen(i))
expr = -numer/denom
L_elim = [L_elim[n].substitute({R.gen(i):expr}) for n in range(0, mu*N*M)]

R1 = PolynomialRing(field,[’x%i’ % i for i in [0..mu*M-2]],order=’invlex’)

I1=R1.ideal(L_elim)

###
Second method (p must be greater than mu*M*N)
###

g = expand(M*diff(y,T)*x-N*diff(x,T)*y)
K = [g.coefficient(T^i) for i in range(0, mu*(N+M)-1)]
K[0] = g.substitute({T:0})

one eliminates the y_i in K

K_elim=K
for i in [mu*N-2..0, step=-1]:

numer = K_elim[mu*M-1+i].substitute({R.gen(i):0})

A SAGE IMPLEMENTATION OF DRINFELD’S ARGUMENTS, AND SOME VARIATIONS 7

denom = K_elim[mu*M-1+i].coefficient(R.gen(i))
expr = -numer/denom
K_elim = [K_elim[n].substitute({R.gen(i):expr}) for n in range(0, mu*(N+M)-1)]

I2=R1.ideal(K_elim)

References
[1] D. Bourqui and Julien Sebag, Drinfeld-Grinberg-Kazhdan’s theorem and singularity the-

ory, preprint 2015.
[2] , Nilpotency in arc schemes of plane singular curves, preprint 2015.
[3] The Sage Developers, Sage Mathematics Software (Version 6.9), 2015,

http://www.sagemath.org.
[4] Vladimir Drinfled, On the Grinberg-Kazhdan formal arc theorem, preprint.
[5] M. Grinberg and D. Kazhdan, Versal deformations of formal arcs, Geom. Funct. Anal.

10 (2000), no. 3, 543–555.

David Bourqui, Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Université
de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France)
E-mail : david.bourqui@univ-rennes1.fr

Julien Sebag, Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Université
de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France)
E-mail : julien.sebag@univ-rennes1.fr

