Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Feuille de TD n°5

Exercice 1

Soit ${\bf K}$ un corps. Rappelons que si $P=\sum_{n\geqslant 0}a_nT^n$ est un élément non nul de ${\bf K}[[T]]$, on pose

$$\nu(P) := \min\{n \in \mathbf{N}, \quad a_n \neq 0\}.$$

Montrer que ν est un stathme euclidien sur $\mathbf{K}[[T]]$. Démontrer directement que $\mathbf{K}[[T]]$ est un anneau factoriel (expliciter la liste des irréductibles de $\mathbf{K}[[T]]$ à association près et la décompostion en produits d'irréductibles d'un élément non nul de $\mathbf{K}[[T]]$; on pourra comparer avec l'exercice 6 de la feuille de TD n°2).

Exercice 2

Pour chacun des couples (a, b) d'éléments de $\mathbf{Z}[i]$ donnés ci-dessous, calculer un pgcd δ de a et b et déterminer un couple (u, v) d'éléments de $\mathbf{Z}[i]$ tel que $\delta = a \, u + b \, v$:

$$(6+3i, -1+7i), (35, 9+6i), (10, 14).$$

Exercice 3

Montrer que les anneaux suivants sont euclidiens :

- 1. $\mathbf{Z}[i\sqrt{2}]$ (on pourra s'inspirer de la démonstration de la proposition 6.12 du cours);
- 2. $\mathbf{Z}[\sqrt{2}]$ (on pourra considérer $N: a + b\sqrt{2} \mapsto a^2 2b^2$);
- 3. $\mathbf{Z}[\sqrt{3}]$.

Exercice 4

Soit r un entier strictement positif, p_1, \ldots, p_r des nombres premiers et d un entier supérieur à 2.

- 1. Montrer qu'il existe une infinité de polynômes unitaires irréductibles de degré d de $\mathbf{Z}[X]$ qui sont réductibles modulo tous les p_i (indication : lemme chinois).
- 2. Montrer qu'il existe une infinité de polynômes unitaires irréductibles de degré d de $\mathbf{Z}[X]$ qui sont réductibles modulo tous les p_i et tels que le critère d'Eisenstein ne s'applique pour aucun des p_i .

Exercice 5

Soit $P \in \mathbf{Z}[X]$ et p un nombre premier. On suppose que P est irréductible modulo p. P est-il nécessairement irréductible?

Exercice 6

Soit $P = X^4 + 1$.

1. Montrer que P est un élément irréductible de $\mathbb{Z}[X]$ (cf. l'exercice 3 de la feuille de TD n°3)

- 2. Soit p un nombre premier. En utilisant des identités remarquables, montrer que P est réductible modulo p si l'une des propriétés suivantes est vraie :
 - (a) -1 est un carré modulo p;
 - (b) 2 est un carré modulo p;
 - (c) -2 est un carré modulo p.
- 3. Soit **K** un corps fini. Soit $\alpha, \beta \in \mathbf{K}$ des éléments qui ne sont pas des carrés dans **K**. Montrer qu'alors $\alpha\beta$ est un carré dans **K**.
- 4. En déduire que pour tout nombre premier $p, X^4 + 1$ est réductible modulo p.

Exercice 7

- 1. Soit A un anneau factoriel, d un entier, $P = \sum_{i=0}^{d} a_i X^i \in A[X]$ un polynôme de degré au plus d. Soit $x \in \operatorname{Frac}(A)$ une racine de P dans $\operatorname{Frac}(A)$. Montrer qu'on peut écrire $x = \frac{\alpha}{\beta}$, où $\alpha \in A$ et $\beta \in A \setminus \{0\}$ sont premiers entre eux. Montrer que α divise a_0 et que β divise a_d .
- 2. Le polynôme $7X^3 5X^2 9X + 4$ a-t-il des racines rationnelles? et le polynôme $X^4 2X^2 3$?
- 3. Montrer, par au moins trois méthodes différentes, que les polynômes $X^2 + 3X 15$ et $X^3 7X^2 + 14X 7$ sont des éléments irréductibles de $\mathbf{Z}[X]$.
- 4. Montrer, par au moins deux méthodes différentes, que le polynôme $X^4 + 5X^3 15X^2 + 25X + 15$ est un élément irréductible de $\mathbb{Z}[X]$.

Exercice 8

- 1. Soit A un anneau intègre, $P \in A[X]$ et $a \in A$. Montrer que P est irréductible si et seulement si P(X + a) est irréductible.
- 2. Soit p un nombre premier. Montrer que le polynôme $\frac{X^p-1}{X-1} \in \mathbf{Z}[X]$ est irréductible
- 3. Soit \mathbf{K} un corps de caractéristique différente de 2 et $\alpha \in \mathbf{K}^{\times}$. Montrer que $X^2 + Y^2 \alpha^2$ est un élément irréductible de $\mathbf{K}[X,Y]$. En déduire que pour tout entier $n \geq 2$, $\sum_{i=1}^n X_i^2 \alpha^2$ est un élément irréductible de $\mathbf{K}[X_1,\ldots,X_n]$. (on pourra considérer le morphisme de $\mathbf{K}[X_1,\ldots,X_{n-1}]$ -algèbres $\mathbf{K}[X_1,\ldots,X_n] \to \mathbf{K}[X_1,\ldots,X_{n-1}]$ qui envoie X_n sur 0).

Exercice 9

Dans le critère d'Eisenstein, pour quoi est-il important de supposer π irréductible? (question posée à l'oral de l'agrégation externe).

Exercice 10

Soit A un anneau intègre.

- 1. Soit a et b des éléments de A premiers entre eux. Montrer que l'ensemble des pgcd de a et b est A^{\times} .
- 2. Soit a et b des éléments associés de A. Montrer que l'ensemble des pgcd de a et b est l'ensemble des éléments de A associés à a.
- 3. Soit $a \in A$. Montrer que l'ensemble des pgcd de a et 0 est l'ensemble des éléments de A associés à a.

- 4. Soit $a, b \in A$. Montrer que a et b admettent un ppcm si et seulement si l'idéal $aA \cap bA$ est principal, et qu'alors l'ensemble des ppcm de a et b est l'ensemble $\{c \in A, cA = aA \cap bA\}$.
- 5. Soit $a, b \in A$. On suppose que a et b admettent un pgcd δ (respectivement un ppcm μ).
 - (a) Soit $c \in A$. Montrer que c est un pgcd (respectivement un ppcm) de a et b si et seulement si c est associé à δ (respectivement à μ).
 - (b) Soit $\alpha \in A$. Montrer que $\alpha \delta$ (respectivement $\alpha \mu$) est un pgcd (respectivement un ppcm) de αa et αb .
 - (c) Soit $\alpha \in A \setminus \{0\}$ un diviseur commun à a et b. Montrer que $\frac{\delta}{\alpha}$ (respectivement $\frac{\mu}{\alpha}$) est un pgcd (respectivement un ppcm) de $\frac{a}{\alpha}$ et $\frac{b}{\alpha}$.

En déduire que $\frac{a}{\delta}$ et $\frac{b}{\delta}$ sont premiers entre eux.

- 6. Soit $a, b \in A$. On suppose que a et b admettent un ppcm μ . Montrer qu'alors a et b admettent un pgcd δ , et que $\delta\mu$ est associé à ab.
- 7. Montrer que dans l'anneau $\mathbf{Z}[i\sqrt{5}]$, les éléments 2 et $1+i\sqrt{5}$ sont premiers entre eux mais n'ont pas de ppcm, et que les éléments 9 et $2+i\sqrt{5}$ n'ont pas de ppcd (donc pas de ppcm).

Exercice 11

En utilisant par exemple l'identité $2^2 = (1 + i\sqrt{3})(1 - i\sqrt{3})$ dans $\mathbf{Z}[i\sqrt{3}]$ et l'exercice 5 de la feuille 3, montrer qu'en général dans un anneau intègre un produit d'éléments premiers entre eux et qui ne sont pas des carrés peut néanmoins être un carré.

Exercice 12

Soit K un corps. Montrer que les anneaux suivants sont intègres mais ne sont pas factoriels :

- 1. $\mathbf{K}[X,Y]/\langle X^2 Y^3 \rangle$;
- 2. le sous-**K** espace vectoriel de la **K**-algèbre $\mathbf{K}[X,Y]$ engendré par les éléments de la forme X^iY^j où $i,j \in \mathbf{N}$ et i+j est pair;
- 3. **Z**[$i\sqrt{5}$] (*cf.* exercise 10.7).

Exercice 13

Soit A est un anneau intègre. Montrer que l'anneau A[X] est principal si et seulement si A est un corps.

Exercice 14

Soit A un anneau factoriel. Montrer que l'ensemble des éléments irréductibles de A[X] est la réunion disjointes des deux ensembles suivants :

- 1. l'ensemble des polynômes constants qui sont des éléments irréductibles de ${\cal A}\,;$
- 2. l'ensemble des polynômes qui sont primitifs et irréductibles dans Frac(A)[X].

Exercice 15

Soit A un anneau intègre et S une partie multiplicative de A ne contenant pas 0_A .

- 1. On suppose A principal; montrer qu'alors $S^{-1}A$ est principal.
- 2. On suppose A factoriel; montrer qu'alors $S^{-1}A$ est factoriel.

Exercice 16

Soit **K** un corps et $a,b \in \mathbf{K}[X]$ tels que $b \neq 0$. On applique l'algorithme d'Euclide étendu à a et b: on pose $r_{-1} := a$, $u_{-1} := 1$, $v_{-1} := 0$, $r_0 := b$, $u_0 := 0$, $v_0 := 1$. Ensuite, pour n entier positif, et tant que r_n est non nul, on écrit la division euclidienne de r_{n-1} par r_n :

$$r_{n-1} = q_n r_n + r_{n+1}$$

ce qui définit r_{n+1} . En outre on pose

$$u_{n+1} := u_{n-1} - q_n u_n, \quad v_{n+1} := v_{n-1} - q_n v_n.$$

On désigne par N le plus grand entier positif n que $r_n \neq 0$.

1. Montrer que pour tout entier n vérifiant $1 \leq n \leq N+1$, on a

$$\deg(r_n) < \deg(r_{n-1}).$$

2. Montrer que pour tout entier n vérifiant $1 \leq n \leq N$, on a

$$\deg(r_{n-1}) = \deg(q_n) + \deg(r_n).$$

3. On suppose en outre que $\deg(a) \geqslant \deg(b)$; montrer que pour tout entier n vérifiant $1 \leqslant n \leqslant N$, on a

$$\deg(v_n) = \deg(r_{-1}) - \deg(r_{n-1}).$$