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From now on, we assume that :
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ω−1
X is very ample

i : X ↪→ Pn
k is an anticanonical embedding (i∗(O(1)) = ω−1

X )

In the arithmetic setting : X (Q) is Zariski dense

In both geometric settings : X (k(C)) is Zariski dense

Batyrev-Manin’s program aims to precise (and solve !) the
counting problem in the arithmetic and finite geometric settings.
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(d) ∼
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CP-B-T d log(d)rk(NS(X ))−1 ?

CP-B-T : a constant depending on X (Peyre, Batyrev-Tschinkel)

In fact, we must often restrict the counting to a strict open
Zariski subset of X in order to avoid accumulating subvarieties
(e.g. exceptional divisors on del Pezzo surfaces).
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An empirical formula in the arithmetic setting

nHi
(d) ∼

d→∞
CP-B-T d log(d)rk(NS(X ))−1 ?

Holds for large classes of varieties equipped with an algebraic
group action, some complete intersections, some del Pezzo
surfaces (work of Batyrev, Browning, de la Bretèche,
Chambert-Loir, Manin, Peyre, Salberger, Tschinkel and many
others, cf. Y. Tschinkel’s lecture).

Still open for smooth cubic surfaces.

Not true in general (counter-example by Batyrev and
Tschinkel).
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Chambert-Loir, Manin, Peyre, Salberger, Tschinkel and many
others, cf. Y. Tschinkel’s lecture).

Still open for smooth cubic surfaces.

Not true in general (counter-example by Batyrev and
Tschinkel).



Three counting problems
The motivic height zeta function

The main term of the motivic height zeta function
The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin’s program
A rough geometric analog of B-M’s formula

An empirical formula in the finite geometric case

lim
d→+∞

nhi
(d)

(#k)d d rk(NS(X ))−1
= CP-B-T ?
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flag varieties (Peyre).

Batyrev and Tschinkel’s counterexample still works in this
setting.
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Heuristic (cf. e.g. Lang-Weil estimates)

#V (k) ≈ ρ(V ) (#k)dim(V ) .

This leads to :

An analog of B-M’s empirical formula in the geometric setting

1 dim(Mork(C,X , i , d))− d bounded ?

2

lim
d→+∞

log ρ(Mork(C,X , i , d))

log(d)
= rk(NS(X ))− 1 ?
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Classical height zeta functions

In the arithmetic setting

ζX ,Hi
(s) =

∑
x∈X (Q)

Hi (x)−s , s ∈ C

In the finite geometric setting (k = Fq)

ζX ,hi
(s) = ZX ,hi

(q−s), s ∈ C,

where ZX ,hi
(T ) =

∑
x∈X (k(C))

T hi (x) ∈ Z[[T ]]

analytical behaviour
of the height ZF

tauberian statements
=⇒ asymptotics for

points of bounded height
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The Grothendieck ring of varieties

Notation : K0(Vark)

Generators : [V ], V a k-variety

Relations :

[V ] = [V ′] if V
∼→ V ′,

[V ] = [F ] + [V \ F ] if F ↪→ V is a closed immersion

Ring structure : [V ].[V ′]
def
= [V × V ′]
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The Grothendieck ring of motives

Notation : K0(ChMotk)

Generators : [M], M a Chow motive over k

Relations :

[M] = [M ′] if M
∼→ M ′,

[M] = [M ′] + [M ′′] if M = M ′ ⊕M ′′

Ring structure : [M].[M ′]
def
= [M ⊗M ′].
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If k is finite, there is a ring morphism

χ#k
: K0(Vark) −→ Z

such that for every k-variety V

χ#k
([V ]) = #V (k).
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Theorem (Gillet-Soulé, Guillen-Navarro Aznar, Bittner)

If char(k) = 0, there is a unique ring morphism

χmot : K0(Vark) −→ K0(ChMotk)

such that for V smooth projective

χmot([V ]) = the class of the Chow motive of V

For V a k-variety, let us denote χmot([V ]) by [V ].
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Definition of the motivic height zeta funcion

Zmot
X ,hi

(T ) =
∑
d≥0

[
M̃ork(C,X , i , d)

]
T d

∈


K0(Vark)[[T ]]
or
K0(ChMotk)[[T ]] if char(k) = 0

where

M̃ork(C,X , i , d)
def
= Mork(C,X , i , d) \Mork(C,X , i , d − 1)

parametrizes the morphisms of i-degree d .
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The motivic height ZF specializes to the classical height ZF

Zmot
X ,hi

(T ) =
∑
d≥0

[
M̃ork(C,X , i , d)

]
T d ∈ K0(Vark)[[T ]]

If k is finite,

χ#k

(
Zmot

X ,hi
(T )

)
=

∑
d≥0

#M̃ork(C,X , i , d)(k)T d ∈ Z[[T ]]

=
∑
d≥0

#{x ∈ X (k(C)), hi (x) = d}T d

= ZX ,hi
(T ).
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3. The “main term” of the motivic height
zeta function
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The main term of the classical height zeta function
(arithmetic or finite geometric setting)

Standard tauberian statements lead to

An analytic version of Batyrev-Manin’s empirical formula

lim
s→1

(s − 1)rk(NS(X ))ζHi
(s) =

CP-B-T

(rk(NS(X ))− 1)!
?
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Different versions of the Tamagawa number

We are now going to :

1 describe (the interesting part of) the constant CP-B-T

2 define a motivic analog of it

3 study a motivic analog of BM’s analytic formula
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From now on, we assume that :

1 In the arithmetic setting, X has a smooth model X over Z.

2 X is split (the action of the absolute Galois group on NS(X )
is trivial).

Up to “easy” terms not discussed here, CP-B-T is the Tamagawa
number τ(X ) defined by :
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The Tamagawa number of X

In the arithmetic setting :

τ(X ) =
∏

p prime

(1− p−1)rk(NS(X )) #X(Fp)

pdim(X )
.

In the finite geometric setting

τ(X ) =
∏

x closed point of C

(1−#κ−1
x )rk(NS(X )) #X (κx)

(#κx)dim(X )
.

In the geometric setting

τ(X ) = ??

We need a notion of “eulerian motivic product”.
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Motivic eulerian product

Notation :

M =


K0(Vark)
or
χmot (K0(Vark)) ⊂ K0(ChMotk) if char(k) = 0

L =
[
A1

]
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Kapranov zeta function

Definition (Kapranov)

V a k-variety

ZV ,Kap(T ) =
∑
n≥0

[Symn(X )] T n ∈ M[[T ]]

If k is finite,

χ#k
(ZV ,Kap(T )) = the usual Hasse-Weil zeta function ZV ,HW(T ).
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Hasse-Weil zeta functions

If k = Fq, recall that

ZV ,HW(T ) = exp

∑
d≥1

#V
(
Fqd

) T d

d

 =
∏
d≥1

(
1− T d

)−#V0,d

where

V0,d = {irreducibles rational zero-cycles of degree d on V }
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For d ≥ 1, define Φd(V ) ∈ M by

∑
d≥1

Φd(V ) T d = T
d

dT
log ZV,Kap(T )

and Ψd(X ) ∈ M⊗Q by

Φd(V ) =
∑
e|d

e Ψe(V ).

Examples : Φd(A1) = Ld , Ψ1(V ) = [V ]
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We have (in M⊗Q[[T ]])

ZV ,Kap(T ) = exp

∑
d≥1

Φd(V )
T d

d

 =
∏
d≥1

(
1− T d

)−Ψd (V )

where, for M ∈ M⊗Q and P ∈ M⊗Q[[T ]]

(1 + T P(T ))M

stands for

1 + M T P(T ) +
M (M − 1)

2
T 2 P(T )2 + . . . ∈ M⊗Q[[T ]]
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The relation

ZV ,Kap(T ) =
∏
d≥1

(
1− T d

)−Ψd (V )

may be viewed as a decomposition into a eulerian motivic product.
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A motivic Tamagawa number

Recall that in the finite geometric setting (k = Fq)

τ(X ) =
∏

x∈C(0)

(1−#κ−1
x )rk(NS(X )) #X (κx)

(#κx)dim(X )
.

=
∏
d≥1

[
(1− q−d)rk(NS(X )) #X (Fqd )

qd dim(X )

]#C0,d

which in turn suggests to define in the geometric setting

τmot(X ) =
∏
d≥1

(
(1− L−d)rk(NS(X )) Φd(X )

Ld dim(X )

)Ψd (C)
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4. The motivic Tamagawa number
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τmot(X ) =
∏
d≥1

(
(1− L−d)rk(NS(X )) Φd(X )

Ld dim(X )

)Ψd (C)

Two questions :

1 Is it possible to give a meaning to the expression above, i.e. is
τmot(X ) well defined ?

2 Does the geometric analog of B-M’s analytic empirical formula[
(1− LT )rk(NS(X )) Zmot

hi ,X
(T )

]
(L−1) = τmot(X )

hold ?



Three counting problems
The motivic height zeta function

The main term of the motivic height zeta function
The motivic Tamagawa number

Justification of the definition
A motivic analog of Batyrev-Manin’s analytic formula
The case of split toric varieties : motivic counting

τmot(X ) =
∏
d≥1

(
(1− L−d)rk(NS(X )) Φd(X )

Ld dim(X )

)Ψd (C)

Two questions :

1 Is it possible to give a meaning to the expression above, i.e. is
τmot(X ) well defined ?

2 Does the geometric analog of B-M’s analytic empirical formula[
(1− LT )rk(NS(X )) Zmot

hi ,X
(T )

]
(L−1) = τmot(X )

hold ?



Three counting problems
The motivic height zeta function

The main term of the motivic height zeta function
The motivic Tamagawa number

Justification of the definition
A motivic analog of Batyrev-Manin’s analytic formula
The case of split toric varieties : motivic counting

First question : is τmot(X ) well defined ?

Is it possible to give a meaning to the expression

∏
d≥1

(
(1− L−d)rk(NS(X )) Φd(X )

Ld dim(X )

)Ψd (C)

?

We need to complete M with respect to a filtration : for example
the one introduced by Kontsevich for the theory of motivic
integration.
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Kontsevich’s topology

Notations :

Recall L = [A1
k ]

Mloc =


K0(Vark)

[
L−1

]
or
χmot

(
K0(Vark

[
L−1

]
)
)
⊂ K0(ChMotk) if char(k) = 0
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Kontsevich’s topology

For d ∈ Z,

FdMloc = 〈 L−i [V ], V a variety , i − dim(V ) ≥ d 〉

and
M̂ = lim

←−
Mloc/F

dMloc.

Example :
lim

d→+∞
L−d = 0
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The convergence of τmot(X )

When k = Fq, the convergence of the eulerian product defining
τ(X ) follows from the asymptotic (consequence of Weil-Deligne)

#X (Fqd ) = qd dimX +rk(NS(X )) qd (dim X−1)+ O
d→∞

(
qd (dim X− 3

2
)
)

Question

Does the motivic analog

Φd(X )− Ld dim(X ) − rk(NS(X ))Ld (dim(X )−1) ∈ Fd( 3
2
−dimX )M,

hold for d >> 0 ?

Affirmative answer ⇒ τmot(X ) is well defined in M̂⊗Q.



Three counting problems
The motivic height zeta function

The main term of the motivic height zeta function
The motivic Tamagawa number

Justification of the definition
A motivic analog of Batyrev-Manin’s analytic formula
The case of split toric varieties : motivic counting

The convergence of τmot(X )

When k = Fq, the convergence of the eulerian product defining
τ(X ) follows from the asymptotic (consequence of Weil-Deligne)
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d→∞

(
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2
)
)
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Φd(X )− Ld dim(X ) − rk(NS(X ))Ld (dim(X )−1) ∈ Fd( 3
2
−dimX )M,

hold for d >> 0 ?

Affirmative answer ⇒ τmot(X ) is well defined in M̂⊗Q.
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Mloc/F
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Proof : Observe that the MacDonald formula

∑
d≥0

Poinc
([

Symd X
])

T d =

∏
i odd

(1 + t i T )bi (X )∏
i even

(1− t i T )bi (X )

allows to compute explicitely Poinc(Φd(X )), and use the fact that
under our assumptions

b2 dim X−1(X ) = 0

and
b2 dim X−2(X ) = rk(NS(X )).
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Second question : does the motivic analog of B-M’s
analytic empirical formula hold ?

Does the series

(1− LT )rk(NS(X )) Zmot
X ,hi

(T )

converge in M̂⊗Q (or M̂Poinc ⊗Q) at T = L−1 to τmot(X ) ?
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M̂Poinc ⊗Q) at T = L−1 to τmot(X ) ?

Theorem (announced by Peyre)

This holds for a split flag variety.

The proof relies on results by Kapranov on motivic Eisenstein
series.

In this case, Zmot
X ,hi

(T ) is rational.

In this case, the notion of eulerian motivic product is not
really needed to define τmot(X ).
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Theorem

If char(k) = 0 and C = P1 this holds for split toric varieties.

Ingredients of the proof :

1 Cox’s homogeneous coordinates on toric varieties, allowing a
good description of the moduli space Mork(P1,X , i , d)

2 a “motivic counting” argument, relying on Denef and Loeser’s
construction associating a virtual motive to a first order ring
formula ; this allows to compute the main part at T = L−1 of
the height ZF.

For the second point, we have to reinterprete Ψd(X ) as the virtual
motive associated to a first order logic ring formula.
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The construction of Denef and Loeser

For the sake of simplicity, assume k = Q.

To a first order ring formula ϕ in coefficients in Q, such as

ϕ0 : ∃y , x = y2 ∧ x 6= 0

is canonically associated a virtual motive χ(ϕ) ∈ M⊗Q which
counts, for every k finite with char(k) >> 0 the number of points
in ϕ(k).

Example : ϕ0(k) = {x ∈ k∗, ∃y ∈ k, x = y2}

#ϕ0(k) =
k − 1

2
for char(k) > 2

χ(ϕ0) =
[Gm]

2
=

L− 1

2
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An alternative definition of Ψd(V )

(
V d

)0

étale Galois covering with Gal=Sd

��

= {(xi ) ∈ V d , xi 6= xj if i 6= j}

(
V d

)0
/Sd =

(
Symd V

)0 ⊂ Symd V

∀k finite, char(k) >> 0, there is a natural bijection

{x ∈
(
Symd V

)0
(k), Dec(x) = 〈 σ 〉, σ a d-cycle of Sd}

1:1

��
{irreducibles 0− cycles of degree d on Vk}
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{x ∈
(
Symd V

)0
(k), Dec(x) = 〈 σ 〉, σ a d-cycle of Sd}

1:1

��
{irreducibles 0− cycles of degree d on Vk}

The set at the top may be viewed as the set of k-points of a first
order ring formula ψd(V ) with coefficients in Q.

Proposition

The virtual motive of this formula coincides with Ψd(V ).
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Proof : One has to show that, in M⊗Q[[T ]]

ZV ,Kap(T ) =
∏
d≥1

(
1− T d

)−χ(ψd (V ))

This is achieved by “motivic counting”.

For example, the equality for the T 2-coefficient reads[
Sym2(V )

]
=

1

2
([V ]2 − [V ]) + [V ] + χ(ψ2(V ))
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[
Sym2(V )

] ?
=

1

2
([V ]2 − [V ]) + [V ] + χ (ψ2(V ))

V

f2 : x 7→{x ,x}

��

V 2 \∆

f1 : (x ,y) 7→{x ,y} ((QQQQQQQQQQQQQ

(
Sym2 V

)
0

f3=open immersionvvlllllllllllll

Sym2(V )
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Sym2 V
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f3=open immersionvvlllllllllllll

Sym2(V )

∀k finite, char(k) >> 0,

Sym2(V )(k) = f1(X
2 \∆(k))

⊔
f2(X (k))

⊔
f3(ψ2(V )(k))
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∀k finite, char(k) >> 0,

V (k) → f2(V (k))

ψ2(V )(k) → f3(ψ2(V )(k))

 are 1 : 1

V 2 \∆V (k) → f1
(
V 2 \∆V (k)

)
is 2 : 1
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Similar counting arguments are used to compute the main part at
T = L−1 of the motivic height zeta function of a split toric variety.
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