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Abstract. — We compute the hessian id’d”” W of the natural Hermitian form W succes-
sively on the Calabi family T(M, g, (I, J, K)) of a hyperkéhler manifold (M, g, (I, J, K)),
on the twistor space T(M, g) of a 4-dimensional anti-self-dual Riemannian manifold
(M, g) and on the twistor space T(M, g, D) of a quaternionic Kiahler manifold (M, g, D).
We show a strong convexity property of the component of cycle space of the Calabi
family of a hyperkahler manifold, that contains twistor lines. We also prove convexity
properties of the 1-cycle space of the twistor space T(M, g) of a 4-dimensional anti-
self-dual Einstein manifold (M, g) of non-positive scalar curvature and of the 1-cycle
space of the twistor space T(M, g, D) of a quaternionic Kahler manifold (M, g, D)
of non-positive scalar curvature. We check that no non-Kéhler strong Kéahler with
torsion (K7T') manifold occurs as such a twistor space.

Résumé (Hessien de la forme hermitienne naturelle sur des espaces de
twisteurs)

Nous calculons le Hessien id'd”’ W de la forme hermitienne naturelle W succes-
sivement sur la famille de Calabi T(M,g, (I, J, K)) d’une variété hyperkahlérienne
(M, g,(I,J,K)), sur l'espace des twisteurs T(M, g) d’une variété riemannienne (M, g)
de dimension 4 anti-auto duale et sur 'espace des twisteurs T(M, g, D) d’une variété
quaternionique kéhler (M, g, D). Nous montrons une propriété de convexité de la com-
posante de I’espace des cycles de la famille de Calabi d’une variété hyperkahlérienne,
qui contient les droites twistorielles. Nous montrons aussi des propriétés de convexité
de l'espace des 1-cycles de ’espace des twisteurs d’une variété d’Einstein de dimen-
sion 4 anti-auto duale & courbure scalaire négative et de ’espace des 1-cycles de
P’espace des twisteurs d’une variété quaternionique kéhler & courbure scalaire négative.
Nous vérifions aussi qu’aucune variété fortement kahlerienne avec torsion (K7T') non
kéhlérienne n’est obtenue par les constructions précédentes.
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1. Introduction

The twistor construction is known to provide examples of manifolds endowed with a
natural metric G and a natural almost complex structure J that is sometimes integrable
and often non-Kéhler (see section 2 for precise definitions). Our aim is to compute
the exterior derivative and the Hessian of the natural Hermitian form W = G(J-,-) for
different twistor constructions.

We derive, under compactness and non-positive scalar curvature assumption for
the base space, a convexity property for the connected components of the 1-cycle
space C1(T) of the twistor space T. The analytic space C1(T) is the analog in the
analytic setting of the Chow scheme in the projective setting ; it parametrizes linear
combinations (with positive integer coefficients) of irreducible compact analytic sets of
dimension 1. The convexity property we prove could be a substitute to the well known
compactness of the components of the cycle space of compact Kéhler manifolds [19, 12].

The classical twistor construction is for anti-self-dual Riemannian 4-manifolds. We
can here in full generality compute the Hessian of the natural Hermitian form (see
theorem 4.11). Under extra assumptions on the base Riemannian manifold, we can
study the convexity properties of the cycle space Cy(T).

Theorem A. — (corollary 4.13) The hessian id'd’ W of the Hermitian form W on
the twistor space T =T (M, g) of a 4-dimensional Einstein manifold (M, g) with non-
positive constant scalar curvature s is non-negative. If furthermore M 1is compact,
the volume function on the 1-cycle space C1(T) is a continuous pluri-sub-harmonic
exhaustion function.

A similar construction can be made starting with a higher dimensional Riemannian
manifold with quaternionic holonomy. A quaternionic Kdhler manifold is an oriented
complete 4n-dimensional Riemannian manifold (M, g) whose holonomy group is con-
tained in the product Sp(1)Sp(n) of quaternionic unitary groups. Such a manifold
admits a rank 3 sub-bundle D C End(T M) invariant by the Levi-Civita connection
of (M, g), locally spanned by a quaternionic triple (I, J, K = IJ = —JI) of almost
complex structures g-orthogonal and compatible with the orientation. One can define
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the twistor space 7 : T = T(M,g, D) — M as the bundle of spheres of radius /2
of D. Berger proved that quaternionic Kéhler manifolds are Einstein.

In the case of positive scalar curvature, the manifold M is compact and Salamon
([20, theorem 6.1]) showed that its twistor space admits a K&hler-Einstein metric of
positive scalar curvature, that coincides with the metric G, up to changing the choice
for the radius of vertical spheres. In particular, T is a compact complex manifold with
positive first Chern class, that is a Fano manifold. The projection onto the vertical
direction gives a contact structure ([20, theorem 4.3]). By the Kéhler property of T,
every component of its cycle space is compact.

In the case of negative scalar curvature, the twistor space is a complex contact
uniruled manifold. The only known compact examples are locally symmetric. We
show in this case that the components of the 1-cycle space are pseudo-convex. More
precisely, we find the

Theorem B. — (corollary 5.6) The hessian id'd" W of the Hermitian form W on
the twistor space T = T(M, g, D) of a quaternionic Kdahler 4n-manifold (M, g, D) with
non-positive constant scalar curvature s is semi-positive. If furthermore M 1is compact,
the volume function on the 1-cycle space is a continuous pluri-sub-harmonic exhaustion
Sfunction.

In the case of zero scalar curvature, the manifold M is in fact locally hyperkahler. A
hyperkdhler manifold is an oriented 4n-dimensional Riemannian manifold (M, g) whose
holonomy group is contained in the quaternionic unitary group Sp(n). In other words,
a hyperkéhler manifold is an oriented 4n-dimensional Riemannian manifold (M, g)
endowed with a quaternionic triple of global g-K&hler complex structures I, J and
K compatible with the orientation. The corresponding pencil of complex structures
f : T=T(M,g,D)— P! is called the Calabi family of (M,g,D = (I,J, K)). In this
case, we can relate the non-Kéahler feature of T(M, g, D) with the Kodaira-Spencer
class of the pencil f.

Theorem C. — (theorem 3.1) Let (01, ...,04,) be a local orthonormal frame of TM.
For a vertical vector U € Vi ),

d"W () (U HOE,HOY) = —2Q (ko (07), ko (65))

where H is the horizontal lift on T given by the Levi-Civita connection on (M, g), O,
the holomorphic symplectic (2,0)-form on X, := f~1(u), and ky is a closed (0,1)-form
on X, with values in TX,, that represents the Kodaira-Spencer class of the family f
at u € Pt in the direction U.

With second order derivatives, we get a precise control on the volume function for
1-cycles of T deformations of the twistor lines



4 GUILLAUME DESCHAMPS, NOEL LE DU & CHRISTOPHE MOUROUGANE

Theorem D. — (theorem 3.3) Let (M,g,D = (I,J,K)) be a compact hyperkihler
manifold. Let CY(T) be the component of the Barlet cycle space of T(M, g, D) contain-
ing the twistor lines. The map Vol : C9(T) — R is a continuous pluri-sub-harmonic
ezhaustion function. More precisely,

id'd" o ) Vol(CL) (7, J7) > / ' Pdvol > 0
where C*. is the irreducible component of the cycle Cs that maps onto P* by the pencil
map f. In particular, the cycle space C{(T) is pseudo-convez.

For example, starting with a compact holomorphic symplectic manifold (X, Q)
of complex dimension 2n and a Ké&hler class x, by the theorem of Yau [24] we
get a Ricci flat metric g with Sp(n) holonomy. The corresponding twistor space
[+ T(X,Q,k) — P!is called the Calabi family of (X,Q, ). This construction
and the component C7(T) of the cycle space were used by Campana to show that in
every Calabi family one member contains a non-constant entire curve [7, 8]. This
work has recently been pushed further by Verbitsky [22], to show that every compact
holomorphic symplectic manifold contains a non-constant entire curve, (that is, is not
Kobayashi hyperbolic) and by [17] even further to show that the Kobayashi pseudo
metric vanishes for all know examples except if their Picard number is maximal. We
expect that the formula in theorem D. could help to localise rational curves on compact
holomorphic symplectic manifolds.

Complex Hermitian manifolds with id’d"”-closed Hermitian form are called strong
Kdhler with torsion (strong KT). Constructing examples often starts with group
theoretical considerations [9, 10]. It could be expected that twistor constructions
could also provide interesting examples. We check from our computations that the
vanishing of id’d” W amounts to that of dW. Hence,

Theorem E. — No non-Kdhler strong KT space can be constructed with this natural
metric on all the considered twistor spaces.

In the text, we first deal in section 3 with hyperké&hler manifolds, where the pencil
map f : T = T(M,g,D) — P! hugely simplifies the computations. We then
turn in section 4, to the case of 4-dimensional anti-self-dual Riemannian manifolds,
that displays all the important features of this aspect of twistor geometry. The
last section 5 on quaternionic Kahler manifolds parallels the previous one under the
additional Einstein assumption. The section 2 provides the basics on the twistor
constructions.

2. Preliminaries on twistor constructions

2.1. Constructions on R*. — An endomorphism u of the oriented Euclidean real
vector space R* is said to respect the orientation if for all vectors X,Y € R* the 4-tuple
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(X,uX,Y,uY) is either linearly dependent or positively oriented. This will be denoted
by u > 0. Examples are given by the following three orthogonal anti-involutive (hence
anti-symmetric) endomorphisms

0 -1 0 0 0 0 -1 0 00 0 -1
1 0 0 0 0 0 0 1 00 -1 0
I= 0 0 0 -1 » I = 1 0 0 0 K= 01 0 0
0 0 1 0 0 -1 0 0 10 0 0
The set

F:={uec SO04),u* = —Id,u>> 0}
of complex structures on R* that respect the orientation and the Euclidean product
(called compatible complex structures) identifies with the sphere {u = al + bJ +
cK/(a,b,c) € S?} ~ S%. At a point u € F, the tangent space T, F is {A € so(4)/Au +
uA = 0} The standard metric gy on the sphere of radius V2 reads on F

go(4, B) = %tr(AtB) = f%tr(AB), VA,B e T,F.

As the sphere S?, the set F inherits the complex structure of CP'. More precisely,
the complex structure of Ty, F' reads j - A = uA as a matrix product.

This identification can be made intrinsic as follows. The Euclidean product on R*
gives an Euclidean product on the exterior product /\2 R%. The Hodge star operator
splits /\2 R* into /\2 R* = A" ® A”. An anti-symmetric endomorphism A of so(4)
identifies with an element ¢(A) of A\ R* via

g(¢(A), X NY)=g(AX,Y) VXY eR.

For example, if (e;) is an orthonormal basis of R*, the anti-symmetric endomorphism
associated with ej A e; sends e to e; and ¢; to —e; and all other base vector e; to
0. In particular, a compatible complex structure u identifies with an element ¢(u)
precisely of the sphere of vectors of AT of norm v2. We will always identify ¢(u)
with u and A®R?* with so(4).

2.2. Constructions on a Riemannian 4-manifold. — Consider now a 4-dimen-
sional oriented Riemannian manifold (M, g). Its twistor space is the fibre bundle
T(M,g) =T
M

of vectors of AT TM =: AT of norm v/2. Fibre-wise, it identifies with the set of
compatible complex structures on the tangent space of M.

A natural Riemannian metric G and a natural almost-complex structure J are
defined on the twistor space T as follows. The bundle V of vertical directions in T'T is
the kernel of dr. Note that its structure group is SO(3) C PGL(2,C) so that fibres
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inherit complex structures and Riemannian metrics. The Levi-Civita connection V9
of (M, g) provides us with a bundle H of horizontal directions in T'T isomorphic via
dm with T M, hence endowed with a complex structure and a Riemannian metric. The
natural Riemannian metric G and the natural almost-complex structure J on T are
defined so that they coincide on the summand of the decomposition

TT=HoV

with the previous structures and the decomposition is made G-orthogonal and invariant
by J. The map 7 becomes a Riemannian submersion and its fibres are rational curve
with Fubini Study metrics. We will study the natural Hermitian form W = G(J-,-).

We will use the notation #(X) = H,(X) to denote the horizontal lift at p € 7~ (m)
of a vector X tangent to M at m, and likewise the notation H (V) to denote the
(orthogonal) projection of a vector V' tangent to T onto its horizontal part along the
vertical direction.

For a real tangent vector V on T, we will denote by V" := %, Ve .= W €
TTc its (1,0) and (0, 1) parts : JV* =iV’ JV® = —iV* Moreover, for a real tangent
vector X on M, X" will denote

XM= (H(X)™) = 1/27,(HX — iJHX) = 1/2(X — iu(X))

and X = m,(H(X)"), omitting the dependence on p = (m,u) € 7~!(m). Note that
by the construction of J, one has H(X)" = H(X") = HX" and H(X)?® = H(X*) =:
HX®.

2.3. Constructions on a quaternionic Kahler manifold. — Fix an integer
n > 1. A quaternionic Kdihler manifold is an oriented complete 4n-dimensional
Riemannian manifold (M, g) whose holonomy group is contained in the product
Sp(1)Sp(n) of quaternionic unitary groups. In other words, with the holonomy
principle [6], such a manifold admits a rank 3 sub-bundle D C End(T'M) invariant
by the Levi-Civita connection of (M,g), locally spanned by a quaternionic triple
(I,J,K =1J = —JI) of almost complex structures g-orthogonal and compatible with
the orientation. We will use the notation V := V(P for the restriction to D of
the Levi-Civita connection, and subsequently R for the curvature of this restriction.
Berger proved that quaternionic Kéhler manifolds are Einstein ([5] see also [6, theorem
14.39]).

Let (M, g, D) be a quaternionic Kéhler 4n-manifold. One can define its twistor
space m : T = T(M,g, D) — M as the bundle of spheres of radius v/2 of D. This is
a locally trivial bundle over M with fibre S? and structure group SO(3). Using the
splitting of the tangent bundle T'T given by the Levi-Civita connection of (M, g), the
twistor space T can be endowed with a metric G and an almost complex structure J
that is integrable ([20, theorem 4.1],[14]).

The previous remarks for horizontal lifts and decomposition in types hold.
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2.4. Constructions on a hyperkahler manifold. — We now describe a special
case of the previous construction. Fix an integer n > 1. Recall that a hyperkdhler
manifold is an oriented 4n-dimensional Riemannian manifold (M, g) whose holonomy
group is contained in the quaternionic unitary group Sp(n). In other words, with the
holonomy principle, a hyperkéhler manifold is an oriented 4n-dimensional Riemannian
manifold (M, g) endowed with three global g-orthogonal parallel (hence integrable
Ké&hler) complex structures I, J and K compatible with the orientation such that I.J =
—JI = K. The corresponding pencil of complex structures f : T = T(M, g, D) — P!
is integrable and called the Calabi family of (M,g,D = (I,J,K)). Note that for
Sp(n) C SU(2n), each of these complex structure is Ricci-flat.

For example, starting with a compact holomorphic symplectic manifold of com-
plex dimension 2n (i.e. a compact complex Kéhler manifold X with a holomorphic
symplectic 2-form €2, hence of vanishing first Chern class) and a Kéhler class k, the
theorem of Yau [24] gives a unique Kéhler metric g in the Kéhler class x with vanishing
Ricci curvature. The form Q is g-parallel by the Bochner principle, showing that
the holonomy of g is contained in U(2n) N Sp(2n,C) that is the quaternionic unitary
group Sp(n), and that g is a hyperkdhler metric. The corresponding twistor space
f @ T(X,Q,k) — P!is called the Calabi family of (X,Q, k).

f

T%PIBU

me M

The Calabi family is differentiably isomorphic to the product M xP!, and the horizontal
and vertical directions are given by f and m. Note in this case, that the horizontal
distribution on T = T(M, g, (I, J, K)) is integrable. In this special case, we choose the
Riemannian metric G on T to be the product metric of g with the spherical metric of
radius 1.

The manifold X will be called irreducible holomorphic symplectic if furthermore
X is simply connected and H°(X, Q%) is generated by the holomorphic symplectic
2-form (2.

3. Calabi families of hyperkihler manifolds

We will work in this section on a hyperkahler manifold (M, g, (I, J, K)). We will
assume that the holonomy group is exactly Sp(n) so that each X, := f~1(u) is an
irreducible holomorphic symplectic manifold [4].

3.1. Computations of dW and d”"W. — We choose a complex coordinate ¢ centred
at the point parametrising the complex structure I. The stereographic projection tell
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us that the complex structure J on TT ~ 7*TM @ f*TP! is given by

1-|¢P i(¢-9¢) (+¢ ,
Jim = (Tt + 15+ TE )
We choose local holomorphic coordinates (z1, - z,) on the complex manifold (M, I).
Then, the forms d(pgi_l = dZQZ‘_l - Cd?gi and d(pgz = dZQi + Cdzgi_l together with
d¢ built a basis of the space of forms of type (1,0) on T{,, T ® C.
This lead to the following description of the Hermitian form W on T in terms of

the closed form wy, wy, wi associated with the Kahler structures I, J, K respectively.

We choose wp1 to be wpr = 245255 )2 of volume 47 as the sphere of radius 1.

(1+|C|

1-[¢? (¢ =0) (+¢
W —< wr + wy + Wg, Wpt | .
B N T o T Ta
We first compute its exterior derivative

1 — —2 —2
dW = 7(4@1“‘ 1+ C)wy+(1-C wK) AdC
T+ K7 e =e)
1 , 2 2 =
+W<—2<w1 —i(l+¢ )wJ—l—(l—(j )wK) AN dC.
To extract its (1,2) part, simply check from
i n/2
wr = 5 z:leQj,1 AN d?ijl + dZQj AN d§2j
=
1 n/2
wy = 3 ZleQj,1 Ndz; +dzoj—1 N dza;
=
i n/2
WK = ? jz_;dZQj_l AN dZQj — dfgj_l A\ dzzj
that
dW = +|<;\ Zd%] L NPy AdC =D dipaj 1 Adipaj A dC
J
Hence,
1 — —2 —2
d'"W = 7(—2@1“‘ 1+ wy+(1-¢ wK) AdC.
T+ KP? (et i=c)
3.2. Kodaira-Spencer map and Kahler property. — The main drawback with

the use of twistor spaces is that they are almost never of Kahler type, even under strong
vanishing assumptions for the curvature of g. This defect can be quantified, at least
for the natural metric on the twistor space T(M, g, (I, J, K)), by the Kodaira-Spencer
class. We now prove an intrinsic version of the previous formula 3.1
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Theorem 3.1. — Let (01,...,04y,) be alocal orthonormal frame of TM. The exterior
derivative dW of the Hermitian form W on the twistor space of a hyperkdahler manifold
(M,g,(I,J,K)) vanishes on pure directional vectors except when evaluated on two
horizontal vectors and one vertical vector. More precisely then, for a vertical vector
Ue V(m,u);

d"W () (U HOE,HOY) = —2Q (ko (07), 5y (05))

where Q,, is the holomorphic symplectic (2,0)-form on X, := f~1(u) and ky is a
closed (0, 1)-form on X, with values in TX,, that represents the Kodaira-Spencer class
of the family f at v € P! in the direction U.

Proof. — We first follow [15, proposition 25.7]. Consider a path ~y(¢) in the base P*
starting at u = I say, with derivative U € TP'. Over every point m € M, there is a
vertical lift that we may write as w,,(t) = I, + tU,, +t>---. Note that U, is the
derivative in the direction U, ¢, (U) € so(T,,, M), of the map ¢ : 7= (m) — SO(T,, M)
that encodes the variation of complex structure on T,,M. For small ¢, we write
T X,,, 1) as the graph of a map K(t) = tky +t*--- from T;' X, to T,;,"X,. Note
that x¢ seen as a (0, 1)-form on X, with values on T*°X,, is closed by the integrability
of T and has, as cohomology class, the Kodaira-Spencer class {ky} € H(TX,,). For a
vector v € T%1X,,, we have the relation u,,(t)(v + K(t)(v)) = —i(v + K(t)(v)) whose
first order term gives I, (ky(v)) + U (v) = iky (v) + U (v) = —iky (v). This shows
that

0« (U)(0) = Up(v) = —2iky (v).

Now, note that, because the horizontal and the vertical distributions are integrable
and horizontal lifts commutes with vertical lifts, the brackets occurring in the following
computations vanish

dW(U, HO;,H0;) = U-W(H,;,H0;)
—W([H6;,H0,],U) — W([U, Hb;], H0;) + W([U, H0,], Hb;)
= U-g(u(:),0;)
so that
d"W(U" HOF, HOT) = gl (U)(6]),05) = —2ig(ru (67),65)
= 2wu(ku(07),07) = —2Qu(ku (07), kv (65)).
The last equality is proved in [15]. O

3.3. Computations of id'd’W. — We recall a formula for the hessian of the
Hermitian form W ([16, section 8.4]). Our computations follow from the expression of
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the (1,2)-part of the exterior derivative dW.

idd"W (119%F§§(-2dzw1+4nzdsz-_zzdsz),«dg
2(L:ipp(2am+iu+<5wJ+(1g%wK)KAdg%WAwm
We get,

Theorem 3.2. — The hessian id'd’ W of the Hermitian form of the Calabi family
T(M,g,(I,J,K)) of a hyperkihler manifold (M, g, (I,J, K)) is given by

id'd" W =W A wps.

3.4. Pseudo convexity of the cycle space in the case of R*. — We first study,
as an example, the small deformations in a locally conformally flat situation.

The twistor space T(R*) of the flat Euclidean R* is described as a complex manifold
as the total space of the rank two vector bundle O(1) ® O(1) on P!. The differentiable
product structure is given by the map

e + d|¢|? b
omeo1) 5 Crxpl )7 c<+ﬂﬁ|af+ ‘
(aC+0b,c¢+d) = (21,22,0) —a¢ — b|¢|* + ¢+ d¢
1+ [¢]? '

zZ9 =

Twistor fibres are given by z; = constant and z, = constant, that is ¢ = —b and
d = a. The cycle space C;(T(R?%)) is simply the vector space H°(P!, O(1) & O(1)) of
holomorphic sections. Irreducible cycles are parametrised in the form (a¢ 4 b, ¢¢ + d).
The volume function that can be computed as

+m—dP+w+d3

4

achieves its minimum for twistor lines. To compute the Hessian of the Hermitian form,
we consider a point s € C1(T(R?*)), where Cj is parametrised by (a¢ + b, c + d). We
consider a non-zero tangent vector n = (al + 3,7¢ +d) € H(PL,0(1) ® O(1)
T.C1(T(R*)), whose norm is the flat Hermitian norm on C? (for which | % I>=
t«(n). Then theorem 3.2 gives :

Vol(P') (1

NN
2, IR

1
5) 0

o + 1812 + y* + 161

1 0

id'd" Vole,(ry(Cs) (7, i) = Vol(P)

which is coherent with the former expression.

From the description of the twistor space of the conformally flat 4-sphere S* =
R*U{oco} as P3 and of the cycle space as the grassmannian of lines in P?, we recover this
strict pseudo-convexity by the ampleness property of the Schubert divisor parametrising
lines meeting the twistor line 7—1(00).
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3.5. Convexity of the 1-cycle space. — Let (M, g, (I, J, K)) be a hyperkahler
manifold and T = T((M,g,(I,J, K)) J, P its Calabi family. Let CY(T) be the
component of the Barlet cycle space of T containing the twistor lines.

For every s = [C] € CY(T), we will identify a tangent vector @i € TsC?(T) with a
section n of the normal sheaf N¢_ ;1 of the 1-cycle Cs in the twistor space T. The
intersection number of a cycle Cy in CY(T) with a fibre of f being constantly 1, we
infer that every member C; contains, outside an irreducible section C? of the pencil
[, a finite number ) H; of horizontal rational curves. The component C being a
section of f, there is an horizontal lifting 7 of the normal section n, whose norm is
simply denoted by ||n]|.

Theorem 3.3. — The map Vol : C{(T) — R is a continuous pluri-sub-harmonic
exhaustion function. In particular, the cycle space CY(T) is pseudo-conver. More
precisely,

id'd" cory Vol (Cs)(7, Jit) > /C |’ ||2dvol > 0 (1)

’
s

where C' is the irreducible component of the cycle Cs that maps onto P* by the pencil
map f.

Proof. — The volume function is gotten by integration of the Hermitian form W on
the smooth part of the cycles. It is well-defined by a theorem of Lelong [18].

By definition, a continuous function ¢ on an analytic space Y is pluri-subharmonic
if every point of Y has a neighbourhood V that embeds in a complex ball B where
the function ¢ can be extended as a continuous pluri-sub-harmonic function. By a
theorem of Fornaess-Narasimhan [11], the map ¢ is pluri-sub-harmonic on Y if and
only if for every holomorphic maps j : A — Y from the unit disc to Y, the function
¢ o j is pluri-sub-harmonic.

Choose a cycle Cp, a tangent vector 7i € Tj¢,jCf(T), and a family

of cycles with this tangent vector 77 at the origin. Then,
id'd" ooy Vol(Cs)(7, Jit) = id'd" ILT*W(q, Jii) = ILT* id'd" W(i, Jii) > 0.

by theorem 3.2
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For the irreducible image C’. of a section o : P* — T of the pencil f,

/ *id'd" W(i, Jia) = / o*id'd’" W (i, Jn)
c Pl
= /id’d”V\V(a*2 v]]a*g 7, Ji)d ¢ (¢)
C ac— ) ag 7 )
where ¢ is a complex coordinate on P! and 7 is any lifting of n under TTc, = Ne,t-
For C! is a section of the map f, the composed map Hicr = TT\c: — Neryr is an
isomorphism and we can assume that the lifting 7 lies in Hc,. Hence, by theorem 3.2

only the vertical part a% of U*a% = 2?21 6%@(()8%“ @ a% contributes :
/ r*id'd" Wi, Ji) = / id'd"” WU(C)(Q,Jg,ﬁ,Jﬁ)d)\C(Q.
e/ c ¢ oG
Theorem 3.2 gives
) o 0 _ =
W) T BTN = [l ()

As for the horizontal part Hj;, using a parametrisation by P!, we get

/ *id'd" Vol(ii, Ji) = / id'd" W(h, Jh, i, J7v)
Hj Pt
where h is horizontal and where 7 is any lifting of n under 1T\, — N¢, /7. By the
Kahler property of the fibres of f or by theorem 3.2, only the vertical part of the
lifting is relevant, and this contributes non-negatively to the hessian.

The map Vol being a continuous exhaustion [19], we infer from its pluri-sub-
harmonicity, that the cycle space C{(T) is pseudo-convex. O

Remark 3.4. — The inequality (1) displays the fact that, because a non zero tangent
vector 77 € ToCY(T) can have zero component n’ on the slanted component Cj, there
can be compact families of horizontal 1-cycles, as for example, in the Hilbert scheme
Hilb™(S) D Hilb"(C) = P™ of a K3 surface that contains a smooth rational curve
C'. Nevertheless, in the case of K3 surfaces (n = 1), Verbitsky [23] proved that the
component C)(T) is in fact Stein.

4. Twistor spaces of 4-dimensional anti-self dual Riemannian manifolds

We consider in this whole section a 4-dimensional anti-self dual Riemannian manifold
(M, g). Let V9 be the Levi-Civita connection of (M, g), n its connection 1-form in a
given frame with values in so(T'M) and R its curvature tensor defined by R(X,Y)Z :=
VY, V%1Z + va,Y]Z' Recall that, with these conventions R(X,Y) = —(dn+n A
n)(X,Y). As an endomorphism of A\>TM = A" & A~ its decomposition is
R Wt 4 51d B

‘B W=+ 51d
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A=A

metrics. The operator W = W+ 4+ W, called the Weyl operator, depends only on
the conformal class of the Riemannian metric g and s is the scalar curvature of g. By
a fundamental theorem of [1] the almost complex structure J is integrable if and only
if the metric g on M is anti-self-dual, that is W+ = 0. We will always assume this.
By the works of Trudinger, Aubin, and Schoen [21] on Yamabe problem, when M is
compact, we will always choose a conformal representative of g with constant scalar
curvature. This does not change the isomorphism class of (T, J).

/\+ =N . . . . .,
Here B : is the trace-free Ricci tensor. It vanishes for Einstein’s

4.1. Properties of type and directional decompositions. —

Lemma 4.1. — Given a positively oriented orthonormal frame (61,...,04) on an
open set U of M

1. for all (a, B) in N& x N\g, the matriz bracket o, 8], in fact [p~(a), o~ (B)],
vanishes.

2. 0" N0 e N and 09 A 07 € NE

3. 08 N0 € N\e ®Vect(d(u))c).

Proof. — 1. Any endomorphism A € ¢~ (A") C so(4) coming from a bivector of
norm /2 can be described as the left multiplication by a quaternion with a quater-
nion ¢ as the quaternion product AX = ¢- X, and likewise any B € ¢~ (A7)
coming from a bivector of norm /2 can be described as the right multiplication
by a quaternion. The result now follows from the associativity of the quaternion

01 NBOy+ 603 N0,
algebra. More explicitly note that the family 01 N3 — 0> N0y is a basis of
01 A Oy + 02 A O3
01 NOy — 03 N0y
/\+ and that 01 ANOs+6; ANy is a basis of \™.
01 NOy— 05 N0O3
2. At a point p = (m,u), expanding we get

9? A 92 = 1(9] — ZUGJ) A (9k - zué)k)

= (65 70— by Al — i(6; A ub) + ub; £ 6))
, +
Z(Id —iu)(0; A O —ub; Auby) € /\(C
The relation 0§ A 07 € /\g follows by conjugation.
3. Expanding again, we get

1 .
AN Z(ﬁj/\ek+u9j/\u9k+l(9j/\u9k—u9j/\9k)>.
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Now we want to check that 6; A 0y +uf; Auby € A~ @Vect(d(u)). Let 5 be a
vector field on U such that (6;,ud;,05,ubs) is a positively oriented orthonormal
frame. If 6 = uf; then :
9]‘ A Gk + U@j A uﬁk = 20] A ’Uﬂj
= (0; ANubj + 05 ANubs) + (0; Aubj — 05 AN ubs)

with 6; A ub; + 05 A ubs = ¢(u) and 0; Aub; — b5 Aubs € A\~ . Now if 6, €
{0;,05,ub5} then 0; A 0 +ub; Auby € )\~ . We conclude by linearity.
The same argument shows that 6; A ufy, — ud; A0 € N\~ &Vect(p(u)).
L]

The data of a positively oriented orthonormal frame (61,...,64) on an open set
U of M defines a trivialisation T D 7= 1(U) ~ U x S%.. The local coordinates of a
point p in T will be denoted by (m, ). Because the fibre of 7 over a point m € M is
{u € SO(T,,,M)/u? = —Id and u > 0}, the vertical space V), at a point p = (m, u) is
given by

V, = {A € so(T,,M)/Au + uA = 0}.
Let A: U — so(T'M) be a section of the bundle of anti-symmetric endomorphisms.
We define A : 7 1(U) — TT to be the associated vertical vector field computed with
matrix brackets
A(p) = A(m7 u) = [ua A(m)] € Vp.

Note that these special vectors generate the vertical directions.

Remark 4.2. — The first easy property of lemma 4.1 will hugely simplify the forth-
coming computations. For example, if A : U — so(T'M) is a section and AT : Y — /\+
its projection onto /\+ then the assomated vertical vector fields are equal A=A+,
In particular, R(Qh NG = (W+ + < Id)(@lh A 6%). Similarly, because B maps AF
to /\ the vertical vector field B( ) vanishes. Hence, for the vertical vector field

(Gf A0%), only the component in A of the vector o8 A 07 € Nc ®Vect(u)c is
relevant.

Let X : U — TM be a vector field on U. Its horizontal lifting (X)) is a basic vector
field (i.e. m,H(X) = X everywhere on 7~ 1(U)). In terms of the local trivialisation
7Y (U) ~ U x S, the principal bundle P44y of positively oriented orthonormal frames
of TM maps onto T by

Ps(,(4) — T
(m,u) such that
0 -1 0 O
(m,(91,...,94)) — oy 1 0 0 0
Mat(u, (01,...,04)) =1 = 0 0 0 -1
0 0 1 O
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We infer that the horizontal lifted vector field H(X) reads

TT > H, > H(X) = X +1(X) € TU® TS

4.2. Bracket computations. — The following bracket computations of basic vector
fields will be used again and again. We first discuss according to vertical and horizontal
directions.

Lemma 4.3. — Given a positively oriented orthonormal frame (61,...,04) on an
open set U of M and two sections A and B of U — so(TM), the Lie brackets of the
associated vector fields are computed by

(A, B] - /\[ZE]
[H(6:),A] = (V5,4) + [n(6:), A]
[H(60:),1(0;)] = H[0:,0;] — R(6; 1 6;).

Proof. — At a point p = (m,u) of T,

1. [A, B] = [[u, A, [u, B]] = [[u, 4], B] — [[u, B], A] = [u,[A, B]]. The map A — A
is hence a morphism of Lie algebras.

-~

2. First note that, [0;, A] = [0;, [u, A]] = [u, V§ A] = V/Z\A Hence,

[1(0:), A] = [0 + n(6:), 4] = V, A+ [n(6:), A].

3. The result derives from previous remarks

—_

[H(0:), H(0;)] = [0: +n(0:),0; +n(0;)]

= [0:,0;] + Vg n(0;) — Vg 1(6:)
= [0i,0;] +dn(0:,0;) +n([0:.0;])

= [0, 05] +n([0:.05]) + (dn +nAn )0 0;)
- 1[0:,60,] — R(6: 1 0;).
O

Remark 4.4. — This last relation shows that the curvature R accounts for the lack
of integrability of the horizontal distribution #.

We now discuss adding type considerations. In the next lemma, the exponent ¢
denotes either types h or a.

Lemma 4.5. — For every vertical vector field U on T, the following commutation
relations hold

1. H[H0;,U] =0 and H[IH6;, U] = —U(H;)

2. [H6;,IU) = J[H6;, U] and VIIHO;, JU] = IV[IH0;, U]
3. HHOM, Ut = LUM(HO!) and H[HO?, U] = LU (HO!)
4. [H;,UY] = [H0;, U]t and VIIHO;, U] = (V[IH0;,U))".
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Proof. — We use the notations of lemma 4.3. In order to get the first equality, simply
note that for any smooth function f, using the previous lemma and the properties of

-~

the Lie brackets, the vector field [H6;, fA] is vertical. The second computation hence
reduces to

HIHO, U] = HH  ujib;), U]
= =Y (U-u)Ho; ==Y UjiHO; = —U(H0;).

Use the bracket linearity to get H[H6", U] = 1U(H0;) = —H[HO2, U]. Note that this
is a tensor in U so that in particular,

i Id+iJ
2

HHO!, U] = %U“(Hai) - U(HO;) = %U“(’H@?).

The third formula follows from the fact that the parallel transport along horizontal
directions respect the canonical metric and the orientation of the fibres, hence the
vertical complex structures. The forth follows from the fact that V[H6;,JU] =
JV[H6;,U] is a tensor in 6;.

The last four follow by linearity. O

Remark 4.6. — The formula H[JH0;, U] = —U(H0;) can be made more intrinsic by
considering the map ¢ : 7~1(m) — SO(T;,,M) that encodes the variation of complex
structure on T, M. We find

4.3. Computations of dW and d'W. — Let W = G(J-, ) be the Hermitian form
on the twistor space T. Its exterior derivative is given by the following

Proposition 4.7. — The exterior derivative dW of the Hermitian form W on the
twistor space T of an anti-self dual Riemannian 4-manifold (M, g) vanishes on pure
directional (i.e. horizontal or vertical) vectors except when evaluated on two horizontal
vectors and one vertical vector. More precisely then,

-

VXY e TM,YU €V dW(U,HX,HY) = G((%Id ~R)(X A Y),JU).

Proof. — The results of this proposition are well known and can be found for example
in [3]. The usual formula for the exterior derivatives of a 2-form reduces here by
orthogonality using the bracket computations of lemma 4.3 to

AW(U, O, HO;) = U - W(HE,, 1) — W (M, HO,), U)

—Uij — (G(R(Ql A\ 9])7JU)
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choosing vertical coordinates (u;;) such that u(0;) = > wu;;0;. Now set E = 0; A 6;.

From the definition of G, and the property uU = —Uw of the vertical vector Uone has

—

G(0; A 6;,IU)

—1/2tr((uE - Eu)uU)
—1/2tr(uEuU) — 1/2tr(EU) (2)
—tr(BU) = —2U;,.

It remains to check the vanishing of all the other pure directional components. As
the fibres are of real dimension two, the 3-form dW restricts to zero on fibres. Let
A,B: M — so(TM) be two sections. In normal coordinates at the centre of which
the connection 1-form 7 vanishes

dW(H6,, A, B) = W(A, E)fW([HGi,/T],ﬁ)+W([’H9¢,§],ﬁ)
. W(ﬁ E)—W(@,§)+W(V/g§,ﬁ)

— o~ —ZL

- W(VgiA,B) + W(A,VgiB)
—W(@, §) n W(V/g’i\B, 2) _

Finally for a triple of horizontal lifts, still with normal coordinates,

AW (HO;, HO,;, HO,) = HO; - W(HO;, HOy) — HO; - W(HO,;, HOk)
+HOy, - W(HO;, HE,;) — W([HE;, HO;], HOk)
+W([HO;, H], ’HG i) — W([HE,;, HO], H;)
= 0; g(ub;,0) — (uﬁl,ﬁk)
+9k g(ub;, 0; ) ( [0:,6;],0x)
( [ezaak]ae ) ( [91’91@]791) =0

for 6;-u = 0 and for all the remaining quantities can be expressed in terms of Vgu 0, =0
only. O

This result leads to an expression for the (2, 1)-part d'W of dW.

Proposition 4.8. — For all vertical vectors U, one has

S

1. d'W(U", 1ol HOY) (5 — DU

2. dW(U", O, HO) = —iG(B(egL A 62), Uh).
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1
Proof. — 1. Because 6 A 95-1 = Z(Id —tu)(8; A 6; — ub; Aubj) belongs to /\g we

infer by lemma 4.1

—

11d— R)(Id—w)(e-w-—uemuej),JUa)
2)(Id — iu)(0; A O; — uemuej),JUa)
Wt =0 -

120, A Oy — uf; A ub;), JUC

(0: A 0; — ubs A uby), L pa

(0: A0, — ub; Auby), ,]]U“).

w(Ue, ok, o)

y Vi Yy

|
INGTE
e @
VR

—~
T~
N N[
|

NI
=
o
=

—~

l—\ m\b—t N|—

»M»—‘ N—= N|=
—
|
@w H‘m ;‘m
— —
Q @

—_ N
2
/\/_\

But we already found in 2 that G HJ,JU) —2U;;. Writing ub; = > upibs,

we find
G(uﬂ//\\UHJ,JU) == 72ukiuljUkl = 2(UUU)ij = 2U¢j
that leads to d'W(U?, 6", 6") = (5§ — DUS.

)7,7]

2. Because 7 A 0% belongs to \¢ ©Vect(u), we infer by lemma 4.1 on the one hand
R(0} N6}) = B(0} A6}) and on the other hand 6} A 67 = 0. This gives

1 (l 1 a N /\(1
dWU", 0, 6%) = G((gld—R)(G?/\Qj),JUh) - —ZG(B(egAej),Uh).

sV Vg

1
Corollary 4.9. — The form W is Kahler if and only if R|/\+ = §IdA+.

Proof. — The vanishing dW = 0 gives B = 0 (cf 4i) and s/12 = 1/2 (cf. i). The
converse is straightforward. O

Remark 4.10. — This is the case for the round sphere S* and the projective space
CP? with a Fubini-Study metric. More generally, Hitchin [13] actually proved that
these are the only compact Kéahler twistor spaces.

4.4. Computation of id'd’ W. — In this subsection, we will compute the real
4-form id"d'W = idd'W of type (2,2). We will express its values on pure directional
vectors. This theorem accounts for the main features we found.

Theorem 4.11. — The hessian id'd" W of the Hermitian form W on the twistor
space T(M, g) of an anti-self dual Riemannian 4-manifold (M, g) with constant scalar
curvature s is given on pure directions and pure types by the following formulae where
HO; are basic horizontal lifts and U; vertical vectors,

1.
id'd"” W(Ulha Uéla Us,Uy) =0
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id d" WU, U US HO) = id'd" W(HO! UM UL US) =0
id'd" W(HOP, 1O, UL, US) = id'd" WU, Uy, HOZ, HOT) =0

id'd" W (HO UL O3, US) = —U§ - G(B(@A\eg), vl
—%U;ij<B(97mraf),U{L>
1,s

+§(6 —1)(Us.U)i; (3)

id'd" W(HOL, HOY, U, HO) = id'd" W(U", HEJ, HO, HE?) = 0
id A" W(HO HOL 0L HOP) = G (BB A 0p), BOF A 07))

f(G(B(@/\\Hf),B(@/\\Qg))

—i(z = )5 GE A G (4)

Proof. — 1. reflects the facts that the vertical distribution is integrable and that

the metric on the fibres is Kahler.

. The non vanishing of d’'W requires two horizontal vectors. The integrability of
the vertical distribution hence shows the results.

. By the usual formula for the exterior derivative, omitting zero terms, we get

d"d'W(HO} HO, U, Us)
= Uy - d'W(HO}, HOY,Us) — Us - d'W(HO}, HOY, U
—d'W([UT, U], 1oy, HOY)
+d' W([HO), UL, 1O Us) — d'W([HO!, US), 1O, UT)
+d' W([HO}, U, 1O, US) — dW([HO!, U], 1O, UY).
From proposition 4.8 and lemma 4.5, we infer that the terms
d'W([HO!, UL, 1O, Usg) = d'W(H[HO, Uf", HO”, Ug) in the last two lines

vanishes for type reason. As the scalar curvature is constant, the proposition 4.8
leads to

UL d'W(HO!, HO, US) — Us . d'W(HO, 1O, UY) — dW([UY, US), HO, HOY)
S a a a a a a
=z~ 1-\WVa )iy = U AU )iy — V1, Yalij | =
(2 = D(U7.(Us)i; = Us.(UD)y; — [UF,Usly5) = 0
The second equality follows by conjugation.
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4. By the usual formula for the exterior derivative, omitting zero terms, we get
&'d'W (H@f, U, Mo, U;)
= U d’W(Ulh,’HG?,HHj) - d’W([HGf’, Ug), Uf,Heg)
—d’w(pw;, U], 1ok, Uf) + d'w(meg, Uh, 1ok, Ug)
= —iUg -G(B@T&;),U{l) - d’W(H[H@hU;}h,U{Z,He;)
—d'W (’H, (167, U], H6?, Ulh) AW (H[H@;, UMk, HeP, Ug).
From lemma 4.5, we infer that the second term vanishes for type reasons, and
that for the third term H[HOF, US| = —%Ugmj’}-lﬁ‘;@. Hence

—d'w (163, U5, HoP, UL ) = %U;ij(B(ﬂeﬁ),Uf).

From lemma 4.5, we infer that for the forth term H[H67, U}'] = —%Ulh’mj’HHZT

Hence,
a'w ([o;, Ul ol U3 )

- —%d'W(Ufmjﬂag,Haf,Ug)
a Z S a

= _5(6 — U}, US i = 5(5 — 1)(USUY)i5-
5. Still from the formula of the exterior derivative

1,8

d"d'W (H@?, MO, U, Heg)
= —H&,‘j.d’W(’Hﬁ?,H&?,U“) + d’W(V[H@;;,U“},Hef,Ha;?)
+d'W<V[7—l9£’, U, He, Heg) AW (V[?-w;?, U], 1ok, Hag)
AW (HIHOP, O], HOP, U ) — d'W (HIMOL, 1R, HOP, U

From proposition 4.8 we can write

s
6
computed in normal coordinates centered at a point m. In such coordinates,
we can choose U = A with furthermore VgiA = 0 at m. By lemma 4.5,

Hag.d’w(ﬂaf,mf, Ua) = 7—[913-((% - 1)Uf§) = HGZ-(( - 1)U£}) =0

VIHO!, U] = (VMO U])* = (V4 A)+ [1(6x), A)* = 0. Now, the vanishing of
the third and forth terms, follows from lemma 4.5, after which V[’Hﬁgﬂ U] is of

type (0,1). Still at the centre m of normal coordinates , we have H@’, 071 =0
because [0;,0;] = V§ 0; — Vj 0; = 0. As H0; - u = 0, we conclude ’H@l, 6%] = 0.
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6. Again from the formula of the exterior derivative and from 4.8
d"d'W (’H@f, HO", H6L, 7-[9?)

- d’w([Hef, MO, HO", 7—[«9?) + d’W([?—l&j—’, 1O, HOP, Heg)
—d’W([’H@?, 102, HOL, 7—[9;‘) - d'w(mof, MO, HO", Ho;;)
—d'w(meg,m;l],ﬂef,mg).

As 08 A 07 belongs/to\/\é @Vect@\and V[HO! HOY] is a tensor, we find
[HO!, 1Oy = —R(0 A 0%) = —B(6 A 62) using lemma 4.1. This leads to
a'W (THOL MO, 1O HOp ) + /W ([HOL, HOfT, MOl HOR )
— —d’W(B(W,‘;)%HQ?,HG?) - d’W(B(W;I)h,HG?,Heg)
= iG(B@} A 0p). BT AO)) +iG(BO A 0), B@ A0 )
= G (B A Op), BT A0 ) +iG(B@E A7), BT A 07)*)
= iG(B) n07), BOFA0D)).

where we used the orthogonality of two (1,0) vectors. For the last term, as 67 A6f
belongs to A¢ we find V[HOF, HOF| = —R(0¢ A 0F) = —%9,%//-\\9?. Finally,

—d'w([ﬂegﬂa?],mgam;)
= —a'W(VIHOL O MO HO) ) = (5 — D25 (6T A G

O

A detailed analysis of parts (3) and (4) shows that the twistor construction here
does not provide examples of manifolds (X, w) strong KT without w being Kéhler.
We recover a version of the result of Verbitsky ([23, corollary 3.4]).

Corollary 4.12. — The form W is id'd"-closed if and only if it is d-closed if and
only if s = 6.

4.5. Convexity of the 1-cycle space. — In the case of Einstein manifolds, the
trace-free Ricci tensor B vanishes so that only parts (3) and (4) occur. We first
study the sign of part (3). At the point (m,I), a vertical vector U writes U =
aJ 4+ bK so that UU" = (U +iIU)(U — iIU) = —3(a® 4+ b*)(Id + iI). The sign of
id’d”W(H@;‘, Uk, HOF, U“) is hence the sign opposite to that of % - 1.

For part (4), a simple computation, using that the anti-symmetric endomorphism
associated with 05 A0; sends 0, on ; and §; on —0y,, leads to (Gg//\\@“)gl = %(1—u%l) > 0,
so that the sign of part (4) is that of (§ — 1)1
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We find, using [2, proposition 1] as a general argument to get the pluri-sub-
harmonicity from the semi-positivity of the hessian of W,

Corollary 4.18. — The hessian id'd’” W of the Hermitian form W on the twistor
space T =T (M, g) of an anti-self dual Einstein 4-manifold (M, g) with non-positive
constant scalar curvature s is semi-positive. If furthermore M 1is compact, the volume
function on the 1-cycle space is a continuous pluri-sub-harmonic exhaustion function.

5. Twistor spaces of quaternionic Kiahler manifolds

In this section, (M, g, D) will be a quaternionic Kéhler 4n-manifold with constant
scalar curvature s.

5.1. Computations of dW and d'W. — We begin with the exterior derivative of
the natural Hermitian form.

Proposition 5.1. — The exterior derivative dW of the Hermitian form W on the
twistor space T of the quaternionic Kdhler manifold (M, g, D) vanishes on pure di-
rectional (i.e. horizontal or vertical) vectors except when evaluated on two horizontal
vectors and one vertical vector. More precisely for oll X,Y in TM and U in V

—

G((%Id ~R)(X AY),IU)

(1 - m)G(UX, Y)

AW(U, HX, HY)

where R denotes the curvature of the restriction of the Levi-Civita connection to the
rank three sub-bundle D.

Proof. — Over a open set U of M trivialising T = T(M, g, D) — M, the lifting of a
vector field X on M reads

TT>HX) =X +3(X) e H V.
The first equality is hence a formal analog of proposition 4.7.
We choose a point (m,I) in the twistor space T. Every vertical vector U is of
the form U = aJ + bK and hence JU = IU = —bJ 4 aK, where (I, J, K) is a direct
orthogonal basis of D of vectors of norm 2. Recall now

Lemma 5.2. — (|6, lemma 14.40]) For all vectors (X,Y) € TM, with ¢ = T
the following holds

[LRIXAY)] = —(X,Y)J+B(X,Y)K a(X,Y) =cg(IX,Y)
[LRIXAY) = XYV —a(X,Y)K where { B(X,Y)=cg(JX,Y)
[K,R(XAY)] = —BX,Y)+aX,Y)J Y(X,Y) = cg(KX,Y).
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Note that a(X,Y) = %HT(IX, Y) = %Hﬁg(IX,Y) = ¢g(IX,Y). This lemma

encodes the Einstein property of the metric g and simplifies the previous expression.

—

In fact, R(X,Y) = [I,R(X, Y)] = —cg(KX,Y)J +cg(JX,Y)K. Then,

G(R(/X,\Y),JU) = cg(KX,Y) + 2acg(JX,Y))

2C(G<(aJ KX, Y) - GUX,Y).

n(n + 2)
A formula analog to formula 2 gives the value G(X//\\Y,JU) = —29(X,UY) =

29(UX, ), we conclude G((41d “R(X A ¥),00) = (1= 5t )GUX,Y). O

It then follows by linearity and anti-commutation UJ = —JU, that the (2,1)-part
of the exterior derivative of W reads

Proposition 5.3. — For a vertical vector U € V, and an orthonormal frame (6;) of
T™,
L dW(UHOLHO) = — (1 U
( H i H j) n(n+2) ij
2. dW(U", HO}, 1Y) = 0.
5.2. Computation of id'd” W. — The previous paragraph showed that for quater-

nion Kéahler manifolds, the computations follows the lines of the 4 dimension Einstein
case (with vanishing trace-free Ricci operator B). We find

Theorem 5.4. — The hessian id'd” W of the Hermitian form W on the twistor space
T =T(M,g,D) of a quaternionic Kahler 4n-manifold (M, g, D) with constant scalar
curvature s is given on pure directions and pure types by the following formulae where
HO; are basic horizontal lifts and U; vertical vectors,

1.
id'd” WU, Uk Us, Ug) =0
2.
id'd" WU, Ul U, HOP) = id d" W(HOM UM UL, US) =0

3.

id d" W(HOP, 1O, UL, US) = id'd" WU, Uy, HOZ, HOT) =0
4.

id'd" W (Mol Ul 1O}, US ) = %(; — 1)(USUD) (5)

n(n +2)

5.

id d" W(HOP, 1O, U HOp) = id'd" W(U", 1oy, HOP, HOT) =0
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6.
. h h a a . S /a\a a
id'd" W(HO;? , HOF, HOE, HOP) = —l(m = 1)(R(0; A 67))3; (6)
. S S T a
= il Vg A

As in the previous setting,

Corollary 5.5. — The form W is id'd" -closed if and only if it is d-closed if and only
if s=n(n+2).

Proof. — At a point (m,I) for U = J, one has U“ J ik and UM =

J—iK Id+1
2

z‘d’d"w(Heﬁ, Ul 1o, Ug) vanishes for all ] if and only if s = n(n + 2). O

so that UU" = # 0. Tt follows from the identity (5) that

5.3. Convexity of the 1-cycle space. — We study the signs of non-zero terms.
We first study the sign of part (6). At the point (m, ), a vertical vector U writes
U = aJ + bK so that UU" = (U +ilU)(U — ilU) = —4(a® + b*)(Id + il ). Hence,
(UUM);; = —3(a® + %) = 3| U||? = —3||U"||>. The sign of

1
id/d//W(HG?,Uh,HG?,Ua) = i(ﬁ - 1)(UaUh)]]

1 s

iy G — h12
g~ VI
1 s 3

= 3Gy ~ VIO

is hence the sign opposite to that of ﬁ - 1.
n(n

To study the sign of part (5), we have to again make use of the fundamental
lemma 5.2

RO A7) = [1RO2A0D)] = —cg(KO%,02)] + cg(JO%, 07 K
= —2g(KO; +10;),00 +i10,). + g (J(0; +i10;),0 + 10, ) K

C . .
= i(Kjk +iJjg)J — 2(Jj — 1K) K

— ic
So, R(05 A OF) ., = §(Jj2,€ + K3},). It follows that

S —_—

iy~ VARG

C S

. h h a a —
Zdld// W(H9] 5 Hek ) 7‘[0] ) Hak) - jk

- i(mfl)(JkarK?k)
1 S 3 2 2
= 3GeTe Vo Wk T K-
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5 1) S
n(n+2) 2n(n+2)
In the case of non-positive scalar curvature, we get the

So, the sign of part (5) is that the sign of (

Corollary 5.6. — The hessian id'd” W of the Hermitian form W on the twistor space
T = T(M,g,D) of a quaternionic Kdhler 4n-manifold (M, g, D) with non-positive
constant scalar curvature s is semi-positive. If furthermore M is compact, the volume
function on the 1-cycle space is a continuous pluri-sub-harmonic exhaustion function.

In the case of vanishing scalar curvature we recover the formula of theorem 3.2
. 1
id'd" W (o), U 105, U%) = S[07||u"

up to the factor % that accounts for the change of the radius of the vertical spheres
from 1 to v/2.

In the case of positive scalar curvature, our considerations are compatible with
the compacity of the cycle space. Moreover, we find that there is exactly one way of
adjusting the volume (i.e. the scalar curvature) of the base manifold in order to make
the volume function constant.
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