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ABSTRACT. Let G be an almost simple simply-connected affine algebraic group over an algebraically closed
field k of characteristic p > 0. If G has type Bn , Cn or F4, we assume that p > 2, and if G has type G2,
we assume that p > 3. Let P ⊂ G be a parabolic subgroup. We prove that the tangent bundle of G/P is
Frobenius stable with respect to the anticanonical polarization on G/P.

1. INTRODUCTION

Let us recall the notion of slope stability of a sheaf over a polarized projective scheme. The slope of
a sheaf F is defined as the quotient of its degree by its rank: it will be denoted by µ(F ). A sheaf F is
called stable (respectively, semi-stable) if for any strict subsheaf G we have µ(G ) < µ(F ) (respectively,
µ(G ) ≤ µ(F )). Throughout, (semi)stability will mean slope (semi)stability.

LetG be an almost simple simply-connected affine algebraic group over an algebraically closed field k,
and let P ⊂ G be a parabolic subgroup. If the characteristic char(k) is zero, then it is known that the
tangent bundle of G/P is stable with respect to the anticanonical polarization on G/P.

In fact, if G/P is a Hermitian symmetric space, the result goes back to the sixties [Ram66]. In the
complex case, it was proved long ago that this bundle admits a Kähler-Einstein metric (see [Ko55] or
[Be87, Chapter 8]), which implies polystability. Simplicity of this bundle was proved in [AB10], proving
the stability; A. Boralevi proved stability of T (G/P) when G is of type ADE [Bor12, Theorem C].

Our aim here is to address stability of T (G/P) in the case where char(k) is positive. IfG is of type Bn , Cn

or F4, we assume that char(k) > 2; if G is of type G2, we assume that char(k) > 3. The main Theorem of
this note says that under the above assumption, the tangent bundle of G/P and all its iterated Frobenius
pull-backs are stable with respect to the anticanonical polarization on G/P.

The method of proof of the main Theorem is as follows. We prove that the stability of T (G/P) is equiv-
alent to a certain statement on the quotient Lie(G)/Lie(P) considered as a P–module. The statement in
question is shown to be independent of the characteristic of k (as long as the above assumptions hold).
Finally, the main Theorem follows from the fact that T (G/P) is stable if char(k) = 0.

A natural question to ask is whether T (G/P) remains stable with respect to polarizations on G/P other
than the anticanonical one. A. Boralevi gave a negative answer to this question. She constructed ex-
amples of G/P and polarizations on them with respect to which T (G/P) is not even semi-stable [Bor12,
Theorem D].

Another natural question is to understand what happens when one relaxes the hypothesis on the char-
acteristic. We are quite far from having a complete answer to this question. However, in the last section,
we give an example of a homogeneous space in type Cn and in characteristic 2 whose tangent bundle is
not stable, but semi-stable. We have not been able to find any example of a tangent bundle which is not
semi-stable.
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2. NOTATIONS AND STATEMENT OF THE MAIN THEOREM

Let G be an almost simple simply-connected affine algebraic group defined over an algebraically
closed field k. Let P ( G be a parabolic subgroup. The Lie algebra of G,P will be denoted by g,p. The
nilpotent ideal of p will be denoted by n.

Fix a maximal torus T ⊂ G and a Borel subgroup B. Assume T ⊂ B ⊂ P. Let R denote the set of roots
of g. The set of positive (respectively, negative) roots of g will be denoted by R+ (respectively, R−). The
eigenspace corresponding to any α ∈ R will be denoted by gα.

A subsheaf E ⊂ T (G/P) is called G-stable if it is preserved by the left action of G on T (G/P). Since the
left translation action of G on G/P is transitive, any G-stable subsheaf of T (G/P) is a subbundle. Sheaves
with a G-action are called linearized sheaves. For a coherent sheaf on G/P, there is an open subset where
it is free as a OG/P-module. Therefore, linearized sheaves are locally free. Moreover, we recall the well-
known correspondence between G-linearized sheaves and P-modules (details can be found in [Bri09,
2.1] and [Jan03, 5.9]):

Proposition 2.1. There is an equivalence of categories between G-linearized vector bundles on G/P and P-
modules. On the one hand, to a G-linearized vector bundle E, one can associate the fiber Eo at the P-stable
point. On the other hand, to a P-module M, one can associate the bundle (G×M)/P over G/P.

If E is the G-linearized vector bundle corresponding to a P-module M , since this correspondence is
functorial, it induces a correspondence between G-linearized subbundles of E and P-submodules of M .

We now impose the following assumptions on the characteristic of the field k (α∨ is the coroot corre-
sponding to α):

Working assumption.

• The characteristic char(k) of k is positive, and
• char(k) is bigger than all the coefficients |〈α∨ ,β〉| for all roots α ,β of G with α 6= ±β.

In other words, if the root system of G is simply-laced, then char(k) is only assumed to be positive; if
G is any of Bn , Cn and F4, we assume that char(k) > 2; if G = G2, we assume that char(k) > 3. Recall that
a bundle is said to be Frobenius stable with respect to a given polarization if it is stable and all its iterated
Frobenius pull-backs are again stable.

Main Theorem. Under the previous assumption, the tangent bundle T (G/P) is Frobenius stable with re-
spect to the anticanonical polarization on G/P.

The rest of the article is devoted to the proof of this theorem. This is essentially given by reduction
to characteristic zero. This reduction is achieved using the following construction: let GZ be the split
simply-connected Chevalley group scheme over Z having the same root system as G. By the theory of
reductive algebraic group schemes, as the root system characterizes simply-connected groups up to iso-
morphism, we have G ' GZ⊗Spec k. On the other hand, we denote GZ⊗SpecC by GC, and we denote
by gC its Lie algebra. There exists a parabolic group PZ ⊂ GZ such that PZ⊗Spec k is conjugate to P. The
parabolic subgroup PZ⊗SpecC of GC will be denoted by PC.

3. PROOF OF THE MAIN RESULT

The set of roots α such that gα ⊂ p will be denoted by I (P). Let x0 ∈ G/P denote the base point. We
have

Tx0 (G/P) ' g/p ' ⊕
α∈R\I (P)

gα .

Thus, the vector space
⊕

α∈R\I (P)g
α, has a natural P-module structure, which is the one we consider in

the following lemma.
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Lemma 3.1. Let I ⊂ R \ I (P) be a set of negative roots. Then the sum M(I ) := ⊕
α∈I g

α is a P-stable sub-
module of

⊕
α∈R\I (P)g

α if, and only if,

∀ β ∈ I (P) , ∀ α ∈ I , α+β ∈ R \ I (P) =⇒ α+β ∈ I . (1)

Proof. Take α ∈ I and β ∈ I (P) such that α+β ∈ R \ I (P). In particular, we have β 6= ±α. Since G is
simply-connected, g is the Lie algebra defined by Serre’s relations (this is explained for example in [CR10,
Remark 2.2.3]), so we can choose a basis of g such that the coefficients of the Lie bracket are those of the
Chevalley basis [Ca72]. Consider the biggest integer p such that α−pβ ∈ R. This p is smaller than the
length of the β-string of roots throughαminus 1 (sinceα+β ∈ R), and thus, by the working Assumption,
we have p ≤ char(k)−2. This implies that p +1 < char(k). It now follows from [Ca72, Theorem 4.2.1]
that [gβ,gα] = gα+β. Assuming that M(I ) is P-stable, we have it to be p-stable, and therefore α+β ∈ I .

On the other hand, let Uβ ⊂ G be the one-parameter additive subgroup corresponding to the root β.

Since Uβ ·gα ⊂ ⊕
k≥0g

α+kβ, from (1) it follows that M(I ) is Uβ-stable for any root β in I (P), and thus M(I )
is P-stable. �

The anticanonical line bundles of G/P and GC/PC are ample. Fix the anticanonical polarization on
G/P and also on GC/PC.

Proposition 3.2. Let E ⊂ T (G/P) be a G-stable subbundle of T (G/P). There exists a subbundle EC ⊂
T (GC/PC) such that rk(EC) = rk(E) and deg(EC) = deg(E).

Proof. Under the correspondence of Proposition 2.1, let M be the P-submodule of
⊕

α6∈I (P)g
α corre-

sponding to E . Since M is a T-stable subspace of
⊕

α6∈I (P)g
α, there is a subset I (M) ⊂ R \ I (P) such that

M = ⊕
α∈I (M)g

α. By Lemma 3.1, we have

∀ β ∈ I (P) , ∀ α ∈ I (M) , α+β ∈ R \ I (P) =⇒ α+β ∈ I (M) .

Thus, MC := ⊕
α∈I (M)g

α
C

is a PC-submodule of
⊕

α6∈I (P)g
α
C

and the subbundle EC ⊂ T (GC/PC) corre-
sponding to MC has the same rank as E .

Note that there is a corresponding vector bundle EZ over GZ/PZ, since the P-module
⊕

α∈I (M)g
α is

defined over Z. Since this is a flat bundle, we get that deg(EC) = deg(E). �

Lemma 3.3. The tangent bundle T (G/P) is polystable.

Proof. Let E be the first term of the Harder-Narasimhan filtration of T (G/P). First assume E 6= T (G/P),
so

µ(E) > µ(T (G/P)) . (2)

Since the anticanonical polarization ofG/P is fixed byG, from the uniqueness of the Harder-Narasimhan
filtration it follows that E is G-stable. By Proposition 3.2 and stability of T (GC/PC) in characteristic 0
[AB10, Theorem 2.1], we thus have µ(E) < µ(T (G/P)) which contradicts (2). So T (G/P) is semi-stable.

We can then similarly argue with the polystable socle (cf. [HL97, page 23, Lemma 1.5.5]) of T (G/P) to
deduce that T (G/P) is polystable. �

Since T (G/P) is polystable, it is isomorphic to

r⊕
i=1

E⊕mi

i ,

such that

• each Ei is stable with µ(Ei ) = µ(T (G/P)),
• mi ≥ 1, and
• Ei 6= E j if i 6= j .
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We note that the isomorphism classes of E1 , . . . ,Er are unique up to permutations of {1, . . . ,r }. Let

Hom(Ei , T (G/P)) = H 0(G/P, T (G/P)⊗E∨
i )

be the space of homomorphisms. Now consider the natural homomorphism
r⊕

i=1
Hom(Ei , T (G/P))⊗Ei −→ T (G/P) (3)

that sends any s⊗v , where s ∈ Hom(Ei , T (G/P)) and v ∈ (Ei )x to s(x)(v) ∈ T (G/P)x . Since Hom(Ei , E j ) =
0 if i 6= j , and Hom(Ei , Ei ) = k, it follows that the homomorphism in (3) is an isomorphism.

Lemma 3.4. Take any g ∈ G and integer 1 ≤ j ≤ r . Then g∗E j ' E j as vector bundles on G/P.

Proof. Let φ : G× (G/P) −→ G/P be the left-translation action. Let p2 : G× (G/P) −→ G/P be the projec-
tion to the second factor. The action φ produces an isomorphism of vector bundles

Φ :
r⊕

i=1
Hom(Ei , T (G/P))⊗φ∗Ei = φ∗T (G/P) −→ p∗

2 T (G/P) =
r⊕

i=1
Hom(Ei , T (G/P))⊗p∗

2 Ei . (4)

For i 6= `, as Ei and El are stable of the same slope, we have

Hom((φ∗Ei )|{e}×G/P , (p∗
2 E`)|{e}×G/P) = Hom(Ei ,E`) = 0.

Hence, using the semi-continuity of the function (g1, g2) 7→ dim Hom((φ∗Ei )|{g1}×G/P , (p∗
2 E`)|{g2}×G/P),

we get
Hom(φ∗Ei , p∗

2 E`) = 0. (5)

From (5) it follows immediately that Φ in (4) takes Hom(Ei , T (G/P))⊗φ∗Ei to itself for every 1 ≤ i ≤ r .
In particular, we have Hom(E j , T (G/P))⊗φ∗E j ' Hom(E j , T (G/P))⊗ p∗

2 E j . Fix g ∈ G: restricting to
{g }×G/P, we get

Hom(E j , T (G/P))⊗ g∗E j ' Hom(E j , T (G/P))⊗E j . (6)

Since E j is stable, we know that g∗E j is indecomposable. Now in view of the uniqueness of the decom-
position into a direct sum of indecomposable vector bundles (see [At56, p. 315, Theorem 2]), from (6) we
conclude that g∗E j ' E j . �

Lemma 3.5. For all j ∈ [1 ,r ], the vector bundle E j is G-linearized.

Proof. Fix an integer 1 ≤ j ≤ r . We now introduce the group of symmetries of the vector bundle E j . Let
G̃ denote the set of pairs (g ,h), where g ∈ G and h ∈ Aut (E j ), such that the diagram

E j
h //

��

E j

��
G/P g

// G/P

commutes. Since E j is simple, AutG/P(E j ) ' Gm , and therefore we get a central extension

1 −→ Gm −→ G̃
pr1−→ G −→ 1.

By Lemma 3.4, the above homomorphism pr1 is surjective. This G̃ is an algebraic group. To see this,
consider the direct image p2∗Iso(φ∗E j , p∗

2 E j ), whereφ and p2 are the projections in the proof of Lemma
3.4, and Iso(φ∗E j , p∗

2 E j ) is the sheaf of isomorphisms between the two vector bundles φ∗E j and p∗
2 E j .

This direct image is a principal Gm-bundle over G/P. The total space of this principal Gm-bundle is
identified with G̃ .

We consider the derived subgroup [G̃ ,G̃]. Since G is simple and not abelian, we have [G ,G] = G, so
π([G̃ , G̃]) = G. The unipotent radical of G̃ is trivial. Indeed, the unipotent radical is mapped to the trivial
subgroup of G since G is simple. Therefore it is included in Gm and so the unipotent radical is trivial.
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Since G̃ is reductive, [G̃ ,G̃] is semi-simple, hence a proper subgroup of G̃ (the radical of G̃ contains
Gm hence G̃ is not semi-simple). Thus the restriction of pr1 to [G̃ ,G̃] is an isogeny. Since G is simply-
connected, the restriction of pr1 to [G̃ ,G̃] is an isomorphism. Consequently, the tautological action of
[G̃ ,G̃] on E j makes it a G-linearized bundle. �

Lemma 3.6. The integer r in (3) is 1.

Proof. Since Hom(E1,T (G/P))⊗E1 is a direct summand of T (G/P) (see (3)), from Lemma 3.3 we know
that the slope of Hom(E1,T (G/P))⊗E1 coincides with the slope of T (G/P). In the proof of Lemma 3.5
we saw that Hom(E1,T (G/P))⊗E1 is a G-equivariant direct summand of T (G/P). As T (GC/PC) is stable,
[AB10, Theorem 2.1], from Proposition 3.2 it now follows that Hom(E1,T (G/P))⊗E1 = T (G/P). �

The following proposition holds without any restriction on the characteristic.

Proposition 3.7. Let M1, M2 be two G-modules such that H 0(G/P, T (G/P)) = M1 ⊗ M2 as G-modules.
Then either M1 = k or M2 = k.

Proof. Let θ be the highest root of g. We claim that θ is a maximal weight of H 0(G/P, T (G/P)) in the
sense that θ+α is not a weight of H 0(G/P, T (G/P)) for any positive root α. To prove this, first note that if
H 0(G/P, T (G/P)) = g, then this is in fact the definition of the highest root. By [De77, Théorème 1], there
are only three cases where H 0(G/P, T (G/P)) 6= g:

(1) G = Sp(2n) of type Cn with G/P a projective space and H 0(G/P, T (G/P)) = sl(2n),
(2) G = SO(n +2) of type Bn with G/P a spinor variety and H 0(G/P, T (G/P)) = so(2n +2), and
(3) G = G2 with G/P a quadric and H 0(G/P, T (G/P)) = so(7).

In these three cases, we have exceptional automorphisms that account for additional vector fields and
we have H 0(G/P, T (G/P)) = g⊕V , where V has a unique highest weight which is not higher than θ. For
example, if G = Sp(2n), then G/P = SL(2n)/PSL(2n) is a projective space of dimension 2n − 1, so that
H 0(G/P, T (G/P)) is sl(2n). Then V is a module with unique highest weight ε1 + ε2, whereas θ = 2ε1 (in
the notation of [Bou05, Chap VI, Planches]). So the claim is proved.

As θ is a maximal weight of H 0(G/P, T (G/P)) = M1 ⊗M2, there are maximal weights ω1 and ω2 of M1

and M2 respectively, such that
θ = ω1 +ω2 . (7)

Since ω1 and ω2 are maximal, they are dominant. In all types except An and Cn , we have θ to be a
fundamental weight. Therefore, from the equality in (7) it follows that either ω1 = 0 or ω2 = 0, hence the
proposition is proved in these cases.

For the remaining cases of An and Cn , assume that ω1 6= 0 and ω2 6= 0. Let $i denote the i -th fun-
damental weight. In case of An , we have θ = $1 +$n , so up to a permutation, ω1 = $1 and ω2 = $n .
Since the Weyl group orbits of both $1 and $n have n +1 elements, it follows that dim M1 ≥ n +1 and
dim M2 ≥ n+1. This implies that dim H 0(G/P, T (G/P)) ≥ (n+1)2 which is a contradiction. In case of Cn ,
we have θ = 2$1, so similarly we get ω1 = ω2 = $1, and dim H 0(G/P, T (G/P)) ≥ (2n)2. This is again a
contradiction. �

Lemma 3.8. dim Hom(E1 ,T (G/P)) = 1.

Proof. From Lemma 3.6 we have H 0(G/P, T (G/P)) = Hom(E1, T (G/P))⊗ H 0(G/P, E1). Since T (G/P) is
globally generated, so is E1 and thus dim H 0(G/P, E1) > 1. Thus, as E1 is G-linearized, the lemma follows
from Proposition 3.7. �

From equation (3) and Lemma 3.6, we get that T (G/P) ' Hom(E1,T (G/P)) ⊗ E1. By Lemma 3.8,
Hom(E1,T (G/P)) ' k, thus T (G/P) ' E1 and it is stable.

The following lemma completes the proof of the main Theorem.
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Lemma 3.9. Let E be a semi-stable (respectively, stable) G-linearized vector bundle on G/P. Then E is
Frobenius semi-stable (respectively, Frobenius stable).

Proof. The absolute Frobenius morphism on G/P will be denoted by F . First assume that E is semi-
stable. Let W be the first term of the Harder-Narasimhan filtration of F∗E . We use the correspondence
between vector bundles on G/P and P-modules given in Proposition 2.1. Thus W corresponds to a P-
stable subspace of (F∗E)x0 , the fiber of F∗E at the base point in G/P. This is the same as an F∗P-stable
subspace S of Ex0 . Since F : P −→ P is bijective, this S is also a P-submodule of Ex0 . Thus, there exists a

subbundle W ′ ⊂ E of slope µ(W )
char(k) ≥ µ(F∗E)

char(k) = µ(E) such that W = F∗W ′. By semi-stability of E , we have
W ′ = E . Thus we get that W = F∗E .

Assume now that E is stable. So, as shown above, F∗E is semi-stable. Let W ⊂ F∗E be a subbundle
with µ(W ) = µ(F∗E). We consider the Cartier connection F∗E −→ F∗E ⊗Ω1

G/P. By [Ka76, Theorem 5.1],
the subbundle W is a Frobenius pull-back if and only if its image under the composition

W −→ F∗E −→ F∗E ⊗Ω1
G/P

is contained in W ⊗Ω1
G/P. Let f : W −→ F∗E ⊗Ω1

G/P be the above composition.
To prove that f (W ) ⊂ W ⊗Ω1

G/P, consider the composition

W
f−→ F∗E ⊗Ω1

G/P −→ ((F∗E)/W )⊗Ω1
G/P . (8)

Since E is Frobenius semi-stable, the pullback F∗E is Frobenius semi-stable. As µ(W ) = µ(F∗E), and
F∗E is Frobenius semi-stable, it follows that both W and (F∗E)/W are Frobenius semi-stable with

µ(W ) = µ((F∗E)/W ) . (9)

Now, since Ω1
G/P is also Frobenius semi-stable, it follows that ((F∗E)/W )⊗Ω1

G/P is semi-stable [RR84, p.
285, Theorem 3.18]. From (9) and the fact that µ(Ω1

G/P) < 0 it follows that

µ(W ) > µ(((F∗E)/W )⊗Ω1
G/P) .

So the composition in (8) being OG/P-linear has to vanish, meaning we have f (W ) ⊂ W ⊗Ω1
G/P. There-

fore, let W ′ ⊂ E be such that W = F∗W ′. We have µ(W ′) = µ(E). By stability of E , we get that W ′ = E and
hence W = F∗E . �

Remark 3.10. It is not true that for any semistable vector bundle V on a smooth projective variety, the
pullback of V by the Frobenius map of the variety is semistable. In fact, there are stable vector bundles
on curves whose Frobenius pullback is are semistable; see [LP08].

4. AN EXAMPLE IN SMALL CHARACTERISTIC

We give an example of a tangent bundle which is semi-stable but not stable. We do not know if there
are some tangent bundles to homogeneous spaces which are not semi-stable in positive characteristic.

The example is that of G/P=Gω(n,2n), the Grassmannian of Lagrangian spaces in a symplectic space
of dimension 2n, and we assume that k has characteristic 2. Namely, G is Sp(2n) and P is the maximal
parabolic subgroup corresponding to the long simple root. Let U denote the universal bundle on G/P,
of rank n and degree −1. Then T (G/P) is a subbundle of U∗⊗U∗; in fact if S2U denotes the symmetric
quotient of U ⊗U , then T (G/P) ' (S2U )∗.

We will implicitly use the correspondence between P-modules and G-linearized homogeneous bun-
dles on G/P (Proposition 2.1). Note that the reductive quotient of P is GL(U ). Since chark = 2, we have
an additive map U → S2U , x 7→ x2, which can be seen as a linear application F∗U → S2U (recall that F
denotes the Frobenius morphism). It is GL(U )-equivariant, so this defines an exact sequence of bundles
on G/P:

0 → F∗U → S2U → K → 0 (10)
6



It follows that there is a subbundle K ∗ ⊂ T (G/P). Since µ(F∗U ) = µ(S2U ) = 2µ(U ), we get µ(K ∗) =
µ(T (G/P)) and T (G/P) is not stable. However since F∗U is the only GL(U )-invariant subspace in S2U , K ∗
is the only linearized subbundle in T (G/P). Thus the semi-stability inequality holds for this subbundle.
Arguing as in the proof of Lemma 3.3, we deduce that T (G/P) is semi-stable.

For general homogeneous spaces G/P, we face two difficulties:

• There are linearized subbundles in T (G/P) which do not lift to characteristic 0, and contrary to
the above example, they are numerous in general.

• The stability of T (G/P) for characteristic 0 says nothing about µ(E) of such a subbundle E ⊂
T (G/P). It is difficult to compute the (dim(G/P)−1)-th power of the anticanonical polarization
to be able to show the semi-stability inequality for E .
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