6.8 Factorialité des anneaux de polynômes, critères d'irréductibilité

Dans cette section, on démontre en particulier le théorème 8, à savoir le résultat suivant : si A est un anneau factoriel, A[X] est factoriel. On donne également, pour un anneau factoriel, des critères d'irréductibilté dans A[X] et dans Frac(A)[X]. Il est important dans ce qui suit de bien avoir assimilé les notions de A-associations et de A-pgcd définies dans la section précédente. Il peut être utile (voire conseillé), en première lecture, de supposer dans tout ce qui suit que $A = \mathbf{Z}$.

Définition 34. Soit A un anneau factoriel et $P \in \text{Frac}(A)[X]$ un polynôme. On appelle contenu du polynôme P, et on note c(P), tout A-pgcd des coefficients de P.

On dit que le polynôme P est primitif si $c(P) \sim_A 1$.

Remarque. Par A-pgcd des coefficients de P, on entend plus précisément ce qui suit : écrivons $P = \sum_{n \geq 0} a_n X^n$ avec $(a_n) \in \operatorname{Frac}(A)^{(\mathbf{N})}$ et soit E une partie de finie de \mathbf{N} tel que pour tout $n \in \mathbf{N} \setminus E$ on a $a_n = 0$. Alors c(P) est un A-pgcd de la famille $\{a_n\}_{n \in E}$. La dernière assertion de la proposition 33 montre que c(P) ne dépend pas (à A-association près) du choix d'une telle partie E.

Remarque. En toute rigueur, le contenu n'est défini qu'à A-association près. Toute égalité que l'on écrit faisant intervenir des contenus doit être comprise à A-association près.

Proposition 35. Soit A un anneau factoriel et $P \in A[X]$.

- 1. Si P est le polynôme nul, c(P) = 0, et ceci caractérise le polynôme nul.
- 2. Soit $P \in A[X]$ un polynôme unitaire. Alors P est primitif. Plus généralement, si $P \in \text{Frac}(A)[X]$ est unitaire, alors $\frac{1}{c(P)} \in A$.
- 3. Soit $P \in \text{Frac}(A)[X]$. On a $P \in A[X]$ si et seulement si $c(P) \in A$. En particulier tout polynôme primitif de Frac(A)[X] est un élément de A[X].

- 4. Pour tout $a \in \operatorname{Frac}(A)$, on $a \ c(aP) \sim_A ac(P)$.
- 5. On suppose $P \neq 0$. Alors $c(P) \neq 0$ et $\frac{P}{c(P)}$ est un polynôme primitif.

Démonstration. Ceci découle aussitôt des propositions 32 et33.

Proposition 36. Soit A un anneau factoriel et $P,Q \in \operatorname{Frac}(A)[X]$. Alors $c(PQ) \sim_A c(P)c(Q)$.

Démonstration. Montrons tout d'abord que le produit de deux polynômes primitifs est primitif. Soit $P,Q\in A[X]$ des polynôme primitifs. D'après le théorème 25, il suffit de montrer que pour tout élément irréductible π de A, il existe un coefficient de PQ qui n'est pas divisble par π . Soit $B=A/\langle \pi \rangle$, \overline{P} , \overline{Q} et $\overline{PQ}=\overline{P}\cdot\overline{Q}$ les images respectives de P, Q et PQ dans B[X]. Il s'agit de montrer que \overline{PQ} est non nul. Or par hypothèse \overline{P} et \overline{Q} sont non nuls. En outre, comme π est irréductible et A est factoriel, l'idéal $\langle \pi \rangle$ est un idéal premier de A. Donc B est intègre, donc également B[X]. Donc $\overline{PQ}=\overline{P}\cdot\overline{Q}$ est non nul, ce qui conclut.

Soit à présent P et Q des polynômes de A[X] quelconques. Si P=0 ou Q=0, l'égalité c(P)c(Q)=c(PQ) est immédiate. Sinon, on a $c(P)\neq 0$ et $c(Q)\neq 0$, et d'après la proposition 35 les polynômes $\frac{P}{c(P)}$ et $\frac{Q}{c(Q)}$ sont des éléments primitifs de A[X]. Donc $\frac{1}{c(P)c(Q)}PQ$ est un élément primitif de A[X]. Toujours d'après la proposition 35, on a alors

$$1 \sim_A c \left(\frac{1}{c(P)c(Q)}PQ\right) \sim_A \frac{1}{c(P)c(Q)}c(PQ)$$

 \Box d'où le résultat.

Lemme 37. Soit A un anneau factoriel, $P \in A[X]$ un polynôme primitif, $Q, R \in \operatorname{Frac}(A)[X]$ tels que P = QR. Alors il existe des éléments primitifs \tilde{Q} , \tilde{R} de A[X], associés respectivement à Q et R dans $\operatorname{Frac}(A)[X]$, et tels que $P = \tilde{Q}\tilde{R}$.

Démonstration. D'après la proposition 36 et les hypothèses, on a

$$1 \sim_A c(QR) \sim_A c(Q)c(R)$$
.

On en déduit qu'on a $c(Q)c(R) \in A^{\times}$. Posons $\widetilde{Q} = \frac{1}{c(Q)}Q$ et $\widetilde{R} = \frac{1}{c(R)}R$. Alors \widetilde{Q} et \widetilde{R} sont primitifs (proposition 35) et on a

$$P \sim_A \frac{1}{c(Q)c(R)} P \sim_A \widetilde{Q}\widetilde{R}.$$

Théorème 38. Soit A un anneau factoriel. L'ensemble des éléments irréductibles de A[X] est la réunion disjointes des deux ensembles suivants :

- 1. l'ensemble des polynômes constants qui sont des éléments irréductibles de A
- 2. l'ensemble des polynômes qui sont primitifs et irréductibles dans Frac(A)[X]

Exemple. Tout polynôme unitaire de degré 1 est un élément irréductible de A[X]. Mais si a est un élément non nul et non inversible de A, le polynôme aX + a est un polynôme de degré 1 qui n'est pas irréductible dans A[X].

Démonstration. Exercice 5.14

Démonstration. (du théorème 8) Soit A un anneau factoriel. Il s'agit de montrer que A[X] est factoriel. Montrons tout d'abord l'existence d'une décomposition en irréductibles.

Soit P un élément non nul et non inversible de A[X]. D'après la proposition 35, $Q = \frac{1}{c(P)}P$ est un élément primitif de A[X]

Soit $Q = \prod_{i=1}^r P_i$ une décomposition de Q en produit de polynôme irréductibles de $\operatorname{Frac}(A)[X]$. D'après le lemme 37, quitte à remplacer P_i par un polynôme associé dans $\operatorname{Frac}(A)[X]$ (donc encore irréductible dans $\operatorname{Frac}(A)[X]$), on peut supposer que les P_i sont des polynômes primitifs.

Ainsi les polynômes P_i sont irréductibles dans A[X] d'après le théorème 38.

Comme P = c(P)Q, en décomposant c(P) en irréductibles dans A, on obtient d'après le théorème 38 une décomposition de P en produit d'irréductibles de A[X].

Montrons l'unicité de la décomposition à permutation et association près.

Supposons qu'on a une égalité

$$\prod_{i=1}^{r_1} a_i \prod_{i=1}^{r_2} P_i = \prod_{j=1}^{s_1} b_j \prod_{j=1}^{s_2} Q_j$$

où les a_i et b_j sont des éléments irréductibles de A, les P_i et Q_j sont des polynômes primitifs irréductibles dans $\operatorname{Frac}(A)[X]$, et r_1 , r_2 , s_1 et s_2 sont des entiers positifs. L'unicité de la décomposition dans $\operatorname{Frac}(A)[X]$ montre qu'on a nécessairement $r_2 = s_2$ et que quitte à renuméroter on a : pour tout $1 \leqslant i \leqslant s_1$, P_i et Q_i sont associés. Soit $1 \leqslant i \leqslant s_1$. Soit $\alpha_i \in \operatorname{Frac}(A)^\times$ tel que $P_i = \alpha_i Q_i$. En prenant les contenus, on trouve que $\alpha_i \sim_A 1$. Ainsi $\alpha_i \in A^\times \subset A[X]^\times$. Quitte à remplacer Q_i par $\alpha_i Q_i$, ce qui est loisible vu l'énoncé d'unicité visé, on a donc $P_i = Q_i$. On en déduit $\prod_{i=1}^{r_1} a_i = \prod_{j=1}^{s_1} b_j$ et on conclut en utilisant l'unicité de la factorisation dans l'anneau factoriel A.

Corollaire 39. Si A est un anneau factoriel et n est un entier strictement positif, l'anneau $A[X_1, \ldots, X_n]$ est factoriel.

En particulier, si **K** est un corps, l'anneau $\mathbf{K}[X_1,\ldots,X_n]$ est factoriel.

Nous terminons ce chapitre par quelques critères d'irréductibilité dans les anneaux de polynômes.

Basiquement, l'idée est la suivant : soit A et B des anneaux intègres et $\varphi \colon A \to B$ un morphisme d'anneaux. Si $f \in A[X]$ a un coefficient dominant non tué par φ et est un produit

de deux polynômes non constants, $\varphi(f)$ sera un produit de deux polynômes non constants dans B[X]. Par contraposée, des propriétés d'« irréductibilité » de $\varphi(f)$ conduiront à des propriétés d'« irréductibilité » de f. L'exemple le plus basique est le résultat suivant (vu en fD) : soit fD une extension de corps et fD est irréductible dans fD est irréductible dans fD en anière générale, des critères efficaces sont obtenues en prenant pour φ un certain morphisme quotient, mais il faut faire attention au sens d'irréductible dans l'anneau fD lorsque fD n'est plus un corps (d'où les guillemets ci-dessus). Ceci motive notamment l'hypothèse de factorialité dans les énoncés ci-dessous.

Théorème 40. Soit A un anneau factoriel, π un élément irréductible de A, B l'anneau intègre $A/\pi A$ et $\varphi \colon A \to B$ le morphisme quotient. On note encore φ l'unique morphisme d'anneau $A[X] \to B[X]$ qui envoie X sur X et induit φ en restriction à A (morphisme de « réduction modulo π » des coefficients d'un polynôme de A[X])

Soit $P \in A[X]$. On suppose que $\deg(\varphi(P)) = \deg(P)$ et que $\varphi(P)$ est irréductible dans $\operatorname{Frac}(A/\pi)[X]$. Alors P est irréductible dans $\operatorname{Frac}(A)[X]$.

Démonstration. L'hypothèse $\deg(\varphi(P)) = \deg(P)$ montre que π ne divise pas le coefficient dominant de P. En particulier π ne divise pas c(P). Ainsi, si $Q \in A[X]$ est un polynôme primitif tel que P = c(P)Q, on a $\deg(\varphi(Q)) = \deg(Q)$, P et Q sont associés dans $\operatorname{Frac}(A)[X]$ et $\varphi(P)$ et $\varphi(Q)$ sont associés dans $\operatorname{Frac}(B)[X]$. Vu l'énoncé à démontrer, on peut donc supposer que P = Q, c'est à dire on peut supposer que P est primitif. Raisonnons par contraposée et supposons que P = QR, où Q et R sont des polynômes non constants de $\operatorname{Frac}(A)[X]$. Comme P est primitif, d'après le lemme 37, et quitte à remplacer Q et R par des éléments associées, on peut supposer Q et R sont des éléments de A[X]. On a alors $\varphi(P) = \varphi(Q)\varphi(R)$, d'où on tire $\deg(\varphi(P)) = \deg(\varphi(Q)) + \deg(\varphi(R))$. Comme φ ne peut que diminuer le degré et que $\deg(\varphi(P)) = \deg(P) = \deg(Q) + \deg(P)$, $\varphi(Q)$ et $\varphi(R)$ sont non constants, ce qui montre que $\varphi(P)$ n'est pas irréductible dans $\operatorname{Frac}(B)[X]$.

Exemple. On peut appliquer ce critère à $X^4 + X^3 + 2X + 3 \in \mathbb{Z}[X]$ et $\pi = 2$. En effet on peut montrer que $X^4 + X^3 + [1]_2$ est irréductible dans $\mathbb{F}_2[X]$: il n'a pas de racine dans \mathbb{F}_2 et il n'est pas divisible par l'unique polynôme irréductible de degré 2 de $\mathbb{F}_2[X]$, à savoir $X^2 + X + [1]_2$.

On peut aussi appliquer ce critère à $X^2 + 1 + XYR(Y) + YS(Y) \in \mathbf{R}[X, Y]$ et $\pi = Y$.

Remarque. Ce qui fait notamment la souplesse du critère est la diversité de choix qui s'offre a priori pour l'irréductible π . Par exemple pour $A = \mathbf{Z}$, il suffit de trouver un nombre premier p tel que la réduction modulo p de P est irréductible dans $\mathbf{F}_p[X]$ pour conclure.

En dépit de cela, il existe en général des polynômes irréductibles dans A[X] pour lesquels on ne pourra pas appliquer ce critère. Un exemple classique est le polynôme $X^4 + 1$, qui est

irréductible dans $\mathbf{Q}[X]$ (donc dans $\mathbf{Z}[X]$) mais qui est réductible modulo n'importe quel nombre premier (cf. l'exercice 5.6).

Le critère d'Eisenstein est également un critère d'irréductibilité basé sur la réduction modulo un irréductible π , mais de manière un peu plus fine, puisque dans le cadre d'application de ce critère le polynôme réduit modulo π sera réductible, ce qui permettra quand même au vu des hypothèses faites de conclure à l'irréductibilité du polynôme initial via une analyse plus poussée.

Théorème 41. Critère d'Eisenstein

Soit A un anneau factoriel, π un élément irréductible de A, B l'anneau intègre $A/\pi A$ et $\varphi \colon A \to B$ le morphisme quotient. On note encore φ l'unique morphisme d'anneau $A[X] \to B[X]$ qui envoie X sur X et induit φ en restriction à A (morphisme de « réduction modulo π » des coefficients d'un polynôme de A[X])

Soit $n \ge 1$ un entier et $P = \sum_{i=0}^{n} a_i X^i \in A[X]$ un polynôme de degré n.

On suppose que pour tout $0 \le i \le n-1$, π divise a_i , que π ne divise pas a_n et que π^2 ne divise pas a_0 .

Alors P est irréductible dans Frac(A)[X].

 $D\acute{e}monstration$. Soit $Q \in A[X]$ le polynôme primitif $\frac{1}{c(P)}P$. Il suffit de montrer que Q est irréductible dans Frac(A)[X]. Par hypothèse π ne divise pas c(P). Ainsi Q vérifie les mêmes hypothèses que P vis-à-vis des valuations π -adiques des coefficients.

Montrer que Q est irréductible dans $\operatorname{Frac}(A)[X]$ est équivalent d'après le lemme 37 à montrer le résultat suivant : si Q s'écrit comme un produit RS avec $R, S \in A[X]$, alors R ou S est constant.

Par hypothèse, on a $\varphi(P) = \alpha X^n$, où α est un élément non nul de $A/\pi A$. Par ailleurs si on a une décomposition de P comme ci-dessous, on a $\pi(P) = \pi(R)\varphi(S)$. Comme $A/\pi A$ est intègre, on en déduit qu'il existe $0 \le m, r \le n$ tels que m + r = n, $\beta, \gamma \in A/\pi A$ tels que $\varphi(R) = \beta X^m$ et $\varphi(S) = \gamma X^r$. Si $(m, r) \ne (0, 0)$, π divise R(0) et S(0), donc π^2 divise R(0)S(0) = P(0) ce qui contredit les hypothèses. Ainsi on a par exemple m = n et r = 0. Comme par ailleurs $\deg(R) + \deg(S) = n$ et $m \le \deg(R)$ et $r \le \deg(S)$, on a nécessairement $\deg(R) = n$ et $\deg(S) = 0$

Exemple. Pour tout nombre premier p et tout entier strictement positif n, le polynôme $X^n - p$ est irréductible dans $\mathbf{Q}[X]$ (et dans $\mathbf{Z}[X]$); pour le voir, on applique Eisenstein avec $\pi = p$. Il existe donc des polynômes irréductibles de tout degré dans $\mathbf{Q}[X]$.

Exemple. Soit **K** un corps, n un entier strictement positif et $P(Y) \in \mathbf{K}[Y]$ tel que $P(0) \neq 0$. Alors le polynôme $X^n - YP(Y)$ est irréductible dans $\mathbf{K}[X,Y]$. Pour le voir on applique Eisenstein avec $A = \mathbf{K}[Y]$ et $\pi = Y$.