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Abstract

We consider degenerations of complex projective Calabi–Yau varieties and study the
singularities of L2, Quillen and BCOV metrics on Hodge and determinant bundles. The
dominant and subdominant terms in the expansions of the metrics close to non-smooth
fibers are shown to be related to well-known topological invariants of singularities,
such as limit Hodge structures, vanishing cycles and log-canonical thresholds. We also
describe corresponding invariants for more general degenerating families in the case of
the Quillen metric.

1. Introduction

In this article we study the singularities of several natural metrics on combinations of Hodge
type bundles, for degenerating families of complex projective algebraic varieties. In particular we
provide topological interpretations of invariants associated to logarithmic singularities of these
metrics. Our original motivation was a metrical approach to the canonical bundle formula for
families of Calabi–Yau varieties [Kaw98, FM00, Amb04, Kol07]. The first instance of this formula
goes back to Kodaira [Kod64, Thm. 12], and describes the relative canonical bundle of an elliptic
surface in terms of a positive modular part and some topological invariants of the singular fibers.
We were thus naturally led to the study of Hodge type bundles, their metrics and behavior close
to singular fibers.

As a matter of motivation, a classical example to keep in mind is the Hodge bundle f∗ωX/S
for a family of compact Riemann surfaces f : X → S, endowed with its canonical L2-metric or a
Quillen metric on its determinant bundle (cf. section 3.1). The latter topic is the main focus of
the work of Bismut–Bost [BB90]. In the semi-stable case, they describe the singularities and the
curvature current of the Quillen metric on the determinant of the Hodge bundle. In the special
case where S is the unit disk and there is a unique singular fiber X0 at 0 ∈ S, the principal part
of the curvature current is of the form

#sing(X0)
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where δ0 is the Dirac current at 0 and #sing(X0) is the number of singular points in the fiber
X0.

In this article, we study analogues of this phenomenon for L2-metrics on Hodge bundles for
Calabi–Yau families (Theorem 1), Quillen metrics on determinant bundles (Theorem 1) and the
so-called BCOV metric, which has found applications in mirror symmetry for Calabi–Yau 3-folds
(Theorem 1).

To state our contributions, for the purpose of this introduction, we suppose that f : X → S
is a flat, projective map of complex manifolds of relative dimension n, S is the unit disk with
parameter s. We suppose the fibers Xs = f−1(s) connected and smooth for s 6= 0 (we say that
f is generically smooth). We also assume that X carries a fixed Kähler metric. We denote by
KX/S := KX ⊗K−1

S the relative canonical bundle.

Theorem A. Suppose that the general fiber of f : X → S is Calabi–Yau, i.e. has a trivial
canonical bundle. Let η be a local holomorphic frame of the line bundle f∗KX/S . Then if we
define

||η||2s =
1

(2π)n

∣∣∣∣∫
Xs

η ∧ η
∣∣∣∣

we have

− log ||η||2 = α log |s|2 − β log | log |s|2|+O(1) as s→ 0

where

(i) α = 1 − cX0(f) ∈ [0, 1) ∩ Q. Here cX0(f) is the log-canonical threshold of (X,−B,X0)
along X0, where B is the divisor of the evaluation map f∗f∗(KX/S) → KX/S . Moreover,
exp(2πiα) is the eigenvalue of the semi-simple part of the monodromy acting on the graded
piece GrnF H

n
lim of the middle limit Hodge structure of X → S.

(ii) β = δ(X,X0) ∈ [0, n]∩N is the degeneracy index of (X,X0), computed through the geometry
of the special fiber and KX/S . Moreover, β + n is the mixed Hodge structure weight of the
1-dimensional space GrnF H

n
lim.

(iii) If X → S is birational to a model Z → S, where Z is normal with KZ locally free, and Z0

has at worst canonical singularities, then α = β = 0 and the L2-metric is continuous.

This statement summarizes the results in section 2. Observe that the negative logarithm
square of the norm is the potential of the first Chern form of the corresponding holomorphic
Hermitian line bundle. On the smooth locus, the curvature of the L2-metric is the Kähler form
of the modular Weil-Petersson metric. Hence Theorem 1 indicates the necessary correction of
the Hodge bundle so that the L2-metric becomes good in the sense of Mumford.

Versions of Theorem 1 already appeared in the work of other authors, in slightly different
forms. The third point is proved by Wang in [Wan97, Prop. 2.3 with Cor. 1.2] (see also [RZ11,
Thm.B.1] in the appendix by M. Gross) and in fact a converse is proven by Tosatti in [Tos15,
Thm.1.1]. As a special instance of canonical singularities, we mention the case of ordinary
quadratic singularities when n > 2. The degeneracy index and log-canonical threshold have
also been announced by Halle–Nicaise [HN12, Thm. 6.2.2] and detailed in [HN18, Thm. 3.3.3].
In the context of `-adic cohomology, they establish the analogous relationship as in the theorem
above. There is also related work of Berman [Ber16, Sec. 3] on the asymptotics of L2-metrics in
terms of log-canonical thresholds. More recently Boucksom–Jonsson [BJ16] study asymptotics
of volume forms in relationship with non-archimedean limits. Actually, the argument we provide
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for the asymptotics in terms of cX0(f) and δ(X,X0) is a specialization of the computations in
loc. cit., and was communicated to us by S. Boucksom, whom we warmly thank.

In sections 3 and 4, we shift our interest to the determinant line bundle endowed with a
Quillen type metric, instead of the direct image of the relative canonical bundle endowed with
the L2 metric. The main feature is that, after normalizing the metric, this bundle still detects the
variation in moduli in its smooth part, and has a degeneration mainly governed by the singular
fibers, and weakly depending on their germs of embedding. Suppose now that V is a Hermitian
vector bundle on X and let λ(V )Q be the determinant of the cohomology of V , equipped with
the Quillen metric. This has a singularity at 0, and our aim is to provide a topological measure of
it. If σ is a local holomorphic frame of λ(V ), then Yoshikawa [Yos07] proves, in our formulation,

− log ||σ||2
Q

=

(∫
X0

Y(X/S, V )

)
log |s|2 +R(s) as s→ 0, (1)

where Y(X/S, V ) is a certain cohomology class (Definition 3.6) and R(s) is a continuous func-
tion of s. In this article we study and generalize this class for families of varieties over a general
parameter space S, and whose total space X is not necessarily smooth. This uses and under-
lines the Nash blowup instead of the Gauss morphism. The latter was actually introduced by
Bismut [Bis97] and then further exploited by Yoshikawa [Yos07]. Our approach allows us to
study the class Y(X/S, V ) from the point of view of Fulton’s intersection theory, which exhibits
functoriality properties to the effect that we can use moduli space arguments in computations.
For the formulation of the theorem, for simplicity, let V be the trivial line bundle and set
Y (X/S) =

∫
X0
Y(X/S, V ).

Theorem B. Suppose X → S is a family over a disk, with X not necessarily smooth. Then,

(i) if X → S admits only isolated singularities in the special fiber X0 and is locally a hyper-
surface in a S-smooth variety, then

Y (X/S) =
(−1)n+1

(n+ 2)!

∑
x∈X0

(µX0,x + µX,x) ,

where µX,0 and µX0,0 denote the Milnor numbers of the hypersurface singularities.

(ii) if X is a family of hypersurfaces in Pn parametrized by S,

Y (X/S) =
(−1)n+1

(n+ 2)!

∫
X0

cX0
n+1(ΩX/S)

where cX0
n+1(ΩX/S) denotes the localized top Chern class of X → S.

(iii) if X → S is a family of K3 or abelian surfaces, with X smooth and KX trivial, the same
formula holds. One can conclude that

Y (X/S) =
−1

24
(χ(X∞)− χ(X0)).

In fact, for general families X → S with X smooth, we have the fundamental relation∫
X0

cX0
n+1(ΩX/S) = (−1)n(χ(X∞)− χ(X0)).

The expression χ(X∞) − χ(X0) is the total dimension of the vanishing cycles of the family, i.e.
the difference between the topological Euler characteristic of the special fiber X0 and that of a
general fiber X∞.
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The developments abutting to Theorem 1 are the object of section 3. We stress here that
the intersection theoretic approach is well suited to other geometric settings. For instance, in the
“arithmetic situation” (i.e. S is the spectrum of a discrete valuation ring of mixed characteristic),
the Yoshikawa class can still be defined and may be seen as a discriminant, meaning a measure
of bad reduction. An example of this principle was studied by the first author in [Eri16], and
applied in the study of Quillen metrics on degenerating Riemann surfaces [Eri12]. This was a
source of inspiration for the present work.

In section 4, we turn our attention to a particular combination of Hodge type bundles. For
a smooth family f : X → S one can consider the vector bundles Rqf∗Ω

p
X/S coming from the

Hodge filtration on relative de Rham cohomology. Taking weighted determinants of these vector
bundles, one introduces the BCOV line bundle (named after Bershadsky–Cecotti–Ooguri–Vafa
[BCOV94])

λBCOV =

n⊗
p=0

λ(Ωp
X/S)(−1)pp =

n⊗
p,q=0

det
(
Rqf∗Ω

p
X/S

)(−1)p+qp
.

Following Fang–Lu–Yoshikawa [FLY08], after a suitable re-scaling of the Quillen metric on λBCOV,
one defines the BCOV metric. For a family of Calabi–Yau varieties, this is independent of the
initially chosen Kähler metric, and its curvature is given by the modular Weil–Petersson form.
Therefore it is an intrinsic invariant of the family. As loc. cit. illustrates, for applications to
mirror symmetry in physics, it is important to determine the singularities of the BCOV metric
under degeneration. Hence, let us now assume that f : X → S is only generically smooth. The
line bundle λBCOV (initially defined on the smooth locus) has a natural extension to S, called the
Kähler extension, which we denote by λ̃BCOV. Then, the BCOV metric on λBCOV can be seen as
a singular metric on λ̃BCOV. The last statement of this introduction summarizes our results on
the singularities of the BCOV metric on λ̃BCOV.

Theorem C. Suppose that KX is trivial. Let η be a local holomorphic frame of λ̃BCOV. Then,

(i) the asymptotic expansion of the BCOV metric is

− log ||η||2
BCOV

= αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+O(1) as s→ 0.

Here

αBCOV = −9n2 + 11n+ 2

24
(χ(X∞)− χ(X0))+

α

12
χ(X∞)

and α, β are as in Theorem A. In particular, αBCOV is expressed in terms of vanishing cycles
and the topological Euler characteristic of a general fiber.

(ii) if the monodromy action on Hn
lim is unipotent (e.g. if f is semi-stable), then αBCOV further

simplifies to

αBCOV = −9n2 + 11n+ 2

24
(χ(X∞)− χ(X0)).

(iii) if f has only isolated ordinary quadratic singularities and n > 2, then

αBCOV = (−1)n+1 9n2 + 11n+ 2

24
#sing(X0),

so that

− log ||η||2
BCOV

= (−1)n+1 9n2 + 11n+ 2

24
#sing(X0) log |s|2 +O(1).
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Such families with trivial canonical bundle are commonly known as Kulikov families, named
after work of Kulikov on semi-stable degenerations of K3 surfaces [Kul77]. Examples in other
dimensions are known to exist [KN94, Lee10]. Another situation of Kulikov family is when f has
relative dimension n > 2 and presents only isolated singularities so that the Kulikov assumption
in the third point of Theorem 1 is automatic. In fact, we provide a general closed formula for the
logarithmic divergence, without any assumption on KX . In any event, Theorem 1 describes the
necessary correction to the BCOV metric on λ̃BCOV in order to obtain a Mumford good hermitian
metric.

The expression of αBCOV in iii for ordinary quadratic singularities was first observed by
Yoshikawa (private communication with the authors). Our approach is based on independent
ideas, relying on the general expression i and the fact that α = β = 0 for these types of singu-
larities.

2. Degeneration of L2-metrics on the Hodge bundle

2.1 Background on the Hodge bundle for Calabi–Yau and Kulikov families

Let f : X → S be a proper flat morphism with connected fibers of dimension n, from a complex
manifold X to a smooth complex curve S. We will refer to such a map as a family. Assume that f
is generically smooth (or submersive) with respect to the Zariski topology. The relative cotangent
sheaf ΩX/S (or sheaf of relative Kähler differentials) then fits into a short exact sequence

0→ f∗ΩS
df t→ ΩX → ΩX/S → 0. (2)

The exactness on the left is guaranteed by the generic smoothness assumption. The relative
canonical bundle is defined to be

KX/S := KX ⊗ f∗K−1
S .

It coincides with ΛnΩX/S at the points where f is submersive.

Assume now that the smooth fibers of f have trivial canonical bundle. Then the direct image
sheaf f∗(KX/S), the Hodge bundle, is a torsion-free sheaf on a smooth curve, and hence locally
free. Moreover, on a Zariski dense open subset of S it has rank 1. The evaluation map of line
bundles

ev : f∗f∗(KX/S)→ KX/S (3)

is an isomorphism over smooth fibers, by base change, and injective. We denote by B its zero
divisor. By construction, B is a divisor supported in the the singular fibers of f and depends
on the model X. The injectivity of the evaluation map implies that B is effective. With this
notations, we have the relation

KX/S = f∗f∗(KX/S)⊗OX(B). (4)

We observe that the (local) relative canonical divisor B cannot contain any full fiber of f . For
this, let s be a local parameter on the curve S centred at a point 0. Let η be a local section of
f∗(KX) on an open set U of S, not divisible by s in f∗(KX). If the zero divisor B of ev contained
the whole fiber X0, then ev f∗η

s would be a form in KX(f−1(U)). But it is not of the form ev f∗µ
for some µ in f∗(KX)(U), hence contradicting the surjectivity of ev on the open tube (f−1U).

In the case when B is trivial, we call f : X → S a Kulikov family. Kulikov models are in general
difficult to describe. For families of K3 surfaces, Kulikov [Kul77] established the existence of such
models in the semi-stable case. In arbitrary dimension, examples are obtained by smoothing of
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suitable normal crossings varieties [KN94, Lee10]. Finally, we remark that if the special fiber has
at least two components, their intersection is part of the f -singular locus Z and any component
therein is of dimension at least n + 1 − 2 = n − 1. Hence if Z is of dimension at most n − 2,
then any singular fiber X0 is necessarily irreducible and reduced. We infer that B is empty in
this case. A particular instance of this fact is given by morphisms of relative dimension n > 2
and isolated singularities.

2.2 Log-canonical threshold, degeneracy index and the singularities of the L2-metric

Let f : X → S be a generically smooth family between complex manifolds, of relative dimension
n, and where S is a curve. Assume that the smooth fibers of f have a trivial canonical bundle,
so that f∗(KX/S) is a line bundle. On the smooth locus in S, this line bundle affords an intrinsic
L2, or Hodge, metric. If η is a nonvanishing n-form on a smooth fiber Xs, then

‖η‖2L2,s =
1

(2π)n

∣∣∣∣∫
Xs

η ∧ η
∣∣∣∣ .

If η extends to a trivialization of f∗(KX/S) in a neighborhood of s, then ‖η‖L2,s changes smoothly
with s. The question is to analyze the behavior of the L2-metric close to the singular locus of f
in S. For the sake of simplicity, in the sequel we assume that S is a disk centered at 0 and there
is at most a singular fiber at 0.

The formation of f∗(KX/S) is invariant under blowups along regular centers in the special
fiber. Therefore, for the purpose of analyzing the L2-metric, we may assume (after a Hironaka
resolution) that the singular fiber of f : X → S decomposes into irreducible components ajEj ,
with Ej smooth, meeting with normal crossings

X0 =
∑

ajEj .

We write the zero divisor of the evaluation map (3) in the form

B =
∑

(bj − 1)Ej .

Following Kollár [Kol97, Sec. 8, esp. Def. 8.1] (see also Berman [Ber16, Sec. 3.4, esp. Prop. 3.8]),
we define the log-canonical threshold of (X,−B,X0) along X0 by

cX0(X,−B,X0) = min
j

(
bj
aj

)
.

As in loc. cit., we will allow the abuse of notation cX0(f) for cX0(X,−B,X0). In addition, we
define

b(X,X0) := max

{
]J | ∩JEj 6= ∅∀j ∈ J,

bj
aj

= cX0(X,−B,X0)

}
.

Notice that b(X,X0)− 1 is the degeneracy index δ(X,X0) defined by Halle–Nicaise [HN12, Def.
6.2.1].

The log-canonical threshold and the degeneracy index govern the asymptotic of the L2-metric
close to the singular locus.

Proposition 2.1. Let η be a holomorphic frame of f∗KX/S . Then the L2-metric on f∗KX/S

degenerates as

− log ||η||2L2 = (1− cX0(f)) log |s|2 − (b(X,X0)− 1) log | log |s|2|+O(1) as s→ 0,
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where s is the local coordinate on S.

Proof. The isomorphism KX/S = det ΩX/S = det ΩX
f∗ΩS

on the smooth part of f yields a descrip-
tion of the map

f∗KS ⊗KX/S → KX

f∗ds⊗ [u] 7→ f∗ds ∧ u.

Rewrite the relation (4) as

f∗KS ⊗ f∗f∗KX/S = OX(−B)⊗KX . (5)

Choose a point x0 ∈ X0. Denote by J(x0) := {j, x0 ∈ Ej}. Choose local coordinates (z1, z2, · · · , zn+1)
on X centred at x0 such that for j ∈ J(x0), Ej is given by zj = 0 and the map f can be written,
locally around x0,

f : (z1, z2, · · · , zn+1) 7→ s =
∏

j∈J(x0)

z
aj
j .

The isomorphism (5) shows the existence of an open covering (Uα) of X by coordinate charts
and invertible holomorphic functions fα such that on Uα,

f∗ds ∧ ev(η) = fα
∏

j∈J(x0)

z
bj−1
j dz1 ∧ dz2 ∧ · · · ∧ dzn+1.

We choose a partition of the unity (φα) built from an open covering of X where the previous

simplifications hold. Choose a j0 ∈ J(x0) such that
bj0
aj0

= minJ(x0)
bj
aj

and note that

dz1 ∧ dz2 ∧ · · · ∧ dzn+1 = (−1)j0
zj0
aj0

f∗
ds

s
∧ dz1 ∧ dz2 ∧ · · · dzj0−1 ∧ dzj0+1 ∧ · · · ∧ dzn+1.

We introduce the change of variables zj = e
ρj
aj eiθj for j ∈ J(x0) and zk = rke

iθk for k ∈
{1, · · · , n+1}−J(x0). The set of integration is defined by |zi| 6 1 and

∏
j∈J(x0) z

aj
j = s, in other

words by ρj 6 0, 0 6 rk 6 1 and
∑

j∈J(x0) ajθj = arg(s) and
∑

j∈J(x0) ρj = log |s|.

||φαηs||2L2(Xs)
=
f?

(
φαf

∗(ids ∧ ds) ∧ in2
ev(η) ∧ ev(η)

)
ids ∧ ds

=
1

(2π)n|s|2

∫
Xs

φα
|fα(z)|2

|aj0 |2
∏

j∈J(x0)

|zj |2bj−2|zj0 |2|dz1|2|dz2|2 · · · |dzj0−1|2|dzj0+1|2 · · · |dzn+1|2

=
1

(2π)n|s|2

∫
Xs

φα
|fα(z)|2∏
j∈J(x0) |aj |2

∏
j∈J(x0)

e
2bj
aj
ρj

∏
j∈J(x0)−j0

dθjdρj
∏

k∈{1,··· ,n+1}−J(x0)

rkdrkdθk

≡ C|s|
2(
bj0
aj0
−1)
∫
∑
ρj=log |s|

φα|fα(z)|2
∏

j∈J(x0)

e

(
2bj
aj
−

2bj0
aj0

)
ρj
dρ1dρ2 · · · dρj0−1dρj0+1 · · · dρn+1.

Adding those estimates for the different α and neglecting bounded terms, we derive the desired
estimate

− log ||ηs||2L2 = (1−min
j

(
bj
aj

)
) log |s|2 − ]

{
j 6= j0/x0 ∈ Ej

bj
aj

=
bj0
aj0

}
log | log |s|2|+O(1).
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Remark 2.2. Consider now the particular case when X → S is semi-stable. Then all the ai = 1
and since the divisor B does not contain a whole fiber (see section 2.1), there is at least one

bi = 1. We conclude that cX0(f) = minj(
bj
aj

) = 1. If the family is moreover a Kulikov model, then

all the bi = 1. In this case, it follows that b(X,X0) is simply the maximal number of intersecting
components in the special fiber.

2.3 The L2-metric and semi-stable reduction

Let us now examine the change of the L2-metric under semi-stable reduction. We consider a
semi-stable reduction diagram

Y
F //

g

��

X

f
��

T
ρ
// S

where g is a semi-stable family, ρ is the finite morphism t 7→ s = te and F a generically finite
morphism. From [MT09, lemmas 3.3 and 4.2], we know that (g∗(KY/T ), L2) isometrically em-
beds into (ρ∗f∗(KX/S), ρ∗L2). A local frame ξ for g∗(KY/T ) hence relates to a local frame η for
f∗(KX/S) through

ξ = taρ∗η

where a can be recovered by the formula

a = dimC

(
ρ∗f∗(KX/S)

g∗(KY/T )

)
0

.

From the previous proposition we get

Proposition 2.3. The asymptotic of the L2-metric on f∗(KX/S) is of the shape

− log ||η||2 = α log |s|2 − β log | log |s|2|+ C +O(
1

log |s|
)

where

α =
a

e
=

1

e
dimC

(
ρ∗f∗(KX/S)

g∗(KY/T )

)
0

and

β = b(X,X0)− 1 = b(Y, Y0)− 1.

Remark 2.4. The fact that the metric has the above shape, with α = 0 in the semi-stable case,
is already stated in [Yos10, Thm. 6.8].

2.4 The L2-metric via variation of Hodge structures

Let f : X → ∆ be a proper Kähler morphism with connected fibres of dimension n from
a complex manifold X to the complex unit disk ∆, which is a holomorphic submersion on
∆×. We suppose that the special fiber is a normal crossings divisor, and that the equation
for f is locally given by s = zn1

1 . . . znkk , where s is the standard parameter on ∆. Denote by
f× := f−1(∆×) → ∆× the smooth part of f . Let γ be the monodromy operator of the local
system Rnf×∗ C, and γ = γuγs = γsγu be its Jordan decomposition where γu is unipotent and γs
semi-simple.

The aim of this section is to prove the following statement.
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Proposition 2.5. With the previous notations, suppose furthermore that hn,0 = 1. Then,

(i) exp(2πiα) = exp(−2πicX0(f)) is the eigenvalue of γs acting on GrnF H
n
lim = FnHn

lim.

(ii) n+ β is the weight of the 1-dimensional space GrnF H
n
lim.

Remark 2.6. The result seems to be known, and is announced in [HN12, Thm. 6.2.2 (2)] and
detailed in [HN18, Thm. 3.3.3], and the authors inform us the methods amount to the usage of
Steenbrink’s constructions of the logarithmic relative de Rham complex. Our method of proof is
based on a (nowadays standard) combination of Deligne extensions of local systems and Schmid’s
construction of the limit mixed Hodge structure.

Proof. Denote by X∞ the differentiable manifold underlying a general fiber of f . We will use the
correspondence between an element Q in Hn(X∞,C) and the corresponding multi-valued flat
section Q of the local system Rnf×∗ C. Let ρ = exp(2πi−) : H→ ∆× be the universal covering of
the punctured unit disk, and for τ ∈ H set s = exp(2πiτ). Set Γ = N + S, where N = 1

2πi log γu
and S = 1

2πi log γs, where for S, we have fixed the branch of the logarithm having imaginary part
in [0, 2π). Hence S has eigenvalues in [0, 1).

Let f1, . . . , fN be a basis of Hn(X∞,C). The corresponding multi-valued flat basis satisfies,
when made univalued on H, fi(τ + 1) = γfi(τ). If we define the twisted sections

ei := s−Γfi = exp(−2πiτΓ)fi

then we have ei(τ + 1) = ei(τ). The Deligne canonical extension Hn of Rnf×∗ C ⊗ O∆× , also
called the upper extension due to the choice of the logarithm, is defined to be the locally free
O∆ module generated by the ei’s. The Gauss–Manin connection on Rnf×∗ C⊗O∆× extends to a
regular singular connection on Hn. Its residue is readily computed in the basis ei, and seen to
coincide with −Γ.

We denote by Hn
lim the limit mixed Hodge structure on Hn(X∞,C), the cohomology of a gen-

eral fiber. By construction, Hn
lim is equipped with a decreasing filtration F pHn(X∞,C), the Hodge

filtration, and an increasing filtration WkH
n(X∞,C), the weight filtration built from the nilpo-

tent operator N . Moreover, Hn
lim may be identified with the fiber of Hn at 0, with monodromy

action given in terms of the residue exp(2πiΓ) of the Gauss–Manin connection.

By the nilpotent orbit theorem [Sch73], and as shown by Kawamata [Kaw82, Lemma 1],

f∗(KX/∆) = ι∗f
×
∗ (KX×/∆×) ∩Hn

where ι : ∆× → ∆ is the inclusion. We can hence write a local frame η for f∗(KX/∆) as

η =
∑
i

ηi(s)ei(s) =
∑
i

ηi(s) exp(−2πiτΓ)fi

where the ηi are local holomorphic functions. In this case, the corresponding limit of the twisted
period is Q∞ :=

∑
i ηi(0)ei ∈ FnHn

lim.

Let ` be the integer such that Q∞ belongs to W` but not to W`−1. By construction of
the weight filtration, the nilpotent operator N maps W` to W`−2. The semi-simple part γs
(and hence S) acts on Hn

lim as a mixed Hodge structure operator [Ste77, Theorem 2.13]. Write
ωj := exp(2πiλj) where λj is a non-increasing sequence of rational numbers in [0, 1), for the
sequence of eigenvalues of γs acting on W`/W`−1. Choose a basis (ej) of Hn

lim adapted to the
filtration W . Hence, Q∞ can be decomposed as

Q∞ = Q+ + Q′

9
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where Q+ :=
∑

j qjej , Sej = λjej + e′j where Q′ and the e′j belong to W`−1. As γs respects the

Hodge filtration on Hn
lim, and as hn,0 = 1, Fnlim is an eigenspace for S, with eigenvalue, say λ.

From the freeness of (ej), it follows that for each j, either qj = 0 or λj = λ, so that

S(Q+) = λ(Q+) + Q′′

where Q′′ ∈W`−1.

We denote by I the intersection form on Rnf×∗ C and by C the Weil operator so that I(Cv, v)
is positive. As the coefficients ηi are holomorphic∫

Xs

in
2
η(s) ∧ η(s) = I(Cη(s), η(s)) = I

(
Ce−2πiτΓQ∞(s), e−2πiτΓQ∞(s)

)
(1 +O(|s|)).

By the SL(2)-orbit theorem [Sch73, Theorem 6.6], that gives the asymptotic of the orbit of
elements in W•, the leading contribution comes from elements in W` not in W`−1 :

I
(
Ce−2πiτΓQ∞(s), e−2πiτΓQ∞(s)

)
= I

(
Ce−2πiτΓQ+(s), e−2πiτΓQ+(s)

)
(1 + 0(Im(τ)−1))

= |s|−2λI
(
Ce−2πiτNQ+, e−2πiτNQ+

)
(1 + 0(Im(τ)−1)).

Now, for the principal nilpotent orbit η+(s) := e−2πiτNQ+, the quantity

I(Cη+(s), η+(s)) = I(Ce−2πiτNQ+, e−2πiτNQ+) = I(Ce4πIm(τ)NQ+, Q+)

is a polynomial P (Im(τ)) of degree µ in Im(τ), whose leading term is (4π)µIm(τ)µ

µ! I(CNµQ+, Q+)
(compare with [Wan97, section 1]). The degree µ is the order of the nilpotent operator N acting
on Q+. Hence, by the polarized condition [CK82, 2.10)], and because Q∞ and Q+ differ from
an element in W`−1, it is exactly the order of the nilpotent monodromy operator N acting on
the limit twisted period Q∞.

The asymptotic of the L2 norm is therefore

− log ||η(s)||2L2 ' λ log |s|2 − µ log | log |s|2|.

Remark 2.7. In the unipotent case, and with the notations as in the proof of the proposition,
from ||η(s)||2L2 = P (− 1

2π log |s|) + ρ1(τ) we infer that the curvature of (π∗(KX/S), L2) (i.e. the
Weil-Petersson metric) has Poincaré growth

ddc
(
− log ||η(τ)||2L2

)
=

(
(P ′)2 − PP ′′ + ρ2(z)

P 2 + ρ3(τ)

)
idτ ∧ dτ '

(
µ

(Imτ)2
+ ρ4(τ)

)
idτ ∧ dτ,

where the ρ’s are functions which, together with all their derivatives, exponentially decrease to
zero as Im(τ) tends to +∞, with rate of decay independent of Re(τ).

Recall that a variety Z has canonical singularities if Z is normal and the canonical divisor
KZ is Q-Cartier, and if for any resolution of singularities µ : Z ′ → Z, KZ′ − µ∗KZ is effective.
It follows that, if KZ is Cartier, then µ∗KZ′ ' KZ . If g : Z → ∆ is such that Z0 has canonical
singularities, then so does Z [Kaw99]. Hence if µ : X → Z is any desingularization, and f = gµ
with KZ locally free, then f∗KX/∆ = g∗KZ/∆.

Proposition 2.8. Let f : X → ∆ be as in the beginning of this section, and suppose that
f× : X× → ∆× admits a model g : Z → ∆, such that Z is normal with KZ locally free, and that
Z0 only has canonical singularities. Then α = β = 0.

10
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Proof. Let µ : X ′ → Z be a normal crossings resolution, and X ′0 =
∑
aiEi, where E0 = Z̃0

is the strict transform of Z0. Let η ∈ KZ/∆ correspond to an element trivializing g∗KZ/∆ '
g∗µ∗KX′/∆. The divisor of µ∗η is then the divisor of the evaluation map for X ′, we denote it
by B =

∑
(bi − 1)Ei. Since Z0 is normal and connected, it is integral and since the evaluation

map g∗g∗KZ/∆ → KZ/∆ cannot contain an entire fiber it must be an isomorphism. It follows
that b0 = 1. By [Ste88, Thm. 2], if Z0 has rational singularities, for any exceptional Ei we
have bi − 1 > ai. In characteristic zero, when the canonical sheaf is locally free, rational and
canonical singularities are equivalent concepts, and since by adjunction KZ(Z0)|Z0 ' KZ0 is
locally free, we infer that for any exceptional Ei, bi/ai > 1 + 1/ai > 1. Moreover, for the non-

exceptional component Z̃0 the ratio of b0/a0 is 1, so it follows immediately from Proposition 2.1
that α = β = 0.

Recall that (X,x) → (∆, 0), for x ∈ X, is a ordinary quadratic singularity if locally on X
the map can be written as a germ of a holomorphic function f : (Cn, 0) → (C, 0), so that 0
is an isolated singularity of the level set f = 0, and the Hessian of f at 0 is invertible. Such
singularities can all be diagonalized to the form

∑
z2
i = 0. When n > 2, they are examples of

canonical singularities, and KX ' OX because, the singular fiber being reduced and irreducible,
the relative canonical divisor is zero, as seen at the end of Section 2.1. We hence obtain

Corollary 2.9. Suppose that n > 2, f : X → ∆ has only ordinary quadratic singularities in
X0. Then α = β = 0.

Remark 2.10. Proposition 2.8 and Corollary 2.9 implies that ifX0 only has canonical singularities,
or if X is smooth and X0 only has isolated ordinary quadratic singularities, then the L2 metric
is continuous.

3. Degeneration of the Quillen metric

3.1 Background on Quillen metrics

3.1.1 Grothendieck–Riemann–Roch in codimension 1 Let f : X → S be a smooth projective
morphism of complex algebraic manifolds. We denote by A∗(S) Fulton’s intersection theoretic
Chow groups [Ful98]. Let V be an algebraic vector bundle on X. The Grothendieck–Riemann–
Roch theorem with values in Chow groups is an identity of characteristic classes

ch(Rf∗V ) = f∗(ch(V ) Td(TX/S)) ∈ A∗(S)Q.

The relation is also valid in de Rham cohomology. In this section we focus on the ”codimension
one part” of the Grothendieck–Riemann–Roch formula. With values in Chow groups, this is
written

c1(Rf∗V ) = f∗(ch(V ) Td(TX/S))(1).

The first Chern class of Rf∗V equals the first Chern class of the determinant of the cohomology
detRf∗V , also denoted λ(V ). It can be defined by the theory of Knudsen-Mumford [KM76].
Contrary to the individual relative cohomology groups, it is compatible with base change.

3.1.2 Quillen metrics and the curvature formula Suppose for simplicity that X admits a
Kähler metric, with Kähler form ω, that we fix once and for all. If V is equipped with a smooth
Hermitian metric h and TX/S with the restriction of the Kähler metric, then the Grothendieck–
Riemann–Roch formula in codimension 1 can be lifted to the level of differential forms. This is
achieved by means of Chern-Weil theory and the theory of the Quillen metric.

11
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Let us briefly recall the definition of the Quillen metric. Let s ∈S, and consider the fiber of
λ(V ) at s:

λ(V )s =
⊗
p

detHp(Xs, V |Xs)(−1)p .

By Hodge theory, and depending on the Hermitian metric h and the Kähler form ω restricted to
Xs, the cohomology groups Hp(Xs, V |Xs) carry L2 type metrics (using the Dolbeault resolution
and harmonic representatives). Hence, λ(V )s has a induced metric that we still call L2-metric,
and that we write hL2,s. This family of metrics is in general not smooth in s, due to possible jumps
in the dimensions of the cohomology. Let T (s) be the holomorphic analytic torsion attached to
(V, h) and (TX/S , ω):

T (s) =
n∑
p=0

(−1)pp log det ∆0,p
s .

Here, we denoted by ∆0,p
s the ∂-laplacian acting on A0,p(V |Xs) ((0, p) forms on Xs with values in

V |Xs), and depending on the fixed Hermitian data. Also, det ∆0,p
s denotes the zeta regularized

determinant of ∆0,p
s (restricting to strictly positive eigenvalues). The Quillen metric on λ(V )s is

defined by

hQ,s = (expT (s))hL2,s.

This family of metrics is smooth in s. The resulting smooth metric on λ(V ) is called the Quillen
metric, and we write hQ to refer to it. Observe that while the L2-metric is defined using only
harmonic forms (hence 0 eigenforms for the Laplacians), the Quillen metric involves the whole
spectrum of the Dolbeault Laplacians.

The curvature theorem of Bismut–Gillet–Soulé [BGS88a, BGS88b, BGS88c] is the equality
of Chern–Weil differential forms on S

c1(λ(V ), hQ) = f∗(ch(V, h) Td(TX/S , ω))(1).

By taking cohomology classes, one re-obtains the Grothendieck–Riemann–Roch formula in de
Rham cohomology.

3.1.3 The Quillen metric close to singular fibers As a matter of motivation, we now review
Yoshikawa’s[Yos07] results on the degeneration of the Quillen metric in a slightly simplified form.

Let f : X → S be a generically smooth, flat and projective morphism of complex algebraic
manifolds. Therefore, with respect to the previous setting, we allow for singular fibers. We assume
that S is one-dimensional and f has a unique singular fiber. Recall the Gauss map from the
regular locus of f to the space P(TX) of rank one quotients of TX defined by

µ : X − Σf −→ P(TX)
x 7−→ TxX/ ker dfx.

It is described in coordinates, through the isomorphism of P(TX) with the space P (ΩX ⊗TS) =
P(TX ⊗ ΩS) of lines in ΩX ⊗ TS, by

ν : X − Σf −→ P (ΩX ⊗ TS)

x 7−→
[∑n

i=0
∂s◦f
∂zi

(x)dzi ⊗ ∂
∂s

]
where (zi) is a local coordinate system on X and s is a local coordinate on S. Consider the

ideal sheaf IΣf :=
(
∂s◦f
∂zi

(x)
)

on X locally generated by the coefficients of df . We resolve the

12
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singularities of µ and ν seen as a meromorphic map on X by blowing up the ideal IΣf . Let

X̃
q→ X be any desingularization of the blowup of this ideal, and E its exceptional divisor. We

have a diagram

P(TX)

p

��

X̃
q
//

µ̃
<<

X

µ

OO
P (ΩX ⊗ TS)

p

��

X̃
q

//

ν̃
99

X

ν

OO
[τi] = [∂s◦f∂zi

(x)]
_
p

��
x̃ � q

//
3

ν̃
99

x
_

ν

OO

By construction, we see that ν̃∗OTX⊗f∗ΩS (1) = O
X̃

(−E). Together with the isomorphism
P(TX)→ P(TX ⊗ ΩS), this gives for the resolution µ̃ of µ

µ̃∗OTX(1) = q∗f∗TS ⊗O
X̃

(−E). (6)

The tautological exact sequence on P(TX) hence pulls back on X̃ to

0→ µ̃∗U −→ q∗TX
q∗df−→ q∗f∗TS ⊗O

X̃
(−E) −→ 0

where U denotes the tautological hyperplane subbundle. With these preliminaries at hand, we
can now state:

Theorem 3.1 (Yoshikawa [Yos07]). Fix a Kähler metric hX on X. Let (V, h) be a holomorphic
Hermitian vector bundle on X. On the smooth locus, equip the determinant line bundle λ(V )
with the corresponding Quillen metric.

(i) Let σ be a local holomorphic frame for λ(V ) near the singular point s = 0. Then

log ||σ||2
Q

=

(∫
E

Td µ̃∗U
TdO

X̃
(−E)− 1

c1(O
X̃

(−E))
q∗ ch(V )

)
log |s|2 +R(s) as s→ 0,

where R(s) is a continuous function of s.

(ii) The curvature current is given, in a neighborhood of s = 0, by

c1(λ(V ), hQ) =f∗(ch(V, h) Td(TX/S , hX))(1,1)

−
(∫

E
Td µ̃∗U

TdO
X̃

(−E)− 1

c1(O
X̃

(−E))
q∗ ch(V )

)
δ0,

where the first term on the right of the equality is Lploc(S) for some p > 1, and δ0 is the
Dirac current at 0.

(iii) Denote by κ minus the coefficient of the logarithmic singularity. Then the Quillen metric
uniquely extends to a good Hermitian metric on the Q-line bundle λ(V )⊗O(−κ · [0]).

Remark 3.2. The third claim in the theorem is only implicitly stated in [Yos07]. In fact, it is
proven that the potential of the curvature current of the Hermitian metric in (iii) is of the form
ϕ(t) + φ(t). Here ϕ is smooth and φ is a finite sum of functions of the form |s|2r(log |s|)kg(t),
where r ∈ Q∩ (0, 1], k > 0 is an integer and g is smooth. This function and its derivatives satisfy
the estimates in the definition of a good metric in the sense of Mumford [Mum77].

3.2 The Nash blowup

We proceed to develop an intersection theoretic approach to Yoshikawa’s theorem. Instead of the
theory of the Gauss map and the resolution of the Jacobian ideal, we introduce the Grassmannian
scheme and the Nash blowup. Throughout we use the intersection theory of Fulton [Ful98]. The
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advantage of our constructions is that they naturally exhibit a functorial behavior and allows for
a better understanding of the topological term in Theorem 3.1 (cf. Definition 3.6). We recover
and expand concrete computations of Yoshikawa.

Let us say a word about the category where we place our arguments. We work in the category
of schemes over C, mostly to be in conformity with the literature. However, the relevant argu-
ments should be applicable in the analytic category, using relative singular cohomology instead
of bivariant Chow groups.

3.2.1 On the Jacobian ideal Let f : X → S be a projective, flat, generically smooth mor-
phism of integral Noetherian schemes over C, of relative dimension n.

Define the Jacobian ideal Jac(X/S) as the annihilator of Λn+1ΩX/S . Assume from now on
that X is locally a hypersurface in a S-smooth scheme Y of dimension n+ 1. This is the case of
hypersurfaces in PNS , but also the case when X and S are smooth over C and S is one-dimensional
(consider the graph of the morphism). Locally on X, we have an exact sequence

0→ IX/I2
X

d→ ΩY/S |X → ΩX/S → 0 (7)

where the ideal IX of X in Y is generated by an element F . If one chooses (étale) local coordinates
y0, · · · , yn on Y then Jac(X/S) is the OX -ideal generated by ∂F

∂yj
, j = 0, . . . , n. Observe that this

is, by definition, the first Fitting ideal of ΩX/S . This local description shows that the Jacobian
ideal is indeed the ideal defining the singular locus of the structure morphism f . For example, if
f : H → P̌NC is the tautological family of hyperplane sections in some smooth complex projective
variety X, then the Jacobian ideal just corresponds to the scheme parametrizing singular sections.

3.2.2 On the Nash blowup We still work locally on X. Locally, we denote by Y a smooth S-
scheme containing X as a hypersurface. Let Grn(ΩY/S) be the Grassmannian of rank n-quotients
of ΩY/S and let X 99K Grn ΩY/S be the rational map defined by x 7→ (x,ΩX/S,x), called the Gauss

map. The schematic closure X̂ of the image of this morphism is by definition the Nash blowup of
ΩX/S and has the universal property that an S-morphism t : T → X̂, such that no component
of T has image contained in V (Jac(X/S)), corresponds to a surjection ΩXT /T → E , where E is

locally free of rank n on XT . Denote by n̂ : X̂ → X the obvious map. As Grn(ΩX/S), understood
as a Quot-scheme, is a closed subscheme of Grn(ΩY/S), an equivalent definition, independent of
the choice of the ambient space Y , is given by the closure of the X/S-smooth locus in Grn(ΩX/S).
These constructions are summarized in the following diagram:

X̂ �
�

//

n̂
��

Grn(ΩX/S) �
�

//

vv

Grn(ΩY/S)

��

X

((

Gauss

22

� � // Y

ttS

This gives another interpretation of the Gauss map, considered by Yoshikawa. Actually, sup-
pose that f : X → S is a morphism of complex analytic manifolds, with S of dimension
one. Consider then the graph Γf : X → S × X. Then the projection on S from Y = S × X
is smooth, and the map Xsm ⊆ Grn ΩX/S → Grn ΩX from the f -smooth locus is given by

14
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x 7→
[
ΩX×S/S,x = ΩX,x � ΩX/S,x

]
. This is simply a dual version of the usual Gauss map.

3.2.3 Comparison with the resolution of the Jacobian ideal The Grassmannian construction,
namely the Nash blowup, and the blowup of X along the Jacobian ideal, actually coincide. This
is useful in that both properties of blowups (structure of the exceptional divisor) and Grass-
mannians (existence of a universal locally free quotient and functoriality) can be simultaneously
used.

Lemma 3.3 (see also [Pie79]). If X is locally a hypersurface in an S-smooth scheme, then the
blowup of V (Jac(X/S)) in X is the Nash blowup of X.

Proof. Denote by b : X ′ → X the blow up of X along Z := V (Jac(X/S)) and n̂ : X̂ → X
the Nash blowup of ΩX/S . To construct a morphism from X ′ to X̂, we have to construct a
rank n locally free quotient of ΩX′×SX/X′ = b∗ΩX/S . It is enough to show that the Gauss map
locally extends to X ′, since local extensions are separated hence unique. Locally, the ideal IX
of X in some smooth S-scheme Y is defined by an equation F in OY . Locally on X ′, the ideal
b∗Jac(X/S) is a free ideal OX′(−E) generated by an element u which is not a zero divisor. The
differential b∗dF can then be written uV for a uniquely determined nowhere vanishing section
V in b∗ΩY/S|X . From the sequence (7) and the equality V = “ b

∗dF
u ”, we infer that

0→ b∗(IX/I2
X)⊗OX′(E)

d⊗1−→ b∗ΩY/S |X → b∗ΩY/S |X/V (8)

gives a locally well-defined locally free quotient b∗ΩX/S → b∗ΩY/S |X/V .

To construct a morphism from X̂ to X ′, by the universal property of blowing-up, we have to
show that the Jacobian ideal Jac(X/S) becomes locally principal on X̂. Consider the following
diagram on X̂, where the bottom line comes from the tautological sequence on Grn(ΩY/S), the
middle line comes from (7), M is the kernel of the rank n quotient n̂∗ΩX/S → Q, and C the fiber
product of n̂∗ΩY/S and M over n̂∗ΩX/S :

0

��

n̂∗IX/I2
X

// C //

��

M

��

// 0

n̂∗IX/I2
X

//

��

n̂∗ΩY/S |X
// n̂∗ΩX/S

//

��

0

0 // N // n̂∗ΩY/S |X
// Q //

��

0

0.

We infer an induced map C → N . As C is a fiber-product, a diagram chasing provides an inverse
map N → C, so that C is necessarily an invertible sheaf. The sheaf Q being locally free, the
Fitting ideal of n̂∗ΩX/S is that of M , that is locally generated by the coefficient of the map
n̂∗IX/I2

X → C between two invertible sheaves. By functoriality of Fitting ideals, the pull back
by n̂ of the Jacobian ideal is locally principal. The two constructed maps are inverse over X to
each other, so that we can identify b : X ′ → X and n̂ : X̂ → X.

15



D. Eriksson and al.

Thanks to the lemma, on the blow-up X ′ of X along the Jacobian ideal there is a universal
locally free quotient b∗ΩX/S → Q (coming from the Grassmannian interpretation). We now
consider its kernel. Let E be the exceptional divisor of the blowup b : X ′ → X, giving rise to the
Cartesian diagram

E

b
��

i // X ′

b
��

Z
iZ // X.

In the following lemma Lif∗ is the i-th left derived inverse image under a morphism f . Recall
that it is the sheaf defined by taking the i-th cohomology of the pull-back by f of a local free
resolution. Note that the sheaf ΩX/S admits local free resolutions by the local hypersurface
hypothesis. The lemma is to be compared with the dual of (6) restricted to E.

Lemma 3.4. Let LE be the kernel of the universal locally free quotient b∗ΩX/S → Q. Then LE
is a locally free sheaf of rank 1 on E. There is a canonical isomorphism

LE ' b∗L1i∗ZΩX/S ⊗OX′(E)|E .

Furthermore, if f : X → S is a morphism of smooth algebraic varieties, then LE ' O(E)|E .

Proof. That LE is supported on E is immediate by construction. From the proof of the previous
lemma, locally on X, there is a diagram of exact sequences

0

��

0

��

0

��

0 // K α //

��

(b∗IX/I2
X)⊗OX′(E) //

d⊗1

��

LE

��

// 0

b∗IX/I2
X

d // b∗(ΩY/S|X) //

��

b∗ΩX/S
//

��

0

Q

��

Q

��

0 0.

Because the differential d : IX/I2
X → ΩY/S vanishes on Z the induced map b∗IX/I2

X → b∗ΩY/S

vanishes on E as well. Moreover the morphism d⊗ 1 remains injective after restricting to E. It
follows that α|E vanishes identically, and hence there is an isomorphism

LE ' (b∗IX/I2
X)|E ⊗OX′(E)|E . (9)

This shows that LE is locally free of rank 1. Now we claim that there is an isomorphism

(b∗IX/I2
X)|E ' b∗L1i∗ZΩX/S . (10)

First of all, it is clear that (b∗IX/I2
X)|E = b∗i∗Z(IX/I2

X). Second, from the long exact sequence
associated to i∗Z applied to (7) we derive

L1i∗ZΩX/S ' i∗Z(IX/I2
X).

The claim follows. Hence (9)–(10) give rise to an isomorphism as in the statement. One can check
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that it does not depend on the (local) choice of Y , so that it is a canonical isomorphism and
globalizes. This completes the proof of the first claim.

For the second assertion, it is enough to specialize the previous argument with Y = X × S.
In this case, it is immediate that

IX/I2
X = f∗ΩS .

Since f is generically smooth and S is one-dimensional, the singular locus of f in S is zero
dimensional. We thus see that

L1i∗ZΩX/S ' i∗Z(IX/I2
X) = (f ◦ iZ)∗(ΩS)

is a trivial line bundle.

3.3 The Yoshikawa class

3.3.1 Definition and properties of the Yoshikawa class The previous notations and assump-
tions regarding the morphism f : X → S are still in force. In particular,X is locally a hypersurface
in a smooth S-scheme, Z denotes the singular locus, the Nash blowup along Z is b : X ′ → X and
E is the exceptional divisor. We now digress on localized characteristic classes in the theory of
Chow groups. This formalism, combined with the previous observations on Nash blowups, reveals
useful to arrive to a conceptual explanation of the topological term in Yoshikawa’s asymptotics.
To be consistent with the literature on intersection theory and Chow groups (cf. Fulton’s [Ful98],
especially the relative setting of Chapter 20), from now we assume that S is regular, for instance
SpecR with R a discrete valuation ring. Also, we will make extensive use of the theory of localized
Chern classes. We refer the reader to [Ful98, Chap. 18.1] for the main construction of localized
Chern classes of generically acyclic complexes, using the Grassmannian graph construction. We
also cite [Abb00, Sec. 3] and [KS04, Sec. 2], that recast the main properties of the localized Chern
classes of generically acyclic complexes, in the form that will be used here.

Recall that a bivariant class c ∈ A(X → Y ) is a rule that assigns, to every Y -scheme, say Y ′,
a homomorphism

c : A∗(Y
′) −→ A∗(X

′),

where X ′ is the base change of X to Y ′. This homomorphism is subject to several compatibilities
(proper push-forward, flat pull-back and intersection product). We refer to [Ful98, Chap. 17] for
the precise formulation of these.

Suppose we are given a multiplicative characteristic class T , corresponding to a power series
T (x) ∈ 1+xQ[x]. Thus, to a vector bundle E on X it associates homomorphisms on Chow groups
T (E) : A∗(X)Q → A∗(X)Q, and to a bounded complex of vector bundles E• it associates the

homomorphism
∏
T (E i)(−1)i , compatible with pull-backs. Let b : X ′ → X be the Nash blowup

of the morphism f : X → S, with exceptional divisor E. On X ′ there is the universal locally free
quotient b∗ΩX/S → Q. Because X is locally an hypersurface in a smooth S-scheme, this is quasi-
isomorphic to a three term complex of vector bundles. It is acyclic off the exceptional divisor
E. Thus, following [Ful98, Chap. 18.1], there are localized bivariant Chern classes cEi (b∗ΩX/S →
Q) ∈ A(E → X ′), i > 0. Consequently, the class T (b∗ΩX/S → Q)− 1 = T (b∗ΩX/S)T (Q)−1 − 1
admits a refinement as a bivariant Chern class. Indeed, T itself can be expressed as a power
series in the Chern classes ci, and the refinement to a bivariant class is obtained by replacing ci
by cEi in this power series representation. This refinement shall be denoted

TE(b∗ΩX/S → Q) ∈ A(E → X ′)Q,

17
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or simply TE to simplify the notations. If [X ′] ∈ A∗(X ′) is the cycle class of X ′, then TE sends
[X ′] into A(E)Q. The usual notation for this class is TE ∩ [X ′]. We will later be interested in the
top degree terms of such classes.

The following lemma computes TE ∩ [X ′] in terms of characteristic classes depending only
on O(E).

Lemma 3.5. Assume that the base S is one-dimensional. Then:

(i) as bivariant classes ci(L
1i∗ZΩX/S) vanishes for i > 1. In particular, we have an equality of

bivariant classes

c1(LE) = c1(O(E)|E).

(ii) The bivariant class TE satisfies the formula

TE ∩ [X ′] =

(
T (O(E)|E)− 1

c1(O(E)|E)
∩ [E]

)
in A∗(E)Q.

(iii) TE also satisfies the formula

T (Q|E)
(
TE ∩ [X ′]

)
= T

(
Li∗b∗ΩX/S

)(1− T (O(E)|E)−1

c1(O(E)|E)

)
∩ [E].

Proof. For the first item, under our running assumptions on X (locally hypersurface hypothesis,
f generically smooth and S one-dimensional and regular) the proof of [KS04, Lemma 5.1.3] can
be adapted mutatis mutandis for i = 1. For i > 2 the statement follows from the fact that
L1i∗ZΩX/S is a line bundle. The equality c1(LE) = c1(O(E)|E) then follows from Lemma 3.4.

For the second claim, by a deformation to the normal cone argument with respect to the closed
immersion E → X ′, we can assume that i : E → X ′ is the section of a projection p : X ′ → E.
In this case, since p∗i∗ = Id, the direct image i∗ : A∗(E) → A∗(X

′) is necessarily injective.
Moreover, for any localized Chern class as in the statement,

i∗(T
E(b∗ΩX/S → Q) ∩ [X ′]) = (T (b∗ΩX/S → Q)− 1) ∩ [X ′].

On X ′ we have the tautological sequence,

0→ LE → b∗ΩX/S → Q→ 0.

By Lemma 3.4, LE is a line bundle on E. Since i : E → X ′ is a retraction, the line bundle
L = p∗LE on X ′ extends LE and there is an exact sequence

0→ L(−E)→ L→ LE → 0.

We thus have a quasi-isomorphism of complexes

[L(−E)
−1

→ L
0
] ' [b∗ΩX/S

0

→ Q
1

].

Consequently

(T (b∗ΩX/S → Q)− 1) ∩ [X ′] = (T (L(−E)→ L)− 1) ∩ [X ′]

= (T (L)T (L(−E))−1 − 1) ∩ [X ′].

The class T (L)T (L(−E))−1 − 1 is naturally divisible by c1(O(E)). We can thus rewrite

(T (L)T (L(−E))−1 − 1) ∩ [X ′] =
T (L)T (L(−E))−1 − 1

c1(O(E))
∩ [E]. (11)
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Finally, by Lemma 3.4 we also know that LE = L1i∗ZΩX/S⊗O(E) |E , and hence by the first item
we infer c1(LE) = c1(O(E)|E). Plugging this relation into (11), we arrive at the desired equality

TE(b∗ΩX/S → Q) ∩ [X ′] =
T (O(E)|E)− 1

c1(O(E)|E)
∩ [E].

The final claim follows the same lines (and notation) as the second, and the completely formal
computations

i∗
(
T (Q) ∩ TE ∩ [X ′]

)
= T (Q)(T (b∗ΩX/S)T (Q)−1 − 1) ∩ [X ′]

= T (b∗ΩX/S) ∩
(
1− T (Q)T (b∗ΩX/S)−1

)
∩ [X ′]

= T (b∗ΩX/S) ∩
(
1− T (L(−E))T (L)−1

)
∩ [X ′].

Recall that Td∗ is the multiplicative characteristic class determined by (−x)

1−e−(−x) = x
ex−1 .

We next define the Yoshikawa class, inspired by Theorem 3.1. We keep the assumptions of the
introduction of this chapter.

Definition 3.6 (Yoshikawa class). Let f : X → S be a projective, flat, generically smooth
morphism of integral Noetherian schemes over C, of relative dimension n with singular locus
iZ : Z ↪→ X. Let V be an algebraic vector bundle on X. Given a birational and proper morphism
π : X̃ → X of integral schemes, with a surjection π∗ΩX/S → E , for some vector bundle E of rank
n, define the Yoshikawa class as the cycle class

Y(X/S, V ) = ch(i∗ZV ) · π∗
(

Td∗(E|D) Td∗D(π∗ΩX/S → E) ∩ [X̃]
)
∈ A∗(Z)Q,

where D := π−1(Z). For the trivial sheaf, we denote it by Y(X/S).

Proposition 3.7 (Independence). The Yoshikawa class is independent of the choice of a bira-
tional morphism π : X̃ → X and a surjection π∗ΩX/S → E .

Proof. The first assertion follows from the existence of the moduli of rank d-quotients of ΩX/S .
Indeed, any datum as in the statement can be compared to the universal case on the Nash
blowup: there exists a morphism to the Nash blowup ϕ : X̃ → X ′ and a commutative diagram

ϕ∗b∗ΩX/S

����

π∗ΩX/S

����

ϕ∗Q
∼ // E ,

where the left-most vertical arrow is induced from the universal surjection on the Nash blowup.
Moreover, we observe that

Lϕ∗b∗ΩX/S = ϕ∗b∗ΩX/S .

Indeed, since X is Noetherian and is locally a hypersurface in an S-smooth scheme, ΩX/S admits
a two-term resolution by locally free sheaves 0→ F1 → F2 → ΩX/S → 0. Notice that the pullback
0 → b∗F1 → b∗F2 → b∗ΩX/S → 0 is still exact, since the left-most map is generically injective
on an integral scheme, and hence globally injective. Repeating the argument with ϕ, establishes
the relationship. We can then invoke the very construction of the localized Chern classes and the
projection formula [Abb00, p. 31, especially C1].
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Yoshikawa’s theorem works with a smooth desingularization of the Gauss map. The above
proposition hence proves:

Corollary 3.8. Under the hypotheses of Theorem 3.1, the degree of Y(X/S, V ) is the coefficient
of the logarithmic singularity of the Quillen metric as in (1).

Remark 3.9. We expect that the hypothesis of smooth total space X can be weakened with
the same conclusion on the logarithmic singularity of the Quillen metric. This is one of the
motivations of our treatment of the Yoshikawa class.

Proposition 3.10 (Functoriality). Suppose given a Cartesian diagram

XT
p′
//

f ′

��

X

f
��

T
p
// S

where f ′ is a generically smooth morphism of integral schemes and p : T → S is a locally complete
intersection morphism. Then p!Y(X/S, V ) = Y(XT /T, p

′∗V ), where p! denotes the refined Gysin
morphism associated to p.

Proof. Let Z ′ be the Jacobian scheme of the morphism f ′. By the functoriality of Fitting ideals,
the scheme Z ′ is the base change of Z to T and there is a canonical isomorphism (XT )′ → (X ′)T
for the Nash blowups. In particular, it is legitimate to drop the parentheses in the notations.
Factoring T → S as the composition of a smooth morphism and a regular closed immersion, we
can treat each case separately. They are similar, but the smooth case is simpler so we suppose
henceforth that T → S is a regular closed immersion of constant codimension d. Now, consider
the cartesian diagrams

X ′T
//

��

X ′

��

XT

��

p
// X

��

T // S.

Any bivariant class TE with respect to E → X satisfies p!(TE ∩ [X]) = TE
′ ∩ p![X ′] (see [Ful98,

Sec. 17.1, axiom (C3)]) and clearly p![X ′] = [X ′T ]. Moreover, we have an induced Cartesian
diagram

E′ //

π′

��

E

π
��

Z ′ //

��

Z

��

XT
// X.

Then as the refined Gysin maps commute with proper pushforward [Ful98, Thm. 6.2],

π′∗

(
TE
′ ∩ [X ′T ]

)
= p!π∗

(
TE ∩ [X]

)
.

This implies the statement.
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3.3.2 Computations of the Yoshikawa class In the following proposition, we show that the
Yoshikawa class can be written in terms of Segre classes (cf. [Ful98, Chap. 4]). In the particular
case of isolated singularities and regular total space, the formula reduces to a classical topolog-
ical invariant of those: the Milnor number. Recall that for a germ of an isolated hypersurface
singularity (Y, 0) determined by f = 0 for a germ of a holomorphic map f : (Cn+1, 0) → (C, 0),
the Milnor number is defined as

µY,0 = dimC
C{z0, . . . , zn}(
∂f
∂z0

, . . . , ∂f∂zn

) . (12)

In this setting the Milnor number only depends on (Y, 0) and not on the choice of smoothing
function f .

The following results are a cohomological refinement of Yoshikawa’s formulas [Yos98, Yos07].

Proposition 3.11. Let f : X → S be as before. Suppose that S is one-dimensional and b : X ′ →
X is the Nash blow-up with exceptional divisor E. Then:

(i) the Yoshikawa class fulfills the equality

Y(X/S) = Td∗(i∗ZΩX/S) ∩
∞∑
k=0

(−1)k+1

(k + 2)!
sn−k(Z),

where sn−k(Z) = (−1)kb∗(E
k) ∈ An−k(Z) is a Segre class.

(ii) if Y is a smooth projective variety, and X → S is a family of hypersurfaces in Y × S, then

Y(X/S) = Td∗(ΩY |Z) ∩
∞∑
k=0

(−1)k+1

(k + 2)!
sn−k(Z).

(iii) Suppose X → S is the germ of a family over a disk, S = SpecC{s}, locally a hypersurface
in a smooth S-scheme, admitting only isolated singularities in the special fiber X0, then

degY(X/S) =
(−1)n+1

(n+ 2)!

∑
x∈X0

(µX,x + µX0,x) .

In particular, if X is regular, then

degY(X/S) =
(−1)n+1

(n+ 2)!

∑
x∈X0

µX0,x.

Remark 3.12. In the third statement, the Milnor number µX0,x is well-defined since (X0, x) is
locally a hypersurface in Cn+1.

Proof. As in the proof of Proposition 3.7, one can show

Li∗b∗ΩX/S ' Li∗Lb∗ΩX/S ' Lb∗Li∗ZΩX/S .

Moreover, by Lemma 3.5 (i) and the observation Lji∗ZΩX/S = 0 for j > 2, since there exists
a local free resolution of length 2 of ΩX/S . The natural morphism Li∗ZΩX/S → i∗ZΩX/S hence
has a kernel quasi-isomorphic to L1i∗ZΩX/S , whose Chern classes are trivial by Lemma 3.5 (a).
We conclude by the Whitney formula for Chern classes the relation cj(Li

∗
ZΩX/S) = cj(i

∗
ZΩX/S).

With this understood, the first formula is a direct computation using the third claim in Lemma
3.5 and the projection formula.

For the second formula, by (7) applied with Y ×S in place of Y , we see that i∗ZΩX/S = ΩY |Z .
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For the third property, we can suppose that f : X → S has an isolated singularity at a single
closed point x in the special fiber X0. Furthermore i∗ZΩX/S is supported on a zero-dimensional
space, and its Todd class is necessarily 1. We then have by the established formulas,

degY(X/S) =
(−1)n+1

(n+ 2)!
deg s0(Z).

The rest of the argument follows closely [Tei73, Chap. II, Prop. 1.2]. Because X → S is Cohen-
Macaulay and the singularity is isolated, the degree of the Segre class s0(Z) is computed by the
colength of the Jacobian ideal [Ful98, Ex. 4.3.5 (c)]. To compute the colength of the Jacobian
ideal we can reduce to the case of a germ (X, 0)→ (∆, 0) where (X, 0) ⊆ (Cn+1×∆, 0) is defined
by g = g(z0, . . . , zn, s) = 0, where ∆ is the unit disk. Introduce the curve Γ determined by the
ideal ( ∂g∂z0 , . . . ,

∂g
∂zn

). The colength of the Jacobian ideal is then given by

dimC
C{z0, . . . , zn, s}(
g, ∂g∂z0 , . . . ,

∂g
∂zn

) = g · Γ

where the right hand side denotes the intersection number of {g = 0} and Γ. Denote by π : Γ̃→ Γ
the normalization map. By the projection formula we have g · Γ = π∗g · Γ̃. For its computation,
for xi ∈ π−1(0), choose a local coordinate si and denote by vi the canonical discrete valuation at
xi. The intersection number is then given by

π∗g · Γ̃ =
∑

vi(π
∗g).

Notice that for a function h vanishing on xi we have vi(
∂h
∂si

) = vi(h) − 1. By the chain rule, we
find that

∂π∗g

∂si
= π∗

(
∂g

∂s

)
∂π∗s

∂si
+
∑

π∗
(
∂g

∂zi

)
∂π∗zi
∂si

= π∗
(
∂g

∂s

)
∂π∗s

∂si
.

We conclude that

vi(π
∗g) = vi

(
∂π∗g

∂si

)
+ 1 = vi

(
π∗
(
∂g

∂s

))
+ vi

(
∂π∗s

∂si

)
+ 1

= vi

(
π∗
(
∂g

∂s

))
+ vi(π

∗s)

from which we find

g · Γ =
∂g

∂s
· Γ + s · Γ.

These are Milnor numbers as defined in (12) which proves the statement. In the special case
when X is moreover regular, then µX,x = 0 for every point x ∈ X.

The following lemma will be useful in some computations with the Yoshikawa class. As an
example of use, we refer to Theorem 3.14 and Theorem 3.16 below.

Lemma 3.13. Let f : X → S be a germ of a fibration over the unit disk, with regular total space
X. Then

deg cn(Q|E) = deg cZn+1(ΩX/S) ∩ [X] = (−1)n (χ(X∞)− χ(X0)) ,

where Z ⊂ X is the singular locus of f , X∞ is a general fiber and χ is the topological Euler
characteristic.

Proof. For the equality

deg cZn+1(ΩX/S) ∩ [X] = (−1)n (χ(X∞)− χ(X0)) ,
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we observe that

deg cZn+1(ΩX/S) ∩ [X] = deg cX0
n+1(ΩX/S) ∩ [X]

and then we refer to [Ful98, Example 14.1.5].

For the first equality, we recall from Lemma 3.4 the tautological exact sequence on the Nash
blowup X ′

0→ LE → b∗ΩX/S → Q→ 0.

By the Whitney formula for localized Chern classes [Abb00, Prop. 3.1 (b)] and the vanishing
property in Lemma 3.5 (a) we have

cEn+1(b∗ΩX/S) ∩ [X ′] = cn(Q|E)(cE1 (LE) ∩ [X ′]) = cn(Q|E) ∩ [E].

On the other hand, we apply the projection formula of localized Chern classes with respect to
proper morphisms [Abb00, p. 31 (C1)], that implies

deg cEn+1(b∗ΩX/S) ∩ [X ′] = deg cZn+1(ΩX/S) ∩ [X].

We complete the proof by combining the last two equalities.

3.3.3 The Yoshikawa class for families of hypersurfaces Recall that the discriminant or dual
variety of a smooth variety Y ⊆ PN is a variety ∆Y ⊆ P̌N , parameterizing the hyperplanes
H ∈ P̌N such that Y ∩H is singular. Here Y ∩H is regarded as a scheme. In many interesting
cases ∆Y is a hypersurface. Let us mention the case of the d-Veronese embedding, Pn ⊆ PN . In
this case ∆Y parametrizes singular hypersurfaces of degree d in Pn.
We denote by F : H → P̌N the universal family of hyperplane sections of Y . The F -singular
locus can be described as the projective bundle P(NY/PN ) over Y , where N denotes the normal

bundle of Y ⊆ PN . Indeed, a singular point in a hyperplane section is nothing but a hyperplane
H, a point y ∈ Y ∩H such that TyH ⊆ TyPn contains TyY , so that H corresponds to a vector in
P(NY/PN ,y), the projectivised normal bundle of Y ⊆ Pn at y. Hence the F -singular locus is just

the projectivised normal bundle of Y ⊆ PN [GKZ08], p. 27. In particular, ∆Y , being the image
of P(NY/PN ) in P̌N , is irreducible.

Theorem 3.14. Suppose that f : X → S is a family of hyperplane sections of a smooth complex
projective variety Y ⊆ PN of dimension n + 1, over a regular base S. Let Z be the singular
scheme of f . Then the codimension n+ 1-component of Y(X/S) is given by

Y(X/S)(n+1) =
(−1)n+1

(n+ 2)!
cZn+1(ΩX/S) ∩ [X].

Consequently,

degY(X/S) =
(−1)n+1

(n+ 2)!

∫
X0

cX0
n+1(ΩX/S) ∩ [X].

Remark 3.15. In the context of the above theorem, when X is regular and S is one-dimensional,
one can see that f has at most isolated singularities. Then, according to the theorem and Lemma
3.13, the degree of the Yoshikawa class is given by the change of Euler characteristics, or equiv-
alently the vanishing cycles. This is compatible with Proposition 3.11 (c), since the sum of the
Milnor numbers equals the number of vanishing cycles.

Proof. For the first point, by Proposition 3.10, and the analogous functoriality for cZn+1(ΩX/S)∩
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[X], it is enough to prove that

Y(X/S)(n+1) =
(−1)n+1

(n+ 2)!
cZn+1(ΩX/S) ∩ [X]

when X → S is the universal situation H → P̌N , with Z = P(N).

We start by proving that

[Z] = cZn+1(ΩH/P̌N ) ∩ [H],

and later we will relate the Yoshikawa class to [P(N)]. Consider the resolution

O(−H)|H → ΩY×P̌N/P̌N |H → ΩH/P̌N → 0.

It determines a section σ of ΩY×P̌N/P̌N (H)|H whose schematic zero locus is Z. This is of maximal
codimension n+ 1 in H, hence by [Ful98, Prop. 14.1 (c)] the corresponding localized Chern class
is given by [Z]. All in all, we conclude

[Z] = cZn+1(ΩH/P̌N ⊗O(H)|H) = cZn+1(ΩH/P̌N ),

where the last equality is easily checked from the very construction of the localized Chern classes
through the Grassmannian graph construction (see [Abb00, Sec. 3] and use that O(H)|H is
invertible, hence tensoring by it induces an isomorphism on Grassmannians and does not alter
the construction in loc. cit).

Now we compute the (N − 1)-dimensional component of the Yoshikawa class in the universal
situation. First, we observe that the codimension n+ 1 component Y(H/P̌N ) is concentrated on
the N − 1 dimensional irreducible subscheme Z, and hence is a multiple thereof:

Y(H/P̌N )(n+1) = m[Z],

for some rational number m. Second, we determine the coefficient m by “evaluating” on a point.
For this, denote by b : H′ → H the Nash blowup. The induced map E → Z has the structure of
a projective bundle of rank n. As in the proof of Lemma 3.5, write the Yoshikawa class as

b∗

(
Td∗(Li∗b∗ΩH/P̌N ) ∩

(
1− Td∗(LE(−E)) Td∗(LE)−1

c1(O(E)|E)

)
∩ [E]

)
,

where i is the closed immersion of E into H′. Let k : p→ Z be any (closed) point of Z, necessarily
a closed regular immersion of codimension N − 1. Then we have a Cartesian diagram

Pn k′ //

b′

��

E

b
��

p
k // Z.

Then as k∗[Z] = [p], it is enough to compute k∗Y(H/P̌N ). We obviously have that

k′
∗
b∗L1iZ

∗ΩH/P̌N = b′
∗
k∗L1iZ

∗ΩH/P̌N

is a trivial line bundle over a point. Therefore, by Lemma 3.4 we find k′∗LE = O(E)|Pn = O(−1).
Furthermore, b∗k

∗ = b′∗k
′∗ and we conclude that the pullback of the Yoshikawa class is given by∫

Pn
1−Td∗(O(−1))−1

c1(O(−1)) . This further simplifies to

m = deg k∗Y(H/P̌N ) =
(−1)n+1c1(O(1))n

(n+ 2)!
=

(−1)n+1

(n+ 2)!
.
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The consequence

degY(X/S) =
(−1)n+1

(n+ 2)!

∫
X0

cX0
n+1(ΩX/S) ∩ [X]

follows by the properties of localized Chern classes and since cX0
n+1(ΩX/S) is supported on the

singular locus Z.

3.3.4 The Yoshikawa class for Kulikov families of surfaces We now look at a germ of a
Kulikov family over a disk, f : X → S. We assume that X is regular, f has relative dimension
2 and a unique singular fiber over 0, and finally that the relative canonical sheaf KX is trivial.
Observe that we do not require the general fiber to be a K3 surface, hence we also allow it to be
an abelian surface.

Theorem 3.16. The Yoshikawa class of a Kulikov family as above satisfies

degY(X/S) =
−1

24
[χ(X∞)− χ(X0)].

Proof. Let b : X ′ → X be the Nash blow-up, with universal quotient bundle Q and exceptional
divisor E. A direct computation using Lemma 3.5 (ii) shows that the degree is given by

degY(X/S) =

∫
E

−c1(Q)c1(O(E))− c1(Q)2 − c2(Q)

24
. (13)

Recall the exact sequence

0→ LE → b∗ΩX/S → Q→ 0,

that together with Lemma 3.5 (i) implies

c1(b∗KX/S |E) ∩ [X ′] = c1(O(E) |E) ∩ [X ′] + c1(Q |E) ∩ [X ′].

But by the Kulikov assumption, KX/S is trivial, and therefore

c1(O(E) |E) ∩ [X ′] = −c1(Q |E) ∩ [X ′].

Plugging this relation into (13), we find

degY(X/S) = −
∫
E

c2(Q)

24
.

We conclude by Lemma 3.13.

4. Degeneration of the BCOV metric

In this section we will consider families of Calabi–Yau varieties and their BCOV line bundles.
More precisely, we will study the BCOV metric introduced by [FLY08] and its asymptotic be-
havior under degeneration. We will use the results in the preceding sections to show that the
singularity is governed by topological invariants, especially vanishing cycles in the case of Kulikov
families.

For the rest of this section, let f : X → S be a generically smooth flat projective morphism
of complex algebraic manifolds with connected fibers, and dimS = 1. We suppose that the non-
singular fibers are n-dimensional Calabi–Yau varieties, in the sense that their canonical bundles
are trivial. We suppose that X has a fixed Kähler metric hX .
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4.1 The BCOV line bundle and metric

We define the BCOV line bundle. First assume that f is smooth. Then we put

λBCOV(Ω•X/S) := λ

 ⊕
06p6n

(−1)ppΩp
X/S

 =
⊗

06p6n

λ(Ωp
X/S)(−1)pp

=
⊗

06p,q6n

(
detRqf∗(Ω

p
X/S)

)(−1)p+qp
.

In general, the sheaves Ωp
X/S are only coherent sheaves on X, and not locally free. To extend the

BCOV line bundle from the smooth locus to the whole base S, it is useful to introduce the so-
called Kähler resolution of Ωp

X/S , involving the locally free sheaves Ωp
X and f∗Ω⊗qS . Equivalently,

we apply the left derived functor LΛp to ΩX/S . This is achieved by simply applying the exterior
power functors to the exact sequence (2) defining the relative cotangent sheaf. For each 0 6 p 6 n,
we obtain a complex

Ω̃p
X/S : (f∗ΩS)⊗p → (f∗ΩS)⊗p−1 ⊗ ΩX → · · · → (f∗ΩS)⊗ Ωp−1

X → Ωp
X .

The Kähler extension λBCOV(Ω̃•X/S) of the BCOV line bundle on the smooth locus is then
defined to be

λBCOV(Ω̃•X/S) = λ

 ⊕
06p6n

(−1)ppΩ̃p
X/S

 =
n⊗
p=0

p⊗
j=0

(f∗ΩS)(−1)p+jpj λ(Ωp−j
X )(−1)p+jp.

For smooth f , and depending on the Kähler metric hX , the BCOV line bundle carries a
combination of Quillen metrics. We now introduce the BCOV metric, following [FLY08, Def.
4.1], but phrased differently.

Definition 4.1. (i) The function A(X/S) ∈ C∞(S) is locally given by the formula

A(X/S) = ||ηX/S ||
χ(X∞)/6
L2 exp

{
(−1)n+1

12
f∗

(
log

(
||ηX ||2

||df ||2

)
cn(ΩX/S , hX)

)}
.

Here, ηX is a nowhere vanishing global section of KX (which exists locally relative to the
base) and ηX/S is the Gelfand–Leray residue form of ηX with respect to f , namely the
section of f∗(KX/S) determined by ηX = ηX/S ∧ f∗(ds), for some local coordinate s on S.

(ii) The BCOV metric on λBCOV(Ω•X/S) is

hBCOV = A(X/S)hQ,

where hQ is the Quillen metric depending on hX .

The following statement describes the singular behavior of the BCOV metric when the mor-
phism f : X → S is only supposed to be generically smooth.

Proposition 4.2. Let f : X → S be a generically smooth family of Calabi–Yau varieties of
dimension n. Assume there is at most one singular fiber of equation s = 0. We denote by α and
β the coefficients encoding the asymptotics of the L2-metric in Proposition 2.3.
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(i) Choose a local holomorphic frame σ̃ for the Kähler extension λBCOV(Ω̃•X/S). Set

αBCOV =
n∑
p=0

p∑
j=0

∫
E

(
p(−1)j Td∗Q

Td∗O
X̃

(E)− e(p−j)c1(O
X̃

(E))

c1(O
X̃

(E))
q∗ ch(Ωj

X)

)

+
1

12

(
−(χ(X∞)− χ(X0))+αχ(X∞) + (−1)n

∫
b∗B

cn(Q)

)
where X ′

b→ X is the Nash blowup of f , E its exceptional divisor, Q the tautological
quotient vector bundle on X ′ and B is the divisor of the evaluation map (3). Then the
asymptotic of the BCOV norm of σ̃ as s→ 0 is

− log ||σ̃||2
BCOV

= αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+ continuous.

(ii) The BCOV metric uniquely extends to a good metric (in the sense of Mumford) on the Q-line

bundle λBCOV(Ω̃•X/S)⊗O(−αBCOV[0]). It has an Lp (p > 1) potential −χ(X∞)
12 β log | log |s|2|+

continuous.

(iii) Suppose f : X → S is smooth, and is the restriction of a Kuranishi family under a classifying
map ι. Then the curvature form of the BCOV metric agrees with the pull-back of the Weil-
Petersson form

c1(λBCOV(Ω•X/S), hBCOV) =
χ(X∞)

12
ι∗ωWP .

Proof. The first equality is the conjunction of the asymptotic formulas of the Quillen metric and
computations and asymptotics of the term A(X/S). The Quillen part is covered by Theorem 3.1
and [FLY08, Thm. 5.4]. For A(X/S), we compute:

logA(X/S) =
χ(X∞)

12
log ||ηX/S ||2L2 +

(−1)n+1

12
(f ◦ b)∗

(
b∗ log

(
||ηX ||2

)
cn(Q)

)
+

(−1)n

12
(f ◦ b)∗

(
b∗ log

(
||df ||2

)
cn(Q)

)
.

The asymptotics of the first term are given by that of the L2-metric, established in Proposition
2.3,

− log ||ηX/S ||2L2 = α log |s|2 − β(log | log |s|2|) + continuous.

The second term and the third terms have asymptotics given by [Yos07, Lemma 4.4 and Corollary
4.6]

(f ◦ b)∗
(
b∗ log

(
||ηX ||2

)
cn(Q)

)
=

(∫
b∗B

cn(Q)

)
log |s|2 + continuous

(f ◦ b)∗
(
b∗ log

(
||df ||2

)
cn(Q)

)
=

(∫
E
cn(Q)

)
log |s|2 + continuous.

For the first equality, we have used div(ηX) = B and for the second equality we have used that
the zero-locus of df is exactly the singular locus Z and E = b−1(Z). We obtain the final form by
applying the formula

∫
E cn(Q) = (−1)n(χ(X∞)− χ(X0))

The second part of the proposition is a consequence of the first. Indeed, by Theorem 3.1 it is
enough to provide Mumford good estimates on the continuous rests of the formulas above. But
they are also as in Remark 3.2, by the same [Yos07, Lemma 4.4], and hence good in the sense of
Mumford.

The third part is [FLY08, Thm.4.9].
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4.2 Computation of αBCOV

The asymptotic formulas provided by [FLY08, Thm. 5.4] and Proposition 4.2 above are cum-
bersome, and the relation to topological invariants (for instance vanishing cycles) is not clear.
We next show that several simplifications and cancellations occur in the expression defining
αBCOV. We rewrite it solely in terms of the characteristic classes cn(Q), c1(Q)cn−1(Q) and
c1(b∗KX)cn−1(Q). We derive consequences for Kulikov type families.

Recall that b : X ′ → X denotes the Nash blowup of the morphism f : X → S, with excep-
tional divisor E and universal quotient bundle Q. We focus on the combination of characteristic
classes

ω := Td∗(Q |E)
n∑
p=0

p∑
j=0

p(−1)j
(
Td∗(O(E) |E)− ch(O(E) |E)p−j

)
ch(b∗Ωj

X |E) ∩ [X ′].

To simplify the discussion, we remove the ∩[X ′] from the notations. In the definition of αBCOV,
the class ω contributes through ∫

E

ω

c1(O(E) |E)
.

Because of the division by c1(O(E) |E) and since E is a divisor in X ′, we only seek a simple
expression for the degree n+ 1 part of ω. A priori, we know this component has to be a multiple
c1(O(E) |E).

The starting point is to restrict the universal exact sequence

0→ LE → b∗ΩX/S → Q→ 0

to the exceptional divisor. Because Q is locally free, the restriction of the sequence to E remains
exact. Moreover, we observe that E lies above the singular locus Z of the morphism f : X → S,
and hence b∗ΩX/S |E= b∗ΩX |E . Therefore, we obtain an exact sequence

0→ LE → b∗ΩX |E→ Q |E→ 0. (14)

We also recall from Lemma 3.5 that LE is a line bundle on E, and that as a bivariant class with
values in A∗(E), the relation c1(LE) = c1(O(E)|E) holds. Taking exterior powers in (14) and
substituting c1(LE) by c1(O(E)|E), we find

ch(b∗Ωj
X |E) = ch(ΛjQ |E) + ch(Λj−1Q |E) ch(O(E) |E),

with the convention that Λj−1Q = 0 for j = 0. From now on, to lighten notations, we also
skip the restriction to E from the notations, by saying instead that a given relation holds on E.
Therefore, on E we can write ω = ϑ+ ϑ′, where

ϑ = (Td∗(Q))(Td∗O(E))
∑

06j6p6n

p(−1)j(ch(ΛjQ) + ch(Λj−1Q) ch(O(E)))

and the class ϑ′ is defined to be the rest. Actually, after a simple telescopic sum, ϑ′ simplifies to

ϑ′ = −Td∗(Q)
n∑
p=0

p(−1)p ch(ΛpQ).

We now work on the class ω.
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Lemma 4.3. The class ϑ is the sum of three contributions

ϑ1 = −n(n+ 1)

2
(−1)ncn(Q)c1(O(E)) + hct,

ϑ2 = −Td∗(Q) Td∗(O(E))

n∑
j=0

(−1)j+1 j(j + 1)

2
ch(ΛjQ) ch(O(E))

ϑ3 = −Td∗(Q) Td∗(O(E))
n∑
j=0

(−1)j
j(j − 1)

2
ch(ΛjQ),

where hct is a shortcut for ”higher codimension terms”.

Proof. The proof is elementary, and relies on the property [Ful98, Example 3.2.5]

Td∗(Q)
n∑
p=0

(−1)p ch(ΛpQ) = (−1)ncn(Q), (15)

and the power series expansions of Td∗(O(E)) and ch(O(E)) in c1(O(E)).

The relation (15) and the expressions for the classes ϑ and ϑ′ motivate the following definition.

Definition 4.4. For a vector bundle F of rank r, we define

P (F ) = Td∗(F )

r∑
p=0

(−1)p ch(ΛpF ) (= (−1)rcr(F )),

P ′(F ) = Td∗(F )
r∑
p=0

(−1)pp ch(ΛpF ),

P ′′(F ) = Td∗(F )
r∑
p=0

(−1)p
p(p− 1)

2
ch(ΛpF ).

As the notation suggests, the classes P ′(F ) and P ′′(F ) are to be seen as the first and second
derivatives of P (F ). More precisely, we have

Lemma 4.5. The classes P , P ′ and P ′′ satisfy

P (F ⊕G) = P (F )P (G),

P ′(F ⊕G) = P ′(F )P (G) + P (F )P ′(G),

P ′′(F ⊕G) = P ′′(F )P (G) + P ′(F )P ′(G) + P (F )P ′′(G).

In particular, given line bundles L1, . . . , Lr, we have

P ′(L1 ⊕ . . .⊕ Lr) =

r∑
i=1

P (L1) . . . P ′(Li) . . . P (Lr),

P ′′(L1 ⊕ . . .⊕ Lr) =
∑

16i<j6r

P (L1) . . . P ′(Li) . . . P
′(Lj) . . . P (Lr).

Proof. The first part is an easy computation using the multiplicativity of Td∗ with respect to
direct sums of vector bundles, and the multiplicativity of ch with respect to tensor products of
vector bundles. The conclusion for direct sums of line bundles requires the observation P ′′(L) = 0
for a line bundle L.
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In terms of P ′ and P ′′, the classes ϑ′ and ϑ3 are

ϑ′ = −P ′(Q), ϑ3 = −Td∗(O(E))P ′′(Q).

For ϑ2, an easy computation gives the string of equalities,

ϑ2 = (P ′(Q) + P ′′(Q)) ch(O(E)) Td∗(O(E))

= (P ′(Q) + P ′′(Q))c1(O(E)) + P ′(Q) Td∗(O(E))− ϑ3 + hct

= P ′(Q)

(
1

2
c1(O(E)) +

1

12
c1(O(E))2

)
+ P ′′(Q)c1(O(E))− ϑ3 − ϑ′ + hct.

(16)

To conclude, we thus have to extract the codimension n− 1 and n parts of the class P ′(Q), and
the codimension n class of P ′′(Q).

Lemma 4.6. (i) For the first derivative class, we have

P ′(Q) = (−1)ncn−1(Q) + (−1)n
n

2
cn(Q) + hct,

(ii) For the second derivative class, we have

P ′′(Q)(n) = (−1)n
n(3n− 5)

24
cn(Q) + (−1)n

1

12
c1(Q)cn−1(Q).

Proof. By Lemma 4.5 and the splitting principle, we can suppose that Q splits into a direct sum
of line bundles L1, . . . , Ln.

For the first item, we use the formula for P ′(L1⊕ . . .⊕Ln) in Lemma 4.5. For this, we recall
from (15)

P (Li) = −c1(Li)

and observe

P ′(Li) = P (Li)− Td∗(Li) = −1− 1

2
c1(Li)−

1

12
c1(Li)

2 + hct.

After an elementary computation, one concludes by taking into account

cn(Q) = c1(L1) . . . c1(Ln),

cn−1(Q) =

n∑
i=1

c1(L1) . . . ĉ1(Li) . . . c1(Ln).

For the second item, we proceed similarly. We first compute

P ′(Li)P
′(Lj) =

1

4
c1(Li)c1(Lj) +

1

12
c1(Li)

2 +
1

12
c1(Lj)

2 + hct.

Hence, we obtain

P ′′(Q)(n) =(−1)n
n(n− 1)

8
cn(Q)

+ (−1)n
1

12

∑
i<j

c1(L1) . . . c1(Li)
2 . . . ĉ1(Lj) . . . cn(Ln)

+ (−1)n
1

12

∑
i<j

c1(L1) . . . ĉ1(Li) . . . c1(Lj)
2 . . . c1(Ln).
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But we observe∑
i<j

c1(L1) . . . c1(Li)
2 . . . ĉ1(Lj) . . . cn(Ln) +

∑
i<j

c1(L1) . . . ĉ1(Li) . . . c1(Lj)
2 . . . c1(Ln)

= (c1(L1) + . . .+ c1(Ln))
n∑
i=1

c1(L1) . . . ĉ1(Li) . . . c1(Ln)− nc1(L1) . . . c1(Ln)

= c1(Q)cn−1(Q)− ncn(Q).

All in all, we conclude

P ′′(Q)(n) = (−1)n
n(3n− 5)

24
cn(Q) + (−1)n

1

12
c1(Q)cn−1(Q).

Proposition 4.7. The class ω satisfies∫
E

ω

c1(O(E) |E)
= (−1)n+1 9n2 + 11n

24

∫
E
cn(Q) +

(−1)n

12

∫
E
b∗c1(KX)cn−1(Q).

Proof. We collect the identities in Lemma 4.3, the expression (16) for ϑ2 and the values provided
by (14). We then observe that

c1(O(E) |E) + c1(Q |E) = c1(b∗KX |E),

as follows from (14) and c1(LE) = c1(O(E) |E). This concludes the proof.

Corollary 4.8. Suppose that KX is trivial on the singular locus Z. Then∫
E

ω

c1(O(E) |E)
= −9n2 + 11n

24
(χ(X∞)− χ(X0)) .

In particular, if f has isolated singularities, then∫
E

ω

c1(O(E) |E)
= (−1)n+1 9n2 + 11n

24

∑
x∈X0

µX0,x.

Proof. By applying the projection formula, one infers∫
E
b∗c1(KX)cn−1(Q) =

∫
Z
c1(KX)b∗cn−1(Q).

By assumption, KX is trivial on Z, and hence this intersection number vanishes. We then apply
the formula

(−1)n
∫
E
cn(Q) = χ(X∞)− χ(X0).

In the case of isolated singularities, the difference of topological Euler characteristics is known
to be the sum of the Milnor numbers (12) of the singularities. Precisely, we have

χ(X∞)− χ(X0) = (−1)n
∑
x∈X0

µX0,x. (17)

Corollary 4.9. The coefficient αBCOV is given by

αBCOV = −9n2 + 11n+ 2

24
(χ(X∞)− χ(X0))+

α

12
χ(X∞) +

(−1)n

12

∫
B
cn(ΩX/S).
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Proof. Notice that

b∗c1(KX)cn−1(Q) ∩ [E] = cn−1(Q) ∩ c1(b∗B) ∩ [E] = cn−1(Q) ∩ c1(E) ∩ [b∗B]

in the Chow group of the special fiber of X ′ → S. This is a consequence of the commutativity of
intersection classes of Cartier divisors [Ful98, Sec. 2.4], and the definition of c1 of a line bundle.
Moreover, from Lemma 3.5 (a), we have c1(LE) = c1(O(E)|E). Applying Chern classes on the
tautological exact sequence on the Nash blowup, we deduce from the Whitney formula that

cn(b∗ΩX/S) ∩ [b∗B] = cn(Q) ∩ [b∗B] + cn−1(Q)c1(E) ∩ [b∗B].

Observe that cn(b∗ΩX/S) = b∗cn(ΩX/S), because ΩX/S admits a two term locally free resolution
and b is birational. Applying the projection formula, we finally find∫

E
b∗c1(KX)cn−1(Q) =

∫
B
cn(ΩX/S)−

∫
b∗B

cn(Q).

We finish the proof by plugging this relation into Proposition 4.7, and by the very definition of
αBCOV.

To sum up, we conclude by restating Proposition 4.2 (a) for Kulikov families.

Theorem 4.10. Let f : X → S be a generically smooth family of Calabi–Yau varieties of
dimension n, with a unique singular fiber of equation s = 0. Assume that X is a Kulikov family,
i.e. that B = ∅ (e.g. if KX is trivial). Choose a local holomorphic frame σ̃ for the Kähler extension

λBCOV(Ω̃•X/S).

Then the asymptotic of the BCOV norm of σ̃ is

− log ||σ̃||2
BCOV

= αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+ continuous

=

[
−9n2 + 11n+ 2

24
(χ(X∞)− χ(X0)) +

α

12
χ(X∞)

]
log |s|2

−χ(X∞)

12
β log | log |s|2|+ continuous,

where α and β are as in Proposition 2.3.

Corollary 4.11. If n > 2 and f : X → S has only isolated ordinary quadratic singularities,
then

− log ||σ̃||2
BCOV

= (−1)n+1 9n2 + 11n+ 2

24
#sing(X0) log |s|2 + continuous.

Proof. We observed in section 2.1 that a Calabi–Yau degeneration with isolated singularities is
automatically Kulikov. From Theorem 4.10 together with Corollary 2.9, Remark 2.10 and (17)
we obtain that the dominant term is a weighted sum of Milnor numbers. For an isolated ordinary
quadratic singularity each such Milnor number is 1.
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BGS88a J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles.
I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78.

BGS88b , Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-
Chern forms, Comm. Math. Phys. 115 (1988), no. 1, 79–126.

BGS88c , Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holo-
morphic determinants, Comm. Math. Phys. 115 (1988), no. 2, 301–351.

Bis97 J.-M. Bismut, Quillen metrics and singular fibres in arbitrary relative dimension, J. Algebraic
Geom. 6 (1997), no. 1, 19–149.

BJ16 S. Boucksom and M. Jonsson, Tropical and non-archimedean limits of degenerating families of
volume forms, arXiv:1605.05277 [math.DG] (2016).

CK82 E. Cattani and A. Kaplan, Polarized mixed Hodge structures and the local monodromy of a
variation of Hodge structure, Invent. Math. 67 (1982), no. 1, 101–115. MR 664326 (84a:32046)

Eri12 D. Eriksson, Degenerating Riemann surfaces and the Quillen metric, International Mathematics
Research Notices (2012).

Eri16 , Discriminants and Artin conductors, J. Reine Angew. Math. 712 (2016), 107–121. MR
3466549

FLY08 H. Fang, Z. Lu, and K.-I. Yoshikawa, Analytic torsion for Calabi-Yau threefolds, J. Differential
Geom. 80 (2008), no. 2, 175–259. MR 2454893 (2009k:58069)

FM00 O. Fujino and S. Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1,
167–188. MR 1863025 (2002h:14091)

Ful98 W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin,
1998.

GKZ08 I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidi-
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