Motivic height zeta functions

David Bourqui

University of Rennes

1. Three counting problems

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function
The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Three counting problems

General setting :

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function
The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Three counting problems

General setting :

- k a field

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Three counting problems

General setting :

- k a field
- X a projective variety defined over k

Three counting problems

General setting :

- k a field
- X a projective variety defined over k
- $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function
The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over the field of rational numbers : the "arithmetic setting"

- $k=\mathbf{Q}, i: X \hookrightarrow \mathbf{P}_{\mathbf{Q}}^{n}$ an embedding

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over the field of rational numbers: the "arithmetic setting"

- $k=\mathbf{Q}, i: X \hookrightarrow \mathbf{P}_{\mathbf{Q}}^{n}$ an embedding

The height of $x \in \mathbf{P}^{n}(\mathbf{Q})$ is

$$
H\left(x_{0}: \cdots: x_{n}\right)=\operatorname{Max}\left(\left|x_{i}\right|\right) \text { provided } x_{k} \in \mathbf{Z}, \operatorname{gcd}\left(x_{i}\right)=1
$$

Over the field of rational numbers

Over the field of rational numbers : the "arithmetic

 setting"- $k=\mathbf{Q}, i: X \hookrightarrow \mathbf{P}_{\mathbf{Q}}^{n}$ an embedding

The height of $x \in \mathbf{P}^{n}(\mathbf{Q})$ is

$$
H\left(x_{0}: \cdots: x_{n}\right)=\operatorname{Max}\left(\left|x_{i}\right|\right) \text { provided } x_{k} \in \mathbf{Z}, \operatorname{gcd}\left(x_{i}\right)=1 .
$$

$$
\forall d \in \mathbf{N}, \quad n_{X}, H_{i}(d) \stackrel{\text { def }}{=} \#\{x \in X(\mathbf{Q}), \quad H(i(x)) \leq d\}<+\infty
$$

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over the field of rational numbers : the "arithmetic

 setting"- $k=\mathbf{Q}, i: X \hookrightarrow \mathbf{P}_{\mathbf{Q}}^{n}$ an embedding

The height of $x \in \mathbf{P}^{n}(\mathbf{Q})$ is

$$
H\left(x_{0}: \cdots: x_{n}\right)=\operatorname{Max}\left(\left|x_{i}\right|\right) \text { provided } x_{k} \in \mathbf{Z}, \operatorname{gcd}\left(x_{i}\right)=1 .
$$

$$
\forall d \in \mathbf{N}, \quad n_{X, H_{i}}(d) \stackrel{\text { def }}{=} \#\{x \in X(\mathbf{Q}), \quad H(i(x)) \leq d\}<+\infty
$$

Problem

Describe the asymptotic behaviour of $n_{X, H_{i}}(d)$ when $d \rightarrow+\infty$.

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of $\mathrm{B}-\mathrm{M}$'s formula

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve

$$
\operatorname{Mor}_{k}(\mathcal{C}, X) \stackrel{\text { def }}{=}\{k \text {-morphism } \mathcal{C} \rightarrow X\}=X(k(\mathcal{C}))
$$

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve

$$
\begin{aligned}
& \operatorname{Mor}_{k}(\mathcal{C}, X) \stackrel{\text { def }}{=}\{k \text {-morphism } \mathcal{C} \rightarrow X\}=X(k(\mathcal{C})) \\
& x \in \operatorname{Mor}_{k}(\mathcal{C}, X), \quad h_{i}(x) \stackrel{\text { def }}{=} \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right)
\end{aligned}
$$

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve

$$
\begin{aligned}
& \operatorname{Mor}_{k}(\mathcal{C}, X) \stackrel{\text { def }}{=}\{k \text {-morphism } \mathcal{C} \rightarrow X\}=X(k(\mathcal{C})) \\
& x \in \operatorname{Mor}_{k}(\mathcal{C}, X), \quad h_{i}(x) \stackrel{\text { def }}{=} \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right)
\end{aligned}
$$

$\forall d \in \mathbf{N}, \quad n_{X, h_{i}}(d) \stackrel{\text { def }}{=} \#\left\{x \in \operatorname{Mor}_{k}(\mathcal{C}, X), \quad h_{i}(x) \leq d\right\}<+\infty$

Three counting problems
The motivic height zeta function The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over a finite field : the "finite geometric setting"

- k a finite field, $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve

$$
\operatorname{Mor}_{k}(\mathcal{C}, X) \stackrel{\text { def }}{=}\{k \text {-morphism } \mathcal{C} \rightarrow X\}=X(k(\mathcal{C}))
$$

$$
x \in \operatorname{Mor}_{k}(\mathcal{C}, X), \quad h_{i}(x) \stackrel{\text { def }}{=} \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right)
$$

$\forall d \in \mathbf{N}, \quad n_{X, h_{i}}(d) \stackrel{\text { def }}{=} \#\left\{x \in \operatorname{Mor}_{k}(\mathcal{C}, X), \quad h_{i}(x) \leq d\right\}<+\infty$

Problem

Describe the asymptotic behaviour of $n_{X, h_{i}}(d)$ when $d \rightarrow+\infty$.

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over any field : the "geometric setting"

- k any field (e.g. $k=\mathbf{C}$), $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over any field : the "geometric setting"

- k any field (e.g. $k=\mathbf{C}$), $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve.

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

Over any field : the "geometric setting"

- k any field (e.g. $k=\mathbf{C}$), $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve.

For k^{\prime} / k an extension
$\operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X, i, d) \stackrel{\text { def }}{=}\left\{x \in \operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X), \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right) \leq d\right\}$.

Over any field : the "geometric setting"

- k any field (e.g. $k=\mathbf{C}$), $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve.

For k^{\prime} / k an extension
$\operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X, i, d) \stackrel{\text { def }}{=}\left\{x \in \operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X), \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right) \leq d\right\}$.
(Grothendieck) \exists a qu.-proj. k-variety $\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)$ s.t.

$$
\forall k^{\prime} / k, \quad \operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X, i, d)=\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\left(k^{\prime}\right)
$$

Over any field : the "geometric setting"

- k any field (e.g. $k=\mathbf{C}$), $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ an embedding
- \mathcal{C} a smooth, projective and geometrically integral k-curve.

For k^{\prime} / k an extension
$\operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X, i, d) \stackrel{\text { def }}{=}\left\{x \in \operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X), \operatorname{deg}\left((i \circ x)^{*} \mathcal{O}(1)\right) \leq d\right\}$.
(Grothendieck) \exists a qu.-proj. k-variety $\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)$ s.t.

$$
\forall k^{\prime} / k, \quad \operatorname{Mor}_{k^{\prime}}(\mathcal{C}, X, i, d)=\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\left(k^{\prime}\right)
$$

Problem

Describe the "asymptotic behaviour" of the moduli space $\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)$ when $d \rightarrow+\infty$.

Batyrev-Manin's program

From now on, we assume that :

- X is smooth and geometrically integral
- ω_{X}^{-1} is very ample
- $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ is an anticanonical embedding $\left(i^{*}(\mathcal{O}(1))=\omega_{X}^{-1}\right)$
- In the arithmetic setting: $X(\mathbf{Q})$ is Zariski dense
- In both geometric settings : $X(k(\mathcal{C}))$ is Zariski dense

Batyrev-Manin's program

From now on, we assume that :

- X is smooth and geometrically integral
- ω_{X}^{-1} is very ample
- $i: X \hookrightarrow \mathbf{P}_{k}^{n}$ is an anticanonical embedding $\left(i^{*}(\mathcal{O}(1))=\omega_{X}^{-1}\right)$
- In the arithmetic setting: $X(\mathbf{Q})$ is Zariski dense
- In both geometric settings : $X(k(\mathcal{C}))$ is Zariski dense

Batyrev-Manin's program aims to precise (and solve !) the counting problem in the arithmetic and finite geometric settings.

Over the field of rational numbers
Over a finite field
Over any field
Batyrev－Manin＇s program
A rough geometric analog of B－M＇s formula

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{\text {P-B-T }} d \log (d)^{\operatorname{rk}(N S(X))-1} \quad ?
$$

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{\text {P-B-T }} d \log (d)^{\mathrm{rk}(\mathrm{NS}(X))-1} \quad ?
$$

- $C_{\text {P-B-T }}$: a constant depending on X (Peyre, Batyrev-Tschinkel)

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{\text {P-B-T }} d \log (d)^{\mathrm{rk}(\operatorname{NS}(X))-1} \quad ?
$$

- $C_{\text {P-B-T }}$: a constant depending on X (Peyre, Batyrev-Tschinkel)
- In fact, we must often restrict the counting to a strict open Zariski subset of X in order to avoid accumulating subvarieties (e.g. exceptional divisors on del Pezzo surfaces).

Over the field of rational numbers

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{P-B-T} d \log (d)^{\operatorname{rk}(N S(X))-1} \quad ?
$$

- Holds for large classes of varieties equipped with an algebraic group action, some complete intersections, some del Pezzo surfaces (work of Batyrev, Browning, de la Bretèche, Chambert-Loir, Manin, Peyre, Salberger, Tschinkel and many others, cf. Y. Tschinkel's lecture).

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{P-B-T} d \log (d)^{\operatorname{rk}(N S(X))-1} \quad ?
$$

- Holds for large classes of varieties equipped with an algebraic group action, some complete intersections, some del Pezzo surfaces (work of Batyrev, Browning, de la Bretèche, Chambert-Loir, Manin, Peyre, Salberger, Tschinkel and many others, cf. Y. Tschinkel's lecture).
- Still open for smooth cubic surfaces.

An empirical formula in the arithmetic setting

$$
n_{H_{i}}(d) \underset{d \rightarrow \infty}{\sim} C_{\text {P-B-T }} d \log (d)^{\mathrm{rk}(\mathrm{NS}(X))-1} ?
$$

- Holds for large classes of varieties equipped with an algebraic group action, some complete intersections, some del Pezzo surfaces (work of Batyrev, Browning, de la Bretèche, Chambert-Loir, Manin, Peyre, Salberger, Tschinkel and many others, cf. Y. Tschinkel's lecture).
- Still open for smooth cubic surfaces.
- Not true in general (counter-example by Batyrev and Tschinkel).

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

An empirical formula in the finite geometric case

$$
\varlimsup_{d \rightarrow+\infty} \frac{n_{h_{i}}(d)}{\left.(\# k)^{d} d^{r k(N S}(X)\right)-1}=C_{\text {P-B-T }} \quad ?
$$

An empirical formula in the finite geometric case

$$
\varlimsup_{d \rightarrow+\infty} \frac{n_{h_{i}}(d)}{\left.(\# k)^{d} d^{r k(N S}(X)\right)-1}=C_{P-B-T} \quad ?
$$

- Holds for smooth projective toric varieties (B.), generalized flag varieties (Peyre).

An empirical formula in the finite geometric case

$$
\varlimsup_{d \rightarrow+\infty} \frac{n_{h_{i}}(d)}{\left.(\# k)^{d} d^{r k(N S}(X)\right)-1}=C_{\text {P-B-T }} \quad ?
$$

- Holds for smooth projective toric varieties (B.), generalized flag varieties (Peyre).
- Batyrev and Tschinkel's counterexample still works in this setting.

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

A rough geometric analog of Batyrev-Manin's formula

k a finite field, V a k-variety, $\rho(V)=\#\{$ irreducible components of maximal dimension of $V\}$.

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

A rough geometric analog of Batyrev-Manin's formula

k a finite field, V a k-variety, $\rho(V)=\#\{$ irreducible components of maximal dimension of $V\}$.

Heuristic (cf. e.g. Lang-Weil estimates)

$$
\# V(k) \approx \rho(V)(\# k)^{\operatorname{dim}(V)}
$$

A rough geometric analog of Batyrev-Manin's formula

k a finite field, V a k-variety, $\rho(V)=\#\{$ irreducible components of maximal dimension of $V\}$.

Heuristic (cf. e.g. Lang-Weil estimates)

$$
\# V(k) \approx \rho(V)(\# k)^{\operatorname{dim}(V)}
$$

This leads to :
An analog of $\mathrm{B}-\mathrm{M}$'s empirical formula in the geometric setting
(1) $\operatorname{dim}\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)-d$ bounded ?
(2)

$$
\varlimsup_{d \rightarrow+\infty} \frac{\log \rho\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)}{\log (d)}=\operatorname{rk}(\operatorname{NS}(X))-1 \quad ?
$$

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

A rough geometric analog of Batyrev-Manin's formula

An analog of B-M's empirical formula in the geometric setting
(1) $\operatorname{dim}\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)-d$ bounded ?
(2)

$$
\varlimsup_{d \rightarrow+\infty} \frac{\log \rho\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)}{\log (d)}=\operatorname{rk}(\operatorname{NS}(X))-1 \quad ?
$$

Three counting problems
The motivic height zeta function The main term of the motivic height zeta function The motivic Tamagawa number

Over the field of rational numbers
Over a finite field
Over any field
Batyrev-Manin's program
A rough geometric analog of B-M's formula

A rough geometric analog of Batyrev-Manin's formula

An analog of B-M's empirical formula in the geometric setting
(1) $\operatorname{dim}\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)-d$ bounded ?
(2)

$$
\varlimsup_{d \rightarrow+\infty} \frac{\log \rho\left(\mathfrak{M o r}_{k}(\mathcal{C}, X, i, d)\right)}{\log (d)}=\operatorname{rk}(\mathrm{NS}(X))-1 \quad ?
$$

- Holds for split toric varieties and split generalized flag varieties.

2. The motivic height zeta function

Classical height zeta functions

－In the arithmetic setting

$$
\zeta_{X, H_{i}}(s)=\sum_{x \in X(\mathbf{Q})} H_{i}(x)^{-s}, \quad s \in \mathbf{C}
$$

Classical height zeta functions

- In the arithmetic setting

$$
\zeta_{X, H_{i}}(s)=\sum_{x \in X(\mathbf{Q})} H_{i}(x)^{-s}, \quad s \in \mathbf{C}
$$

- In the finite geometric setting $\left(k=\mathbf{F}_{q}\right)$

$$
\zeta_{X, h_{i}}(s)=Z_{X, h_{i}}\left(q^{-s}\right), \quad s \in \mathbf{C}
$$

where $\quad Z_{X, h_{i}}(T)=\sum_{x \in X(k(\mathcal{C}))} T^{h_{i}(x)} \in \mathbf{Z}[[T]]$

Classical height zeta functions

- In the arithmetic setting

$$
\zeta_{X, H_{i}}(s)=\sum_{x \in X(\mathbf{Q})} H_{i}(x)^{-s}, \quad s \in \mathbf{C}
$$

- In the finite geometric setting $\left(k=\mathbf{F}_{q}\right)$

$$
\begin{gathered}
\zeta_{X, h_{i}}(s)=Z_{X, h_{i}}\left(q^{-s}\right), \quad s \in \mathbf{C} \\
\text { where } \quad Z_{X, h_{i}}(T)=\sum_{x \in X(k(\mathcal{C}))} T^{h_{i}(x)} \in \mathbf{Z}[[T]]
\end{gathered}
$$

analytical behaviour tauberian statements of the height ZF
asymptotics for points of bounded height

The Grothendieck ring of varieties

Notation: $K_{0}\left(\operatorname{Var}_{k}\right)$
Generators: [V], V a k-variety
Relations:

- $[V]=\left[V^{\prime}\right]$ if $V \xrightarrow{\sim} V^{\prime}$,
- $[V]=[F]+[V \backslash F]$ if $F \hookrightarrow V$ is a closed immersion

Ring structure : $[V] .\left[V^{\prime}\right] \stackrel{\text { def }}{=}\left[V \times V^{\prime}\right]$

The Grothendieck ring of motives

Notation : $K_{0}\left(\right.$ ChMot $\left._{k}\right)$
Generators: [M], M a Chow motive over k
Relations:

- $[M]=\left[M^{\prime}\right]$ if $M \xrightarrow{\sim} M^{\prime}$,
- $[M]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ if $M=M^{\prime} \oplus M^{\prime \prime}$

Ring structure : $[M] .\left[M^{\prime}\right] \stackrel{\text { def }}{=}\left[M \otimes M^{\prime}\right]$.

If k is finite, there is a ring morphism

$$
\chi_{\#_{k}}: K_{0}\left(\operatorname{Var}_{k}\right) \longrightarrow \mathbf{Z}
$$

such that for every k-variety V

$$
\chi_{\#_{k}}([V])=\# V(k)
$$

Theorem (Gillet-Soulé, Guillen-Navarro Aznar, Bittner)

If $\operatorname{char}(k)=0$, there is a unique ring morphism

$$
\chi_{\text {mot }}: K_{0}\left(\operatorname{Var}_{k}\right) \longrightarrow K_{0}\left(\operatorname{ChMot}_{k}\right)
$$

such that for V smooth projective
$\chi_{\text {mot }}([V])=$ the class of the Chow motive of V

For V a k-variety, let us denote $\chi_{\operatorname{mot}}([V])$ by $[V]$.

Definition of the motivic height zeta funcion

$$
\begin{aligned}
& z_{X,, h_{i}}^{\mathrm{mog}_{i}}(T)=\sum_{d \geq 0}\left[\widetilde{\mathfrak{M o r}_{k}}(\mathrm{e}, X, i, d)\right] T^{d} \\
& \in\left\{\begin{array}{l}
K_{0}\left(V_{\mathrm{Var}_{k}}\right)[[T]] \\
\text { or } \\
\left.K_{0}\left(\mathrm{ChMot}_{k}\right)[T T]\right] \text { if } \operatorname{char}(k)=0
\end{array}\right.
\end{aligned}
$$

where

$$
\widetilde{\mathfrak{M o r}}_{k}(\mathcal{C}, X, i, d) \stackrel{\text { def }}{=} \mathfrak{M o r}_{k}(\mathcal{C}, X, i, d) \backslash \mathfrak{M o r}_{k}(\mathcal{C}, X, i, d-1)
$$

parametrizes the morphisms of i-degree d.

The motivic height ZF specializes to the classical height ZF

$$
Z_{X, h_{i}}^{\text {mot }}(T)=\sum_{d \geq 0}\left[\widetilde{\mathfrak{M o r}}_{k}(\mathrm{e}, X, i, d)\right] T^{d} \quad \in K_{0}\left(\operatorname{Var}_{k}\right)[[T]]
$$

The motivic height ZF specializes to the classical height ZF

$$
Z_{X, h_{i}}^{\text {mot }}(T)=\sum_{d \geq 0}\left[\widetilde{\mathfrak{M o r}}_{k}(\mathbb{C}, X, i, d)\right] T^{d} \quad \in K_{0}\left(\operatorname{Var}_{k}\right)[[T]]
$$

If k is finite,

$$
\begin{aligned}
\chi_{\#_{k}}\left(Z_{X, h_{i}}^{\mathrm{mot}}(T)\right) & =\sum_{d \geq 0} \# \widetilde{\mathfrak{M o r}}_{k}(\mathcal{C}, X, i, d)(k) T^{d} \quad \in \mathbf{Z}[[T]] \\
& =\sum_{d \geq 0} \#\left\{x \in X(k(\mathcal{C})), \quad h_{i}(x)=d\right\} T^{d} \\
& =Z_{X, h_{i}}(T) .
\end{aligned}
$$

3. The "main term" of the motivic height zeta function

The main term of the classical height zeta function Different versions of the Tamagawa number Motivic eulerian product
Definition of a motivic Tamagawa number

The main term of the classical height zeta function

 (arithmetic or finite geometric setting)Standard tauberian statements lead to
An analytic version of Batyrev-Manin's empirical formula

$$
\lim _{s \rightarrow 1}(s-1)^{\mathrm{rk}(\mathrm{NS}(X))} \zeta_{H_{i}}(s)=\frac{C_{\text {P-B-T }}}{(\mathrm{rk}(\mathrm{NS}(X))-1)!}
$$

Different versions of the Tamagawa number

We are now going to :
(1) describe (the interesting part of) the constant $C_{\text {P-B-T }}$
(2) define a motivic analog of it
(3) study a motivic analog of BM's analytic formula

From now on, we assume that :
(1) In the arithmetic setting, X has a smooth model X over \mathbf{Z}.
(2) X is split (the action of the absolute Galois group on $\operatorname{NS}(\bar{X})$ is trivial).

From now on, we assume that :
(1) In the arithmetic setting, X has a smooth model X over \mathbf{Z}.
(2) X is split (the action of the absolute Galois group on $\operatorname{NS}(\bar{X})$ is trivial).

Up to "easy" terms not discussed here, $C_{\text {P-B-T }}$ is the Tamagawa number $\tau(X)$ defined by :

The main term of the classical height zeta function Different versions of the Tamagawa number Motivic eulerian product
Definition of a motivic Tamagawa number

The Tamagawa number of X

- In the arithmetic setting :

$$
\tau(X)=\prod_{p \text { prime }}\left(1-p^{-1}\right)^{\operatorname{rk}(N S(X))} \frac{\# X\left(\mathbf{F}_{p}\right)}{p^{\operatorname{dim}(X)}} .
$$

The Tamagawa number of X

- In the arithmetic setting :

$$
\tau(X)=\prod_{p \text { prime }}\left(1-p^{-1}\right)^{\mathrm{rk}(\mathrm{NS}(X))} \frac{\# X\left(\mathbf{F}_{p}\right)}{p^{\operatorname{dim}(X)}}
$$

- In the finite geometric setting

$$
\tau(X)=\prod_{x \text { closed point of } \mathcal{e}}\left(1-\# \kappa_{x}^{-1}\right)^{\operatorname{rk}(\operatorname{NS}(X))} \frac{\# X\left(\kappa_{x}\right)}{\left(\# \kappa_{x}\right)^{\operatorname{dim}(X)}}
$$

The Tamagawa number of X

- In the arithmetic setting :

$$
\tau(X)=\prod_{p \text { prime }}\left(1-p^{-1}\right)^{\mathrm{rk}(\mathrm{NS}(X))} \frac{\# X\left(\mathbf{F}_{p}\right)}{p^{\operatorname{dim}(X)}}
$$

- In the finite geometric setting

$$
\tau(X)=\prod_{x \text { closed point of } \mathrm{e}}\left(1-\# \kappa_{x}^{-1}\right)^{\operatorname{rk}(\operatorname{NS}(X))} \frac{\# X\left(\kappa_{x}\right)}{\left(\# \kappa_{x}\right)^{\operatorname{dim}(X)}}
$$

- In the geometric setting

$$
\tau(X)=? ?
$$

We need a notion of "eulerian motivic product".

Motivic eulerian product

Notation :

$$
\begin{aligned}
\mathcal{M}=\left\{\begin{array}{l}
K_{0}\left(\operatorname{Var}_{k}\right) \\
\text { or } \\
\chi_{\text {mot }}\left(K_{0}\left(\operatorname{Var}_{k}\right)\right)
\end{array}\right) \subset K_{0}\left(\operatorname{ChMot}_{k}\right) \text { if } \operatorname{char}(k)=0 \\
\qquad \mathbf{L}=\left[\mathbf{A}^{1}\right]
\end{aligned}
$$

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

The main term of the classical height zeta function Different versions of the Tamagawa number Motivic eulerian product
Definition of a motivic Tamagawa number

Kapranov zeta function

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

The main term of the classical height zeta function Different versions of the Tamagawa number Motivic eulerian product
Definition of a motivic Tamagawa number

Kapranov zeta function

Definition (Kapranov)

V a k-variety

$$
Z_{V, \text { Kap }}(T)=\sum_{n \geq 0}\left[\operatorname{Sym}^{n}(X)\right] T^{n} \in \mathcal{M}[[T]]
$$

Kapranov zeta function

Definition (Kapranov)

V a k-variety

$$
Z_{V, \text { Kap }}(T)=\sum_{n \geq 0}\left[\operatorname{Sym}^{n}(X)\right] T^{n} \in \mathcal{M}[[T]]
$$

If k is finite,
$\chi_{\#_{k}}\left(Z_{V, \text { Kap }}(T)\right)=$ the usual Hasse-Weil zeta function $Z_{V, \text { нw }}(T)$.

Hasse-Weil zeta functions

If $k=\mathbf{F}_{q}$, recall that

$$
Z_{V, \mathrm{HW}}(T)=\exp \left(\sum_{d \geq 1} \# V\left(\mathbf{F}_{q^{d}}\right) \frac{T^{d}}{d}\right)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\# V_{0, d}}
$$

where

$$
V_{0, d}=\{\text { irreducibles rational zero-cycles of degree } d \text { on } V\}
$$

The main term of the classical height zeta function Different versions of the Tamagawa number
Motivic eulerian product
Definition of a motivic Tamagawa number

For $d \geq 1$ ，define $\Phi_{d}(V) \in \mathcal{M}$ by

$$
\sum_{d \geq 1} \Phi_{d}(V) T^{d}=T \frac{d}{d T} \log Z_{\mathrm{V}, \mathrm{Kap}}(T)
$$

The main term of the classical height zeta function
Different versions of the Tamagawa number
Motivic eulerian product
Definition of a motivic Tamagawa number

For $d \geq 1$, define $\Phi_{d}(V) \in \mathcal{M}$ by

$$
\sum_{d \geq 1} \Phi_{d}(V) T^{d}=T \frac{d}{d T} \log Z_{\mathrm{V}, \mathrm{Kap}}(T)
$$

and $\Psi_{d}(X) \in \mathcal{M} \otimes \mathbf{Q}$ by

$$
\Phi_{d}(V)=\sum_{e \mid d} e \Psi_{e}(V)
$$

For $d \geq 1$, define $\Phi_{d}(V) \in \mathcal{M}$ by

$$
\sum_{d \geq 1} \Phi_{d}(V) T^{d}=T \frac{d}{d T} \log Z_{\mathrm{V}, \mathrm{Kap}}(T)
$$

and $\Psi_{d}(X) \in \mathcal{M} \otimes \mathbf{Q}$ by

$$
\Phi_{d}(V)=\sum_{e \mid d} e \Psi_{e}(V)
$$

Examples: $\Phi_{d}\left(\mathbf{A}^{1}\right)=\mathbf{L}^{d}, \Psi_{1}(V)=[V]$

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function The motivic Tamagawa number

The main term of the classical height zeta function Different versions of the Tamagawa number
Motivic eulerian product
Definition of a motivic Tamagawa number

$$
\begin{aligned}
\sum_{d \geq 1} \Phi_{d}(V) T^{d} & =T \frac{d}{d T} \log Z_{V, \text { кар }}(T) \\
\Phi_{d}(V) & =\sum_{e \mid d} e \psi_{e}(V) .
\end{aligned}
$$

The main term of the classical height zeta function Different versions of the Tamagawa number Motivic eulerian product
Definition of a motivic Tamagawa number

$$
\begin{aligned}
\sum_{d \geq 1} \Phi_{d}(V) T^{d} & =T \frac{d}{d T} \log Z_{V, \text { Kap }}(T) \\
\Phi_{d}(V) & =\sum_{e \mid d} e \Psi_{e}(V) .
\end{aligned}
$$

If $k=\mathbf{F}_{q}$,

$$
\chi_{\# k}\left(\Phi_{d}(V)\right)=\# V\left(\mathbf{F}_{q^{d}}\right)
$$

and

$$
\chi_{\# k}\left(\Psi_{d}(V)\right)=\# V_{0, d}
$$

The main term of the classical height zeta function Different versions of the Tamagawa number
Motivic eulerian product
Definition of a motivic Tamagawa number

We have (in $\mathcal{M} \otimes \mathbf{Q}[[T]]$)

$$
Z_{V, \text { Kap }}(T)=\exp \left(\sum_{d \geq 1} \Phi_{d}(V) \frac{T^{d}}{d}\right)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\Psi_{d}(V)}
$$

We have (in $\mathcal{M} \otimes \mathbf{Q}[[T]])$

$$
Z_{V, \text { Kap }}(T)=\exp \left(\sum_{d \geq 1} \Phi_{d}(V) \frac{T^{d}}{d}\right)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\Psi_{d}(V)}
$$

where, for $M \in \mathcal{M} \otimes \mathbf{Q}$ and $P \in \mathcal{M} \otimes \mathbf{Q}[[T]]$

$$
(1+T P(T))^{M}
$$

stands for

$$
1+M T P(T)+\frac{M(M-1)}{2} T^{2} P(T)^{2}+\ldots \quad \in \mathcal{M} \otimes \mathbf{Q}[[T]]
$$

The relation

$$
Z_{V, \text { Kap }}(T)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\Psi_{d}(V)}
$$

may be viewed as a decomposition into a eulerian motivic product.

A motivic Tamagawa number

Recall that in the finite geometric setting $\left(k=\mathbf{F}_{q}\right)$

$$
\begin{aligned}
\tau(X) & =\prod_{x \in \mathcal{C}^{(0)}}\left(1-\# \kappa_{x}^{-1}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\# X\left(\kappa_{X}\right)}{\left(\# \kappa_{X}\right)^{\operatorname{dim}(X)}} \\
& =\prod_{d \geq 1}\left[\left(1-q^{-d}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\# X\left(\mathbf{F}_{q^{d}}\right)}{q^{d \operatorname{dim}(X)}}\right]^{\# \mathcal{C}_{0, d}}
\end{aligned}
$$

A motivic Tamagawa number

Recall that in the finite geometric setting ($k=\mathbf{F}_{q}$)

$$
\begin{aligned}
\tau(X) & =\prod_{x \in \mathcal{C}^{(0)}}\left(1-\# \kappa_{x}^{-1}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\# X\left(\kappa_{x}\right)}{\left(\# \kappa_{x}\right)^{\operatorname{dim}(X)}} \\
& =\prod_{d \geq 1}\left[\left(1-q^{-d}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\# X\left(\mathbf{F}_{q^{d}}\right)}{q^{d \operatorname{dim}(X)}}\right]^{\# \mathrm{E}_{0, d}}
\end{aligned}
$$

which in turn suggests to define in the geometric setting

$$
\tau_{\mathrm{mot}}(X)=\prod_{d \geq 1}\left(\left(1-\mathbf{L}^{-d}\right)^{\mathrm{rk}(\mathrm{NS}(X))} \frac{\Phi_{d}(X)}{\mathbf{L}^{d \operatorname{dim}(X)}}\right)^{\Psi_{d}(\mathrm{C})}
$$

4. The motivic Tamagawa number

$$
\tau_{\operatorname{mot}}(X)=\prod_{d \geq 1}\left(\left(1-\mathbf{L}^{-d}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\Phi_{d}(X)}{\mathbf{L}^{d \operatorname{dim}(X)}}\right)^{\Psi_{d}(\mathcal{C})}
$$

Two questions :

(1) Is it possible to give a meaning to the expression above, i.e. is $\tau_{\text {mot }}(X)$ well defined ?

$$
\tau_{\operatorname{mot}}(X)=\prod_{d \geq 1}\left(\left(1-\mathbf{L}^{-d}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\Phi_{d}(X)}{\mathbf{L}^{d \operatorname{dim}(X)}}\right)^{\Psi_{d}(\mathcal{C})}
$$

Two questions:
(1) Is it possible to give a meaning to the expression above, i.e. is $\tau_{\text {mot }}(X)$ well defined ?
(2) Does the geometric analog of B-M's analytic empirical formula

$$
\left[(1-\mathbf{L} T)^{\mathrm{rk}(\mathrm{NS}(X))} Z_{h_{i}, X}^{\mathrm{mot}}(T)\right]\left(\mathbf{L}^{-1}\right)=\tau_{\mathrm{mot}}(X)
$$

hold?

First question : is $\tau_{\text {mot }}(X)$ well defined ?

Is it possible to give a meaning to the expression

$$
\prod_{d \geq 1}\left(\left(1-\mathbf{L}^{-d}\right)^{\mathrm{rk}(\operatorname{NS}(X))} \frac{\Phi_{d}(X)}{\mathbf{L}^{d \operatorname{dim}(X)}}\right)^{\Psi_{d}(\mathcal{C})} ?
$$

We need to complete \mathcal{M} with respect to a filtration : for example the one introduced by Kontsevich for the theory of motivic integration.

Justification of the definition

A motivic analog of Batyrev-Manin's analytic formula The case of split toric varieties : motivic counting

Kontsevich's topology

Notations :

Three counting problems
The motivic height zeta function
The main term of the motivic height zeta function
The motivic Tamagawa number

Justification of the definition

A motivic analog of Batyrev-Manin's analytic formula The case of split toric varieties : motivic counting

Kontsevich's topology

Notations :

$$
\text { Recall } \quad \mathbf{L}=\left[\mathbf{A}_{k}^{1}\right]
$$

Kontsevich's topology

Notations:

$$
\text { Recall } \quad \mathbf{L}=\left[\mathbf{A}_{k}^{1}\right]
$$

$$
\mathcal{M}_{\text {loc }}=\left\{\begin{array}{l}
K_{0}\left(\operatorname{Var}_{k}\right)\left[\mathbf{L}^{-1}\right] \\
\text { or } \\
\chi_{\text {mot }}\left(K_{0}\left(\operatorname{Var}_{k}\left[\mathbf{L}^{-1}\right]\right)\right) \subset K_{0}\left(\operatorname{ChMot}_{k}\right) \text { if } \operatorname{char}(k)=0
\end{array}\right.
$$

Kontsevich's topology

For $d \in \mathbf{Z}$,

$$
\mathcal{F}^{d} \mathcal{M}_{\mathrm{loc}}=\left\langle\mathbf{L}^{-i}[V], \quad V \text { a variety }, \quad i-\operatorname{dim}(V) \geq d\right\rangle
$$

and

$$
\widehat{\mathcal{M}}=\lim _{\leftrightarrows} \mathcal{M}_{\mathrm{loc}} / \mathcal{F}^{d} \mathcal{M}_{\mathrm{loc}}
$$

Kontsevich's topology

For $d \in \mathbf{Z}$,

$$
\mathcal{F}^{d} \mathcal{M}_{\mathrm{loc}}=\left\langle\mathbf{L}^{-i}[V], \quad V \text { a variety }, \quad i-\operatorname{dim}(V) \geq d\right\rangle
$$

and

$$
\widehat{\mathcal{M}}=\lim _{\leftrightarrows} \mathcal{M}_{\mathrm{loc}} / \mathcal{F}^{d} \mathcal{M}_{\mathrm{loc}} .
$$

Example :

$$
\lim _{d \rightarrow+\infty} \mathbf{L}^{-d}=0
$$

The convergence of $\tau_{\text {mot }}(X)$

When $k=\mathbf{F}_{q}$, the convergence of the eulerian product defining $\tau(X)$ follows from the asymptotic (consequence of Weil-Deligne)

$$
\# X\left(\mathbf{F}_{q^{d}}\right)=q^{d \operatorname{dim} X}+\operatorname{rk}(\mathrm{NS}(X)) q^{d(\operatorname{dim} X-1)}+\underset{d \rightarrow \infty}{\mathcal{O}}\left(q^{d\left(\operatorname{dim} X-\frac{3}{2}\right)}\right)
$$

The convergence of $\tau_{\text {mot }}(X)$

When $k=\mathbf{F}_{q}$, the convergence of the eulerian product defining $\tau(X)$ follows from the asymptotic (consequence of Weil-Deligne)

$$
\# X\left(\mathbf{F}_{q^{d}}\right)=q^{d \operatorname{dim} X}+\operatorname{rk}(\mathrm{NS}(X)) q^{d(\operatorname{dim} X-1)}+\underset{d \rightarrow \infty}{\mathcal{O}}\left(q^{d\left(\operatorname{dim} X-\frac{3}{2}\right)}\right)
$$

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M},
$$

hold for $d \gg 0$?

The convergence of $\tau_{\text {mot }}(X)$

When $k=\mathbf{F}_{q}$, the convergence of the eulerian product defining $\tau(X)$ follows from the asymptotic (consequence of Weil-Deligne)

$$
\# X\left(\mathbf{F}_{q^{d}}\right)=q^{d \operatorname{dim} X}+\operatorname{rk}(\mathrm{NS}(X)) q^{d(\operatorname{dim} X-1)}+\underset{d \rightarrow \infty}{\mathcal{O}}\left(q^{d\left(\operatorname{dim} X-\frac{3}{2}\right)}\right)
$$

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M},
$$

hold for $d \gg 0$?
Affirmative answer $\Rightarrow \tau_{\text {mot }}(X)$ is well defined in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$.

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M}
$$

hold for $d \gg 0$?

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M}
$$

hold for $d \gg 0$?
This holds (and therefore $\tau_{\text {mot }}(X)$ is well defined in $\widehat{\mathcal{M}}_{\mathbf{Q}}$) when
(1) X is a split toric variety
(2) X is a split generalized flag variety.

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M},
$$

hold for $d \gg 0$?
This holds (and therefore $\tau_{\text {mot }}(X)$ is well defined in $\widehat{\mathcal{M}}_{\mathbf{Q}}$) when
(1) X is a split toric variety
(2) X is a split generalized flag variety.

Sketch of proof : use the cellular decomposition and the fact that $\Phi_{d}\left(\mathbf{A}^{n}\right)=\mathbf{L}^{n d}$.

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M},
$$

hold for $d \gg 0$?
For more general X, I don't know.

Let

$$
\text { Poinc : } \mathcal{M}_{\mathrm{loc}} \rightarrow \mathbf{Z}\left[t, t^{-1}\right]
$$

be the virtual Poincare polynomial,

Let

$$
\text { Poinc }: \mathcal{M}_{\text {loc }} \rightarrow \mathbf{Z}\left[t, t^{-1}\right]
$$

be the virtual Poincare polynomial,

$$
\mathcal{F}_{\text {Poinc }}^{d} \mathcal{M}_{\mathrm{loc}}=\left\{M \in \mathcal{M}_{\mathrm{loc}}, \quad \operatorname{deg}(\operatorname{Poinc}(M)) \leq-d\right\}
$$

and

$$
\widehat{\mathcal{M}}_{\text {Poinc }}=\lim _{\longleftarrow} \mathcal{M}_{\mathrm{loc}} / \mathcal{F}_{\text {Poinc }}^{d} \mathcal{M}_{\mathrm{loc}}
$$

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\operatorname{rk}(\operatorname{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M}
$$

hold for $d \gg 0$?

Question

Does the motivic analog

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\operatorname{rk}(\mathrm{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}^{d\left(\frac{3}{2}-\operatorname{dim} X\right)} \mathcal{M}
$$

hold for $d \gg 0$?
For general X, I don't know, however we have

Proposition

$$
\Phi_{d}(X)-\mathbf{L}^{d \operatorname{dim}(X)}-\mathrm{rk}(\operatorname{NS}(X)) \mathbf{L}^{d(\operatorname{dim}(X)-1)} \in \mathcal{F}_{\text {Poinc }}^{d(3-2 \operatorname{dim} X)} \mathcal{M}
$$

Therefore $\tau_{\text {mot }}(X)$ is well defined in $\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}$.

Proof: Observe that the MacDonald formula

$$
\sum_{d \geq 0} \operatorname{Poinc}\left(\left[\operatorname{Sym}^{d} X\right]\right) T^{d}=\frac{\prod_{i \text { odd }}\left(1+t^{i} T\right)^{b_{i}(X)}}{\prod_{i \text { even }}\left(1-t^{i} T\right)^{b_{i}(X)}}
$$

allows to compute explicitely $\operatorname{Poinc}\left(\Phi_{d}(X)\right)$, and use the fact that under our assumptions

$$
b_{2 \operatorname{dim}} X-1(X)=0
$$

and

$$
b_{2 \operatorname{dim}} X-2(X)=\operatorname{rk}(\operatorname{NS}(X))
$$

Second question : does the motivic analog of B-M's analytic empirical formula hold ?

Does the series

$$
(1-\mathbf{L} T)^{\mathrm{rk}(\mathrm{NS}(X))} Z_{X, h_{i}}^{\text {mot }}(T)
$$

converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}$) at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Does the series $(1-\mathbf{L} T)^{\mathrm{rk}(\mathrm{NS}(X))} Z_{\widehat{X}, h_{i}}^{\text {mot }}(T)$ converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\left.\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}\right)$ at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Does the series $(1-\mathbf{L} T)^{\mathrm{rk}(\mathrm{NS}(X))} Z_{X, h_{i}}^{\text {mot }}(T)$ converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\left.\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}\right)$ at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Theorem (announced by Peyre)

This holds for a split flag variety.

Does the series $\left.(1-\mathbf{L} T)^{\operatorname{rk}(N S}(X)\right) Z_{X, h_{i}}^{\text {mot }}(T)$ converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\left.\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}\right)$ at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Theorem (announced by Peyre)

This holds for a split flag variety.

- The proof relies on results by Kapranov on motivic Eisenstein series.
- In this case, $Z_{X, h_{i}}^{\text {mot }}(T)$ is rational.
- In this case, the notion of eulerian motivic product is not really needed to define $\tau_{\text {mot }}(X)$.

Does the series $(1-\mathbf{L} T)^{\mathrm{rk}(\mathbb{N S}(X))} Z_{\widehat{X}, h_{i}}^{\text {mot }}(T)$ converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\left.\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}\right)$ at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Does the series ($1-\mathbf{L} T)^{\mathrm{rk}(\mathbb{N S}(X))} Z_{\widehat{X}, h_{i}}^{\text {mot }}(T)$ converge in $\widehat{\mathcal{M}} \otimes \mathbf{Q}$ (or $\left.\widehat{\mathcal{M}}_{\text {Poinc }} \otimes \mathbf{Q}\right)$ at $T=\mathbf{L}^{-1}$ to $\tau_{\text {mot }}(X)$?

Theorem

If $\operatorname{char}(k)=0$ and $\mathcal{C}=\mathbf{P}^{1}$ this holds for split toric varieties.

Theorem

If $\operatorname{char}(k)=0$ and $\mathcal{C}=\mathbf{P}^{1}$ this holds for split toric varieties.
Ingredients of the proof:

Theorem

If $\operatorname{char}(k)=0$ and $\mathcal{C}=\mathbf{P}^{1}$ this holds for split toric varieties.
Ingredients of the proof :
(1) Cox's homogeneous coordinates on toric varieties, allowing a good description of the moduli space $\mathfrak{M o r}_{k}\left(\mathbf{P}^{1}, X, i, d\right)$

Theorem

If $\operatorname{char}(k)=0$ and $\mathcal{C}=\mathbf{P}^{1}$ this holds for split toric varieties.
Ingredients of the proof :
(1) Cox's homogeneous coordinates on toric varieties, allowing a good description of the moduli space $\mathfrak{M o r}_{k}\left(\mathbf{P}^{1}, X, i, d\right)$
(2) a "motivic counting" argument, relying on Denef and Loeser's construction associating a virtual motive to a first order ring formula ; this allows to compute the main part at $T=\mathbf{L}^{-1}$ of the height ZF.

Theorem

If $\operatorname{char}(k)=0$ and $\mathcal{C}=\mathbf{P}^{1}$ this holds for split toric varieties.
Ingredients of the proof :
(1) Cox's homogeneous coordinates on toric varieties, allowing a good description of the moduli space $\mathfrak{M o r}_{k}\left(\mathbf{P}^{1}, X, i, d\right)$
(2) a "motivic counting" argument, relying on Denef and Loeser's construction associating a virtual motive to a first order ring formula ; this allows to compute the main part at $T=\mathbf{L}^{-1}$ of the height ZF.
For the second point, we have to reinterprete $\Psi_{d}(X)$ as the virtual motive associated to a first order logic ring formula.

Justification of the definition

A motivic analog of Batyrev-Manin's analytic formula The case of split toric varieties : motivic counting

The construction of Denef and Loeser

For the sake of simplicity, assume $k=\mathbf{Q}$.

The construction of Denef and Loeser

For the sake of simplicity, assume $k=\mathbf{Q}$.
To a first order ring formula φ in coefficients in \mathbf{Q}, such as

$$
\varphi_{0}: \exists y, \quad x=y^{2} \wedge x \neq 0
$$

is canonically associated a virtual motive $\chi(\varphi) \in \mathcal{M} \otimes \mathbf{Q}$ which counts, for every k finite with $\operatorname{char}(k) \gg 0$ the number of points in $\varphi(k)$.

The construction of Denef and Loeser

For the sake of simplicity, assume $k=\mathbf{Q}$.
To a first order ring formula φ in coefficients in \mathbf{Q}, such as

$$
\varphi_{0}: \exists y, \quad x=y^{2} \wedge x \neq 0
$$

is canonically associated a virtual motive $\chi(\varphi) \in \mathcal{M} \otimes \mathbf{Q}$ which counts, for every k finite with $\operatorname{char}(k) \gg 0$ the number of points in $\varphi(k)$.

Example : $\varphi_{0}(k)=\left\{x \in k^{*}, \quad \exists y \in k, \quad x=y^{2}\right\}$

$$
\begin{aligned}
& \# \varphi_{0}(k)=\frac{k-1}{2} \text { for } \operatorname{char}(k)>2 \\
& \chi\left(\varphi_{0}\right)=\frac{\left[\mathbf{G}_{m}\right]}{2}=\frac{\mathbf{L}-1}{2}
\end{aligned}
$$

An alternative definition of $\Psi_{d}(V)$

$$
\begin{aligned}
& \left(V^{d}\right)^{0}=\quad\left\{\left(x_{i}\right) \in V^{d}, \quad x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
& \downarrow_{\downarrow \text { étale Galois covering with Gal }=\mathfrak{S}_{d}} \\
& \left(V^{d}\right)^{0} / \mathfrak{S}_{d}=\quad=\quad\left(\operatorname{Sym}^{d} V\right)^{0} \subset \operatorname{Sym}^{d} V
\end{aligned}
$$

An alternative definition of $\Psi_{d}(V)$

$$
\begin{gathered}
\left(V^{d}\right)^{0}=\quad\left\{\left(x_{i}\right) \in V^{d}, \quad x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
\downarrow_{\downarrow \text { étale Galois covering with Gal }=\mathfrak{S}_{d}} \\
\left(V^{d}\right)^{0} / \mathfrak{S}_{d}=\quad=\quad\left(\operatorname{Sym}^{d} V\right)^{0} \subset \operatorname{Sym}^{d} V
\end{gathered}
$$

$\forall k$ finite, $\operatorname{char}(k) \gg 0$, there is a natural bijection

$$
\left\{x \in\left(\operatorname{Sym}^{d} V\right)^{0}(k), \quad \operatorname{Dec}(x)=\langle\sigma\rangle, \quad \sigma \text { a } d \text {-cycle of } \mathfrak{S}_{d}\right\}
$$

$1: 1$
\{irreducibles 0 - cycles of degree d on V_{k} \}

$$
\left\{x \in\left(\operatorname{Sym}^{d} V\right)^{0}(k), \quad \operatorname{Dec}(x)=\langle\sigma\rangle, \quad \sigma \text { a } d \text {-cycle of } \mathfrak{S}_{d}\right\}
$$

$$
1: 1
$$

\{irreducibles 0 - cycles of degree d on V_{k} \}

$$
\left\{x \in\left(\operatorname{Sym}^{d} V\right)^{0}(k), \quad \operatorname{Dec}(x)=\langle\sigma\rangle, \quad \sigma \text { a } d \text {-cycle of } \mathfrak{S}_{d}\right\}
$$

$$
1: 1
$$

\{irreducibles 0 - cycles of degree d on V_{k} \}
The set at the top may be viewed as the set of k-points of a first order ring formula $\psi_{d}(V)$ with coefficients in \mathbf{Q}.

$$
\left\{x \in\left(\operatorname{Sym}^{d} V\right)^{0}(k), \quad \operatorname{Dec}(x)=\langle\sigma\rangle, \quad \sigma \text { a } d \text {-cycle of } \mathfrak{S}_{d}\right\}
$$

$$
1: 1
$$

\{irreducibles 0 - cycles of degree d on V_{k} \}
The set at the top may be viewed as the set of k-points of a first order ring formula $\psi_{d}(V)$ with coefficients in \mathbf{Q}.

Proposition

The virtual motive of this formula coincides with $\Psi_{d}(V)$.

Proof: One has to show that, in $\mathcal{M} \otimes \mathbf{Q}[[T]]$

$$
Z_{V, \text { Kap }}(T)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\chi\left(\psi_{d}(V)\right)}
$$

This is achieved by "motivic counting".

Proof: One has to show that, in $\mathcal{M} \otimes \mathbf{Q}[[T]]$

$$
Z_{V, \text { Kap }}(T)=\prod_{d \geq 1}\left(1-T^{d}\right)^{-\chi\left(\psi_{d}(V)\right)}
$$

This is achieved by "motivic counting".
For example, the equality for the T^{2}-coefficient reads

$$
\left[\operatorname{Sym}^{2}(V)\right]=\frac{1}{2}\left([V]^{2}-[V]\right)+[V]+\chi\left(\psi_{2}(V)\right)
$$

$$
\left[\operatorname{Sym}^{2}(V)\right] \stackrel{?}{=} \frac{1}{2}\left([V]^{2}-[V]\right)+[V]+\chi\left(\psi_{2}(V)\right)
$$

$$
\left[\operatorname{Sym}^{2}(V)\right] \stackrel{?}{=} \frac{1}{2}\left([V]^{2}-[V]\right)+[V]+\chi\left(\psi_{2}(V)\right)
$$

$\forall k$ finite, $\operatorname{char}(k) \gg 0$,

$$
\operatorname{Sym}^{2}(V)(k)=f_{1}\left(X^{2} \backslash \Delta(k)\right) \bigsqcup f_{2}(X(k)) \bigsqcup f_{3}\left(\psi_{2}(V)(k)\right)
$$

$\forall k$ finite, $\operatorname{char}(k) \gg 0$,

$$
\left.\begin{array}{c}
V(k) \rightarrow f_{2}(V(k)) \\
\psi_{2}(V)(k) \rightarrow f_{3}\left(\psi_{2}(V)(k)\right)
\end{array}\right\} \text { are } 1: 1
$$

$\forall k$ finite, $\operatorname{char}(k) \gg 0$,

$$
\left.\begin{array}{c}
\operatorname{Sym}^{2}(V)(k)=f_{1}\left(V^{2} \backslash \Delta_{V}(k)\right) \bigsqcup f_{2}(V(k)) \bigsqcup f_{3}\left(\psi_{2}(V)(k)\right) \\
V(k) \rightarrow f_{2}(V(k)) \\
\psi_{2}(V)(k) \rightarrow f_{3}\left(\psi_{2}(V)(k)\right)
\end{array}\right\} \text { are } 1: 1
$$

$\forall k$ finite, $\operatorname{char}(k) \gg 0$,

$$
\left.\begin{array}{c}
\operatorname{Sym}^{2}(V)(k)=f_{1}\left(V^{2} \backslash \Delta_{V}(k)\right) \bigsqcup f_{2}(V(k)) \bigsqcup f_{3}\left(\psi_{2}(V)(k)\right) \\
V(k) \rightarrow f_{2}(V(k)) \\
\psi_{2}(V)(k) \rightarrow f_{3}\left(\psi_{2}(V)(k)\right)
\end{array}\right\} \text { are } 1: 1
$$

These facts imply

$$
\left[\operatorname{Sym}^{2}(V)\right]=\frac{1}{2}\left([V]^{2}-\left[\Delta_{V}\right]\right)+[V]+\chi\left(\psi_{2}(V)\right) \quad \text { Q.E.D. }
$$

Similar counting arguments are used to compute the main part at $T=\mathbf{L}^{-1}$ of the motivic height zeta function of a split toric variety.

