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ABSTRACT. The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a
seminal article from ’94, a conjecture extending genus zero mirror symmetry to higher genera.
With a view towards a refined formulation of the Grothendieck–Riemann–Roch theorem, we offer a
mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic
Riemann–Roch theorem of Gillet–Soulé and of our previous results on the BCOV invariant, we
establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution
takes place on the B-side, and together with the work of Zinger on the A-side, it provides the
first complete examples of the mirror symmetry program in higher dimensions. The case of
quintic threefolds was studied by Fang–Lu–Yoshikawa. Our approach also lends itself to arithmetic
considerations of the BCOV invariant, and we study a Chowla–Selberg type theorem expressing it
in terms of special Γ values for certain Calabi–Yau manifolds with complex multiplication.
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1. INTRODUCTION

The purpose of this article is to establish higher dimensional cases of genus one mirror sym-
metry, as envisioned by mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (henceforth
abbreviated BCOV) in their influential paper [BCOV94]. Precisely, we relate the generating series
of genus one Gromov–Witten invariants on Calabi–Yau hypersurfaces to an invariant of a mirror
family, built out of holomorphic analytic torsions. The invariant, whose existence was conjec-
tured in loc. cit., was mathematically defined and studied in our previous paper [EFiMM21]. We
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refer to it as the BCOV invariant τBCOV. In dimension 3, the construction of the BCOV invariant
and its relation to mirror symmetry were established by Fang–Lu–Yoshikawa [FLY08], relying on
previous results by [Zin08, Zin09].

Our approach parallels the Kodaira–Spencer formulation of the Yukawa coupling in genus zero,
and can be recast as a refined version of the Grothendieck–Riemann–Roch theorem à la Deligne
[Del87]. We hope this point of view will also be inspiring to study higher genus Gromov–Witten
invariants and the B-side of mirror symmetry in dimension 3. In this setting, the A-side has
received a lot of attention recently.

1.1. The classical BCOV conjecture at genus one. Let X be a Calabi–Yau manifold of dimen-
sion n. In this article, this will mean a complex projective connected manifold with trivial
canonical sheaf. We now briefly recall the BCOV program at genus one.

On the one hand, on what is referred to as the A-side, we consider enumerative invariants
associated to X . For this, recall first that for every curve class β in H2(X ,Z), there is a proper
Deligne–Mumford stack of stable maps from genus g curves to X , whose fundamental class is β:

M g (X ,β) = {
f : C → X | g (C ) = g , f stable and f∗[C ] =β}

.

The virtual dimension of this stack can be computed to be (cf. [Beh97], in particular the intro-
duction) ∫

β
c1(X )+ (dim(X )−3)(1− g ) = (dim(X )−3)(1− g ).

Whenever dim(X ) = 3 or g = 1 this is of virtual dimension 0 and one can consider the Gromov–
Witten invariants

GWg (X ,β) = deg [M g (X ,β)]vir ∈Q.

Since the main focus of our paper is higher dimension, we henceforth impose g = 1. One then
defines the formal power series

(1.1) F A
1 (τ) = −1

24

∫
X

cn−1(X )∩2πiτ+ ∑
β>0

GW1(X ,β)e2πi 〈τ,β〉,

where τ belongs to the complexified Kähler cone1 HX , and β runs over the non-zero effective
curve classes.

On the other hand, on what is referred to as the B-side, BCOV introduced a spectral quantity
F B

1 built out of holomorphic Ray–Singer analytic torsions of a mirror Calabi–Yau manifold X ∨.
It depends on an auxiliary choice of a Kähler structure ω on X ∨, and can be recast as

F B
1 (X ∨,ω) = ∏

0≤p,q≤n
(det∆p,q

∂
)(−1)p+q pq ,

where det∆p,q

∂
is the ζ-regularized determinant of the Dolbeault Laplacian acting on Ap,q (X ∨).

In our previous work [EFiMM21] we normalized this quantity to make it independent of the
choice of ω:

τBCOV(X ∨) =C (X ∨,ω) ·F B
1 (X ∨,ω),

for some explicit constant C (X ∨,ω). Thus τBCOV(X ∨) only depends on the complex structure of
the Calabi–Yau manifold, in accordance with the philosophy that the B-model only depends on
variations of the complex structure on X ∨.

1If KX denotes the Kähler cone of X , we define HX as H 1,1
R

(X )/H 1,1
Z

(X )+ iKX .
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Mirror symmetry predicts that given X , there is a mirror family of Calabi–Yau manifolds
over a punctured multi-disc around the origin ϕ : X ∨ → D× = (D×)d , with maximally unipotent
monodromies and d = h1,1(X ) = h1(TX ∨).2 Here we denoted by X ∨ any member of the mirror
family. The A-side and the B-side should be related by a distinguished biholomorphism onto its
image D× →HX , which is referred to as the mirror map and is denoted q 7→ τ(q). The mirror
map sends the origin of the multi-disc to infinity. Fixing a basis of ample classes on X , we can
think of it as a change of coordinates on D×. In the special case of d = 1, one such a map is
constructed as a quotient of carefully selected periods in [Mor93].

BCOV conjecture at genus one. Let X be a Calabi–Yau manifold and ϕ : X ∨ → D× a mirror
family as above.

(1) There is a procedure, called passing to the holomorphic limit, to extract from τBCOV(X ∨
q ) as

q → 0 a holomorphic function F B
1 (q).

(2) The functions F A
1 and F B

1 are related via the mirror map by

F B
1 (q) = F A

1 (τ(q)).

Passing to the holomorphic limit is often interpreted as considering a Taylor expansion of
τBCOV(X ∨

q ) in τ(q) and τ(q), and keeping the holomorphic part. In this article, we will instead use
a procedure based on degenerations of Hodge structures.

1.2. Grothendieck–Riemann–Roch formulation of the BCOV conjecture at genus one. The
purpose of this subsection is to formulate a version of the BCOV conjecture producing the
holomorphic function F B

1 without any reference to spectral theory, holomorphic anomaly equa-
tions or holomorphic limits. Our formulation parallels the Hodge theoretic approach to the
Yukawa coupling in 3-dimensional genus zero mirror symmetry: the key ingredients going into
its construction are the Kodaira–Spencer mappings between Hodge bundles, and canonical
trivializations of those.

To state a simplified form of our conjecture, we need to introduce the BCOV line bundle
λBCOV(X ∨/D×) of the mirror family ϕ : X ∨ → D×. The BCOV line of a Calabi–Yau manifold X ∨ is
defined to be

λBCOV(X ∨) = ⊗
0≤p,q≤n

det H q (X ∨,Ωp
X ∨)(−1)p+q p .

For a family of Calabi–Yau manifolds it glues together to a holomorphic line bundle on the
base. Also, we denote by χ the Euler characteristic of any fiber of ϕ and by KX ∨/D× the relative
canonical bundle.

Refined BCOV conjecture at genus one. Let X be a Calabi-Yau manifold and ϕ : X ∨ → D× a
mirror family as in §1.1.

(1) There exists a natural isomorphism of line bundles,

(1.2) GRR : λBCOV(X ∨/D×)⊗12κ ∼−→ϕ∗(KX ∨/D×)⊗χκ,

together with natural trivializing sections of both sides. Here κ is a non-zero integer which
only depends on the relative dimension of ϕ.

2Such families are also called large complex structure limits of Calabi–Yau manifolds.
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(2) In the natural trivializations, the isomorphism GRR can be expressed as a holomorphic

function, which when written as exp
(
(−1)nF B

1 (q)
)24κ

satisfies

F B
1 (q) = F A

1 (τ(q)).

The existence of some isomorphism in (1.2) is provided by the Grothendieck–Riemann–Roch
theorem in Chow theory, the key point of the conjecture being the naturality requirement. In
fact, an influential program by Deligne [Del87] suggests that the codimension one part of the
usual Grothendieck–Riemann–Roch equality can be lifted to a base change invariant isometry
of line bundles, when equipped with natural metrics. An intermediate version of this exists via
the arithmetic Riemann–Roch theorem of Gillet–Soulé [GS92], which provides an equality of
isometry classes of hermitian line bundles. Properly interpreted, this establishes a link between
the BCOV invariant and a metric evaluation of (1.2).

A more detailed treatment of the formulation of the conjecture is given in Section 6, and
examples related to the existing literature are also discussed. In fact, we focus on mirror families
with a strong degeneration property formalized by Deligne in [Del], and expressed as a Hodge–
Tate condition on the limiting Hodge structures of all the cohomology groups. In this case, from
general principles in the theory of degenerations of Hodge structures, we can indeed construct
natural trivializations of the line bundles in (1.2).

1.3. Main results. In this subsection we discuss the framework and statements of our results.
For Calabi–Yau hypersurfaces in projective space, our main theorem settles the BCOV conjecture
and its refinement.

Let X be a Calabi–Yau hypersurface in Pn
C

, with n ≥ 4. Its complexified Kähler cone is one-
dimensional, induced by restriction from that of the ambient projective space. The mirror family
f : Z →U can be realized using a crepant resolution of the quotient of the Dwork pencil

(1.3) xn+1
0 + . . .+xn+1

n − (n +1)ψx0 . . . xn = 0, ψ ∈U =C\µn+1,

by the subgroup of GLn+1(C) given by G = {
g · (x0, . . . , xn) = (ξ0x0, . . . ,ξn xn),ξn+1

i = 1,
∏
ξi = 1

}
.

Moreover, f : Z → U can be naturally extended across µn+1 to a degeneration with ordinary
double point singularities, sometimes referred to as a conifold degeneration.

The monodromy around ψ =∞ is maximally unipotent and the properties of the limiting
Hodge structure can be used to define a natural flag of homology cycles. Using this we can
produce natural holomorphic trivializations η̃k , in a neighborhood ofψ=∞, of the determinants
of the primitive Hodge bundles det(Rk f∗Ωn−1−k

Z /U )prim.3 These holomorphic trivializations have
unipotent lower triangular period matrices. These sections have natural L2 norms given by

Hodge theory. The product ⊗n−1
k=0η̃

(n−1−k)(−1)n−1

k is the essential building block of a natural frame
η̃BCOV of λBCOV(Z /U ).

Finally, let F A
1 (τ(ψ)) be the generating series defined as in (1.1), for a general Calabi–Yau

hypersurface X ⊂Pn
C

. Here ψ 7→ τ(ψ) is the mirror map. Then our main result (Theorem 5.9 and
Theorem 6.13) can be stated as follows: 4

Main Theorem. Let n ≥ 4. Consider a Calabi–Yau hypersurface X ⊂ Pn
C

and the mirror family
f : Z →U above.

3The primitive Hodge bundle (Rk f∗Ωn−1−k
Z /U )prim is actually of rank one if 2k 6= n −1.

4To facilitate the comparison with the BCOV conjecture, notice that X has now dimension n −1 instead of n.
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(1) In a neighborhood of infinity, the BCOV invariant of Zψ factors as

τBCOV(Zψ) =C
∣∣exp

(
(−1)n−1F B

1 (ψ)
)∣∣4

‖η̃0‖χ(Zψ)/12

L2

‖η̃BCOV‖L2

2

,

where F B
1 (ψ) is a multivalued holomorphic function with F B

1 (ψ) = F A
1 (τ(ψ)) as formal

series in ψ, and C is a positive constant;
(2) Up to a constant, the refined BCOV conjecture at genus one is true for X and its mirror

family, with the choices of trivializing sections η̃BCOV and η̃0.

Actually, the theorem also holds in the case of cubic curves (as follows from §1.5) and quartic
surfaces. We also show, more generally, in Proposition 6.14 that the refined BCOV conjecture
holds, up to a constant, for K 3 surfaces.

The first part of the theorem extends to arbitrary dimensions previous work of Fang–Lu–
Yoshikawa [FLY08, Thm. 1.3] in dimension 3. In their approach, all the Hodge bundles have
geometric meaning in terms of Weil–Petersson geometry and Kuranishi families. The lack thereof
is an additional complication in our setting.

To our knowledge, our theorem is the first complete example of higher dimensional mirror
symmetry, of BCOV type at genus one, established in the mathematics literature. It confirms
various instances that had informally been utilized for computational purposes, e.g. [KP08, Sec.
6] in dimension 4.

We remark that there is an alternative approach to the BCOV theory, in arbitrary genera,
provided by Costello and Li, described in their preprint [CL12]. It would be interesting to
compare the results in this article with their program.

1.4. Overview of proof of the main theorem.

Arithmetic Riemann–Roch. In the algebro-geometric setting, the arithmetic Riemann–Roch
theorem from Arakelov theory allows us to compute the BCOV invariant of a family of Calabi–
Yau varieties in terms of L2 norms of auxiliary sections of Hodge bundles. This bypasses some
arguments in former approaches, such as [FLY08], based on the holomorphic anomaly equation
(cf. [EFiMM21, Proposition 5.9]). It determines the BCOV invariant up to a meromorphic
function, in fact a rational function.5 The divisor of this rational function is encapsulated in
the asymptotics of the L2 norms and the BCOV invariant. In the special case when the base
is a Zariski open set of P1

C
, as for the Dwork pencil (1.3) and the mirror family, this divisor is

determined by all but one point. Hence so is the function itself, up to constant. The arithmetic
Riemann–Roch theorem simultaneously allows us to establish the existence of an isomorphism
GRR as in (1.2).

Hodge bundles of the mirror family. The construction of the auxiliary sections is first of all based
on a comparison of the Hodge bundles of the mirror family with the G-invariant part of the
Hodge bundles on the Dwork pencil (1.3), explained in Section 3. Using the residue method of
Griffiths we construct algebraic sections of the latter. These are then transported into sections
ηk of the Hodge bundles of the crepant resolution, i.e. the mirror family. This leads us to a
systematic geometric study of these sections in connection with Deligne extensions and limiting
Hodge structures at various key points, notably at µn+1 where ordinary double point singularities

5This rational function compares to the so-called holomorphic ambiguity in the physics literature.
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arise. We rely heavily on knowledge of the Yukawa coupling and our previous work in [EFiMM21,
Sec. 2] on logarithmic Hodge bundles and semi-stable reduction. The arguments are elaborated
in Section 4.

Asymptotics of L2 norms and the BCOV invariant. The above arithmetic Riemann-Roch reduc-
tion leads us to study the norm of the auxiliary sections outside of the maximally unipotent
monodromy point, enabling us to focus on ordinary double points. Applying our previous result
[EFiMM21, Thm. 4.4] to the auxiliary sections, we find that the behaviour of their L2 norms is
expressed in terms of monodromy eigenvalues, and the possible zeros or poles as determined
by the geometric considerations of the preceding paragraph. The monodromy is characterized
by the Picard–Lefschetz theorem. As for the asymptotics for the BCOV invariant, they were
already accomplished in [EFiMM21, Thm. B]. This endeavor results in Theorem 5.1, which is a
description of the rational function occurring in the arithmetic Riemann–Roch theorem.

Connection to enumerative geometry. The BCOV conjecture suggests that we need to study the
BCOV invariant close toψ=∞. However, the formula in Theorem 5.1 is not adapted to the mirror
symmetry setting, for example the sections ηk do not make any reference to H n−1

lim . We proceed
to normalize the ηk by dividing by holomorphic periods, for a fixed basis of the weight filtration
on the homology (Hn−1)lim, to obtain the sections η̃k of the main theorem. Rephrasing Theorem
5.1 with these sections, we thus arrive at an expression for the F B

1 in the theorem. Combined with
results of Zinger [Zin08, Zin09], this yields the relation to the generating series of Gromov–Witten
invariants in the mirror coordinate. Lastly, the refined BCOV conjecture is deduced in this case
through a reinterpretation of the BCOV invariant and the arithmetic Riemann–Roch theorem.

1.5. Applications to Kronecker limit formulas.

Classical first Kronecker limit formula. The simplest Calabi–Yau varieties are elliptic curves,
which can conveniently be presented as C/(Z+ τZ), for τ in the Poincaré upper half-plane.
The generating series (1.1) of Gromov–Witten invariants is then given by − 1

24 log∆(τ), where
∆(τ) = q

∏
(1−qn)24 and q = e2πiτ. The corresponding function F B

1 is computed as exp(ζ′τ(0)),
where

ζτ(s) = (2π)−2s
∑

(m,n)6=(0,0)

(Imτ)s

|m +nτ|2s
.

The BCOV conjecture at genus one is deduced from the equality

(1.4) exp(−ζ′τ(0)) = 1

(2π)2
Im(τ)|∆(τ)|1/6.

This is a formulation of the first Kronecker limit formula, see e.g. [Yos99, Intro.]. In the mirror
symmetry interpretation, the correspondence τ 7→ q is the (inverse) mirror map. Equation (1.4)
can be recovered from a standard application of the arithmetic Riemann–Roch theorem. In this
vein, we will interpret all results of this shape as generalizations of the Kronecker limit formula.
This includes the Theorem 5.1 cited above, as well as a Theorem 2.6 for Calabi–Yau hypersurfaces
in Fano manifolds.
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Chowla–Selberg formula. While being applicable to algebraic varieties overC, the Riemann–Roch
theorem in Arakelov geometry has the further advantage of providing arithmetic information
when the varieties are defined overQ. The arithmetic Riemann–Roch theorem is suited to evalu-
ating the BCOV invariant of certain arithmetically defined Calabi–Yau varieties with additional
automorphisms. As an example, for the special fibre Z0 of our mirror family (1.3), Theorem 7.2
computes the BCOV invariant as a product of special values of the Γ function. This is reminiscent
of the Chowla–Selberg theorem [SC67], which derives from (1.4) an expression of the periods of
a CM elliptic curve as a product of special Γ values. Assuming deep conjectures of Gross–Deligne
[Gro78], we would be able to write any BCOV invariant of a CM Calabi–Yau manifold in such
terms.

Acknowledgements. The authors extend their heartfelt gratitude to Ken-Ichi Yoshikawa, for
generously sharing his ideas and insights into BCOV invariants. Special thanks are also extended
to Nicholas Shepherd–Barron, who explained Proposition 3.1 to us and allowed us to include
its proof in the article. We thank the referee for the diligent reading and criticism of the article.
It in particular helped us to write and expand Section 6.2, and correct many inaccuracies that
appeared in the first version. The first author thanks Michael Björklund and Hjalmar Rosengren
for discussions relating to Picard–Fuchs equations and their solutions.

2. THE BCOV INVARIANT AND THE ARITHMETIC RIEMANN–ROCH THEOREM

In this section we describe a general method to express the BCOV invariant of a family of
Calabi–Yau varieties in terms of L2 norms of rational sections of determinants of Hodge bundles.
The approach is based on the arithmetic Riemann–Roch theorem. As an example of application,
we consider the case of the universal family of Calabi–Yau hypersurfaces in the projective space.

2.1. Kähler manifolds and L2 norms. Let X be a compact complex manifold. In this article, a
hermitian metric on X means a smooth hermitian metric on the holomorphic vector bundle TX .
Let h be a hermitian metric on X . The Arakelov theoretic Kähler form attached to h is given in
local holomorphic coordinates by

(2.1) ω= i

2π

∑
j ,k

h

(
∂

∂z j
,
∂

∂zk

)
d z j ∧d zk .

We assume that the complex hermitian manifold (X ,h) is Kähler, that is the differential form
ω is closed. The hermitian metric h induces hermitian metrics on the C ∞ vector bundles of
differential forms of type (p, q), that we still denote h. Then, the spaces Ap,q (X ) of global sections,
inherit a L2 hermitian inner product

(2.2) hL2 (α,β) =
∫

X
h(α,β)

ωn

n!
.

The coherent cohomology groups H q (X ,Ωp
X ) can be computed as Dolbeault cohomology, that

in turn can be computed in Ap,q (X ) by taking ∂-harmonic representatives. Via this identification,
H q (X ,Ωp

X ) inherits a L2 inner product. Similarly, the hermitian metric h also induces hermit-
ian metrics on the vector bundles and spaces of complex differential forms of degree k. The
complex de Rham cohomology H k (X ,C) has an induced L2 inner product by taking d-harmonic
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representatives. The canonical Hodge decomposition

H k (X ,C) '
⊥⊕

p,q
H q (X ,Ωp

X )

is an isometry for the L2 metrics.

2.2. The BCOV invariant. We briefly recall the construction of the BCOV invariant [EFiMM18,
Sec. 5]. Let X be a Calabi–Yau manifold of dimension n. Fix a Kähler metric h on X , with Kähler
form ω as in (2.1). Let T (Ωp

X ,ω) be the holomorphic analytic torsion of the vector bundle Ωp
X of

holomorphc differential p-forms endowed with the metric induced by h, and with respect to the
Kähler form ω on X . The BCOV torsion of (X ,ω) is

T (X ,ω) = ∏
0≤p≤n

T (Ωp
X ,ω)(−1)p p .

Let∆p,q

∂
be the Dolbeault Laplacian acting on Ap,q (X ), and det∆p,q

∂
its ζ-regularized determinant

(excluding the zero eigenvalue). Unraveling the definition of holomorphic analytic torsion, we
find for the BCOV torsion

T (X ,ω) = ∏
0≤p,q≤n

(det∆p,q

∂
)(−1)p+q pq .

It depends on the choice of the Kähler metric. A suitable normalization makes it independent of
choices. For this purpose, we introduce two real valued quantities. For the first one, let η be a
basis of H 0(X ,KX ), and define as in [FLY08, Sec. 4]

(2.3) A(X ,ω) = exp

(
− 1

12

∫
X

(logϕ)cn(TX ,h)

)
, with ϕ= i n2

η∧η
‖η‖2

L2

n!

(2πω)n
.

For the second one, we consider the largest torsion free quotient of the cohomology groups
H k (X ,Z), denoted by H k (X ,Z)nt. These are lattices in the real cohomology groups H k (X ,R). The
latter have Euclidean structures induced from the L2 inner products on the H k (X ,C). We define
volL2 (H k (X ,Z),ω) to be the square of the covolume of the lattice H k (X ,Z)nt with respect to this
Euclidean structure, and we put

(2.4) B(X ,ω) = ∏
0≤k≤2n

volL2 (H k (X ,Z),ω)(−1)k+1k/2.

The BCOV invariant of X is then defined to be

(2.5) τBCOV(X ) = A(X ,ω)

B(X ,ω)
T (X ,ω) ∈R>0.

The BCOV invariant depends only on the complex structure of X [EFiMM21, Prop. 5.8]. The
definition (2.5) differs from that of [EFiMM21, Def. 5.7] by a factor (2π)n2χ(X )/2, due to the
different choice of normalization of the L2 metric:

〈α,β〉 =
∫

X
h(α,β)

(2πω)n

n!
.
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2.3. The arithmetic Riemann–Roch theorem. In this subsection, we work over an arithmetic
ring. This means an excellent regular domain A together with a finite set Σ of embeddings
σ : A ,→C, closed under complex conjugation. For example, A could be a number field with the
set of all its complex embeddings, or the complex field C. Denote by K the field of fractions of A.

Let X be an arithmetic variety, i.e. a regular, integral, flat and quasi-projective scheme over
A. For every embedding σ : A ,→ C, the base change Xσ = X ×A,σC is a quasi-projective and
smooth complex variety, whose associated analytic space X an

σ is therefore a quasi-projective
complex manifold. It is convenient to define X an as the disjoint union of the X an

σ , indexed by
σ. For instance, when A is a number field, then X an is the complex analytic space associated to
X as an arithmetic variety over Q. Differential geometric objects on X an such as line bundles,
differential forms, metrics, etc. may equivalently be seen as collections of corresponding objects
on the X an

σ . The complex conjugation induces an anti-holomorphic involution on X an, and it
is customary in Arakelov geometry to impose some compatibility of the analytic data with this
action. Let us now recall the definitions of the arithmetic Picard and first Chow groups of X .

Definition 2.1. A smooth hermitian line bundle on X consists in a pair (L,h), where

• L is a line bundle on X .
• h is a smooth hermitian metric on the holomorphic line bundle Lan on X an deduced from L,

invariant under the action of the complex conjugation. Hence, h is a conjugation invariant
collection {hσ}σ : A→C, where hσ is a smooth hermitian metric on the holomorphic line
bundle Lan

σ on X an
σ deduced from L by base change and analytification.

The set of isomorphism classes of hermitian line bundles (L,h), with the natural tensor product
operation, is a commutative group denoted by P̂ic(X ) and called the arithmetic Picard group of X .

Definition 2.2. The first arithmetic Chow group ĈH
1
(X ) of X is the commutative group

• generated by arithmetic divisors, i.e. couples (D, gD ), where D is a Weil divisor on X and
gD is a Green current for the divisor Dan, compatible with complex conjugation. Hence,
by definition gD is a degree 0 current on X an that is a dd c -potential for the current of
integration δDan

dd c gD +δDan = [ωD ],

up to some smooth differential (1,1) form ωD on X an.
• with relations

(
div(φ), [− log |φ|2]

)
, for non-zero rational functions φ on X .

The arithmetic Picard and first Chow groups are related via the first arithmetic Chern class

ĉ1 : P̂ic(X ) → ĈH
1
(X ),

which maps a hermitian line bundle (L,h) to the class of the arithmetic divisor
(
div(`), [− log‖`‖2

h]
)
,

where ` is any non-zero rational section of L. This is in fact an isomorphism. We refer the reader
to [GS90b, Sec. 2] for a complete discussion.

More generally, Gillet–Soulé developed a theory of arithmetic cycles and Chow rings [GS90a],
an arithmetic K -theory and characteristic classes [GS90b, GS90c], and an arithmetic Riemann–

Roch theorem [GS92]. While for the comprehension of the theorem below only ĈH
1
, P̂ic and ĉ1

are needed, the proof uses all this background, for which we refer to the above references.
Let now f : X → S be a smooth projective morphism of arithmetic varieties of relative dimen-

sion n, with generic fiber X∞. To simplify the exposition, we assume that S → Spec A is surjective
and has geometrically connected fibers. In particular, that San

σ is connected for every embedding
9



σ. More importantly, we suppose that the fibers Xs are Calabi–Yau, hence they satisfy KXs =OXs .
We define the BCOV line bundle on S as the determinant of cohomology of the virtual vector
bundle

∑
p (−1)p pΩp

X /S , that is, in additive notation for the Picard group of S

(2.6) λBCOV(X /S) =
n∑

p=0
(−1)p pλ(Ωp

X /S) = ∑
p,q

(−1)p+q p detRq f∗Ω
p
X /S .

If there is no possible ambiguity, we will sometimes write λBCOV instead of λBCOV(X /S).
For the following statement, we fix an auxiliary conjugation invariant Kähler metric h on

TX an . We denote by ω the associated Kähler form, normalized according to the conventions in
Arakelov theory as in (2.1). We assume that the restriction of ω to fibers (still denoted by ω) has
rational cohomology class. All the L2 metrics below are computed with respect to ω as in (2.2).
Depending on the Kähler metric, the line bundle λBCOV carries a Quillen metric hQ

hQ,s = T (Xs ,ω) ·hL2,s .

Following [EFiMM18, Def. 4.1] and [EFiMM21, Def. 5.2], the Quillen-BCOV metric on λBCOV is
defined by multiplying hQ by the correcting factor A in (2.3): for every s ∈ San, we put

hQ,BCOV,s = A(Xs ,ω) ·hQ,s .

It is shown in loc. cit. that the Quillen-BCOV is actually a smooth hermitian metric, independent
of the choice of ω. Besides, according to [EFiMM18, Def. 5.4] one defines the L2-BCOV metric on
λBCOV by

(2.7) hL2,BCOV,s = B(Xs ,ω) ·hL2,s ,

where hL2 stands for the combination of L2-metrics on the Hodge bundles and B was introduced
in (2.4). In loc. cit. we showed that the function s 7→ B(Xs ,ω) is actually locally constant and
that hL2,BCOV is a smooth hermitian metric, independent of the choice of ω. Notice that the BCOV
invariant defined in (2.5) can then be written as the quotient of the Quillen-BCOV and L2-BCOV
metrics:

(2.8) τBCOV(Xs) = hQ,BCOV,s

hL2,BCOV,s
.

Theorem 2.3. Under the above assumptions, there is an equality in ĈH
1
(S)Q = ĈH

1
(S)⊗Q

(2.9) ĉ1(λBCOV,hQ,BCOV) = χ(X∞)

12
ĉ1( f∗KX /S ,hL2 ).

Hence, for any complex embedding σ, any rational section η of f∗KX /S , any rational section ηp,q

of detRq f∗Ω
p
X /S , we have an equality of functions on San

σ

(2.10) logτBCOV,σ = log |∆|2σ+
χ(X∞)

12
log‖η‖2

L2,σ−
∑

0≤p,q≤n
(−1)p+q p log‖ηp,q‖2

L2,σ+ logCσ,

where:

• ∆ ∈ K (S)×⊗ZQ.
• Cσ ∈πrQ>0, where r = 1

2

∑
(−1)k+1k2bk and bk is the k-th Betti number of X∞.

Proof. The proof is a routine application of the arithmetic Riemann–Roch theorem of Gillet–
Soulé [GS92, Thm. 7]. We give the details for the convenience of the reader. Consider the virtual
vector bundle

∑
(−1)p pΩp

X /S , with virtual hermitian structure deduced from the metric h, and
10



denoted h•. Its determinant of cohomology λBCOV carries the Quillen metric hQ. The theorem of

Gillet–Soulé provides an equality in ĈH
1
(S)Q

ĉ1(λBCOV,hQ) = f∗
(
ĉh(

∑
(−1)p pΩp

X /S),h•) T̂d(TX /S ,h)
)(1)

−a
(
ch(

∑
(−1)p pΩp

X an/San )Td(TX an/San )R(TX an/San )
)(1)

= 1

12
f∗

(
ĉ1(KX /S ,h∗) ĉn(TX /S ,h)

)
,(2.11)

where h∗ = (deth)−1 is the hermitian metric on KX /S induced from h. Notice that the topological
factor containing the R-genus in loc. cit. vanishes in our situation, since

ch
(∑

(−1)p pΩp
X an/San

)
Td(TX an/San ) =−cn−1 + n

2
cn − 1

12
c1cn +higher degree terms

and R has only odd degree terms and c1(TX an/San) = 0. Now, the evaluation map f ∗ f∗KX /S →
KX /S is an isomorphism, but it is in general not an isometry if we equip f∗KX /S with the L2

metric and KX /S with the metric h∗. Comparing both metrics yields a relation in ĈH
1
(X )

(2.12) ĉ1(KX /S ,h∗) = f ∗ ĉ1( f∗KX /S ,hL2 )+ [(0,− logϕ)].

Here ϕ is the smooth function on X an given by

ϕ= i n2
η∧η

‖η‖2
L2

n!

(2πω)n
,

where η denotes a local trivialization of f∗KX an/San , thought of as a section of KX an/San via the
evaluation map. Multiplying (2.12) by ĉn(TX /S ,h) and applying f∗ and the projection formula
for arithmetic Chow groups, we find

f∗
(
ĉ1(KX /S ,h∗) ĉn(TX /S ,h)

)= f∗
(

f ∗ ĉ1( f∗KX /S ,hL2 ) ĉn(TX /S ,h)
)+ f∗

(
[(0,− logϕ)] ĉn(TX /S ,h)

)
=χ(X∞) ĉ1( f∗KX /S ,hL2 )+

[(
0,−

∫
X an/San

(logϕ)cn(TX an/San ,h)

)]
,

where cn(TX /S ,h) is the n-th Chern–Weil differential form of (TX an/San ,h). Together with (2.11),
this shows that the metric

hQ,BCOV = hQ ·exp

(
− 1

12

∫
X an/San

(logϕ)cn(TX an/San ,h)

)
indeed satisfies (2.9).

The outcome (2.10) is a translation of the meaning of the equality (2.9) in ĈH
1

(S)Q, in terms of
the constructions (2.8) and (2.7).

By [EFiMM21, Prop. 4.2] the normalizing factor B is constant on each connected manifold San
σ

and would be rational if the L2 inner products on cohomology groups were computed with h/2π.
With this understood, we find

(2.13) volL2 (H k (Xs ,Z),ω) ∈ (2π)−kbkQ×
>0

for any s ∈ San
σ . Together with the definition of B (2.4), this is responsible for the constants Cσ. �

Remark 2.4. (1) The use of the arithmetic Riemann–Roch theorem requires an algebraic
setting, but directly yields the existence of the rational function ∆. By contrast, previous
techniques (cf. e.g. [FLY08, Sections 7 & 10]) rely on subtle integrability estimates of the
functions in (2.10), in order to ensure that the a priori pluriharmonic function log |∆|2σ

11



is indeed the logarithm of a rational function. The arithmetic Riemann–Roch theorem
further provides the field of definition of ∆ and the constants Cσ.

(2) In the case of a Calabi–Yau 3-fold defined over a number field, similar computations were
done by Maillot–Rössler [MR12, Sec. 2].

2.4. Kronecker limit formulas for families of Calabi–Yau hypersurfaces. In this section we
give an example of use of Theorem 2.3 and we determine the BCOV invariant for families of
Calabi–Yau hypersurfaces in Fano manifolds. The argument provides a simplified model for the
later computation of the BCOV invariant of the mirror family of Calabi–Yau hypersurfaces.

Let V be a complex Fano manifold, with very ample anti-canonical bundle −KV . We consider
the anti-canonical embedding of V into | −KV | = P(H 0(V ,−KV )) ' PN , whose smooth hyper-
plane sections are Calabi–Yau manifolds. The dual projective space P̌=P(H 0(V ,−KV )∨) ' P̌N

parametrizes hyperplane sections, and contains an irreducible subvariety ∆⊆ P̌ which corre-
sponds to singular such sections [GKZ08, Chap. 1, Prop. 1.3]. We assume that ∆ is a hypersurface
in P̌. This is in general not true, and a necessary condition is proven in [GKZ08, Chap. 1, Cor. 1.2].
Denote by U the quasi-projective complement U := P̌ \∆. Denote by f : X → P̌ the universal
family of hyperplane sections. Therefore f is smooth on U , and the corresponding BCOV line
bundle λBCOV is thus defined on U .

Lemma 2.5. For some positive integer m, the line bundles ( f∗KX /U )⊗m and λ⊗m
BCOV have trivializing

sections. These are unique up to constants.

Proof. A standard computation shows that Pic(U ) = Z/deg∆, providing the first claim of the
lemma. For the second assertion, for any of the line bundles under consideration, let θ and θ′ be
two trivializations on U . Therefore, θ = hθ′ for some invertible function h on U . The previous
description of Pic(U ) shows that the divisor of h, as a rational function on P̌, is supported on
∆. As ∆ is irreducible, in the projective space P̌ this is only possible if the divisor vanishes. We
conclude that h is necessarily constant. �

For the following statement, we need a choice of auxiliary Kähler metric on X (restricted to
U ), whose Arakelov theoretic Kähler form has fiberwise rational cohomology class. We compute
L2 norms on Hodge bundles and on λBCOV with respect to this choice.

Theorem 2.6. For some integer m > 0 as in the lemma, let β be a trivialization of λ⊗m
BCOV and η a

trivialization of ( f∗KX /U )⊗m . Then there is a global constant C such that, for any Calabi–Yau
hyperplane section XH =V ∩H, we have

τBCOV(XH ) =C‖η‖χ/6m
L2 ‖β‖−2/m

L2 .

Proof. We apply Theorem 2.3 to f : X →U (over C), which in terms of β and η becomes

m logτBCOV(XH ) = log |g |2 + χ

12
log‖η‖2

L2 − log‖β‖2
L2 + logC

for some regular invertible function g on U and some constant C . By construction, as a rational
function on P̌, g must have its zeros or poles along ∆. Since ∆ is irreducible this forces g to be
constant. �

Remark 2.7. (1) When V is a toric variety with very ample anti-canonical class, all of the
constructions can in fact be done over the rational numbers. The sections β and η can be
taken to be defined over Q, and unique up to a rational number. With this choice, the
constant C takes the form stated in Theorem 2.3.

12



(2) In the case when the discriminant ∆ has higher codimension, we have Pic(U ) ' Pic(P̌). In
particular, λBCOV uniquely extends to a line bundle P̌. The existence of the canonical (up
to constant) trivializations β and η is no longer true. However, one can propose a variant
of the theorem where β and η are trivializations outside a chosen ample divisor in P̌.

3. THE DWORK AND MIRROR FAMILIES, AND THEIR HODGE BUNDLES

The main object of interest of this section is the mirror family of Calabi–Yau hypersurfaces.
It is obtained from the Dwork pencil of Calabi–Yau varieties, by first modding out by a group
of generic symmetries, and then by performing a crepant resolution. We study the structure of
the Hodge bundles of the mirror family. In even dimension, we show that the primitive Hodge
bundles in the middle degree can be decomposed in two direct factors. One will be seen to be
constant in Section 4, and the other one is called the minimal part. For the latter, we construct
explicit trivializations via Griffiths’ residue method.

Throughout, our arguments combine analytic and algebraic aspects of the same geometric
objects. Except when there is a risk of confusion, we won’t make any distinction in the notations
between an algebro-geometric object and its analytification. Likewise, we won’t specify the field
of definition of various algebraic varieties and schemes. However, we will precisely indicate the
category where the statements take place.

3.1. The geometry of the Dwork family. We review general facts on the Dwork pencil of Calabi–
Yau hypersurfaces, and the construction of an equivariant normal crossings model. Initially, we
work with algebraic varieties over the field of complex numbers. Rationality refinements will be
made along the way.

Let n ≥ 4 be an integer. The Dwork pencil X →P1 is defined by the hypersurface of Pn ×P1 of
equation

Fψ(x0, . . . , xn) :=
n∑

j=0
xn+1

j − (n +1)ψx0 . . . xn = 0, [x0 : x1 : . . . : xn] ∈Pn , ψ ∈P1.

The smooth fibers of this family are Calabi–Yau manifolds of dimension n−1. The singular fibers
are:

• fiber at ψ=∞, given by the divisor with normal crossings x0 · . . . · xn = 0.
• the fibers where ψn+1 = 1. These fibers have ordinary double point singularities. The

singular points have projective coordinates (x0, . . . , xn) with x0 = 1 and xn+1
j = 1 for all

j ≥ 1, and
∏

j x j =ψ−1.

Denote by µn+1 the group of the (n +1)-th roots of unity. Let K be the kernel of the multiplica-
tion map µn+1

n+1 → µn+1. Let also ∆ be the diagonal embedding of µn+1 in K and G := K /∆. The
group G acts naturally on the fibers Xψ of X →P1 by multiplication of the projective coordinates.

The above constructions can be realized as schemes overQ. Indeed, Fψ is already defined over
Q, and the groups K , ∆ are finite algebraic groups overQ, and hence so does the quotient G . The
action of G on Fψ is defined overQ as well, as one can see by examining the compatibility with
the action of Aut(C/Q) on the C points of X , or alternatively by writing the co-action at the level
of algebras.

The following argument was provided to us by Nicholas Shepherd-Barron, whom we warmly
thank for letting us include it in our article.
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Proposition 3.1. The family X →P1 admits a G-equivariant projective normal crossings model
X ′ →P1, with X ′ non-singular, which is semi-stable at ψ=∞ and defined overQ.

Proof. Outside of the singular points there is nothing to modify. The points corresponding to
ordinary double point singularities are provided by the affine equations x0 = 1 and xn+1

j = 1 for
j ≥ 1, and blowing up along the corresponding locus of X provides a normal crossings model.
The locus of ordinary double points is defined overQ and is G-equivariant, and so is thus also
the blowup.

We next consider our family at the point at infinity. Introduce the divisor D0 in Pn given by∑
j xn+1

j = 0 and the divisor D∞ =∑
j H j , where H j is the hyperplane cut out by x j = 0. The axis

of the pencil X → P1 is D0 ∩D∞ and hence X = BlD0∩D∞(Pn). We construct another model
by blowing up Pn in D0 ∩H0 to get X1. Continue to blow up the strict transform of D0 in X1

intersected by the strict transform of H1, and so on. Each such blowup is a blowup in a smooth
center which is G-equivariant. The final result is a G-equivariant X̃ projective manifold, with
an equivariant morphism ν : X̃ → Pn . Denote by D̃0 (resp. D̃∞) the strict transforms of D0

(resp. D∞). By construction they are disjoint, and computation shows that ν∗D0 ∼ D̃0 +∑
Ei

and ν∗(D∞) ∼ D̃∞+∑
Ei , where the Ei denote the strict transforms of the exceptional divisors.

Since D0 −D∞ is the divisor of a rational function, hence linearly equivalent to zero, and D̃∞
is disjoint from D̃0, we find a morphism p : X̃ → P1 such that p−1(∞) = D̃∞ and p−1(0) = D̃0.
This is the searched for semi-stable model at infinity. From the local description we also see that
ν−1(D0 ∩D∞) =∑

Ei which is principal, so that X̃ →P1 factors over X →P1.
All of the above constructions can be defined over Q, and taking them together with the

previous considerations with the ordinary double points provides a model X ′ → P1 as in the
statement of the proposition. �

3.2. The mirror family. The first step towards the construction of a mirror family is the forma-
tion of the quotient Y =X /G . As the action of G on X is defined overQ, the space Y and the
projection map Y →P1 are also. The following lemma shows that except for the fiber at infinity,
this is a family of singular Calabi–Yau varities with mild singularities.

Lemma 3.2. The total space of the restricted family Y →A1 has rational Gorenstein singularities.
It has a relative canonical line bundle KY /A1 , obtained by descent from KX /A1 .

Proof. To lighten notations, let us write in this proof X and Y for the corresponding restrictions
to A1. The total space X is non-singular, and Y is a quotient of it by the action of a finite
group. Therefore, Y has rational singularities. In particular, it is normal and Cohen–Macaulay.
Consequently, if Y ns is the non-singular locus of Y , and j : Y ns ,→Y the open immersion, then
we have a relation between relative dualizing sheaves j∗ωY ns /A1 =ωY /A1 . We will use this below.

Now for the Gorenstein property and the descent claim. Notice that sinceA1 is non-singular,
Y is Gorenstein if, and only if, the fibers of Y →A1 are Gorenstein. We will implicitly confound
both the absolute and relative points of view. We introduce X ◦ the complement of the fixed
locus of G , and X ∗ the smooth locus of X →A1. These are G-invariant open subschemes of X

and constitute an open cover, because the ordinary double points in the fibers of X →A1 are
disjoint from the fixed point locus of G . Then Y ◦ =X ◦/G and Y ∗ =X ∗/G form an open cover
of Y , and it is enough to proceed for each one separately.

Since G acts freely on X ◦, the quotient Y ◦ is non-singular, and is therefore Gorenstein. The
morphism X ◦ →Y ◦ is étale, and hence KX ◦/A1 descends to KY ◦/A1 .
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For Y ∗, we observe that G preserves a relative holomorphic volume form on X ∗. Indeed, in
affine coordinates zk = xk

x j
on the open set x j 6= 0, and where ∂Fψ/∂zi 6= 0, the expression

(3.1) θ0 =
(−1)i−1d z0 ∧ . . . d̂ zi ∧ . . .∧ d̂ z j ∧ . . .∧d zn

∂Fψ/∂zi

∣∣∣
Fψ=0

provides such an invariant relative volume form. This entails that KX ∗/A1 descends to an invert-
ible sheaf K on Y ∗. Now, the singular locus of Y ∗ is contained in the image of the fixed point
set of G on X ∗. We infer that K is an invertible extension of the relative canonical bundle of
(Y ∗)ns →A1. But Y ∗ is normal so that K ' j∗ j∗K . Then, as mentioned at the beginning of the
proof, j∗ωY ns /A1 =ωY /A1 and we conclude, since K is also an extension of ωY ns /A1 . �

Because the BCOV invariant has not been fully developed for Calabi–Yau orbifolds (see never-
theless [Yos17] for some three-dimensional cases), we need crepant resolutions of the varieties
Yψ. This needs to be done in families, so that the results of §2.3 apply. The family of crepant
resolutions Z →P1 that we exhibit will be called the mirror family, although it is not unique. We
also have to address the rationality of the construction.

Lemma 3.3. There is a projective birational morphism Z →Y of algebraic varieties overQ, such
that:

(1) Z is smooth.
(2) If ψn+1 = 1, the fiber Zψ has a single ordinary double point singularity.
(3) If ψ=∞, Z∞ is a simple normal crossings divisor in Z .
(4) Otherwise, Zψ→ Yψ is a crepant resolution of singularities. In particular, Zψ is a smooth

Calabi–Yau variety.
(5) The smooth complex fibers Zψ are mirror to the Xψ, in that their Hodge numbers satisfy

hp,q (Zψ) = hn−1−p,q (Xψ). In particular, the smooth Zψ are Calabi–Yau with χ(Zψ) =
(−1)n−1χ(Xψ).

Proof. The proof of (1)–(4) is based on [DHZ98, Sec. 8 (v)], [DHZ06] and [BG14, Prop. 3.1],
together with Hironaka’s resolution of singularities. We recall the strategy, in order to justify the
existence of a model overQ.

Introduce W =Pn/G . We claim this is a split toric variety overQ. First of all, it can be realized
as the hypersurface in Pn+1

Q
of equation

W : yn+1
0 =

n+1∏
j=1

y j .

Second, the associated torus is split overQ. It is actually given by Gm Q×T, where T is the kernel
of the multiplication map Gn+1

m Q
→Gm Q. Finally, the action of the torus on W is defined overQ:(

(t0, t1, . . . , tn+1), (y0, y1, . . . , yn+1)
) 7→ (t0 y0, t0t1 y1, . . . , t0tn+1 yn+1).

Once we know that W is a split toric variety overQ, with same equation as in [DHZ06, Application
5.5], the toric and crepant projective resolution exhibited in loc. cit. automatically works overQ
as well. We write W̃ for this resolution of W .

We now consider Y as a closed integralQ-subscheme of W ×P1. Let Ỹ be the strict transform
of Y in W̃ ×P1. By [DHZ98, Sec. 8 (v)], the fibers of Ỹ at ψ ∈ C \µn+1 are projective crepant
resolutions of the fibers Yψ. In particular, Ỹ is smooth over C \µn+1, and in turn this implies
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smoothness over the complement U of the closed subscheme V (ψn+1 −1) of A1
Q

. Necessarily,

the fibers of Ỹ over U have trivial canonical bundle as well. For the fibers at ψn+1 = 1, the claim
of the lemma requires two observations:

• the ordinary double points of Xψ are permuted freely and transitively by G , and get
identified to a single point in the quotient Yψ. This entails that the total space Y is
non-singular in a neighborhood of these points, and that they remain ordinary double
points of Y →P1.

• the center of the toric resolution is disjoint from the ordinary double points, since it
is contained in the locus of Pn/G where two or more projective coordinates vanish.
Therefore, the morphism Ỹ →Y is an isomorphism in a neighborhood of these points.
Finally, on the complement, Ỹψ is a resolution of singularities of Yψ. Indeed, this is a
local question in a neighborhood of the fixed points of G , so that the above references
[DHZ98, DHZ06] still apply.

Finally, Ỹ is by construction smooth on the complement of the fiber ψ=∞. After a resolution of
singularities given by blowups with smooth centers in Ỹ∞ (defined overQ), we obtain a smooth
algebraic variety Z over Q, such that Z∞ is a simple normal crossings divisor in Z . This sets
items (1)–(4).

For (5), we refer for instance to [BD96, Thm. 6.9, Conj. 7.5 & Ex. 8.7]. This is specific to the
Dwork pencil. More generally, we can cite work of Yasuda, who proves an invariance property
of orbifold Hodge structures (and hence orbifold Hodge numbers) under crepant resolutions,
for quotient Gorenstein singularities [Yas04, Thm. 1.5]. Orbifold Hodge numbers coincide with
stringy Hodge numbers of global (finite) quotient orbifolds, whose underlying group respects
a holomorphic volume form [BD96, Thm. 6.14]. Finally, by [BB96, Thm. 4.15], stringy Hodge
numbers satisfy the expected mirror symmetry property for the mirror pairs constructed by
Batyrev [Bat94]. �

From the proof of Lemma 3.3, we keep the notation U ⊂P1 for the smooth locus of the mirror
family f : Z →P1. For later use, we record the following lemma.

Lemma 3.4. Let hp,q be the rank of the Hodge bundle Rq f∗Ω
p
Z /U . Then:

• hp,q = 1 if p +q = n −1 and p 6= q.
• hp,p =∑p

j=0(−1) j
(n+1

j

)((p+1− j )n+p
n

)+δ2p,n−1.

• hp,q = 0 otherwise.

In particular,

χ(Zψ) = (−1)n−1χ(Xψ) = (−1)n−1
(

(−n)n+1 −1

n +1
+n +1

)
.

Proof. The items are a consequence of the mirror symmetry property for the Hodge numbers in
Lemma 3.3, and the computation of the cohomology of a hypersurface in projective space (cf.
[BD96, Ex. 8.7]). �

Definition 3.5. The point ∞∈ P1 is called the MUM point of the family f : Z → P1. The points
ξ ∈P1 with ξn+1 = 1 are called the ODP points.

The terminology MUM stands for Maximally Unipotent Monodromy, and it will be justified
later in Lemma 4.3. The terminology ODP stands for Ordinary Double Point.
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3.3. Generalities on Hodge bundles. We gather general facts on the Hodge bundles of our
families of Calabi–Yau varieties, summarized in the following diagram:

(3.2) X

ρ
�� h

��

Z

crepant
π
//

f //

Y =X /G
g

%%

P1.

Recall the notation U for the Zariski open subset of P1 where f (resp. h) is smooth. When it
is clear from the context, we will still write X , Y and Z for the total spaces of the fibrations
restricted to U . Otherwise, we add an index U to mean the restriction to U . We let Y ◦ be the
non-singular locus of YU . It is the étale quotient of X ◦, the complement in XU of the fixed point
set of G . They are both open subsets whose complements have codimension ≥ 2.

In this subsection, most of the arguments take place in the complex analytic category.

Hodge bundles in arbitrary degree. Our discussion is based on a minor adaptation of [Ste77, Sec.
1] to the relative setting. First of all, we observe that the higher direct images Rk g∗C are locally
constant sheaves, and actually Rk g∗C' (Rk h∗C)G . Indeed, we have the equality CY = (ρ∗CX )G .
Moreover, since G is finite, so is ρ and taking G-invariants is an exact functor in the category of
sheaves of C[G]-modules. A spectral sequence argument allows us to conclude. Similarly, one
has Rk g∗Q' (Rk h∗Q)G .

Let now Ω̃•
Y /U be the relative holomorphic de Rham complex of Y →U , in the orbifold sense.

It is constructed as follows. If j : Y ◦ ,→YU is the open immersion, then we let Ω̃•
YU

:= j∗Ω•
Y ◦ , and

we derive the relative version Ω̃•
Y /U out of it in the usual manner. An equivalent presentation is

Ω̃•
Y /U = (ρ∗Ω•

X /U )G ,

The complex Ω̃•
Y /U is a resolution of g−1OU . Hence its k-th relative hypercohomology computes

(Rk g∗C)⊗OU , and satisfies

(3.3) Rk g∗Ω̃•
Y /U ' (Rk h∗Ω•

X /U )G ,

compatibly with Rk g∗C' (Rk h∗C)G . It has a Hodge filtration and a Gauss–Manin connection
defined in the usual way, satisfying a relationship analogous to (3.3). Equipped with this extra
structure, Rk g∗Q defines a variation of pure rational Hodge structures of weight k.

In [Ste77, Lemma 1.11], a canonical identification Ω̃•
YU

=π∗Ω•
ZU

is established. It induces a
natural morphism

(3.4) Ω̃•
Y /U −→π∗(Ω•

Z /U ).

The restriction of (3.4) to Y ◦ is given by pulling back differential forms. We derive a natural map

(3.5) (Rk h∗Ω•
X /U )G ' Rk g∗Ω̃•

Y /U −→ Rk f∗Ω•
Z /U ,

which is an injective morphism of variations of pure Hodge structures of weight k, cf. [Ste77,
Cor. 1.5]. It is in particular compatible with restricting to the fibers, and remains injective on

17



those. It can be checked to be compatible with the topologicalQ-structures, and hence we have
an injective morphism of variations of rational Hodge structures over U

(3.6) (Rk h∗Q)G ,→ Rk f∗Q.

Notice that, at this stage, the compatibility of (3.5) with the algebraic geometricQ-structure has
not been addressed. This will be studied in later subsections.

Hodge bundles in the middle degree. In the case k = n−1, considering the isotypical components
of the action of G on Rn−1h∗C, we have a direct sum decomposition,

(3.7) Rn−1h∗C= (Rn−1h∗C)G ⊕EC, where EC =
⊕

χ : G→C×
χ 6≡1

(Rn−1h∗C)χ.

This decomposition is easily seen to be orthogonal for the intersection form on Rn−1h∗C. In
particular, the restriction of the intersection form to (Rn−1h∗C)G is non-degenerate, and Poincaré
duality holds for Rn−1g∗C' (Rn−1h∗C)G . Notice that the orthogonal of (Rn−1h∗Q)G in Rn−1h∗Q
defines a rational structure on EC, and hence (3.7) can be refined rationally.

We next relate the intersection forms of (Rn−1h∗Q)G and Rn−1 f∗Q. Before the first statement
in this direction, we recall from Lemma 3.2 that YU is Gorenstein, and KX /U descends to the
relative canonical bundle KY /U .

Lemma 3.6. (1) Ω̃n−1
Y /U is the relative canonical bundle KY /U .

(2) The natural morphism Rn−1g∗Ω̃•
Y /U −→ Rn−1 f∗Ω•

Z /U induces a commutative diagram

Rq g∗Ω̃
p
Y /U ⊗Rn−1−q g∗Ω̃

n−1−p
Y /U

//

��

Rn−1g∗KY /U

tr

%%

OU

Rq f∗Ω
p
Z /U ⊗Rn−1−q f∗Ω

n−1−p
Z /U

// Rn−1 f∗KZ /U

tr

99

(3) The natural isomorphism Rn−1g∗Ω̃•
Y /U ' (Rn−1h∗Ω•

X /U )G induces a commutative dia-
gram

Rq g∗Ω̃
p
Y /U ⊗Rn−1−q g∗Ω̃

n−1−p
Y /U

//

� _

��

Rn−1g∗KY /U� _

��

tr
// OU

|G|·
��

Rq h∗Ω
p
X /U ⊗Rn−1−q h∗Ω

n−1−p
X /U

// Rn−1h∗KX /U
tr

// OU

Proof. For the first property, we notice that ρ∗KY /U = KX /U , since both coincide outside a
codimension ≥ 2 closed subset and XU is smooth. Then we have the string of equalities

Ω̃n−1
Y /U = (ρ∗KX /U )G = (KY /U ⊗ρ∗OXU )G = KY /U ⊗ (ρ∗OXU )G = KY /U .

For the first diagram, only the commutativity of the triangle requires a justification. For this,
we rely on general facts in duality theory. Our references are stated in the algebraic category.
Corresponding complex analytic properties are obtained by analytification. With this understood,
the commutativity of the triangle is a consequence of the three following facts: i) the transitivity of
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trace maps with respect to composition of morphisms [Har66, Thm. 10.5 (TRA1)]; ii) the crepant
resolution property π∗KY /U = KZ /U and iii) YU has rational singularities, so that Rπ∗OZU =OYU .
The argument is similar for the second diagram. Briefly, one combines: i) the transitivity of trace
maps; ii) the duality ρ∗KXU /YU = HomOYU

(ρ∗OXU ,OYU ) and iii) the trace tr : ρ∗KXU /YU →OYU is
given by ϕ 7→ϕ(1) [Har66, proof of Prop. 6.5], and the composite map

KY /U −→ ρ∗KX /U = KY /U ⊗ρ∗KXU /YU

id⊗ tr−→ KY /U

is the multiplication by |G|. This is clear over Y ◦, since it is the étale quotient of X ◦ by G . It is
then necessarily true everywhere. �

Proposition 3.7. Let Q be the intersection form on Rn−1 f∗Q and Q ′ the intersection form on
Rn−1h∗Q. Then, via the injection (3.6), we have Q = 1

|G|Q
′ on (Rn−1h∗Q)G .

Proof. It is enough to check the relationship after extending the scalars to C, in which case we
can use the Hodge decomposition. The proposition then follows from Lemma 3.6 and the fact
that in the middle degree the intersection form is induced by the cohomological cup product
and the trace map. We notice that in dimension n −1, the topological and complex geometric
trace maps differ by a factor (2πi )n−1, but this is inconsequential for the problem at hand. �

Remark 3.8. (1) In the case of direct images of relative canonical sheaves, the discussion in
the proof of Lemma 3.6 reduces to the chain of isomorphisms of line bundles

(3.8) (h∗KX /U )G ∼−→ g∗KY /U
∼−→ f∗KZ /U .

We leave to the reader to check that these are the natural morphisms already defined in
the algebraic category overQ.

(2) Because of Proposition 3.7, and for the purposes of this article, it is natural to scale the
intersection form on (Rn−1h∗Q)G as 1

|G|Q
′. This will be of minor importance below.

3.4. The Kodaira–Spencer maps and the Yukawa coupling. Recall that for a general variation
of Hodge structures (H ,F •) on a complex manifold X , Griffiths transversality entails that the
Gauss–Manin connection factors as an OX -linear morphism F p /F p+1 → (

F p−1/F p
)⊗Ω1

X . This
is the Kodaira–Spencer map, and in the setting of Rn−1 f∗Ω•

Z /U we also write it in the form

(3.9) KS(q) : TU −→ HomOU (Rq f∗Ω
n−1−q
Z /U ,Rq+1 f∗Ω

n−2−q
Z /U ).

A repeated application of the Kodaira–Spencer maps gives a morphism

(3.10) Y : Symn−1 TU −→ HomOU ( f∗KZ /U ,Rn−1 f∗OZ ) ' ( f∗KZ /U )⊗−2.

We can explicitly evaluate the morphism Y in terms of the sectionsψd/dψ of TU and the section
θ0 of (h∗KX /U )G ' f∗KZ /U (cf. (3.8)) constructed in (3.1). Then the morphism Y identifies with
a rational function on U , denoted Y (ψ). This is the definition of the so-called (unnormalized)
Yukawa coupling.

Working with (Rn−1h∗Ω•
X /U )G instead, one similarly defines a function Ỹ (ψ). Via the mor-

phism (3.5), the functions Ỹ (ψ) and Y (ψ) can be compared. The only subtle point to bear in
mind is the use of Serre duality in the definition of the Yukawa coupling. For Hodge bundles of
complementary bi-degree, Serre duality is induced by the cup-product and the trace morphism.
Hence, an application of Lemma 3.6 shows that Y (ψ) and Ỹ (ψ) are equal up to the order of G .
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With this understood, we can invoke the computation of the Yukawa coupling in [BvS95, Cor.
4.5.6 & Ex. 4.5.7], which summarizes to

(3.11) Y (ψ) =
∫

Xψ

(
θ0 ∧∇n−1

ψd/dψθ0

)
= c

ψn−1

1−ψn+1
,

for some irrelevant constant c 6= 0. To ease the comparison with the expression in loc. cit., we
make the following observations. First, their factor λz is 1/ψn+1. Secondly, their evaluation of Y
amounts to working with the section ψθ0 instead of θ0.

3.5. The middle degree Hodge bundles. We now further compare the middle degree Hodge
bundles of the Dwork pencil h : X →U and that of the mirror f : Z →U , by drawing on specific
features of these families. We introduce primitivity notions for the relative Hodge bundles,
induced by any projective factorization of f and the natural projective embedding of h. Observe
the latter is G-equivariant and defined overQ. We also require the polarization for Z →U to be
defined overQ. Then the primitive Hodge bundles are defined in the algebraic category overQ.

Construction of sections. We begin by constructing explicit sections of the middle degree Hodge
bundles of h : X →U , via Griffiths’ residue method [Gri69].

Our reasoning starts in the complex analytic category. Denote by H = x0 · x1 · . . . · xn and
Ω=∑

(−1)i xi d x0 ∧ . . .∧ d̂ xi ∧ . . .∧d xn ∈ H 0(Pn ,Ωn
Pn (n +1)). For ψ ∈U , the residue along Xψ

θk = resXψ

(
k !H kΩ

F k+1
ψ

)
defines a G-invariant element of H n−1(Xψ), still denoted θk . For k = 0, this indeed agrees with
the holomorphic volume form (3.1). Varying ψ gives us sections of Rn−1h∗Ω•

X /U , also denoted
by θk . The constructed sections are primitive by [Gri69, Thm. 8.3].

From the definition of the sections θk , one can check the following recurrence:

(3.12) ∇d/dψ θk = resXψ

(
∂

∂ψ

(
k !H kΩ

F k+1
ψ

))
= (n +1)θk+1.

Lemma 3.9. (1) For k = 0, . . . ,n −1, we have

θk ∈ F n−1−k H n−1(Xψ)G
prim.

Moreover, the spaces H n−1−k,k (Xψ)G
prim are all one-dimensional and the image of θk in

H n−1−k,k (Xψ)G
prim is a basis for ψ ∈U . In particular, the local system (Rn−1h∗Q)G

prim is of
rank n.

(2) The sections θk trivialize (Rn−1h∗Ω•
X /U )G

prim outside of 0, and are algebraic and defined
overQ.

Proof. For the first item, the spaces H n−1−k,k (Xψ)G
prim are necessarily one-dimensional, which

follows from a computation in the case of Fermat hypersurfaces, see [DMOS82, p. 82, Rmk. 7.5].
For the rest of (1), we use Griffiths’s description of the Hodge filtration of a hypersurface, in terms
of residues of rational forms, reviewed in [Voi07, Chapter 6].

By [Voi07, Thm. 6.10], we indeed have for k = 0, . . . ,n − 1, θk ∈ F n−1−k H n−1(Xψ)G
prim. We

need to verify that the projections of the sections θk onto H n−1−k,k (Xψ)G
prim are everywhere

non-zero on U . The following argument was suggested by the anonymous referee, whom we
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thank for allowing us to include it. A detailed study of Griffiths’ residue map, see e.g. [Voi07,
Corollary 6.12], provides an isomorphism [C[x0, . . . , xn]/J ](n+1)·k → H n−1−k,k (Xψ)prim, where
J denotes the Jacobian ideal of Xψ in Pn and the index (n + 1)k refers to the homogeneous
part of the corresponding degree. Recall the notation H = x0 · . . . · xn . Since C[x0, . . . , xn]G =
C[xn+1

0 , . . . , xn+1
n , H ], we find that[

C[xn+1
0 , . . . , xn+1

n , H ]/JG]
(n+1)·k ' H n−1−k,k (Xψ)G

prim,

where JG = J ∩C[x0, . . . , xn]G . A straightforward computation shows that xn+1
i ≡ ψ

n+1 H modulo
JG , so that in fact

C[xn+1
0 , . . . , xn+1

n , H ]/JG 'C[H ]/JG .

Now the image of θk in H n−1−k,k (Xψ)G
prim corresponds to the image of k !H k in [C[H ]/JG ](n+1)k

through the above isomorphisms, and the latter is a generator of [C[H ]/JG ](n+1)k , hence non-zero.
This, the projection of θk gives a basis of H n−1−k,k (Xψ)G

prim.
For the second item, we just need to address the second half of the statement. We observe that

the section θ0 of (h∗KX /U )G is algebraic and defined overQ. By the algebraic theory of the Gauss–
Manin connection [KO68], we know that the latter preserves the algebraic de Rham cohomology
(Rn−1h∗Ω•

X /U )G
prim, and is defined overQ. Because the vector field d/dψ is algebraic and defined

overQ, the claim follows from the recurrence (3.12). �

Remark 3.10. An alternative approach to the non-vanishing of the projection of the sections θk

onto H n−1−k,k (Xψ)G
prim, is based on the explicit expression of the Yukawa coupling (3.11) and

the realization of the sections θk as iterated Gauss–Manin derivatives via (3.12). If either of θk

have zero projection for some ψ, applying the Kodaira–Spencer map in (3.9) and the recurrence
in (3.12), we see that all the projections of θk ′ with k ′ ≥ k are also zero at ψ. This implies that
the Yukawa coupling, divided by ψn−1 in order to work with the tangent vector d/dψ instead
of ψd/dψ, also has a zero at ψ. But the expression in (3.11) divided by ψn−1 has no zeros on U ,
from which we conclude.

The minimal component of the cohomology. Below we show that the image of the primitive
middle cohomology of the Dwork family under (3.6) is a direct factor of the cohomology of
the mirror. Later in Lemma 4.2 we will see that the complement is in fact irrelevant for most
considerations.

Lemma 3.11. (1) The natural morphism (3.6) induces an injective morphism of variations of
polarized Hodge structures over U an

(3.13) (Rn−1h∗Q)G
prim,→(Rn−1 f∗Q)prim.

(2) The natural morphism

(3.14) (Rn−1h∗Ω•
X /U )G

prim,→(Rn−1 f∗Ω•
Z /U )prim

deduced from (3.13) ⊗ OU an , exists in the algebraic category overQ.

Proof. For the proof of (1), it is enough to show that (3.5) restricts to a map between the primitive
cohomologies. It will automatically be compatible with the polarizations, by Proposition 3.7. See
Remark 3.8 (2) regarding the scaling of the intersection forms. By Lemma 3.9, it suffices to check
that the sections θk of (Rn−1h∗Ω•

X /U )G
prim map into primitive classes. Let θ′k be the image of θk

under (3.5). As (3.5) is compatible with Gauss-Manin connections, the θ′k satisfy the analogous
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recurrence to (3.12). Because f∗KZ /U is primitive and the Gauss–Manin connection preserves
primitive cohomology, we see that the θ′k land in the primitive cohomology.

The claim in (2) is addressed in a similar manner. By Lemma 3.9, we already know that the
sections θk constitute an algebraic trivialization of (Rn−1h∗Ω•

X /U )G
prim, defined overQ. We need

to prove that their images θ′k in (Rn−1 f∗Ω•
Z /U )prim are algebraic and defined overQ as well. This

is the case of θ′0, because the natural isomorphism (h∗KX /U )G ' f∗KZ /U (cf. (3.8)) is algebraic
and defined over Q. In this respect, see Remark 3.8 (1). Because the θ′k satisfy the analogous
recurrence to (3.12), and the Gauss–Manin connection and the vector field d/dψ are algebraic
and defined overQ, we conclude. �

Notice that the image of (Rn−1h∗Q)G
prim under (3.13) is the smallest subvariation of Hodge

structures of Rn−1 f∗Q whose Hodge filtration contains f∗KZ /U (see (3.8)). This motivates the
following definition:

Definition 3.12. The image of (Rn−1h∗Q)G
prim in (Rn−1 f∗Q)prim under the morphism (3.13), is

denoted by (Rn−1 f∗Q)min, and called the minimal component or minimal part. Likewise, we
decorate algebraic variants (cf. (3.14)) and associated objects by min. For example, this applies to
Hodge bundles and homology constructions.

The next step consists in isolating the complement of the minimal component. In preparation
for the statement, we recall that the topological intersection form on Rn−1 f∗C has a counterpart
on the de Rham cohomology Rn−1 f∗Ω•

Z /U , which is already defined in the algebraic category
over Q. Indeed, the construction of the latter involves the cohomological cup-product, the
graded product structure on the complex Ω•

Z /U and the algebraic geometric trace map:

Rn−1 f∗Ω•
Z /U ⊗Rn−1 f∗Ω•

Z /U
∪−→ R2(n−1) f∗Ω•

Z /U = Rn−1 f∗KZ /U
tr−→OU .

After forming (Rn−1 f∗C)⊗OU an , the topological and algebraic intersection pairings agree up to a
factor (2πi )n−1, which accounts for the comparison of the trace maps. We are now ready for the
next result.

Proposition 3.13 (Minimal decomposition). (1) Let V be the orthogonal of (Rn−1 f∗Q)min in
(Rn−1 f∗Q)prim for the topological intersection form. Then, there is an orthogonal decom-
position of variations of polarized rational Hodge structures over U an

(3.15) (Rn−1 f∗Q)prim = (Rn−1 f∗Q)min ⊕V.

Furthermore, we have

V=
{

0 if n −1 is odd,

of pure type
(n−1

2 , n−1
2

)
if n −1 is even.

(2) Let V be the orthogonal of (Rn−1 f∗Ω•
Z /U )min in (Rn−1 f∗Ω•

Z /U )prim for the algebraic geo-
metric intersection form. Then, there is a direct sum decomposition of locally free coherent
sheaves with connection over U , in the algebraic category overQ,

(3.16) (Rn−1 f∗Ω•
Z /U )prim = (Rn−1 f∗Ω•

Z /U )min ⊕V .

Furthermore, the analytification of (3.16) is naturally identified with (3.15) ⊗ OU an .
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Proof. We first deal with (1). In the case of n −1 being odd, (Rn−1 f∗Q)prim = (Rn−1 f∗Q)min, by
the very definition of the minimal component and by Lemma 3.4 and Lemma 3.9. In the case
n −1 is even, we first notice that the intersection pairing is flat for the Gauss–Manin connection,
and that the orthogonal complement of a subvariation of rational Hodge structures in a variation
of polarized rational Hodge structures, is also a variation of polarized rational Hodge structures.
Thus, V is a variation of polarized rational Hodge structures. To obtain the decomposition (3.15)
with the required properties, we can reduce to the following general fact. Let (H ,Q) be a polarized
Hodge structure overQ, of weight 2d , and (E ,Q) a sub-Hodge structure, such that E (p,q) = H (p,q)

for p 6= q . Let V = E⊥ be the orthogonal of E for the intersection form Q. Then H = E ⊕V and
V is a Hodge structure over Q, of pure type (d ,d). To prove this fact, by linear algebra and the
non-degeneracy of the intersection form, it is enough to verify that E ∩V is trivial. Take any
element x in the intersection, and decompose it in HC according to the bidegree as x =∑

xp,q .
Then xp,q ∈ E q,p ⊂ EC. On the other hand, i p−qQ(x, xp,q ) = i p−qQ(xp,q , xp,q ) ≥ 0, with equality
only if xp,q = 0. But this is the case since x ∈ E⊥, proving the decomposition. It follows from the
assumption E (p,q) = H (p,q) for p 6= q that the complement is of pure type (d ,d).

For item (2), we first notice that since (Rn−1 f∗Ω•
Z /U )min and (Rn−1 f∗Ω•

Z /U )prim are locally
free coherent sheaves, so is V . Besides, the algebraic Gauss–Manin connection preserves V ,
since it preserves the minimal component and the algebraic intersection form is flat. By the
compatibility of the topological and algebraic intersection forms, the analytification of V is
canonically identified with V⊗OU an . For the validity of the direct sum decomposition, we can
reduce to the analytic setting, in which case it follows from (3.15) ⊗ OU an . �

Remark 3.14. After Proposition 3.13, and with the conventions adopted in Definition 3.12, for
the homology local systems we have

(3.17) (Rn−1 f∗Q)∨prim = (Rn−1 f∗Q)∨min ⊕V∨.

We can thus consider (Rn−1 f∗Q)∨min as a subsystem of (Rn−1 f∗Q)∨prim, which in turn can be seen as

a subsystem of the homology local system (Rn−1 f∗Q)∨. This allows us to interpret (Rn−1 f∗Q)∨min
in terms of homology classes and Poincaré duals of these in terms of integration.

In the application of the arithmetic Riemann–Roch theorem to the BCOV conjecture, we will
need sections of the Hodge bundles rather than the Hodge filtration, cf. Theorem 2.3. This is the
reason behind the following definition.

Definition 3.15. We define η◦k as the trivializing section of (Rk f∗Ωn−1−k
Z /U )min, deduced from θk

via the morphism (3.13) and by projecting to the Hodge bundle. We also define ηk = −(n +
1)k+1ψk+1η◦k .

Remark 3.16. (1) By construction, the section ηk vanishes at order k +1 at ψ= 0.
(2) The sections ηk are algebraic and defined overQ by Lemma 3.9 and Lemma 3.11.

Lemma 3.17. The sections η◦k satisfy the recurrence

(3.18) KS(k)
(

d

dψ

)
η◦k = (n +1)η◦k+1.

Consequently,

(3.19) KS(k)
(
ψ

d

dψ

)
ηk = ηk+1.
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Proof. The first recurrence follows from (3.12), Lemma 3.11, the link between the Gauss–Manin
connection ∇ and the Kodaira–Spencer maps KS(q), and the definition of η◦k . The second recur-
rence follows from the first one, by the very definition of the sections ηk and the OU -linearity of
the Kodaira–Spencer maps. �

4. THE DEGENERATION OF THE HODGE BUNDLES OF THE MIRROR FAMILY

In the previous section we exhibited explicit trivializing sections of the minimal part of the
middle degree Hodge bundles of the mirror family Z → U . The next goal is to extend these
sections to the whole compactification P1. We also address the trivialization of the Hodge
bundles other than the minimal part and in any degree. For these goals, we exploit the approach
to degenerating Hodge structures via relative logarithmic de Rham cohomology.

4.1. Generalities on geometric degenerations of Hodge structures. We recall some background
from Steenbrink [Ste76, Ste77] and our previous work [EFiMM21, Sec. 2 & Sec. 4]. We also refer
to Illusie’s survey [Ill94, Sec. 2.2 & Sec. 2.3] Let f : X →D be a projective morphism of reduced
analytic spaces, over the unit disc D. We suppose that the fibers X t with t 6= 0 are smooth and
connected. We consider the variation of Hodge structures associated to Rk f∗Q over the punc-
tured disc D×. Let T be its monodromy operator and ∇ the Gauss–Manin connection on the
holomorphic vector bundle (Rk f∗Q)⊗OD× = Rk f∗Ω•

X /D× . Recall that T is a quasi-unipotent

transformation of the cohomology of the general fiber. The flat vector bundle (Rk f∗Ω•
X /D× ,∇)

has a unique extension to a vector bundle on D, such that ∇ extends to a regular singular connec-
tion, whose residue Res0∇ is an endomorphism with eigenvalues in [0,1)∩Q. This is the Deligne
(lower) canonical extension, denoted by `Rk f∗Ω•

X /D× . Occasionally, we may simply refer to it as

the Deligne extension of Rk f∗C. It can be realized as the hypercohomology Rk f ′Ω•
X ′/D(log) of

the logarithmic de Rham complex of a normal crossing model f ′ : X ′ →D. The Hodge filtration
F • on Rk f∗Ω•

X /D× extends to a filtration by vector sub-bundles, still denoted by F •. Its locally

free graded quotients are of the form Rk−p f ′Ωp
X ′/D(log). If the monodromy operator is unipo-

tent, then the fiber of Rk f ′Ω•
X ′/D(log) at 0, together with the restricted Hodge filtration, can be

identified with the cohomology of the generic fiber H k
lim with the limiting Hodge filtration F •∞.

The identification depends on the choice of a holomorphic coordinate on D. There is also the
monodromy weight filtration W• on H k

lim, attached to the nilpotent operator N =−2πi Res0∇.

The triple (H k
lim,F •∞,W•) is called the limiting mixed Hodge structure. It is isomorphic to Schmid’s

limiting mixed Hodge structure [Sch73] on the cohomology of the general fiber. In particular, W•
admits a rational structure. This structure is not needed in the current section, but it will be used
later in Section 6, actually in the greater generality of higher dimensional parameter spaces. In
the general quasi-unipotent case, one first performs a semi-stable reduction and then constructs
the limiting mixed Hodge structure.

More generally, for a subvariation of Hodge structures E of Rk f∗Q, which is a direct summand,
the previous constructions can also be carried out, and relate to those of Rk f∗Q as follows.
For concreteness, let us comment on the case of f : X → D as above, with normal crossings
model f ′ : X ′ → D. Denote by j : D× ,→ D the open immersion. Then, the Deligne extension
of E = E⊗OD× equals j∗E ∩ `Rk f∗Ω•

X /D× , or equivalently j∗E ∩ Rk f ′∗Ω•
X ′/D(log), where the

intersection is taken in j∗Rk f∗Ω•
X /D× . Let us denote it by `E . To construct the limiting mixed
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Hodge structure of E, we may first perform a ramified base change and suppose that f ′ is semi-
stable. Secondly, we intersect the limiting mixed Hodge structure (H k

lim,F •∞,W•) of Rk f∗Qwith
`E (0), the fiber at 0 of `E . In our work, we will encounter this setting for the standard case of
the primitive cohomology, but also for the decompositions (3.7) (G-invariants) and the minimal
decomposition (3.15). Accordingly, the resulting objects will be decorated with the symbols prim,
G or min. For example, we will have notations such as Rn−1 f ′∗Ω•

X ′/D(log)min.
Analogously, for a projective normal crossings degeneration f : X → S between complex

algebraic manifolds, with one-dimensional S, there are algebraic counterparts of all the above:
logarithmic de Rham cohomology, Gauss–Manin connection, Hodge filtration, etc. This is
compatible with the analytic theory after localizing to a holomorphic coordinate neighborhood
of a given point p ∈ S. We will in particular speak of the limiting mixed Hodge structure at p, and
simply write H k

lim if there is no danger of confusion.
Finally, we will also need the limiting mixed Hodge structure (Hk )lim on the homology, and in

particular the dual weight filtration W ′• defined as W ′−r = (H k
lim/Wr−1)∨. See [Del71, (4.2.2)] or

[EZT14, (3.1.3.1) and (3.2.2.7)] for more information about dual filtrations.

4.2. Triviality of some variations of Hodge structures. We return to the geometric setting of
Section 3, and maintain the notations therein. For the mirror family, we prove that outside of
(Rn−1 f∗Q)min, all the variations of Hodge structures appearing in our work in fact correspond to
trivial local systems. In particular, the local systems outside of the middle degree and the local
system V from Proposition 3.13 are all trivial. We also derive consequences for the associated
Hodge bundles, in the algebraic category.

We fix the normal crossings model f ′ : Z ′ → P1 obtained by blowing up the locus of the
ordinary double points of f : Z →P1, which is defined overQ. We also introduce a polarization,
induced by a projective factorization of f ′ defined overQ. The corresponding logarithmic Hodge
bundles and their primitive parts are locally free sheaves over P1, already defined in the algebraic
category and overQ.

By Lemma 3.4 we have Rd f ′∗Ω•
Z ′/P1 (log) = 0 for d odd, not equal to n−1, while if d = 2p 6= n−1,

Rd f ′∗Ω•
Z ′/P1 (log) = Rp f ′∗Ω

p
Z ′/P1 (log). We then have the following result outside of middle degrees:

Lemma 4.1. For 2p 6= n −1, the following hold:

(1) The local system R2p f∗Q on U an =P1 \ (µn+1 ∪ {∞}) is trivial.
(2) The Hodge bundle Rp f ′∗Ω

p
Z ′/P1 (log) is trivial in the algebraic category overQ.

Proof. We first prove that the local system R2p f∗Q is trivial. Take a base point b ∈U an, and let
ρ : π1(U an,b) →GL(H 2p (Zb ,Q)) be the monodromy representation determining the local system.
The fundamental group π1(U an,b) is generated by loops γξ circling around ξ ∈µn+1, and a loop
γ∞ circling around ∞, with a relation

∏
ξγξ = γ∞. Because the singularities of Z → P1 at the

points ξ are ordinary double points, and 2p 6= n −1, the local monodromies ρ(γξ) are trivial.
Therefore ρ(γ∞) is trivial as well, and so is ρ.

Now, the first claim implies the triviality of Rp f ′∗Ω
p
Z ′/P1 (log) = R2p f ′∗Ω•

Z ′/P1 (log) in the analytic

category, since the latter realizes the Deligne extension of R2p f∗Ω•
Z /U . By the GAGA principle,

Rp f ′∗Ω
p
Z ′/P1 (log) is algebraically trivial as a complex vector bundle. This already implies the

second claim. Indeed, let E be a vector bundle over P1
Q

, which is trivial after base change to C.

Then the natural morphism H 0(P1
Q

,E)⊗OP1
Q
→ E is necessarily an isomorphism, since it is an

isomorphism after a flat base change. �
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Lemma 4.2. With the same notations as in Proposition 3.13, we have:

(1) The local system V on U an is trivial.
(2) The locally free coherent sheaf with connection V over U is trivial in the algebraic category

overQ.

Proof. We first show that if the local monodromy of (Rn−1 f∗C)min around one ODP point is trivial,
then it is so around all the ODP points. Since (Rn−1 f∗C)min is isomorphic to (Rn−1h∗C)G

prim
as a local system, it is enough to show that the latter descends along the natural projection
(U −{0}) → (U −{0})/µn+1, where µn+1 acts by multiplication on (U −{0}) ⊂P1. Notice that for any
ζ ∈µn+1, the automorphism ψ 7→ ζ ·ψ lifts to an automorphism of the family g : Y → (U − {0}),
via the formula [x0 : x1 : . . . : xn] 7→ [x ′

0 : x ′
1 : . . . : x ′

n], where x ′
i = xi except for one i , for which

x ′
i = ζ−1 · xi . Since we work in the quotient by the group G , all the choices of i correspond

to the same action. We conclude that the local systems (Rk h∗C)G ' Rk g∗C descend for all
k. Observe that R2h∗C is actually constant with fiber H 2(Pn ,C), by Lefschetz, with G acting
trivially. Therefore, the polarization necessarily descends. We conclude that (Rn−1h∗C)G

prim =
ker

(
L : (Rn−1h∗C)G → (Rn+1h∗C)G

)
descends too, as was to be shown.

We now show thatV is a trivial local system. It is enough to argue forVC. In the odd dimen-
sional case, there is nothing to prove. In the even dimensional case, we first recall that by the
Picard–Lefschetz formula, the local monodromies on (Rn−1 f∗C)prim around the ODP points are
semi-simple with a single non-trivial eigenvalue −1 of multiplicity one. It follows that around
each ODP point, exactly one of the sub-local systems (Rn−1 f∗C)min and VC has trivial local
monodromy. By the argument in the previous lemma, if the monodromies around one hence
all the ODP points on (Rn−1 f∗C)min were trivial, it would follow that the monodromy around ∞
would also be trivial. As this is excluded by Lemma 4.3 below, we infer that V is a trivial local
system.

We next address the triviality of V asserted by the second point. We will now make use of
the G-equivariant normal crossings model h′ : X ′ →P1 of Proposition 3.1. We summarize the
current geometric setting in the following diagram, which builds upon (3.2):

X ′

��

h′

��

X

ρ

�� h

��

Z ′ //

f ′
33

Z

crepant
π
//

f

//

Y =X /G
g

%%

P1.

We first argue analytically. By the minimal decomposition (Proposition 3.13), the morphism
(3.13) induces a morphism between Deligne extensions

(4.1) `(Rn−1h∗Ω•
X /U )G

prim,→ `(Rn−1 f∗Ω•
Z /U )prim.

We can reformulate (4.1) as a morphism

ψ : (Rn−1h′
∗Ω

•
X ′/P1 (log))G

prim,→(Rn−1 f ′
∗Ω

•
Z ′/P1 (log))prim,
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extending (3.14) to P1. By the GAGA principle, this morphism is algebraic. Notice that the
coherent sheaves involved in ψ are locally free and defined over Q. By Lemma 3.11 (2), ψ|U
is defined over Q. Therefore, ψ|U is invariant under the action of Aut(C/Q). Because U is a
non-empty Zariski open subset of P1, which is an integral scheme, we infer that ψ is invariant
under Aut(C/Q). Therefore, ψ is defined over Q, and so is its cokernel. We denote by Ṽ this
cokernel of ψ modulo its torsion part. Then Ṽ is a vector bundle.

By Proposition 3.13 (2), Ṽ|U is canonically isomorphic to V , overQ, and in particular inherits a
connection from V . Also, by the same proposition, we know that the analytification of (3.16) is
canonically identified with the tensor product of (3.15) with OU an . By taking Deligne extensions,
we deduce that Ṽ an is a vector bundle with regular singular connection, canonically isomorphic
to the Deligne extension of V⊗OU an . By the first part of the lemma, we thus infer that Ṽ an is a
trivial vector bundle with connection, and in particular any trivialization over P1 is flat. As in
the proof of Lemma 4.1 (2), we deduce that Ṽ is a trivial vector bundle over P1, defined overQ.
From all the above, we conclude that the restriction to U of any trivialization of Ṽ , defined over
Q, induces a flat trivialization of V ' Ṽ|U , defined overQ. This concludes the proof. �

4.3. Behaviour of ηk at the MUM point. For the mirror family f : Z →P1, let D∞ be a holomor-
phic disc neighborhood at infinity, with parameter t = 1/ψ. To lighten notations, we still denote
by f : Z →D∞ the restricted family. To simplify notation, we write H n−1

lim for the limiting mixed
Hodge structure at infinity of (Rn−1 f∗Q)min.

Lemma 4.3. (1) The monodromy T of (Rn−1 f∗Q)min at ∞ is maximally unipotent. In partic-
ular, the nilpotent operator N on H n−1

lim satisfies N n−1 6= 0.
(2) The graded pieces GrW

k H n−1
lim are one-dimensional if k is even, and trivial otherwise. For

all 1 ≤ k ≤ n −1, N induces isomorphisms

GrW
k N : GrW

k H n−1
lim

∼−→ GrW
k−2 H n−1

lim .

(3) For all 1 ≤ p ≤ n −1, N induces isomorphisms

Grp
F∞ N : Grp

F∞ H n−1
lim

∼−→ Grp−1
F∞ H n−1

lim .

Proof. The maximally unipotent property for (Rn−1 f∗Q)min ' (Rn−1h∗Q)G
prim is proven in odd

relative dimension in [HSBT10, Cor. 1.7]. Exactly the same argument as in loc. cit. yields the
claim in even relative dimension. In particular N n−1 6= 0. This settles the first point. Because
moreover N n−1 induces an isomorphism GrW

2(n−1) H n−1
lim

∼→ GrW
0 H n−1

lim we deduce that GrW
0 H n−1

lim 6=
0. By Lemma 3.9, H n−1

lim is n-dimensional, and the second item follows for dimension reasons.

Finally, we use that Grp
F∞ H n−1

lim is one-dimensional again by Lemma 3.9 and then necessarily

Grp
F∞ H n−1

lim = Grp
F∞ GrW

2p H n−1
lim = GrW

2p H n−1
lim . Hence the second point implies the third one. �

By the maximally unipotent monodromy and for dimension reasons, the T -invariant classes of
the minimal cohomology of a general fiber span a rank one trivial subsystem of (Rn−1 f∗C)min on
D×∞. We fix a basis γ′ of this trivial system. It extends to a nowhere vanishing holomorphic section
of the Deligne extension of (Rn−1 f∗C)min. The fiber at 0 is then a basis for W0, which identifies
with ker N by the above lemma. We still write γ′ for this limit element. Similarly, (Rn−1 f∗C)∨min
has a rank one trivial subsystem, spanned by the class of a T -invariant homological cycle γ. We
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may choose γ to correspond to γ′ by Poincaré duality.6 Hence, for any η ∈ H n−1(Zt ), t ∈ D×∞,
the period 〈γ,η〉 equals the intersection pairing Q(γ′,η). It is possible to explicitly construct an
invariant cycle. Although we will need this in a moment, we postpone the discussion to §5.2,
where a broader study of homological cycles is delivered.

In preparation for the following lemma, we recall from the preliminaries in §4.1 that f∗KZ /D∞(log)
is isomorphic to F n−1Rn−1Ω•

Z /D∞(log), and that Rn−1Ω•
Z /D∞(log) realizes the Deligne extension

of (Rn−1 f∗C)⊗OD×∞ to D∞.

Lemma 4.4. Let η be a holomorphic trivialization of f∗KZ /D∞(log). Then the period 〈γ,η〉 defines
a holomorphic function on D∞, non-vanishing at the origin.

Proof. The argument is well-known, see e.g. [Mor93, Prop.] and [Voi99, Lemma 3.10], but we
sketch it due to its relevance.

The pairing 〈γ,η〉 =Q(γ′,η) is clearly a holomorphic function on D×∞, since both γ′ and η are
holomorphic sections of (Rn−1 f∗C)⊗OD×∞ . Moreover, they are both global sections of the Deligne
extension. This ensures that |Q(γ′,η)| has at most a logarithmic singularity at 0. It follows that
Q(γ′,η) is actually a holomorphic function.

For the non-vanishing property, we make use of the interplay between the intersection pairing
seen on H n−1

lim and the monodromy weight filtration [Sch73, Lemma 6.4], together with Lemma
4.3. Let η′ ∈ H n−1

lim be the fiber of η at 0. We need to show that Q(γ′,η′) 6= 0. Suppose the contrary.
Since γ′ is a basis of W0 = ker N = Im N n−1, we have η′ ∈ (Im N n−1)⊥. The intersection pairing is
non-degenerate and satisfies Q(N x, y)+Q(x, N y) = 0. Therefore, we find that η′ ∈ (Im N n−1)⊥ =
ker N n−1 = W2n−3. But η′ is a basis of F n−1H n−1

lim = F n−1 GrW
2n−2 H n−1

lim , and therefore η′ 6∈ W2n−3.
We thus have reached a contradiction. �

Before the next theorem, we consider the logarithmic extension of the Kodaira–Spencer maps
(3.9): if D is the divisor [∞]+∑

ξn+1=1[ξ], then

(4.2) KS(q) : TP1 (− logD) −→ HomO
P1 (Rq f∗Ω

n−1−q
Z ′/P1 (log),Rq+1 f∗Ω

n−2−q
Z ′/P1 (log)).

They preserve the minimal and primitive components.

Theorem 4.5. The section ηk is a holomorphic trivialization of Rk f∗Ωn−1−k
Z /D∞ (log)min.

Proof. First of all, we prove that η0 is a meromorphic section of f∗KZ /D∞(log). Indeed, η0 is an
algebraic section of f∗KZ /U (see Lemma 3.17), hence a rational section of f∗KZ ′/P1 (log) and thus
a meromorphic section of f∗KZ /D∞(log).

Second, we establish the claim of the theorem for η0. By Lemma 4.4, we need to show that the
holomorphic function 〈γ,η0〉 on D×∞ extends holomorphically to D∞, and does not vanish at the
origin. This property can be checked by a standard explicit computation reproduced below (5.8).

Finally, for the sections ηk , we use the recurrence (3.19) and the logarithmic extension of the
Kodaira–Spencer maps (4.2). It follows that the sections ηk are global sections of the sheaves
Rk f∗Ωn−1−k

Z /D∞ (log)min. Let us denote by η′k the fiber at 0 of the sections ηk . Specializing (3.19) at 0,

we find (Grn−1−k
F∞ N )η′k = η′k+1. By Lemma 4.3 (3) and because η′0 6= 0, we see that η′k 6= 0 for all k.

This concludes the proof. �

6Recall, from Proposition 3.13 and Remark 3.14, that classes in (Rn−1 f∗C)∨min can be seen as homological cycles,
and Poincaré duality can be used on the minimal component.
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4.4. Behaviour of ηk at the ODP points. Recall the normal crossings model f ′ : Z ′ → P1. We
restrict it to a disc neighborhood Dξ of some ξ ∈µn+1. Concretely, we fix the coordinate t =ψ−ξ.
We write f ′ : Z ′ → Dξ for the restricted family. We now deal with the limiting mixed Hodge
structure H n−1

lim at ξ of (Rn−1 f∗Q)min. Since the monodromy around ξ is not unipotent in general,
the construction of H n−1

lim requires a preliminary semi-stable reduction. This can be achieved as
follows:

(4.3) Z̃
normalization

//

f̃
&&

Z ′′ r
//

��

ä

Z ′

f ′
��

Dξ
ρ(u)=u2=t

// Dξ

Hence f̃ : Z̃ → Dξ is the normalized base change of f ′ by ρ. An explicit computation in local
coordinates shows it is indeed semi-stable. The special fiber f̃ −1(0) consists of two components
intersecting transversally. One is the strict transform Z̃ of Zξ. We denote by E the other compo-
nent. Then E is a non-singular quadric of dimension n−1, and Z̃ ∩E is a non-singular quadric of
dimension n −2. In terms of this data, the monodromy weight filtration is computed as follows.

Lemma 4.6. The graded pieces of the weight filtration on H n−1
lim are given by:

• if n −1 is odd, then

GrW
k H n−1

lim =


Q

(−n−2
2

)
, if k = n −2,

a direct factor of H n−1(Z̃ ), if k = n −1,

Q
(−n

2

)
, if k = n,

0, otherwise.

• if n −1 is even, then

GrW
k H n−1

lim =


a direct factor of H

(
H n−3(Z̃ ∩E)(−1) → H n−1(Z̃ )⊕H n−1(E) → H n−1(Z̃ ∩E)

)
,

if k = n −1,

0, if k 6= n −1.

Hence, H n−1
lim is a pure Hodge structure of weight n −1.

Proof. The proof follows from [Ste77, Ex. 2.15], noticing that (Rn−1 f̃∗Q)min = ρ∗(Rn−1 f∗Q)min

is a direct factor of Rn−1 f̃∗Q, whose complement is a trivial variation of Hodge structures by
Lemma 4.1 and Lemma 4.2. For the case n−1 is even, we moreover recall thatV as in Proposition
3.13 has pure bidegree ((n −1)/2,(n −1)/2). �

We will need the comparison of the middle degree minimal Hodge bundles between before
and after semi-stable reduction. We follow [EFiMM21, Sec. 2 & Prop. 3.10]. There are natural
morphisms

(4.4) ϕp,q : ρ∗Rq f ′
∗Ω

p
Z ′/Dξ

(log)min ,→ Rq f̃∗Ω
p

Z̃ /Dξ
(log)min.

Lemma 4.7. Suppose that p +q = n −1. Let Qp,q be the cokernel of ϕp,q in (4.4).

• If p 6= q, then Qp,q = 0.
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• If p = q = n−1
2 , then Qp,p =ODξ,0/uODξ,0.

Proof. The results in [EFiMM21, Sec. 2 & Prop. 3.10] are explicitly stated for the whole Hodge
bundles, and describe the cokernels in terms of the semi-simple part of the monodromy acting
on the limiting Hodge structure. For their minimal components, see however Remark 2.7 (iii) in
loc. cit., together with Proposition 3.13 and Lemma 4.2. �

We are now fully equipped for the proof of:

Theorem 4.8. The sections ηk extend to meromorphic sections of the logarithmic Hodge bundles
Rk f ′∗Ωn−1−k

Z ′/A1 (log)min. Furthermore, denote by ordξηk the order of zero or pole of ηk at ξ, as a

rational section of Rk f ′∗Ωn−1−k
Z ′/A1 (log)min.

• If n −1 is odd, then ordξηk = 0 for k ≤ n/2−1 and ordξηk =−1 otherwise.
• If n −1 is even, then ordξηk = 0 for k ≤ n−3

2 and ordξηk =−1 otherwise.

Proof. Throughout the proof, we write X , Y and Z for the respective total spaces overA1. We
begin by showing that η0 extends to a global section of f ′∗KZ ′/A1 (log), non-vanishing at ξ. Since
the singular fibers of Z →A1 present only ordinary double points, there is an equality

f∗KZ /A1 = f ′
∗KZ ′/A1 (log).

This can be seen as the coincidence of the upper and lower extensions of f∗KZ /U toA1 (apply
[EFiMM21, Cor. 2.8 & Prop. 2.10] and the Picard–Lefschetz formula for the monodromy). Since
Y has rational singularities (cf. Lemma 3.2), the natural morphism g∗KY /A1 → f∗KZ /A1 is an
isomorphism. Also g∗KY /A1 = (h∗KX /A1 )G . Indeed, let X ◦ be the complement of the fixed point
locus of G in X and similarly for Y ◦, so that Y \Y ◦ has codimension ≥ 2. Then, because Y is
normal Gorenstein and Y ◦ =X ◦/G is an étale quotient, and X is non-singular, we find

g∗KY /A1 = g∗KY ◦/A1 = (h∗KX ◦/A1 )G = (h∗KX /A1 )G .

By construction of η0 (cf. Definition 3.15), it is enough to prove that θ0 defines a trivialization of
h∗KX /A1 around ξ. Denote by X ∗ the complement in X of the ordinary double points, so that
X \X ∗ has codimension ≥ 2. Because X is non-singular, we have h∗KX /A1 = h∗KX ∗/A1 . Now,
the expression (3.1) for θ0 defines a relative holomorphic volume form on the whole X ∗, and
hence a trivialization of h∗KX ∗/A1 as desired.

That the sections ηk define meromorphic sections of the sheaves Rk f ′∗Ωn−1−k
Z ′/A1 (log)min follows

from the corresponding property for η0, plus the recurrence (3.19) and the existence of the
logarithmic extension of the Kodaira–Spencer maps (4.2). From the same recurrence, we reduce
the computation of ordξηk to the computation of the orders at ξ of the rational morphisms
KS( j )(ψd/dψ), with respect to the logarithmic extension of the Hodge bundles:

ordξηk = ordξη0 +
k−1∑
j=0

ordξKS( j )
(
ψ

d

dψ

)
=

k−1∑
j=0

ordξKS( j )
(
ψ

d

dψ

)
.

Let us define M ( j ) = ordξKS( j )
(
ψ d

dψ

)
. Because η0 trivializes f∗KZ /A1 at ξ, formula (3.11) shows

that

(4.5)
n−2∑
j=0

M ( j ) = ordξY (ψ) =−1.
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We argue that all but one of the M ( j ) are in fact zero. For this, we relate M ( j ) to the action of
the nilpotent operator N on the limiting mixed Hodge structure at ξ. Recall we defined the
coordinate t =ψ−ξ on a disc neighborhood Dξ of ξ. The first observation is

(4.6) ordt=0 KS( j )
(

t
d

d t

)
= ordξKS( j )

(
(ψ−ξ)

d

dψ

)
= M ( j ) +1 ≥ 0,

since the Kodaira–Spencer maps along logarithmic tangent vectors preserve the logarithmic
Hodge bundles (cf. (4.2)). Hence, we see that M ( j ) ≥−1. We now need to distinguish two cases,
depending on the parity of n −1.

Odd case: If n −1 is odd, then the monodromy is unipotent and the fiber of KS(p)(td/d t) at
t = 0 is already Grp

F∞ N : Grp
F∞ H n−1

lim → Grp−1
F∞ H n−1

lim . From Lemma 4.6, we deduce that unless

p = n/2, Grp
F∞ N = 0 so that ordt=0 KS(p)(td/d t) > 0 and hence M (p) ≥ 0. By (4.5) we necessarily

have M (n/2) =−1 and the other M ( j ) = 0.

Even case: If n − 1 is even, the nilpotent operator N is in fact trivial, but the monodromy is
no longer unipotent. The construction of the limiting mixed Hodge structure thus involves a
semi-stable reduction. Choose a square root u of t as in (4.3). Then since u d

du = 2t d
d t we get,

comparing the Gauss-Manin connection before and after semi-stable reduction, a commutative
diagram of maps of line bundles

ρ∗Rq f ′∗Ω
p
Z ′/Dξ

(log)min

KS(q)
(
u d

du

)
//

ϕp,q

��

ρ∗Rq+1 f ′∗Ω
p−1
Z ′/Dξ

(log)min

ϕp−1,q+1

��

Rq f̃∗Ω
p

Z̃ /Dξ
(log)min

KS(q)
(
2t d

d t

)
// Rq+1 f̃∗Ω

p−1

Z̃ /Dξ
(log)min.

Together with ordu=0 = 2ordt=0, we conclude that:

(4.7) ordu=0ϕ
p,q +ordu=0 KS(q)

(
u

d

du

)
= ordu=0(ϕp−1,q+1)+2ordt=0 KS(q)

(
t

d

d t

)
.

By Lemma 4.7, ordu=0(ϕp,q ) = 0 except for the case (p, q) = ((n −1)/2,(n −1)/2), where in fact
ordu=0(ϕp,q ) = 1. From (4.7) we then conclude that

(4.8) ordu=0 KS((n−3)/2)
(
u

d

du

)
= 1+2ordt=0 KS((n−3)/2)

(
t

d

d t

)

(4.9) 1+ordu=0 KS((n−1)/2)
(
u

d

du

)
= 2ordt=0 KS((n−1)/2)

(
t

d

d t

)
.

In both cases (4.8)–(4.9) the order of vanishing of Kodaira–Spencer along the vector field u d
du is

strictly positive, since the restriction to 0 is the nilpotent operator N = 0. It follows that

ordt=0 KS((n−3)/2)
(

t
d

d t

)
≥ 0, i.e. M ((n−3)/2) ≥−1,
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and

ordt=0 KS((n−1)/2)
(

t
d

d t

)
≥ 1, i.e. M ((n−1)/2) ≥ 0.

Since all other M ( j ) ≥ 0 as in the odd case, we conclude from (4.5) that all these inequalities are
in fact equalities. �

5. THE BCOV INVARIANT OF THE MIRROR FAMILY

In this section we prove the first part of the Main Theorem in the introduction, to the effect
that the BCOV invariant of the mirror family encapsulates the Gromov–Witten invariants of a
general Calabi–Yau hypersurface. The proof proceeds by applying the arithmetic Riemann–Roch
theorem as in Section 2, by choosing the algebraic trivializations of the Hodge bundles studied
in Section 3. This is then worked out in terms of canonical sections of the Hodge bundles, whose
existence is tied to the limiting Hodge structure H n−1

lim at the MUM point. In the process, a
transcendental expression built out of periods arises, which matches Zinger’s formula for the
sought generating function of Gromov–Witten invariants.

5.1. The Kronecker limit formula for the mirror family. For the mirror family f : Z →U , we
proceed to prove an expression for the BCOV invariant τBCOV(Zψ) in terms of the L2 norms of the
sections ηk (cf. Definition 3.15). The strategy follows the same lines as for families of Calabi–Yau
hypersurfaces §2.4.

We fix a polarization and a projective factorization of f , defined overQ. We denote by L the
corresponding algebraic Lefschetz operator, that is the cup-product against the algebraic cycle
class of a hyperplane section. We will abusively confound L with the algebraic cycle class of a
hyperplane section. With this choice of L, the primitive decomposition of the Hodge bundles
Rp f∗Ω

q
Z /U holds over Q. Let h be a Kähler metric and ω the Kähler form normalized as in

(2.1), and assume that the fiberwise cohomology class is in the topological hyperplane class.
Hence, under the correspondence between algebraic and topological cycle classes, L is sent to
(2πi )[ω] ∈ R2 f∗Q(1).

Below, all the L2 norms are computed with respect to ω as in (2.2).

Theorem 5.1. There exists a real positive constant C ∈πcQ
×

such that

τBCOV(Zψ) =C

∣∣∣∣ (ψn+1)a

(1−ψn+1)b

∣∣∣∣2 ‖η0‖χ/6
L2(∏n−1

k=0 ‖ηk‖2(n−1−k)
L2

)(−1)n−1

where χ=χ(Zψ) and

a = (−1)n−1 n(n −1)

6
− χ

12(n +1)
,

b = (−1)n−1 n(3n −5)

24

c = 1

2

∑
k

(−1)k+1k2bk .

Proof. We apply the version of the arithmetic Riemann–Roch theorem formulated in Theorem
2.3, to the family f : Z →U as being defined overQ.
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Choices of sections. We need to specify the section η and the sections ηp,q in equation (2.10). The
section η is chosen to be η0 as defined in Definition 3.15. We next describe our choices of ηp,q :

• If p +q 6= n −1 and p 6= q , then the corresponding Hodge bundle vanishes by Lemma 3.4,
and thus gives no contribution.

• For 2p 6= n −1, Lemma 4.1 guarantees that detRp f ′∗Ω
p
Z ′/P1 (log) = detR2p f ′∗Ω•

Z ′/P1 (log) is
trivial, in the algebraic category overQ, and any trivialization is flat for the Gauss–Manin.
We choose ηp,p to be any trivialization defined overQ, and then restrict it to U . Notice
that the L2 norm ‖ηp,p‖L2 is then constant.

• For p +q = n −1 and p 6= q , the (p, q) Hodge bundle is primitive and has rank one. Then
we take ηp,q = ηQ in Definition 3.15. By Lemma 3.17, ηQ is defined overQ.

• For p +q = n −1 and p = q , which can only occur when n −1 is even, the (p, q) Hodge
bundle is no longer primitive of rank one. We first employ the algebraic primitive decom-
position, and then the minimal decomposition of Proposition 3.13 (2):

detRp f∗Ω
p
Z /U =det(Rp f∗Ω

p
Z /U )prim ⊗detLRp−1 f∗Ω

p−1
Z /U

'det(Rp f∗Ω
p
Z /U )prim ⊗detRp−1 f∗Ω

p−1
Z /U

'det(Rp f∗Ω
p
Z /U )min ⊗detV ⊗detRp−1 f∗Ω

p−1
Z /U .

(5.1)

We define η n−1
2 , n−1

2
as the element corresponding to η n−1

2
⊗ v ⊗η n−3

2 , n−3
2

under this isomor-

phism, for any algebraic flat trivialization v ∈ detV , defined overQ, provided by Lemma
4.2. We claim that

(5.2) ‖η n−1
2 , n−1

2
‖2

L2 ∼Q× ‖η n−1
2
‖2

L2‖v‖2
L2‖η n−3

2 , n−3
2
‖2

L2 ,

where ∼Q× denotes equality up to a rational number. For this, we bring together several
facts. The first one is that the Lefschetz decomposition is orthogonal for the L2 metrics,
regardless of the normalization of the Kähler forms. The second one is that the algebraic
cycle class of L corresponds to (2πi )[ω] in analytic de Rham cohomology. The third fact
is that the operator [2πω]∧· is an isometry up to a rational constant, since 2πω is the
Hodge theoretic Kähler form (see for instance [Huy05, Prop. 1.2.31]). The last fact is that
the minimal component decomposition of Proposition 3.13 is also orthogonal for the
L2 norm, since it is orthogonal for the intersection form by construction. This settles
(5.2). Furthermore, we notice that as for η n−3

2 , n−3
2

, the L2 norm of v is constant, since it is

flat by construction and it is the wedge product of a collection of sections of pure Hodge
bidegree ((n −1)/2,(n −1)/2). Therefore, the norm ‖η n−1

2 , n−1
2
‖2

L2 equals ‖η n−1
2
‖2

L2 up to a
constant.

Determining the rational function ∆. To establish the theorem we need to specify the element
∆ ∈Q(ψ)×⊗Q in (2.10) (formal rational power of a rational function), which satisfies:

(5.3) logτBCOV = log |∆|2 + χ

12
log‖η‖2

L2 −
∑
p,q

(−1)p+q p log‖ηp,q‖2
L2 + logCσ.

We will determine ∆ up to an algebraic number. To this end, it suffices to know its divisor. Unless
ψ= 0 orψ= ξwhere ξn+1 = 1,∆has no zeroes or poles by construction, since the sections ηp,q are
holomorphic and non-vanishing, and logτBCOV is smooth. Hence we are lead to consider the log-
arithmic behaviour of the right hand side of (5.3) at these points. Since for 2p 6= n−1 the sections
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ηp,p have constant L2 norm, we only need to examine the functions log‖ηp,q‖L2 with p+q = n−1.

Behaviour at ψ= 0. This corresponds to a smooth fiber of f : Z →U . Hence logτBCOV is smooth
at ψ= 0, as are the L2 metrics. However, the sections ηp,q with p +q = n −1 admit zeros at ψ= 0
(see Remark 3.16), with ord0ηp,q = q +1 = n −p. This means that a in the theorem is given by

(n +1)a = (−1)n−1
n−1∑
p=0

p(n −p)− χ

12
= (−1)n−1 (n −1)n(n +1)

6
− χ

12
.

Behaviour at ψ = ξ ∈ µn+1. This corresponds to a singular fiber of f : Z → P1, which has a
unique ordinary double point. By Theorem 4.8 we control ordξηk according to the parity of
n −1. Here we encounter the additional problem that the L2 norms might have contributions
from the semi-simple part of the monodromy Ts . More precisely, consider the local parameter
t =ψ−ξ around ξ, and write ηp,q = t bp,qσp,q where σp,q trivializes detRq f∗Ω

p
Z ′/P1 (log). Then by

construction of ηp,q and by [EFiMM21, Thm. C], we have

log‖ηp,q‖2
L2 = (bp,q +αp,q ) log |t |2 +o(log |t |2)

with

αp,q =− 1

2πi
tr

(
` logTs | Grp

F∞ H n−1
lim

)
∈Q.

Here ` log refers to the lower branch of the logarithm, i.e. with argument in 2π(−1,0]. Let us
combine all this information:
Odd case: If n −1 is odd, according to Theorem 4.8 , if k ≤ n

2 −1,ordξηk = 0 and ordξηk = −1
otherwise. In this case the monodromy is unipotent, so that αp,q = 0 for all p + q = n − 1.
Moreover, by [EFiMM21, Thm. B], we have that logτBCOV = n

24 log |t |2+o(log |t |2). Putting all these
contributions together we find that

−b = n

24
+ (−1)n−1

n−1∑
k=n/2

(n −1−k) · (−1) = n(3n −5)

24
.

Even case: If n −1 is even, according to Theorem 4.8 , if k ≤ n−3
2 ,ordξηk = 0 and ordξηk = −1

otherwise. Also, unless p = q = (n −1)/2, αp,q = 0. In the remaining case p = q = (n −1)/2, by
[EFiMM21, Prop. 3.10] we have αp,p = 1/2. Finally, from [EFiMM21, Thm. B], we have that
logτBCOV = 3−n

24 log |t |2 +o(log |t |2). Putting all these contributions together we find that

−b =3−n

24
+ (−1)n−1

(
(n −1)/2(−1+1/2)+

n−1∑
k=(n+1)/2

(n −1−k) · (−1)

)
=−n(3n −5)

24
.

Rationality considerations. To complete the proof of the theorem, we still need to tackle the
constant C . There are two sources that contribute: i) for 2p 6= n −1, the L2 norms ‖ηp,p‖L2 are
constant and ii) if n−1 = 2p, after (5.2), there might be extra contributions from ‖η n−3

2 , n−3
2
‖L2 and

from ‖v‖L2 .
First for 2p 6= n−1. Letψ0 ∈Q be in the smooth locus, so that we have the period isomorphism

H 2p (Zψ0 ,Ω•
Zψ0 /Q)⊗QC ∼−→ H 2p (Zψ0 ,Q)⊗C.
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Taking rational bases on both sides, the determinant can be defined inC×/Q×. It equals (2πi )pb2p .
Since ‖ηp,p‖L2 is constant, it can be evaluated at ψ=ψ0. We find

(5.4) ‖ηp,p‖2
L2 ∼Q× (2π)2pb2p volL2 (H 2p (Zψ0 ,Z),ω).

Now recall from (2.13) that with the Arakelov theoretic normalization of the Kähler form, and
under the integrality assumption on its cohomology class, we have volL2 (H 2p (Zψ0 ,Z),ω) ∼Q×

(2π)−2pb2p . All in all, we arrive at the pleasant

(5.5) ‖ηp,p‖2
L2 ∼Q× 1.

If n −1 = 2p is even, we will show that in fact

(5.6) ‖η n−1
2 , n−1

2
‖2

L2 ∼Q× ‖η n−1
2
‖2

L2 ,

namely that both ‖η n−3
2 , n−3

2
‖2

L2 and ‖v‖2
L2 are rational. For η n−3

2 , n−3
2

, this is already known after

(5.5). We will now see that formally the same argument yields the case of v . Since the norm of v
is constant, it is enough to consider the value at any ψ0 ∈Q in the smooth locus. The results in
§3.3 and §3.5 show that (Vψ0 ,Vψ0 ) behaves as the pair formed by the rational Betti and algebraic
de Rham primitive cohomologies in degree n−1 of a smooth projective algebraic variety defined
over Q, of dimension n −1. In particular, we have a period isomorphism and a Poincaré type
duality induced by the intersection form. From this, one derives the analog of (5.4) for v : for any
rational basis v ′ of detVψ0 , we have

‖v‖2
L2 ∼Q× (2π)(n−1)d‖v ′‖2

L2 , d = dimVψ0 .

Now, we use that the Hodge structure onVψ0 is concentrated in bidegree ((n −1)/2,(n −1)/2), by
Proposition 3.13, and we take into account the Arakelov theoretic normalization of the Kähler
form. We readily deduce ‖v ′‖2

L2 ∼Q× (2π)−(n−1)d . All in all, we conclude that ‖v‖2
L2 ∼Q× 1 as

desired.
Finally, plug into (5.3) the equations (5.5) in the cases 2p 6= n−1, and (5.6) in the case 2p = n−1.

Plug as well the value of Cσ furnished by Theorem 2.3, and recall that ∆ was determined only up
to algebraic number. We conclude that C has the asserted shape. �

Corollary 5.2. As ψ→∞, logτBCOV(Zψ) behaves as

(5.7) logτBCOV(Zψ) = κ∞ log
∣∣ψ∣∣−2 +%∞ loglog |ψ|−2 + conti nuous,

where

κ∞ = (−1)n n +1

12

(
(n −1)(n +2)

2
+ 1− (−n)n+1

(n +1)2

)
,

%∞ = (−1)n−1 (n −1)(n +1)

12

(
(−n)n+1 −1

(n +1)2
−2n +1

)
.

Proof. The general shape (5.7) was proven in [EFiMM21, Prop. 6.8]. The precise value of κ∞ is

(n +1)(b − a) entirely due to the term
∣∣∣ (ψn+1)a

(1−ψn+1)b

∣∣∣ in Theorem 5.1. Indeed, by Theorem 4.5 the

sections ηk trivialize Rk f∗Ωn−1−k
Z ′/P1 (log)min at infinity, and moreover the monodromy is unipotent

there (Lemma 4.3). This entails that the functions log‖ηk‖2
L2 are O(loglog |ψ|−2) at infinity, and

hence do not contribute to κ∞. For the subdominant term, the expression of [EFiMM21, Prop.
6.8] can be explicitly evaluated for the mirror family, thanks to the complete understanding of the
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limiting Hodge structure at infinity (again Lemma 4.3), and the known value of χ (Lemma 3.4).
�

5.2. Canonical trivializations of the Hodge bundles at the MUM point.

The Picard–Fuchs equation of the mirror. For the mirror family f : Z →U , we review classical
facts on the Picard–Fuchs equation of the local system of middle degree cohomologies. The
discussion serves as the basis for the construction of canonical trivializing sections of the middle
degree Hodge bundles, close to the MUM point, which differ from the ηk by some periods.

The starting point is the construction of an invariant (n −1)-homological cycle at infinity
for the mirror family f : Z → P1. Recall the Dwork pencil h : X → P1, which comes with a
natural embedding in Pn ×P1. We obtain a "physical" n-cycle Γ in Pn as follows: we place
ourselves in the affine piece x0 6= 0 and define Γ by the condition |xi /x0| = 1 for all i . If ψ ∈ C
and |ψ|−1 is small, then the fiber Xψ does not encounter Γ. Therefore, Γ induces a constant
family of cycles in Hn(Pn \ Xψ,Q). Notice that these are clearly G-invariant cycles. The tube
map Hn−1(Xψ,Q) → Hn(Pn \ Xψ,Q) is surjective and G-equivariant, and induces an isomorphism
Hn−1(Xψ,Q)prim ' Hn(Pn \ Xψ,Q) by [Gri69, Prop. 3.5]. Therefore, we can find a T -invariant cycle
γ̃0 ∈ Hn−1(Xψ,Q)G

prim corresponding to Γ. Finally, through the isomorphism Hn−1(Xψ,Q)G
prim '

Hn−1(Zψ,Q)min deduced by duality from Lemma 3.11 and Proposition 3.13, |G| · γ̃0 maps to a
T -invariant cycle on Zψ, denoted γ0. The convenience of multiplication by |G| will be clear in a
moment.

The period integral I0(ψ) := ∫
γ0
η0 can be written as an absolutely convergent power series in

ψ−1. Indeed, taking into account the relationship between the cup-product on Xψ and Zψ (see
e.g. Lemma 3.6), and the definition of η0 (cf. Definition 3.15) we find

I0(ψ) =
∫
γ0

η0 =− (n +1)ψ

|G|
∫
|G|·γ̃0

θ0 =−(n +1)ψ
∫
γ̃0

θ0.

For the latter integral, we use that the residue map and the tube map are mutual adjoint, and
then perform an explicit computation: if D⊂C is the unit disc around 0, we have

I0(ψ) = 1

(2πi )n

∫
(∂D)n

−(n +1)ψd z1 ∧ . . .∧d zn

Fψ(1, z1, . . . , zn)

= ∑
j≥0

1

((n +1)ψ) j

1

(2πi )n

∫
(∂D)n

(
1+

n∑
l=1

zn+1
l

) j
d z1

z j+1
1

∧ . . .∧ d zn

z j+1
n

= ∑
k≥0

1

((n +1)ψ)(n+1)k

((n +1)k)!

(k !)n+1
.

(5.8)

In these integrals, the parameters zi are the affine coordinates xi /x0. To obtain the last equality,
we expand the integrands in the second line with Newton’s multinomial formula, and then
evaluate the resulting Cauchy integrals. We conclude that those with j 6= (n+1)k for any k vanish,
while those with j = (n +1)k for some k equal ((n +1)k)!/(k !)n+1. Equation (5.8) is the period
integral used in Theorem 4.5, to prove that η0 trivializes f∗KZ /D∞(log).

To the local system Rn−1 f∗C there is an associated Picard–Fuchs equation, which coincides
with that of (Rn−1 f∗C)min, since the associated Hodge bundles of type (n,0) are equal. We make
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the change of variable z =ψ−(n+1), so that I0 becomes

I0(z) = ∑
k≥0

zk

(n +1)(n+1)k

((n +1)k)!

(k !)n+1
.

Define the differential operators δ= z d
d z and

(5.9) D = δn − z
n∏

j=1

(
δ+ j

n +1

)
.

Differentiating I0(z) term by term and repeatedly, one checks D I0(z) = 0. It is known (cf. [Gäh13,
Thm. 6] and [CG11, Sec. 1]) that this is in fact the Picard–Fuchs equation of (Rn−1h∗C)prim, which
necessarily coincides with that of (Rn−1h∗C)G

prim, and hence Rn−1 f∗C.
We now exhibit all the solutions of the Picard–Fuchs equation. For dimension reasons, these

will determine a multivalued basis of homology cycles. Following Zinger (see e.g. [Zin08, pp.
1214–1215]), for q = 0, . . . ,n −1 we define an a priori formal series I0,q by

∞∑
q=0

I0,q (t )w q = ew t
∞∑

d=0
ed t

∏(n+1)d
r=1 ((n +1)w + r )∏d

r=1(w + r )n+1
=: R(w, t ).

Let us also define F (w, t ) for the infinite sum on the right hand side, so that R(w, t ) = ew t F (w, t ).
Under the change of variable

(5.10) e t = (n +1)−(n+1)z = ((n +1)ψ)−(n+1),

the series I0,0(t ) becomes I0(z) = I0(ψ) [Zin08, eq. (2–17)].

Proposition 5.3. Under the change of variable (5.10), the functions I0,q (z), q = 0, . . . ,n −1, define
a basis of multivalued holomorphic solutions of the Picard–Fuchs equation for the local system
Rn−1 f∗C on 0 < |z| < 1.

Proof. We first recall that the Picard–Fuchs equations of Rn−1 f∗C and (Rn−1 f∗C)min coincide,
and the latter is a local system of rank n.

After the change of variable, one checks that F (w, z) is absolutely convergent on compact
subsets in the region |w | < 1 and |z| < 1. This implies that the functions I0,q (z) are multivalued
holomorphic functions on 0 < |z| < 1. Again taking into account the change of variable, it is
formal to verify that R(w, t ) solves the Picard-Fuchs equation (5.9), and hence so do the functions
I0,q (z). To see that they form a basis of solutions, it is enough to notice that each I0,q (z) has a
singularity of the form (log z)q as z → 0. �

An adapted basis of homological cycles. By Proposition 5.3, and because (Rn−1 f∗C)min has rank
n, the functions I0,q (z) determine a flat multivalued basis of sections γq of (Rn−1 f∗C)∨min on
0 < |z| < 1, by the recipe

I0,q (z) =
∫
γq (z)

η0.

See for instance [Voi99, Sec. 3.4 & Lemme 3.12] for a justification in an analogous situation. The
notation is compatible with the invariant cycle γ0 constructed above, as we already observed
that I0,0(z) = I0(z). The flat multivalued basis elements γq provide a basis of (Hn−1)lim, whose
underlying vector space is seen here as the (minimal) homology of the general fiber. We still
denote by γq this basis of (Hn−1)lim. We next prove that it is adapted to the homological weight
filtration, recalled at the end of §4.1.
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Proposition 5.4. Let W ′• be the weight filtration of the limiting mixed Hodge structure on (Hn−1)lim.
Then γq ∈W ′

2q−2(n−1) \W ′
2q−1−2(n−1).

Proof. By [Sch73, Lemma (6.4)], the Poincaré duality induces an isomorphism between the
weight filtration Wr on H n−1

lim to the dual weight filtration W ′
r−2(n−1) on (Hn−1)lim. Therefore, it is

enough to establish γ′q ∈W2q \W2q−1 for the Poincaré duals γ′q ∈ H n−1
lim .

On each fiber Zz , the Hodge decomposition and the Cauchy–Schwarz inequality imply

|I0,q (z)| =
∣∣∣∣∫

Zz

γ′q (z)∧η0

∣∣∣∣≤ (2π)n−1‖γ′q (z)‖L2‖η0‖L2 .

Now |I0,q (z)| grows like (log |z|−1)q as z → 0 along angular sectors (cf. proof of Proposition 5.3).
Because the monodromy is maximally unipotent at infinity and η0 is a basis of f∗KZ /D∞(log),
the L2 norm ‖η0‖L2 grows like (log |z|−1)(n−1)/2 (see [EFiMM18, Thm. A] or the more general
[EFiMM21, Thm. 4.4]). We infer that as z → 0, along angular sectors,

‖γ′q (z)‖L2 & (log |z|−1)
2q−(n−1)

2 .

By Schmid’s metric characterization of the limiting Hodge structure [Sch73, Thm. 6.6], we then
see that γ′q 6∈W2q−1.

It remains to show that γ′q ∈W2q . First of all, starting with q = n −1, we already know γ′n−1 ∈
W2n−2 \ W2n−3. We claim that γ′n−2 ∈ W2n−4. Otherwise γ′n−2 ∈ W2n−2 \ W2n−4. But the weight
filtration has one-dimensional graded pieces in even degrees, and zero otherwise (cf. Lemma 4.3).
It follows that W2n−4 = W2n−3 and γ′n−1 = λγ′n−2 +β, for some constant λ and some β ∈ W2n−4.
Integrating against η0, this relation entails

I0,n−1(z) =λI0,n−2(z)+
∫

Zz

β(z)∧η0,

where β(z) is the flat multivalued section corresponding to β. Let us examine the asymptotic
behaviour of the right hand side of this equality, as z → 0, along angular sectors. We know
that |I0,n−2(z)| grows like (log |z|−1)n−2. By the Hodge decomposition and the Cauchy–Schwarz
inequality, and Schmid’s theorem, the integral grows at most like (log |z|−1)n−2. This contradicts
that |I0,n−1(z)| grows like (log |z|−1)n−1. Hence γ′n−2 ∈ W2n−4. Continuing inductively in this
fashion, we conclude that γ′q ∈W2q for all q , as desired. �

A normalized basis of Rn−1 f∗Ω•
Z /D∞(log)min. We construct a basis of holomorphic sections of

Rn−1 f∗Ω•
Z /D∞(log)min close to infinity, which correspond to the period integrals Ip,q (z). We

proceed inductively:

(1) set ϑ̃0 = η0;
(2) for p ≥ 1, suppose that ϑ̃0, . . . , ϑ̃p−1 have been constructed. Define

Ip−1,q (z) =
∫
γq (z)

ϑ̃p−1.

This notation is consistent with the previous definition of I0,q ;
(3) as by [Zin09, Prop. 3.1], in turn based on [ZZ08], the integral Ip−1,p−1(z) is holomorphic

and non-vanishing at z = 0, we can define ϑ̃p by

(5.11) ϑ̃p =∇zd/d z

(
ϑ̃p−1

Ip−1,p−1(z)

)
;

38



One verifies integrating (5.11) over γq (z) that the period integrals Ip,q (z) := ∫
γq (z) ϑ̃p satisfy the

following recursion:

(5.12) Ip,q (z) = z
d

d z

(
Ip−1,q (z)

Ip−1,p−1(z)

)
.

Taking into account the change of variable (5.10), we see that this is the same recurrence relation
as in [Zin08, eq. (2–18)] (see also [Zin09, eq. (0.16)]). Hence the Ip,q (z) above coincides with the
Ip,q (t ) in loc. cit. We further normalize:

ϑp = ϑ̃p

Ip,p (z)
.

Proposition 5.5. (1) For all k, the sections {ϑ j } j=0,...,k , constitute a holomorphic basis of the
filtered piece F n−1−k Rn−1 f∗Ω•

Z /D∞(log)min.
(2) The periods of ϑk satisfy∫

γk

ϑk = 1 and
∫
γq

ϑk = 0 if q < k.

(3) The projection of ϑk to Rk f∗Ωn−1−k
Z /D∞ (log)min relates to ηk by

(ϑk )n−1−k,k = (−1)k

(n +1)k

ηk∏k
p=0 Ip,p (z)

.

(4) The sections {ϑ j } j=0,...,n−1 are uniquely determined by properties (1)–(2) above.

Proof. We noticed that the period integrals Ip,p (z) are holomorphic in z and non-vanishing
at z = 0. With this observation at hand, the claims (1)–(2) then follow from properties of the
Gauss–Manin connection and Kodaira–Spencer maps, Lemma 3.17 and Theorem 4.5. From
ϑ̃0 = η0 =−(n +1)ψθ0 and the recursion (3.12) for θk , the definition (5.11) further normalized
gives

ϑk = (−1)k−1(n +1)ψk+1 θk∏k
p=0 Ip,p (z)

mod F n−1−(k−1)Rn−1 f∗Ω•
Z /D∞(log)min.

As θk maps to η◦k = − ηk

(n+1)k+1ψk+1 in the Hodge bundle (Rk f∗Ωn−1−k
Z /U )min, this proves (3). The

uniqueness property (4)is obtained by comparing two such bases adapted to the Hodge filtration
as in (1), and then imposing the period relations (2). �

Actually, the basis ϑ• = {ϑ j } j=0,...,n−1 is determined by the limiting Hodge structure H n−1
lim , up

to constant, as we now show:

Proposition 5.6. (1) Let γ′• be an adapted basis of the weight filtration on (Hn−1)lim, as in
Proposition 5.4. Then there exists a unique holomorphic basis ϑ′• of Rn−1 f∗Ω•

Z /D∞(log)min

satisfying the conditions analogous to (1)–(2) with respect to γ′•.
(2) There exist non-zero constants ck ∈C such that ϑ′

k = ckϑk .

Proof. We prove both assertions simultaneously. We write γ• and γ′• as column vectors. Since the
graded pieces of the weight filtration on (Hn−1)lim are all one-dimensional, there exists a lower
triangular matrix A ∈ GLn(C) with γ′• = Aγ•. If we decompose A = D +L, where D is diagonal
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and L is lower triangular, we see that the entries of the column vector ϑ′• := D−1ϑ• fulfill the
requirements. �

Definition 5.7. We define the canonical trivializing section of Rk f∗Ωn−1−k
Z /D∞ (log)min to be

η̃k = (ϑk )n−1−k,k = (−1)k

(n +1)k

ηk∏k
p=0 Ip,p (z)

.

By the previous proposition, up to constants, the sections η̃k depend only on (Hn−1)lim, or
equivalently H n−1

lim by Poincaré duality. These constructions are part of a wider framework about
distinguished sections for degenerations of Hodge–Tate type. It is discussed in more detail in
§6.2.

5.3. Generating series of Gromov–Witten invariants and Zinger’s theorem. In order to state
Zinger’s theorem on generating series of Gromov–Witten invariants of genus one, and for coher-
ence with the notations of this author, it is now convenient to work in the t variable instead of z.
The mirror map in Zinger’s normalizations is the change of variable

(5.13) t 7→ T = I0,1(t )

I0,0(t )
=

∫
γ1(t )η0∫
γ0(t )η0

.

Notice that this differs by a factor 2πi from the more standard Morrison’s mirror map [Mor93]
used in the introduction. The Jacobian of the mirror map is computed from (5.12)

dT

d t
= I1,1(t ).

Let us introduce some last notations:

• Xn+1 denotes a general degree n +1 hypersurface in Pn .

• N1(0) =−
(

(n−1)(n+2)
48 + 1−(−n)n+1

24(n+1)2

)
= 1

24

(
−n(n+1)

2 + χ(Xn+1)
n+1

)
.

• N1(d) is the genus 1 and degree d Gromov-Witten invariant of Xn+1 (d ≥ 1).

From these invariants we build a generating series:

(5.14) F A
1 (T ) = N1(0)T +

∞∑
d=1

N1(d)edT .

It follows from [Zin08, Thm. 2] that this generating series satisfies

F A
1 (T ) = N1(0)t + (n +1)2 −1+ (−n)n+1

24(n +1)
log I0,0(t )

−
{

n
48 log(1− (n +1)n+1e t )+∑(n−2)/2

p=0
(n−2p2)

8 log Ip,p (t ), if n even
n−3
48 log(1− (n +1)n+1e t )+∑(n−3)/2)

p=0
(n+1−2p)(n−1−2p)

8 log Ip,p (t ) if n odd .

This identity has to be understood in the sense of formal series. As an application of relations
between the hypergeometric series Ip,p (t), studied in detail in [ZZ08], the following identity
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holds (for a version of this particular identity, see [Zin09, eq. (3.2)]):

n(3n −5)

48
log(1− (n +1)n+1e t )+ 1

2

n−2∑
p=0

(
n −p

2

)
log Ip,p (t ) =

{
n
48 log(1− (n +1)n+1e t )+∑(n−2)/2

p=0
(n−2p2)

8 log Ip,p (t ), if n even
n−3
48 log(1− (n +1)n+1e t )+∑(n−3)/2)

p=0
(n+1−2p)(n−1−2p)

8 log Ip,p (t ) if n odd

Consequently, Zinger’s theorem takes the following pleasant form, that we will use to simplify
the task of recognizing F A

1 (T ) in our expression for the BCOV invariant (cf. Theorem 5.1).

Theorem 5.8 (Zinger). Under the change of variables t 7→ T , the series F A
1 (T ) takes the form

F A
1 (T ) = N1(0)t + χ(Xn+1)

24
log I0,0(t )

− n(3n −5)

48
log(1− (n +1)n+1e t )− 1

2

n−2∑
p=0

(
n −p

2

)
log Ip,p (t ).

(5.15)

A final remark on the holomorphicity of F A
1 (T ) is in order. While Theorem 5.8 is a priori an

identity of formal series, the right hand side of (5.15) is actually a holomorphic function in t , for
Re t ¿ 0. Then, via the mirror map, F A

1 (T ) acquires the structure of a holomorphic function in T .
One can check that the domain of definition is a half-plane ReT ¿ 0.

5.4. Genus one mirror symmetry and the BCOV invariant. We are now in position to show
that the BCOV invariant of the mirror family f : Z → U realizes genus one mirror symmetry
for Calabi–Yau hypersurfaces in projective space. That is, one can extract the generating series
F A

1 (T ) from the function ψ 7→ τBCOV(Zψ) . The precise recipe by which this is accomplished goes
through expressing τBCOV in terms of the L2 norms of the canonical sections η̃k (cf. Definition
5.7). But first we need to make τBCOV(Zψ) and F A

1 (T ) depend on the same variable. To this end,
we let

(5.16) F B
1 (ψ) = F A

1 (T ), for T = I0,1(t )

I0,0(t )
and e t = ((n +1)ψ)−(n+1).

Theorem 5.9. In a neighborhood of ψ=∞, there is an equality

τBCOV(Zψ) =C
∣∣exp

(
(−1)n−1F B

1 (ψ)
)∣∣4 ‖η̃0‖χ/6

L2(∏n−1
k=0 ‖η̃k‖2(n−1−k)

L2

)(−1)n−1 ,

where χ=χ(Zψ) and C ∈πcQ×
>0, c = 1

2

∑
k (−1)k+1k2bk .

Proof. The proof is a simple computation, which consists in changing the variable T to ψ, using
(5.16), in the expression for F A

1 (T ) provided by Theorem 5.8. For the computation, recall that for
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a smooth hypersurface Xn+1 in Pn , χ(Xn+1) = (−1)n−1χ. Modulo log of rational numbers, we find

4F A
1 (T ) =

(
−n(n +1)

12
+ χ(Xn+1)

6(n +1)

)
t + χ(Xn+1)

6
log I0,0(t )

− n(3n −5)

12
log(1− (n +1)n+1e t )−2

n−2∑
p=0

(
n −p

2

)
log Ip,p (t )

=
(

n(n +1)

12
− χ(Xn+1)

6(n +1)
+ n(3n −5)

12

)
log(ψn+1)

− n(3n −5)

12
log(ψn+1 −1)+ χ(Xn+1)

6
log I0,0(t )−2

n−2∑
p=0

(
n −p

2

)
log Ip,p (t )

=(−1)n−1 log
(ψn+1)2a

(ψn+1 −1)2b
+ (−1)n−1χ

6
log I0,0(t )−2

n−2∑
p=0

(
n −p

2

)
log Ip,p (t ).

Now, in terms of the canonical trivializing sections η̃k given in Definition 5.7, Theorem 5.1
becomes:

τBCOV(Zψ) =C

∣∣∣∣ (ψn+1)a

(1−ψn+1)b

∣∣∣∣2 |I0,0(t )|χ/6(∏n−2
p=0 |Ip,p (t )|2(n−p

2 )
)(−1)n−1

‖η̃0‖χ/6
L2(∏n−1

k=0 ‖η̃k‖2(n−1−k)
L2

)(−1)n−1 . �

Remark 5.10. (1) In relative dimension 3, we recover the main theorem of Fang–Lu–Yoshikawa
[FLY08, Thm 1.3]. Their result is presented in a slightly different form. The first formal
discrepancy is in the choice of the trivializing sections. Their trivializations can be related
to ours via Kodaira–Spencer maps. The second discrepancy is explained by a different
normalization of F A

1 : they work with two times Zinger’s generating series. This justifies
why their expression for the BCOV invariant contains |exp(−F B

1 (ψ))|2, while our formula
in dimension 3 specializes to |exp(−F B

1 (ψ))|4.
(2) The norms of the sections η̃k are independent of the choice of crepant resolution. It

follows that the expression on the right hand side in Theorem 5.9 is independent of
the crepant resolution, except possibly for the constant C . In [EFiMM21, Conj. B] we
conjectured that the BCOV invariant is a birational invariant. A proof of this conjecture
has been announced in [Zha20, FZ20]. Thus C should in fact be independent of the
choice of crepant resolution.

Corollary 5.11. (1) The invariant N1(0) satisfies

N1(0) = −1

24

∫
Xn+1

cn−2(Xn+1)∧H ,

where H is the hyperplane class in Pn .
(2) As ψ→∞, logτBCOV(Zψ) behaves as

(5.17) logτBCOV(Zψ) =
(

(−1)n

12

∫
Xn+1

cn−2(Xn+1)∧H

)
log

∣∣ψ−(n+1)
∣∣2 +O(loglog |ψ|).

Proof. The sought for interpretation of N1(0), or equivalently for the coefficient κ∞ in Corollary
5.2, is obtained by an explicit computation of, and comparison to

∫
Xn+1

cn−1(ΩXn+1 )∧H . Indeed,
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by the cotangent exact sequence for the immersion of Xn+1 into Pn , this reduces to∫
Xn+1

cn−2(ΩXn+1 )∧H = (−1)n−1

n +1
χ(Xn+1)−

∫
Pn

cn−1(ΩPn )∧H ,

and we have explicit formulas for both terms on the right. This settles both the first and second
claims.

�

Remark 5.12. The asymptotic expansion (5.17) has been written in the variable ψ−(n+1) on
purpose, since this is the natural parameter in a neighborhood of the MUM point in the moduli
space. In this form, the equation agrees with the predictions of genus one mirror symmetry (cf.
[EFiMM21, Sec. 1.4] for a discussion).

6. THE REFINED BCOV CONJECTURE

In this section, we propose an alternative approach to genus one mirror symmetry for Calabi–
Yau manifolds, which bypasses spectral theory and is closer in spirit to the genus zero picture.
The counterpart of the Yukawa coupling on the mirror side will now be a Grothendieck–Riemann–
Roch isomorphism (GRR) of line bundles, built out of Hodge bundles. As in the case of the Yukawa
coupling, one seeks canonical trivializations of these Hodge bundles, and the expression of the
GRR isomorphism in these trivializations should then encapsulate the genus one Gromov–Witten
invariants of the original Calabi–Yau manifold. This is our interpretation of the holomorphic
limit of the BCOV invariant. We refer to this conjectural program as the refined BCOV conjecture.

6.1. The Grothendieck–Riemann–Roch isomorphism. Let f : X → S be a projective morphism
of connected complex manifolds, whose fibers are Calabi–Yau manifolds. Recall from (2.6) that
the BCOV bundle λBCOV(X /S) is defined as a combination of determinants of Hodge bundles. Its
formation commutes with arbitrary base change.

Conjecture 1. For every projective family of Calabi–Yau manifolds f : X → S as above, there exists
a natural isomorphism of line bundles, compatible with any base change,

(6.1) GRR(X /S) : λBCOV(X /S)⊗12κ ∼−→ ( f∗KX /S)⊗χκ.

Here χ is the Euler characteristic of any fiber of f and κ only depends on the relative dimension
of f .

Below we present some arguments in favour of the conjecture.

• Applying this to the universal elliptic curve, the right hand side becomes trivial in view
of χ = 0. This suggests that the left hand side is trivial. It is indeed trivialized by the
discriminant modular form ∆, with κ= 1. For higher dimensional abelian varieties both
sides are trivial and the identity provides a natural isomorphism.

• For K 3 surfaces both sides are identical, and the identity provides a natural isomorphism.
See in particular Proposition 6.14. The referee kindly communicated to us a proof of the
analogue of the conjecture for Enriques surfaces, relying on the works about analytic
torsions and the Borcherds’ Φ-function by Kawaguchi–Mukai–Yoshikawa [KMY18], Dai–
Yoshikawa [DY20] and Yoshikawa [Yos04].

• In the category of schemes, a natural isomorphism ofQ-line bundles up to sign exists by
work of Franke [Fra92] and the first author [Eri08]. It is compatible with the arithmetic
Riemann–Roch theorem, but is far more general and stronger.
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The following proposition establishes a version of Conjecture 1 in the setting of arithmetic
varieties (cf. Section 2.3). This is an application of the arithmetic Riemann–Roch theorem 2.3.
Recall that an arithmetic ring A comes together with a finite collection of complex embeddings
Σ, closed under complex conjugation. We will write A×,1 for the group of elements u ∈ A× with
|σ(u)| = 1 for all embedding σ ∈Σ. For instance, if A is the ring of integers of a number field then
A×,1 is a finite group. If A =Q or R, then A×,1 = {±1}. If A =C, then A×,1 is the unit circle in C.

Proposition 6.1. Let f : X → S be a smooth projective morphism of arithmetic varieties over an
arithmetic ring A, with Calabi–Yau fibers. Let X∞ be the generic fiber of f and write χ=χ(X∞).
Assume that S → Spec A is surjective and has geometrically connected fibers.

(1) There exists an integer κ≥ 1 and an isomorphism of line bundles on S

GRR : λBCOV(X /S)⊗12κ ∼−→ ( f∗KX /S)⊗χκ,

with the property of being an isometry for the Quillen-BCOV and L2 metrics on λBCOV(X /S)
and f∗KX /S , respectively.

(2) If GRR′ is another such isomorphism, for another choice of integer κ′ ≥ 1, then

GRR′ ⊗κ = GRR ⊗κ′

up to multiplication by some u ∈ A×,1. Consequently, the formation of GRR is compatible
with any base change between geometrically connected arithmetic varieties over A, up to
the power κ and multiplication by a unit in A×,1.

Proof. The first claim is a restatement of the identity (2.9) in ĈH
1
(S)Q, together with the isomor-

phism ĉ1 : P̂ic(S)
∼→ ĈH

1
(S) and the very definition of P̂ic(S) as the group of isomorphism classes

of hermitian line bundles over S.
For the second claim, notice that both GRR′ ⊗κ and GRR ⊗κ′ induce isometries between the

hermitian line bundles λBCOV(X /S)⊗12κκ′ and ( f∗KX /S)⊗χκκ
′
, endowed with the Quillen-BCOV

and L2 metrics, respectively. These isomorphisms differ by multiplication by a unit u ∈ Γ(S,O×
S ).

The isometry property guarantees that the induced holomorphic function on San has modulus
one, and is constant on the connected components. Hence, if we fix σ ∈C, u is constant on San

σ .
If we see u in Γ(Sσ,O×

Sσ
), we infer from this that it satisfies the descent condition with respect to

Sσ→ SpecC. It follows that u already satisfies the descent condition with respect to S → Spec A.
This is easily seen if S is affine, by the flatness of S → Spec A, and in general one may replace S by
the disjoint union of the open subsets of an affine covering of S. Because S → Spec A is actually
faithfully flat by assumption, we conclude that u ∈ A×. Now u has modulus one as a function on
San, which exactly means u ∈ A×,1. The base change property then follows from the compatibility
of λBCOV(X /S) and f∗KX /S with base change, and the fact that the Quillen and Hodge metrics
are preserved as well. �

Remark 6.2. (1) If A×,1 is a finite group of order d , then the second claim of the corollary
entails

GRR′ ⊗dκ = GRR ⊗dκ′ .

Therefore, after possibly adjusting κ, the isomorphism is uniquely determined.
(2) The proposition applies to the mirror family of Calabi–Yau hypersurfaces studied in

Section 3. Here A = Q, and therefore the resulting isomorphism is determined by the
previous remark.
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6.2. Strongly unipotent monodromy and distinguished sections. The below discussion is based
on [Del] and [Mor97, §6.3, §7.1].

Hodge–Tate structures. Let (V ,F •,W•) be a mixed Hodge structure on aQ-vector space V , where
F • is the decreasing Hodge filtration of VC, and W• is the increasing weight filtration of V . We
also write W• for the induced filtrations on VR and VC.

Definition 6.3. A mixed Hodge structure is Hodge–Tate if the Hodge filtration is opposite to the
weight filtration, in the sense that for any k the natural map

F k ⊕W2k−2 →VC

is an isomorphism. Equivalently, if the following two conditions are satisfied:

(1) GrW
2k V = W2k /W2k−1 is isomorphic to a sum of Tate twists Q(−k). In other words, it is

purely of type (k,k).
(2) GrW

2k+1 V = {0}.

According to [Del, §6], if a limiting Hodge structure has this property, it should be viewed as
maximally degenerate. An example of this situation is H n−1

lim for the mirror family around ∞, as
explained in the proof of Lemma 4.3. For Calabi–Yau degenerations over D×, this condition on
the limiting middle Hodge structure implies that the monodromy is maximally unipotent.

It follows from the definition of Hodge–Tate mixed Hodge structure that the natural map

(6.2) F p /F p+1 ,→VC/F p+1 = (F p+1 ⊕W2p )/F p+1 →W2p →W2p /W2p−2

is an isomorphism, and that there are natural isomorphisms

(6.3) F p ∩W2p ' GrW
2p (VC)

and

(6.4) F p ∩W2p ' Grp
F (VC)

compatible with the isomorphism (6.2).

Distinguished sections. Suppose now that we are provided a variation of integrally polarized
Hodge structures (VZ,F •) of weight w over D× = (D×)d . Here VZ is an integral local system, and
F p is the Hodge filtration of V :=VZ⊗ZOD× . Denote by ∇ the flat connection on V and suppose
the local monodromies are unipotent. Denote by T j the endomorphism of the local system VZ,
given by the monodromy around the coordinate axis (s j = 0) of (D×)d . Consider the family of
operators N j := logT j over D×. LetWk be the associated increasing weight monodromy filtration
of VQ, and denote by Wk =Wk ⊗OD× . The bundle Wk is preserved by ∇, satisfies N jWk ⊆Wk−2,
and for any positive real numbers a j > 0, with N =∑

a j N j , we have an isomorphism

N k : GrW
w+kVR→ GrW

w−kVR.

By the results of Schmid [Sch73], associated to (VZ,F •) and for any base point s ∈ D×, there is a
limiting mixed Hodge structure Vlim onVQ,s . Its weight filtration is given byWk,s . The following
lemma can be found in [Del, Sec. 6]:

Lemma 6.4. If Vlim is Hodge–Tate, then, after possibly shrinking D×, (VZ,F p ,Wk ) is a variation of
mixed Hodge structures over D×, with the same Hodge numbers as Vlim. In particular, the natural
morphism F p ⊕W2p−2 → V is an isomorphism over D×.
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Remark 6.5. The Hodge and the weight filtrations on V extend as subvector bundles of the
Deligne extension Ṽ over D. The extended filtrations continue to be opposite in the sense of
Lemma 6.4.

From now on, we suppose the limiting Hodge structure is Hodge–Tate. In this setting, after
Lemma 6.4, we have the analogues of the isomorphisms (6.2), (6.3) and (6.4), namely isomor-
phisms

(6.5) F p /F p+1 →W2p /W2p−2,

(6.6) F p ∩W2p ' GrW
2p V

and

(6.7) F p ∩W2p ' Grp
F V .

Since N jW2p ⊆W2p−2 ⊆W2p−1, N j and hence the monodromy act trivially on the local system
GrW

2pVQ, which is thus constant. In particular, GrW
2p V is a trivial flat vector bundle. We abusively

often identify this trivial local system with the vector space H 0(D×,GrW
2pVQ).

Definition 6.6. The distinguished sections of F p /F p+1 are the global sections corresponding
to GrW

2pVC ⊆ GrW
2p (V ) under the isomorphism in (6.5). A basis of distinguished sections will be

called a distinguished basis. It is unique up to a matrix transformation with constant complex
coefficients.

For the determinant bundles, we have the following corollary:

Corollary 6.7. Keep the notations and assumptions of Definition 6.6. The exterior products of a
distinguished basis provides a local frame for det(F p /F p+1).

Any frame as in the corollary will be called a distinguished trivialization. It is unique up to a
scalar constant in C×.

Remark 6.8. Using the integral lattice VZ one naturally defines an integral structure GrW
2kVZ on

GrW
2kVQ. Accordingly, there are integral distinguished sections and trivializations. The corre-

sponding integral distinguished trivialization of det(F p /F p+1) is unique up to sign.

Suppose now that we are in the geometric case of a projective family of complex manifolds
f : X → D×, endowed with a relatively ample line bundle. We assume that for any k, Rk f∗Z
is a local system with unipotent local monodromies. Each variation (Rk f∗Q)prim is integrally
polarized and Schmid’s theory in [Sch73] recalled above applies. By the Lefschetz decomposition
Rk f∗Q admits a limiting Hodge structure, and in particular a monodromy weight filtrationW•.
The constructions are independent of the choice of ample line bundle.

In the geometric case, we can provide an alternative description of the distinguished sections
in terms of the behaviour of periods:

Lemma 6.9. If the local monodromies of Rk f∗C are unipotent, and the limiting Hodge structure
is Hodge–Tate, the distinguished sections of F p /F p+1 uniquely correspond to elements η ∈F p ,
such that:

(1)
∫
γη= 0 for all multivalued flat homology cycles γ inW′

−2p−2 ⊆ (Rk f∗C)∨.

(2)
∫
γη is constant for all multivalued flat homology cycles γ inW′

−2p ⊆ (Rk f∗C)∨.
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Proof. By definition of the dual weight filtration, recalled at the end of §4.1, and equation (6.7),
we can identify Grp

F V with the set of sections of F p whose periods along cycles in W′
−2p−2

vanish. Moreover, by (6.6), η ∈F p ∩W2p corresponds to a distinguished section exactly when
∇η ∈W2p−2 ⊗Ω1

D× . This in turn is equivalent to
∫
γ∇η= 0 for all γ of W′

−2p . The statement then
follows from the formula

d

(∫
γ
η

)
=

∫
γ
∇η

for flat multivalued homology sections γ. �

Strongly unipotent monodromy degenerations.

Definition 6.10. We say that a projective family f : X → D× of complex manifolds is of strongly
unipotent monodromy if:

(1) for all k ≥ 0, all local monodromies Rk f∗Q are unipotent;
(2) for all k ≥ 0, the variations of Hodge structures associated to the local systems Rk f∗Q have

limits at 0 which are Hodge–Tate.

In the situation of a family of Calabi–Yau manifolds in relative dimension 3 with one-dimensional
complex moduli, with h1,0 = h2,0 = 0 and unipotent monodromies, strongly unipotent mon-
odromy is equivalent to N 3 6= 0 on H 3

lim. This is the usual definition of maximally unipotent
monodromy. In general, for a family of Calabi–Yau manifolds f : X → D× of relative dimension
n, the definition of strongly maximally unipotent monodromy is stronger than imposing that
N n 6= 0 on Rn f∗C.

We now show that our results on the mirror family f : Z → D×∞ provide an example of the
previous phenomena and constructions. In preparation for the discussion, recall the minimal
decomposition introduced in Proposition 3.13, and in particular the local system V and its
associated flat vector bundle V .

Lemma 6.11. The mirror family f : Z →D×∞ has strongly unipotent monodromy.

Proof. Outside the middle cohomology n −1, being Hodge–Tate follows from the fact that the
variation of Hodge structures associated to R2p f∗Q is purely of type (p, p) (see Lemma 3.4) and
the monodromy is trivial by Lemma 4.1.

In the middle cohomology, by the Lefschetz decomposition, it is enough to deal with the local
system (Rn−1 f∗Q)prim. This is a sum of (Rn−1 f∗Q)min and V. The limiting Hodge structure asso-
ciated toV is Hodge–Tate by Proposition 3.13 and Lemma 4.2. That (Rn−1 f∗Q)min is unipotent
and has limiting mixed Hodge structure which is Hodge–Tate follows from Lemma 4.3 and its
proof. �

The following proposition summarizes the results of §4.2 and §5.2, to the effect of describing
distinguished trivializations of the Hodge bundles.

Proposition 6.12. The distinguished trivializations of the determinants of the Hodge bundles
RqΩ

p
Z /D×∞

are described as follows:

(1) Suppose 2p 6= n −1. Any basis of the trivial local system R2p f∗C provides a distinguished
trivialization of detRp f∗Ω

p
Z /D×∞

.

(2) Suppose 2k 6= n −1 . Then η̃k are distinguished trivializations of RkΩn−1−k
Z /D×∞

.
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(3) Suppose 2k = n −1. For any polarization L, any basis u (resp. v) of the trivial local systems
R2n−4 f∗C (resp. V), the section η̃k ∧ (detLu)∧det v is a distinguished trivialization of
detRk f∗Ωk

Z /D×∞
.

6.3. Relationship with mirror symmetry. We now present our refinement of the BCOV conjec-
ture, for degenerating families of Calabi–Yau manifolds with strongly unipotent monodromy.
The statement predicts that GRR realizes genus one mirror symmetry. We then show that the
conjecture holds for the case of mirrors of hypersurfaces in projective space, as a consequence
of our previous main theorems. The case of K3 surfaces is not covered by those considerations,
but a proof is also provided.

To prepare for the formulation of the conjecture, let f : X → D× = (D×)d be a projective
morphism of Calabi–Yau n-folds, with d = h1,n−1 the dimension of the deformation space of the
fibers, effectively parametrized and with strongly unipotent monodromy. We denote by η̃p,q an
integral distinguished trivialization of detRq f∗Ω

p
X /D× , which is unique up to sign (see Corollary

6.7 and Remark 6.8). Using these, both bundles appearing in the conjectural Grothendieck–
Riemann–Roch isomorphism (6.1) admits canonical trivializations. Precisely, up to sign, the
BCOV bundle is canonically trivialized by:

(6.8) η̃BCOV :=⊗
p,q

η̃
⊗(−1)p+q p
p,q .

Likewise, η̃n,0 trivializes the f∗KX /D× . Expressed in these trivializations, we can write

(6.9) GRR(X /D×) : η̃12κ
BCOV 7→ GRR(s) · η̃χκn,0

for an invertible holomorphic function s 7→ GRR(s) on D×.
In the above situation, it is expected that there are canonical mirror coordinates q = (q1, . . . , qd )

on D. In [Mor93], for one-dimensional moduli, this is constructed through exponentials of
quotients of well selected periods. For mirrors of hypersurfaces, this amounts to Zinger’s mirror
map recalled in (5.13). A general alternative construction of mirror coordinates in the Hodge-Tate
setting is suggested in [Del, Sec. 14].

Conjecture 2. Let f : X → D× = (D×)d be a projective morphism of Calabi–Yau n-folds, with
d = h1,n−1 the dimension of the deformation space of the fibers, effectively parametrized with
strongly unipotent monodromy. In the mirror coordinates q = (q1, . . . , qd ) of D, the function
defined in (6.9) becomes

GRR(q) =C ·exp
(
(−1)nF A

1 (q)
)24κ

,

where C is a constant,

F A
1 (q) =− 1

24

d∑
k=1

(∫
X ∨

cn−1(X ∨)∧ωk

)
log qk +

∑
β∈H2(X ∨,Z)

GW1(X ∨,β) q〈ω,β〉

is a generating series of genus one Gromov–Witten invariants on a mirror Calabi–Yau manifold
X ∨, and:

• ω= (ω1, . . . ,ωd ) is some basis of H 1,1(X ∨)∩H 2(X ∨,Z) formed by ample classes.
• GW1(X ∨,β) is the genus one Gromov–Witten invariant on X ∨ associated to the class β.

• q〈ω,β〉 =∏
k q〈ωk ,β〉

k .

As supporting evidence, we consider the case of the mirror family of Calabi–Yau hypersurfaces
in Pn , and settle the second part of the Main Theorem in the introduction:
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Theorem 6.13. Let n ≥ 4. Then Conjecture 1 and Conjecture 2 are true, up to a constant, for the
mirror family f : Z →D×∞ in a neighborhood of the MUM point.

Proof. First of all, the existence of a natural isomorphism as in Conjecture 1 is provided by
Proposition 6.1 and Remark 6.2 (2). Secondly, for Conjecture 2, consider η̃BCOV defined as in
(6.8). Since distinguished trivializations are equal up to a constant, for the purpose of proving
Conjecture 2 we can suppose that the sections η̃p,q are actually those determined by Proposition
6.12. By the isometry property of GRR and the very definition of the BCOV invariant, we have

τ12κ
BCOV =

‖GRR(η̃12κ
BCOV)‖2

L2

‖η̃BCOV‖24κ
L2,BCOV

.

In other words,

(6.10) τBCOV = |GRR(q)|1/6κ
‖η̃n−1,0‖χ/6

L2

‖η̃BCOV‖2
L2,BCOV

.

As in the proof of Theorem 5.1 (see also [EFiMM21, Prop. 4.2]), the quantity ‖η̃BCOV‖L2,BCOV coin-
cides with the factor

∏n−1
k=0 ‖η̃k‖n−1−k

L2 up to a constant. We conclude by comparing (6.10) with
Theorem 5.9. �

The cases of one and two dimensional Calabi–Yau varieties are not covered by the above result.
The one dimensional case essentially corresponds to the Kronecker limit formula recalled in §1.5.
We now study the case of K 3 surfaces. Since h1,1 = 20 for a K 3 surface, our one-dimensional
Dwork-type family cannot be a mirror family. It is still expected that the mirror of a K3 surface is
a K3 surface, a systematic construction in terms of polarized lattices can be found in for example
[Dol96]. We will assume this below.

Proposition 6.14. Conjecture 1 and Conjecture 2 are true, up to a constant, for any mirror family
of a K3 surface. Moreover, κ= 1.

Proof. The BCOV line takes a particularly simple form for a K 3 surface X , its square can be
written as:

(6.11) λBCOV(X )⊗2 = det H 2,0(X )⊗4 ⊗det H 1,1(X )⊗2 ⊗det H 2,2(X )⊗4 ' det H 2,0(X )⊗4.

The isomorphisms det H 1,1(X )⊗2 'C and det H 2,2(X ) 'C are both induced by Serre duality and
are thus isometries, for the L2 norms and standard metric on C. Since χ(X ) = 24, the square of
the right hand side of Conjecture 1 is provided by the same object.

Let f : X → D× be a family of K3 surfaces. The previous construction globalizes to an isomor-
phism of line bundles

λBCOV(X /D×)⊗2 ∼−→ ( f∗KX /D×)⊗4

compatible with base change. Taking 6th powers and setting κ= 1, this proves Conjecture 1 in
this case. We hence propose that GRR is induced by (6.11).

Following the proof of Theorem 6.13, to prove Conjecture 2, we need to construct distinguished
trivializations of both sides. For H 1,1, we choose the section of detR1 f∗Ω1

X /D× = (detR2 f∗C)⊗
OD× induced by a generator of detR2 f∗Z, and analogously for detR2 f∗Ω2

X /D× = (detR4 f∗C)⊗OD×.
Their L2 norms are locally constant by [EFiMM21, Prop. 4.2]. Picking any distinguished section
η̃2,0 of f∗KX /D× , it allows us to write down the section η̃BCOV of (6.8).

The analogous formula to (6.10) becomes, in this case,
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τBCOV = |GRR(q)|1/6
‖η̃2,0‖4

L2

‖η̃BCOV‖2
L2,BCOV

=C |GRR(q)|1/6,

for a constant C > 0. By triviality of the Gromov–Witten invariants for K3 surfaces (see for
example [LP07, Corollary 3.3]), to prove Conjecture 2 we need to prove that τBCOV is constant.
This is the content of [EFiMM21, Thm. 5.12]. �

7. A CHOWLA–SELBERG FORMULA FOR THE BCOV INVARIANT

In this section we discuss an example of use of the arithmetic Riemann–Roch theorem to
evaluate the BCOV invariant of a Calabi–Yau manifold with complex multiplication, similar to the
derivation of the Chowla–Selberg formula from the Kronecker limit formula for elliptic curves. In
such situations, or more generally for Calabi–Yau manifolds whose Hodge structures have some
extra symmetries, we expect that the BCOV invariant can be evaluated in terms of special values
of Γ functions or other special functions.

Let p ≥ 5 be a prime number, and define n = p −1. We consider the mirror family f : Z →U
to Calabi–Yau hypersurfaces of degree p in Pn . The restriction on the dimension here has been
made to simplify the exposition. The special fiber Z0 is a crepant resolution of X0/G , where X0 is
now the Fermat hypersurface

xp
0 + . . .+xp

n = 0.

The quotient X0/G has an extra action of µp ⊂ C: a p-th root of unity ξ ∈ C sends a point
(x0 : . . . : xn) to (x0 : . . . : xn−1 : ξxn). This action induces a Q-linear action of K =Q(µp ) ⊂ C on
H n−1(X0,Q)G . As a rational Hodge structure, the latter is isomorphic to H n−1(Z0,Q). For this,
see §3.3, and especially Lemma 3.11 and Proposition 3.13 (we are in odd dimension, and all
the cohomology is primitive now). Hence H n−1(Z0,Q) inherits aQ-linear action of K . Observe
that [K : Q] = p −1, which is exactly the dimension of H n−1(Z0,Q). We say that Z0 has complex
multiplication by K . Similary, the algebraic de Rham cohomology H n−1(Z0,Ω•

Z0/Q) affords a

Q-linear action of K . Indeed, this is clear for H n−1(X0,Ω•
X0/Q)G , since the action of µp on X0

by automorphisms can actually be defined overQ and commutes with the G action. Then, we
transfer this to the cohomology of Z0 via Lemma 3.11, which in this case provides an isomorphism
H n−1(Z0,Ω•

Z0/Q) ' H n−1(X0,Ω•
X0/Q)G .

Let us fix a non-trivial ξ ∈ µp . If we base change H n−1(Z0,Q) to K , we have an eigenspace
decomposition

H n−1(Z0,K ) =
p−1⊕
k=0

H n−1(Z0,K )ξk .

Hence, ξ acts by multiplication by ξk on H n−1(Z0,K )ξk . Similarly, for algebraic de Rham coho-
mology:

H n−1(Z0,Ω•
Z0/K ) =

p−1⊕
k=0

H n−1(Z0,Ω•
Z0/K )ξk .

If we compare with H n−1(X0,Ω•
X0/K )G , and we recall the construction of the sections θk and η◦k

(cf. §3.5), we see by inspection that ξ acts on η◦k by multiplication by ξk+1. Therefore, we infer
that the non-trivial eigenspaces only occur when 1 ≤ k ≤ p −1 and

H n−1(Z0,Ω•
Z0/K )ξk = Kη◦k−1 = H k−1(Z0,Ωn−k

Z0/K ).
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Hence, the eigenspace H n−1(Z0,Ω•
Z0/K )ξk has Hodge type (n −k,k −1).

The period isomorphism relating algebraic de Rham and Betti cohomologies decomposes into
eigenspaces as well. We obtain refined period isomorphisms

perk : H n−1(Z0,Ω•
Z0/K )ξk ⊗K C

∼−→ H n−1(Z0,K )ξk ⊗K C.

Evaluating the isomorphism on K -bases of both sides, we obtain a period, still denoted perk ∈
C×/K ×.

Lemma 7.1. Fix an algebraic closureQ ofQ in C. Then there is an equality in C×/Q
×

perk = 1

π
Γ

(
k +1

p

)p

.

Proof. The claim is equivalent to the analogous computation on X0. Hidden behind this phrase
is the comparison of cup products on X0 and Z0 accounted for by Lemma 3.6. On X0, the formula
for the period is well-known, and given for instance in Gross [Gro78, Sec. 4, p. 206] (see more
generally [DMOS82, Chap. I, Sec. 7]). Notice that the author would rather work with the Fermat
hypersurface xp

0 + . . .+xp
n−1 = xp

n . However, as we compute periods up to algebraic numbers, by

applying the obvious isomorphism of varieties defined overQ, the result is the same. Also, we
have used standard properties of the Γ function to transform loc. cit. in our stated form. �

Theorem 7.2. For Z0 of dimension p −2, with p ≥ 5 prime, the BCOV invariant satisfies

τBCOV(Z0) = 1

πσ

(
Γ

(
1

p

)χ(Z0)/12 p−1∏
k=1

Γ

(
k

p

)p−k−1
)2p

in R×/R∩Q×
,

where

σ= p

(
χ(Z0)

12
+ (p −1)(p −2)

2

)
+ 1

2

∑
k

(−1)k k2bk .

Proof. We apply Theorem 5.1, written in terms of the sections η◦k instead of ηk (which vanish at
0). Up to rational number, this has the effect of letting down the term (ψn+1)a in that statement.
We are thus lead to evaluate the L2 norms of the sections η◦k . By [MR04, Lemma 3.4], the L2

norms satisfy
‖η◦k‖2

L2 = (2π)−(p−2)|perk |2.

It is now enough to plug this expression in Theorem 5.1, as well as the value of perk provided by
Lemma 7.1. �

Combining Theorem 2.3 and the conjecture of Gross–Deligne (cf. [Fre17, MR04] for up to
date discussions and positive results), one can propose a general conjecture for the values of
the BCOV invariants of some Calabi–Yau varieties with complex multiplication. For this to be
plausible, it seems however necessary to impose further conditions on the Hodge structure.
Other recent examples of Calabi–Yau manifolds whose BCOV invariants should adopt a special
form are given in [CdlOEvS20].
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