Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

Contrôle continu n°2 Jeudi 8 avril 2021, 16h15 – 17h45 Corrigé

Exercice 1

1. Soit **K** un corps et $P \in \mathbf{K}[X]$. Rappeler la définition de « P est un élément irréductible de $\mathbf{K}[X]$ »

Solution: Parmi les définitions équivalentes possibles, voici celle donnée dans le cours : un polynôme $P \in \mathbf{K}[X]$ est irréductible si et seulement s'il est non constant et toute factorisation P = QR, avec $Q, R \in \mathbf{K}[X]$, entraîne que soit Q, soit R est constant.

- 2. Soit \mathbf{K} un corps et $P \in \mathbf{K}[X]$ un polynôme de degré 2 ou 3 qui n'a pas de racine dans \mathbf{K} . Montrer que P est un élément irréductible de $\mathbf{K}[X]$.
 - Solution: Comme P est de degré 2 ou 3, il est non constant. Soit $Q, R \in \mathbf{K}[X]$ tels que P = QR. Il s'agit de montrer que Q est constant ou R est constant. On a $\deg(P) = \deg(QR) = \deg(Q) + \deg(R)$. Ainsi $\deg(Q) + \deg(R) \in \{2,3\}$. Par ailleurs on a $\deg(Q) \in \mathbf{N}$ et $\deg(R) \in \mathbf{N}$. Enfin, comme \mathbf{K} est un corps, un polynôme de $\mathbf{K}[X]$ de degré 1 a toujours une racine dans \mathbf{K} . Comme Q et R divisent P et que P n'a pas de racine dans \mathbf{K} , on a $\deg(Q) \neq 1$ et $\deg(R) \neq 1$. La seule décomposition de 2 (resp. de 3) comme somme d'entiers naturels dont aucun ne vaut 1 est 2 = 0 + 2 (resp. 3 = 0 + 3). Donc $\deg(Q) = 0$ ou $\deg(R) = 0$, en d'autres termes Q est constant ou R est constant. Donc P est bien irréductible.
- 3. Donner un exemple d'un corps \mathbf{K} et d'un élément $P \in \mathbf{K}[X]$ de degré 4 qui n'a pas de racine dans \mathbf{K} et n'est pas irréductible dans $\mathbf{K}[X]$ dans les cas suivants :
 - (a) ${\bf K}$ est de caractéristique 0

Solution: Prenons $\mathbf{K} = \mathbf{R}$ (qui est bien de caractéristique 0) et $P = (X^2 + 1)^2$ qui est bien de degré 4. Pour tout $x \in \mathbf{R}$, on a $(x^2 + 1)^2 > 0$. Donc P n'a pas de racine dans \mathbf{R} . Posant $Q = R = X^2 + 1$, on voit que P = QR alors que ni Q, ni R n'est constant. Donc P n'est pas irréductible dans $\mathbf{R}[X]$.

(b) K est de caractéristique 2

Solution: Prenons $\mathbf{K} = \mathbf{F}_2$ (qui est bien de caractéristique 2) et $P = (X^2 + X + [1]_2)^2$ qui est bien de degré 4. On a $\mathbf{F}_2 = \{[0]_2, [1]_2\}$ et par ailleurs

$$P([0]_2) = ([0]_2^2 + [0]_2 + [1]_2)^2 = [1]_2^2 = [1]_2 \neq [0]_2,$$

$$P([1]_2) = ([1]_2^2 + [1]_2 + [1]_2)^2 = [3]_2^2 = [1]_2 \neq [0]_2.$$

Donc P n'a pas de racine dans \mathbf{F}_2 . Posant $Q = R = X^2 + X + [1]_2$, on voit que P = QR alors que ni Q, ni R n'est constant. Donc P n'est pas irréductible dans $\mathbf{F}_2[X]$.

4. Dans toute la suite de l'exercice, on suppose que P est l'élément de $\mathbf{F}_3[X]$ donné par $P := X^3 + [2]_3X + [1]_3$. On pose $\mathbf{K} := \mathbf{F}_3[X]/\langle P \rangle$. Justifier que \mathbf{K} est un corps.

Solution: On a $\mathbf{F}_2 = \{[0]_3, [1]_3, [2]_3\}$ et par ailleurs

$$P([0]_3) = [0]_3^3 + [2]_3[0]_3 + [1]_3 = [1]_3 = [1]_3 \neq [0]_3,$$

$$P([1]_3) = [1]_3^3 + [2]_3[1]_3 + [1]_3 = [4]_3 = [1]_3 \neq [0]_3,$$

$$P([2]_3) = [2]_3^3 + [2]_3[2]_3 + [1]_3 = [13]_3 = [1]_3 \neq [0]_3.$$

Ainsi P n'a pas de racine dans \mathbf{F}_3 . Comme il est de degré 3, on sait d'après la question 2 que P est un élément irréductible de $\mathbf{F}_3[X]$. Comme \mathbf{F}_3 est un corps, on en déduit que $\langle P \rangle$ est un idéal maximal de $\mathbf{F}_3[X]$, et donc que $\mathbf{K} = \mathbf{F}_3[X]/\langle P \rangle$ est un corps.

On note π le morphisme quotient $\mathbf{F}_3[X] \to \mathbf{K}$ et $\alpha := \pi(X)$. Donner, sans justification, le cardinal de \mathbf{K} et une base du \mathbf{F}_3 -espace vectoriel \mathbf{K} .

Solution: **K** est de cardinal $3^3 = 27$. Une base du \mathbf{F}_3 -espace vectoriel **K** est $\{[1]_3, \alpha, \alpha^2\}$. Dans toute la suite, le résultat des calculs dans **K** devront être exprimés dans cette base.

5. Calculer α^2 , α^4 , α^8 .

Solution: Comme P est dans le noyau de π et $\pi(X) = \alpha$, on a $\alpha^3 + [2]_3\alpha + [1]_3 = [0]_3$, soit $\alpha^3 = \alpha + [2]_3$.

soit $\alpha^3 = \alpha + [2]_3$. L'élément α^2 est déjà décomposé dans la base $\{[1]_3, \alpha, \alpha^2\}$.

Comme $\alpha^3 = \alpha + [2]_3$, on a

$$\alpha^4 = \alpha \cdot \alpha^2 = \alpha^2 + [2]_3 \alpha.$$

On en déduit

$$\alpha^8 = (\alpha^4)^2 = (\alpha^2 + [2]_3 \alpha)^2 = \alpha^4 + [4]_3 \alpha^3 + \alpha^2.$$

Ainsi

$$\alpha^8 = (\alpha^2 + [2]_3\alpha) + (\alpha + [2]_3) + \alpha^2 = [2]_3\alpha^2 + [2]_3.$$

En déduire α^{13} . On vérifiera que $\alpha^{13} = [2]_3$.

Solution: On a

$$\alpha^{13} = \alpha^8 \cdot \alpha^4 \cdot \alpha$$

soit

$$\alpha^{13} = ([2]_3 \alpha^2 + [2]_3) \cdot (\alpha^2 + [2]_3) \cdot \alpha.$$

Or

$$([2]_3\alpha^2 + [2]_3) \cdot (\alpha^2 + [2]_3\alpha) = [2]_3\alpha^4 + \alpha^3 + [2]_3\alpha^2 + \alpha$$

d'où

$$([2]_3\alpha^2 + [2]_3) \cdot (\alpha^2 + [2]_3\alpha) = ([2]_3\alpha^2 + \alpha) + (\alpha + [2]_3) + [2]_3\alpha^2 + \alpha.$$

soit

$$([2]_3\alpha^2 + [2]_3) \cdot (\alpha^2 + [2]_3\alpha) = \alpha^2 + [2]_3$$

On en tire

$$\alpha^{13} = (\alpha^2 + [2]_3)\alpha = \alpha^3 + [2]_3\alpha$$

soit

$$\alpha^{13} = (\alpha + [2]_3) + [2]_3\alpha) = [2]_3.$$

6. Déduire de la question précédente un générateur de \mathbf{K}^{\times} .

Solution: Comme \mathbf{K} est de cardinal 27 et \mathbf{K} est un corps, le groupe \mathbf{K}^{\times} est de cardinal 26, qui se décompose en facteurs premiers comme $26 = 2 \cdot 13$. Comme $\{[1]_3, \alpha, \alpha^2\}$ est une base du \mathbf{F}_3 -espace vectoriel \mathbf{K} , les éléments α et α^2 sont distincts de $[1]_3$. Par ailleurs la question précédente montre que α^{13} est distinct de $[1]_3$. Comme \mathbf{K}^{\times} est de cardinal 26, l'ordre de α est un diviseur positif de 26, mais par ailleurs on sait que cet ordre n'est pas dans l'ensemble $\{1, 2, 13\}$. Donc α est d'ordre 26 et est donc un générateur de \mathbf{K}^{\times} .

7. Pour cette question, on demande de ne pas utiliser les résultats du cours sur les cardinaux des sous-corps des corps finis. Existe-t-il un élément β de **K** tel que $\beta^8 = [1]_3$?

Solution : Bien sûr ! On prend $\beta = [1]_3$ (l'énoncé aurait du être : existe-t-il un élément β de \mathbf{K}^{\times} d'ordre 8 ?)

Existe-t-il un sous-corps de K de cardinal 3?

Solution: Non: si un tel sous-corps \mathbf{L} existait, comme \mathbf{L}^{\times} est cyclique, il existerait dans \mathbf{K}^{\times} un élément d'ordre 9-1=8. Mais \mathbf{K}^{\times} est de cardinal 26 et 8 ne divise pas 26, donc l'existence d'un tel élément contredirait le théorème de Lagrange.

Autre argument : on peut invoquer le fait que si \mathbf{L} est un sous-corps de \mathbf{K} , \mathbf{K} est muni d'une structure de \mathbf{L} -espace vectoriel (c'est un fait général) pour laquelle il est de dimension finie (car il est fini de toute façon). Ainsi le cardinal de \mathbf{K} est nécessairement une puissance du cardinal de \mathbf{L} , ce qui impose $\operatorname{card}(\mathbf{L}) \in \{3,27\}$.

de cardinal n, pour $n \in \mathbb{N} \setminus \{3, 9\}$?

Solution: Oui pour n = 27: **K** lui-même... Non pour $n \in \mathbb{N} \setminus \{3, 9, 27\}$ (déjà vu ci-dessus).

8. (*) Soit $Q \in \mathbf{F}_3[X]$ de degré 2 et vérifiant $\forall a \in \mathbf{F}_3, Q(a) \neq 0$. Montrer que Q est un élément irréductible de $\mathbf{K}[X]$.

Solution: Comme Q est de degré 2 et n'a pas de racine dans \mathbf{F}_3 , Q est un élément irréductible de \mathbf{F}_3 . En particulier, $\mathbf{L} := \mathbf{F}_3[X]/\langle P \rangle$ est un corps de cardinal $3^{\deg(Q)} = 3^2$. Toujours comme Q est de degré 2, pour montrer que Q est un élément irréductible de $\mathbf{K}[X]$ il suffit de montrer que Q n'a pas de racine dans \mathbf{K} . Supposons qu'il existe $\beta \in \mathbf{K}$ qui vérifie $Q(\beta) = 0$. Soit φ l'unique morphisme de \mathbf{F}_3 -algèbre de $\mathbf{F}_3[X]$ vers \mathbf{K} qui envoie X sur β . Comme $Q(\beta) = 0$, le noyau de φ contient Q et donc l'idéal $Q \cdot \mathbf{F}_3[X]$. Ainsi φ induit un morphisme $\psi \colon \mathbf{L} = \mathbf{F}_3[X]/\langle Q \rangle \to \mathbf{K}$. Comme \mathbf{L} est un corps et \mathbf{K} n'est pas l'anneau nul, ψ est injectif, et son image est donc un sous-corps de \mathbf{K} de cardinal 9 ce qui contredit un résultat de la question précédente.

Exercice 2

Soit A un anneau. Pour tout idéal I de A, on pose $\sqrt{I} := \{a \in A, \exists n \in \mathbb{N} \setminus \{0\}, a^n \in I\}.$

1. Soit I un idéal de A. Montrer que \sqrt{I} est un idéal de A qui contient I. L'idéal I est dit radical s'il vérifie $\sqrt{I} = I$.

Solution : (tirée de la correction du CC1 d'ANAR de 2019) Montrons que \sqrt{I} est un sous-groupe de A.

On a $0^1 = 0$ or $0 \in I$ car I est un idéal de A, donc $0 \in \sqrt{I}$

Soit $x \in \sqrt{I}$ et $n \in \mathbb{N} \setminus \{0\}$ tel que $x^n \in I$. Alors $(-x)^n = (-1)^n x$. Comme I est un sous-groupe de A et $x^n \in I$, on a $(-1)^n x \in I$. Donc $-x \in \sqrt{I}$.

Soit $x, y \in \sqrt{I}$, $n \in \mathbb{N} \setminus \{0\}$ tel que $x^n \in I$ et $m \in \mathbb{N} \setminus \{0\}$ tel que $y^m \in I$.

Notons que si $r \in \mathbb{N}$, comme $x^{n+r} = x^n x^r$ et I est un idéal, on a $x^{n+r} \in I$. De même

 $y^{m+r} \in I$.

D'après la formule du binôme de Newton, on a

$$(x+y)^{n+m} = \sum_{\substack{p,q \in \mathbf{N} \\ p+q=n+m}} \binom{n}{p} x^p y^q.$$

Soit $p, q \in \mathbb{N}$ tel que p + q = n + m. Si p < n et q < m, on a p + q < n + m ce qui est absurde. Donc soit $p \ge n$, soit $q \ge m$. Si $p \ge n$, d'après la remarque ci-dessus, on a $x^p \in I$. Comme I est un idéal, on a alors $\binom{n}{p}x^py^q \in I$. Si $q \ge m$, on a $y^q \in I$ et donc là encore $\binom{n}{p}x^py^q \in I$.

Ainsi $(x + y)^{n+m}$ s'écrit comme une somme d'éléments de I, donc est dans I. Donc $x + y \in \sqrt{I}$.

Ainsi \sqrt{I} est bien un sous-groupe de A.

Soit $x \in \sqrt{I}$, $n \in \mathbb{N} \setminus \{0\}$ tel que $x^n \in I$ et $y \in A$. Alors $(xy)^n = x^n y^n$. Comme $x^n \in I$ et I est un idéal, on a $x^n y^n \in I$. Donc $xy \in \sqrt{I}$.

Ceci achève de montrer que \sqrt{I} est un idéal de A.

Montrons que $I \subset \sqrt{I}$. Soit $x \in I$. On a $x^1 = x$ donc $x^1 \in I$ et donc $x \in \sqrt{I}$, ce qui conclut. Notons que ce dernier résultat montre que pour établir qu'un idéal I est radical, il suffit de montrer l'inclusion $\sqrt{I} \subset I$, cette inclusion étant équivalente à la propriété :

$$\forall a \in A, \quad (\exists n \in \mathbf{N} \setminus \{0\}, a^n \in I) \Rightarrow a \in I$$

2. Soit I un idéal de A. Montrer que l'idéal \sqrt{I} est radical.

Solution: Soit $a \in A$ et $n \in \mathbb{N} \setminus \{0\}$ tel que $a^n \in \sqrt{I}$. Il s'agit de montrer que $a \in \sqrt{I}$. Par définition de \sqrt{I} il existe $m \in \mathbb{N} \setminus \{0\}$ tel que $(a^n)^m \in I$. Ainsi $a^{nm} \in I$. Toujours par définition de \sqrt{I} , on en déduit que $a \in \sqrt{I}$, ce qui conclut.

3. Soit B un anneau, $\varphi \colon A \to B$ un morphisme d'anneaux et J un idéal radical de B. L'idéal $\varphi^{-1}(J)$ est-il nécessairement un idéal radical de A?

Solution: Soit $a \in A$ et $n \in \mathbb{N} \setminus \{0\}$ tel que $a^n \in \varphi^{-1}(J)$. Ainsi $\varphi(a^n) \in J$. Comme φ est un morphisme d'anneaux, on a $\varphi(a^n) = \varphi(a)^n$. Donc $\varphi(a)^n \in J$. Comme J est radical, on en déduit $\varphi(a) \in J$, soit $a \in \varphi^{-1}(J)$. Ainsi $\varphi^{-1}(J)$ est bien un idéal radical de A.

4. L'idéal 6Z est-il un idéal radical de Z?

Solution: Oui. Montrons-le. Soit $a \in \mathbb{Z}$ et $n \in \mathbb{N} \setminus \{0\}$ tel que $a^n \in 6\mathbb{Z}$, c'est-à-dire tel que 6 divise a^n . Comme $6 = 2 \times 3$, on en déduit que 2 divise a^n et 3 divise a^n . Comme 2 et 3 sont premiers, on en déduit par le lemme d'Euclide que 2 divise a et 3 divise a. Comme 2 et 3 sont premiers entre eux, on en déduit que $6 = 2 \times 3$ divise a. Ainsi $a \in 6\mathbb{Z}$. Ceci achève de montrer que $6\mathbb{Z}$ est radical.

Donner une infinité d'exemples d'idéaux de Z qui sont radicaux mais pas premiers.

Solution: Le raisonnement précédent montre que pour n'importe quel nombre premier impair p, l'idéal $2p\mathbf{Z}$ est radical (remplacer 6 par 2p et 3 par p). Cet idéal n'est pas premier car 2p n'est pas un nombre premier. Et si p et q sont deux nombres premiers impairs deux à deux distincts, 2p et 2q sont des entiers naturels distincts, donc les idéaux $2p\mathbf{Z}$ et $2q\mathbf{Z}$ sont distincts. Par ailleurs on sait qu'il existe une infinité de nombres premiers impairs. Ainsi la famille $\{2p\mathbf{Z}\}_{p \text{ nombre premier impair}}$ est une famille infinie d'idéaux radicaux non

premiers de Z.

- 5. Soit B et C des anneaux non nuls. Montrer que $\sqrt{0}$ (le radical de l'idéal nul) n'est pas un idéal premier de $B \times C$.
 - **Solution**: (tirée de la correction du CC1 d'ANAR de 2019) On a $(0_B, 1_C)(1_B, 0_C) = (0_B, 0_C)$ et $(0_B, 0_C) \in \sqrt{0}$. Cependant, ni $(0_B, 1_C)$ ni $(1_B, 0_C)$ ne sont des éléments de $\sqrt{0}$. En effet, si n est un entier strictement positif, on a $(0_B, 1_C)^n = (0_B^n, 1_C^n) = (0_B, 1_C)$ et $(0_B, 1_C) \neq (0_B, 0_C)$ car C n'est pas l'anneau nul. Même raisonnement pour $(1_B, 0_C)$. Donc $\sqrt{0}$ n'est pas un idéal premier de $B \times C$.
- 6. (*) Donner un exemple d'un anneau A non intègre tel que $\sqrt{0}$ est un idéal premier de A. Solution : (tirée de la correction du CC1 d'ANAR de 2019) Prenons $A = \mathbf{Z}/4\mathbf{Z}$. On a $[2]_2^2 = [0]_2$. Par ailleurs, pour tout entier n strictement positif $[1]_2^n = [1]_2 \neq [0]_2$ et $[3]_2^n = [-1]_2^n = [(-1)^n]_2 \neq [0]_2$.
 - Donc $\sqrt{0} = \{[0]_2, [2]_2\}$, qui est bien un idéal premier : en effet il est propre et on vérifie aussitôt que si $\{a,b\} = \mathbf{Z}/4\mathbf{Z} \setminus \sqrt{0}$ on a $\{a^2,b^2,ab\} \cap \sqrt{0} = \varnothing$. Plus conceptuellement, on pouvait montrer que $(\mathbf{Z}/4\mathbf{Z})/\sqrt{0}$ est isomorphe à $\mathbf{Z}/2\mathbf{Z}$. En effet on vérifie facilement que l'unique morphisme d'anneaux $\mathbf{Z}/4\mathbf{Z} \to \mathbf{Z}/2\mathbf{Z}$ est surjectif et de noyau $\sqrt{0}$.