2017-2018

Feuille n^o 1 : logique

Exercice 1

Les propositions suivantes sont elles des tautologies (on pourra s'aider de tables de vérités)?

- 1. \mathcal{P} ou non \mathcal{P} ,
- **2.** non $(\mathcal{P} \text{ ou } \mathcal{Q}) \Leftrightarrow \text{non } \mathcal{P} \text{ et non } \mathcal{Q},$
- 3. $(\mathcal{P} \Rightarrow \mathcal{Q}) \Leftrightarrow \text{non } (\mathcal{P} \text{ et non } \mathcal{Q}),$
- 4. $(\mathcal{P} \Rightarrow \mathcal{Q})$ et $(\mathcal{Q} \Rightarrow \mathcal{R}) \Rightarrow (\mathcal{P} \Rightarrow \mathcal{R})$,
- 5. $(\text{non } \mathcal{P} \Rightarrow \text{non } \mathcal{Q}) \Leftrightarrow (\mathcal{P} \Rightarrow \mathcal{Q}).$

Exercice 2

Parmi les propositions suivantes, quelle est la négation de $\mathcal{P} \Rightarrow \mathcal{Q}$ (on pourra s'aider d'une table de vérité)?

- 1. \mathcal{P} ou non \mathcal{Q} ,
- 2. non $\mathcal{Q} \Rightarrow \text{non } \mathcal{P}$,
- 3. \mathcal{P} et non \mathcal{Q} .

Exercice 3

- 1. L'affirmation « je suis arrivé à la gare avant 10h » est-elle une condition nécessaire (resp. suffisante, resp. nécessaire et suffisante) pour que l'affirmation « je suis monté dans le train de 9h30 » soit valide?
- 2. Donner une condition suffisante et non nécessaire pour qu'un entier naturel soit strictement plus grand que 10.
- **3.** Donner une condition nécessaire et non suffisante pour qu'un entier naturel soit divisible par 6.

Exercice 4

Soit f une application de \mathbf{R} dans \mathbf{R} . Considérons l'implication suivante : « f croissante $\Longrightarrow f(3) \ge f(2)$ ». Parmi les implications suivantes, quelle est sa contraposée?

- 1. $\langle f(3) \geq f(2) \implies f \text{ croissante } \rangle$,
- 2. $\langle f(3) \langle f(2) \Longrightarrow f \text{ n'est pas croissante } \rangle$,
- **3.** « f n'est pas croissante $\Longrightarrow f(3) < f(2)$ ».

Exercice 5

Traduire la formule suivante en langage courant :

$$\forall n \in \mathbb{N}, \forall n' \in \mathbb{N}, (n \neq 0 \text{ et } n' \neq 0) \Rightarrow \exists y \in \mathbb{N}, \exists q \in \mathbb{N}, \exists q' \in \mathbb{N}, \quad y = qn \text{ et } y = q'n' \text{ et } y \neq 0.$$

Exercice 6

Nier l'assertion : « tous les habitants de la rue du Havre qui ont les yeux bleus gagneront au loto et prendront leur retraite avant 50 ans ».

Exercice 7

- 1. Que pensez-vous du raisonnement suivant : « Démontrons l'énoncé suivant : pour tout entier naturel n, $n^3 n$ est multiple de 3. Soit n un entier naturel. Par exemple n = 4. On a alors $n^3 n = 4^3 4 = 4(4^2 1) = 4 \times 15 = 4 \times 3 \times 5$ qui est bien multiple de 3. La proposition est donc démontrée ».
- **2.** Que pensez-vous du raisonnement suivant : « Démontrons l'énoncé suivant : il existe un entier naturel n tel que $n^2 n$ n'est pas multiple de 3. Si n = 2, on a $n^2 n = 4 2 = 2$ qui n'est pas multiple de 3. La proposition est donc démontrée ».

Exercice 8

On considère les formules suivantes :

- a) $\exists n \in \mathbb{N}, \forall p \in \mathbb{N}, p \leq n$
- b) $\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, p < n,$
- c) $\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad x + y > 0,$
- d) $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, \quad x + y > 0,$
- e) $\exists x \in \mathbf{R}, \exists y \in \mathbf{R}, \quad x + y > 0,$
- f) $\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad x + y > 0$,
- g) $\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad y^2 > x.$
- 1. Écrire la négation de chacune de ces formules.
- 2. Pour chacune de ces formules, indiquer (en le justifiant) si l'assertion considérée est vraie ou fausse.

Exercice 9

Soit f une application de \mathbf{R} dans \mathbf{R} . On considère les énoncés suivants :

- a) Pour tout réel x, f(x) est supérieur à 1,
- b) L'application f est croissante,
- c) L'application f est croissante et positive,
- d) Il existe un réel positif x tel que f(x) est positif,
- e) L'application f est paire,
- f) Il existe un réel x tel que pour tout réel y strictement supérieur à x, f(x) est strictement supérieur à f(y).
- 1. Traduire ces énoncés en formules mathématiques qui utilisent des quantificateurs.
- 2. Pour chacune des formules obtenues, écrire sa négation.
- 3. Pour chacun de ces énoncés, donner au moins deux exemples d'applications f qui le vérifient, et au moins deux exemples d'applications f qui ne le vérifient pas.

Exercice 10

Traduire en langage courant les assertions suivantes relatives à une application f de \mathbf{R} dans \mathbf{R} :

- 1. $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, \quad f(x) < f(y),$
- 2. $\forall x \in \mathbf{R}, \exists T \in \mathbf{R}^*, \quad f(x) = f(x+T),$
- 3. $\exists T \in \mathbf{R}^*, \forall x \in \mathbf{R}, \quad f(x) = f(x+T),$
- **4.** $\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad y = f(x).$

Donner lorsque c'est possible, un exemple d'application qui satisfait cette propriété, ainsi qu'une autre qui ne la satisfait pas.

Exercice 11

Démontrer par contraposition l'énoncé suivant : si n est un entier naturel dont le carré est pair, alors n est pair.

Exercice 12

Démontrer par contraposition la formule suivante :

$$\forall x \in \mathbf{R}, \quad x^3 = 2 \Rightarrow x < 2.$$

Exercice 13

Démontrer par l'absurde l'énoncé suivant : soit x un réel positif tel que, pour tout réel y > 0, on ait $x \le y$. Alors x = 0.

Exercice 14

Démontrer par l'absurde que $\sqrt{2}$ n'est pas un nombre entier.

Exercice 15

- 1. Montrer que, pour tout entier $n \ge 2$, on a $2^n < n! \Rightarrow 2^{n+1} < (n+1)!$.
- **2.** Montrer que, pour tout entier $n \geq 5$, on a $2^n < n!$.
- **3.** Déterminer un entier A tel que, pour tout entier $n \ge A$, on ait $3^n < n!$.

Exercice 16

Pour tout entier naturel n, on désigne par \mathcal{P}_n la proposition $2^n > n^2$.

- 1. Montrer que la proposition $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$ est vraie pour $n \geq 3$.
- **2.** Pour quelles valeurs de n, la proposition \mathcal{P}_n est-elle vraie?

Exercice 17

- 1. Montrer que, pour tout entier naturel n, $4^n + 5$ est un multiple de 3.
- **2.** Montrer que, pour tout entier naturel n, si $10^n + 7$ est multiple de 9, alors $10^{n+1} + 7$ l'est aussi. Que peut-on en déduire?

Exercice 18

Montrer par récurrence sur n que :

$$\forall n \in \mathbf{N}, \forall x \in \mathbf{R} \setminus \{1\}, \quad 1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

Exercice 19

Montrer par récurrence que pour tout entier naturel n et pour tout réel x > 0, on a $(1+x)^n \ge 1+nx$.

Exercice 20

Démontrer par récurrence la formule suivante :

$$\forall n \in \mathbb{N}, \quad 1+3+5+\dots+2n+1 = (n+1)^2.$$

Exercice 21

1. Montrer par récurrence sur l'entier naturel n les formules

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
 et $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$.

2. Montrer par récurrence que, pour tout entier naturel n, on a

$$-1+4-9+\cdots+(-1)^n n^2=(-1)^n \frac{n(n+1)}{2}.$$

Exercice 22

Montrer par récurrence que, pour tout entier naturel $n \geq 1$, on a

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$